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Abstract. The design of most 2D graphics frameworks has been guided
by what the computer can draw efficiently, instead of by how graphics can
best be expressed and composed. As a result, such frameworks restrict
expressivity by providing a limited set of shape primitives, a limited
set of textures and only affine transformations. For example, non-affine
transformations can only be added by invasive modification or complex
tricks rather than by simple composition. More general frameworks exist,
but they make it harder to describe and analyze shapes. We present a
new declarative approach to resolution-independent 2D graphics that
generalizes and simplifies the functionality of traditional frameworks,
while preserving their efficiency. As a real-world example, we show the
implementation of a form of focus+context lenses that gives better image
quality and better performance than the state-of-the-art solution at a
fraction of the code. Our approach can serve as a versatile foundation for
the creation of advanced graphics and higher level frameworks.

Keywords: Declarative Graphics, Design, Resolution-Independence, Optimiza-
tion, Focus+context lenses

1 Introduction

The design of traditional 2D graphics frameworks, such as Java2D1 and Pro-
cessing2, has been guided by what the computer can draw efficiently, instead
of by how graphics can best be expressed and composed. This hinders the ease
of programming 2D graphics, since it requires the programmer to express his
ideas using the limited vocabulary that has emerged as a result of the focus on
procedural optimization of such frameworks.

Suppose we have programmed a visualization in such a traditional framework
and we now want to add a focus+context lens, such as the one shown in Figure 1.
Since only affine transformations (that take parallel lines to parallel lines) are
supported, we cannot add this transformation in a compositional way: it requires
trickery or invasive modification.

Instead of worrying about such low-level details, it is desirable to program 2D
graphics in a declarative way that is general, simple, expressive, composable and
resolution-independent while still being efficient. Previous research on declarative
graphics has yielded many elegant approaches to 2D graphics, but none of these
exhibit all these traits. This not only restricts direct graphics programming,
but it also hinders the creation of higher-level frameworks. For example, during

1 http://docs.oracle.com/javase/6/docs/technotes/guides/2d/
2 http://processing.org



Fig. 1. An example focus+context lens (zoomfactor = 2.5).

our efforts on the Rascal figure library[1], a high-level framework for software
visualization, we noticed that our design was influenced by the limitations of
the procedural framework used and hence could not grow further in terms of
expressiveness and compositionality.

We present a new declarative approach that generalizes and simplifies the func-
tionality of traditional 2D graphics frameworks, while preserving their efficiency.
This is achieved by a very effective mapping of our approach to an existing 2D
graphics framework (which we will call the graphics host). Our approach allows
more expressive freedom and can hence serve as a more versatile foundation for
advanced 2D graphics and higher-level frameworks. It is available as a library
called Deform3 for Scala. Our contributions are:

– The motivation (Section 2) and design (Section 3) of a small, simple and
powerful framework for resolution-independent 2D graphics that enables
composability and expressiveness.

– A way to implement and optimize this framework (Section 4) by mapping
it to a readily-available, highly optimized graphics host. This includes opti-
mizations to speed up this mapping and a way to support clipping so that
large scenes can be rendered in real-time.

– An implementation of focus+context lenses that is faster and gives better
image quality than the state-of-the-art approach (Section 5). This also acts
as a validation of our work.

We discuss open questions in Section 6 and conclude in Section 7.

2 Exploring the Design Space

We now discuss design choices for declarative 2D graphics frameworks and to
guide our choices, we use the following design goals:

– Simplicity : The programmer should not be overwhelmed by concepts and
functions described in inch-thick manuals.

– Expressivity : Arbitrary graphics can be expressed in a natural way, without
the need to encode them in lower-level concepts.

– Composability : Graphics can be composed and transformed in general ways.

3 https://github.com/cwi-swat/deform



– Resolution-independence: Graphics can be expressed independent of resolu-
tion, so that they can be rendered at any level of detail.

– Analyzability : The concrete geometry of a shape can be obtained, for example
as a list of lines and Bézier curves, so that we can define functions that act
on this information to create derived graphics.

– Optimizability : Efficient algorithms for 2D graphics can be re-used.

Our analysis now focuses on how to represent shapes, textures and transformations,
in the way that has the best fit with our design goals.

2.1 Shapes

Most frameworks offer a fixed set of geometric constructs, such as lines, Bézier
curves and circle segments, that can be used to describe the border of shapes.
For example, a regular polygon with k vertices can be expressed as follows:

regpolyg(k) = [line(onCircle(i×p), onCircle((i+ 1)×p))| i← [0 . . . k − 1]]
where onCircle(x) = 〈sin(x), cos(x)〉, p = (1/k)×2×π

Here 〈x, y〉 denotes a point in R2. A downside of this approach is that shapes that
are not compositions of such geometric constructs, such as sine waves, cannot
be expressed. Instead, they have to be approximated when specifying the shape,
which does not give a resolution-independent description of the shape.

A second approach is to describe the border of a shape as a parametric curve: a
function from R to R2. For example, the border of the unit circle can be described
by c(t) = 〈sin(t×2×π), cos(t×2×π)〉 on the interval [0, 1]. This can be seen
as a generalization of using a fixed set of geometric constructs: each geometric
construct can be described by a parametric curve and hence a combination of
geometric constructs gives rise to a piecewise defined function. For this reason
the expression of a regular polygon with k vertices is exactly the same as when
using a fixed set of geometric constructs. Although a parametric description does
not immediately give an analyzable description of the shape, we can sample the
(resolution-independent) function to obtain such a description.

The third and final approach is to describe a shape implicitly : as a function
that given a point in R2 tells us whether the point is inside the shape or not. For
example, the implicit representation of the unit circle is c(p) = |p| ≤ 1, where |p|
denotes the Euclidian norm. A downside of this approach is that it is often hard
to encode a shape in this way. For example, as noted in [2], it requires an arcane
insight to understand that the following also represents a regular polygon with k
vertices.

regpolyg (k, 〈x, y〉) = (x− j)×(sin(q + p)− i)− (cos(q + p)− j)×(y − i) ≤ 0
where p = 2×π/k, q = p×batan2 (y, x)/pc, i = sin(q), j = cos(q)

It is also hard to analyze a shape that is described in this way, since we do not
have a representation of the border of the shape.

If we could automatically switch between the parametric and implicit represen-
tations we would not have to make a choice between them. However, transforming
a parametric representation into an implicit one or vice-versa is non-trivial, es-
pecially when the functions are not limited to a certain class. In fact, these are
well-known and thoroughly studied problems [3]. In general, exact conversion is



possible for certain classes of functions [4], while other classes of functions require
approximate techniques [5]. Since the implicit representation makes it hard to
express and analyze shapes, and since it is hard and computationally expensive
to automate the conversion between the two representations we have chosen to
describe shapes parametrically.

2.2 Textures

Most frameworks offer a fixed set of textures, such as fill colors, images and
gradients. Another approach is allow arbitrary textures by specifying the colors of
its pixels, but this is not a resolution independent approach. A general, resolution
independent way to describe a texture, and the one that we adopt, is by a function
that given a point returns the color of the texture at that point [6, 2]. Notice that
this way of expressing textures bears resemblance to implicitly defined shapes:
implicitly defined shapes are functions of type R2 → Boolean, whereas such
textures are functions of type R2 → Color .

2.3 Transformations

Typically, graphics frameworks offer only affine transformations, such as transla-
tion, rotation and scaling. Although these transformations cover many use cases,
they preclude a whole range of interesting transformations, such as focus+context
lenses. A more expressive model is to describe transformations simply as a
function from R2 to R2.

Parametrically described shapes then require the forward transformation,
while textures and implicitly defined shapes require the inverse transformation.
For example, to translate a parametrically defined shape to the right, we define a
function that given a parameter first gets the corresponding point on the border
of the shape and then applies the forward transformation to that point, which
moves the point to the right. To translate a texture to the right, we define a
function that given a point first applies the inverse transformation, which moves
the point to the left, and then queries the texture at that point. In the same
fashion, the inverse transformation is also needed to transform implicitly defined
shapes.

If we limit ourselves to affine transformations, obtaining both directions of a
transformation is not a problem since such transformations are easily inverted.
However, if we allow arbitrary transformations we need to either describe all
shapes implicitly and use only the inverse transformation, making it harder to
describe shapes, or describe shapes parametrically in which case we need both
the forward transformation and the inverse transformation, making it harder
to describe transformations. We conjecture that shapes are more likely to be
application-specific than transformations, which can often be reused. Hence, we
have chosen to represent shapes parametrically and require a definition of both
directions for transformations.

2.4 Comparison

As a comparison, Table 1 lists the choices made by us and other frameworks.
Traditional frameworks, like as Java2D, Processing and many others, limit the
expressivity of the programmer by only providing support for the most common



Traditional Func. image
synthesis

Vertigo Deform

Shapes
Fixed •

Parametric • •
Implicit •

Textures
Fixed/pixels •

Function • •

Transformations
Affine •

Function • •
Function−1 • •

Table 1. Design choices for graphics libraries.

use cases. Many declarative graphics frameworks4 make the same choices [7, 8].
Functional image synthesis frameworks, such as Pan [6] and Clastic [2], are based
on the notion that an image is simply a function from a point to a color. This
allows the elegant definition of many interesting visual mathematical graphics
but precludes real-life graphics, since the requirement of implicitly defined shapes
makes hard to define complex shapes such as letters. Vertigo [9] is an elegant
declarative framework for the geometric modeling of 3D shapes, without texturing.
In Deform we have chosen a combination of design decisions that has not yet been
explored: parametric shapes, textures as functions and general transformations.
In the rest of this paper we show that this allows us to define a simple, general
and resolution-independent framework which is applicable to real-life graphics.

3 Design

It is time to present our approach and illustrate its usage via examples. The
basic unit of our framework is a TexturedShape, that describes a shape and the
texture of its interior. An expression constituting a list of such textured shapes
is first created using the constructors given in Table 2 and then displayed by a
render function which interprets the constructors and produces an image. We will
now show how to express shapes, textures and transformations in this way. Our
examples were programmed in Scala and then hand-transformed into a custom
notation which should be easy to understand. The examples use the constructors
in Table 2 and some library functions of Deform, both of which will be explained
when used.

3.1 Shapes

The basis for describing shapes is the path constructor, which takes a parametric
description of the border of the shape, a function of type R → R2. To allow
omission of the domain of this function, it simply must be [0, 1]. The shape
constructor can then be used to create a shape from a list of closed paths, paths
of which the start and end points are the same. If one of the paths is not closed,
then it does not define an area and a run-time error will be thrown. A point is
then inside the shape if it is inside any of its closed paths.

4 Unfortunately, space limitations do not allow a more extensive discussion.



Constructor Type

path (R→ R2)→ Path
shape [Path]→ Shape
analyze Path× (ConcreteGeom→ A)→ A

where A ∈ {Path,Shape,Texture,TexturedShape,Transformation}
color R× R× R× R→ Color
texture (R2 → Color)→ Texture
fill Shape × Texture → TexturedShape
transformation (R2 → R2)× (R2 → R2)→ Transformation

Table 2. Constructors and functions. [A] indicates a list of As.

As a basic example, consider a circle:

circ = shape([path(λt→ 〈sin(t×2×π), cos(t×2×π)〉)])
The coordinate system of our framework is as follows: if the screen is square
then the north west corner of the screen is 〈−1,−1〉 and the south east corner is
〈1, 1〉. If the screen is non-square the range of the longest axis is adopted so that
graphics maintain their aspect-ratio. An example of a more complex path is the
spiral shown in Figure 2(a):

spiral = path(λt→ 〈f×cos(s), f×sin(s)〉
where f = 1/50×es/10, s = 6×π×(1 + t)

Paths themselves cannot be drawn as they do not define an area. Hence, to
produce a drawing of this spiral we use the stroke library function to convert this
path to a shape given the width of the “pen”:

stroke(spiral , 1/200)

We do not have to explicitly define a parametric representation for each shape.
Instead, we provide library functions that mimic the geometric constructs found
in traditional libraries. For example, we can create a triangle as follows:

triangle = shape([join([line(a, b), line(b, c), line(c, a)])])
where a = 〈0, 0〉, b = 〈1, 12 〉, c = 〈1,− 1

2 〉

(a) A simple spiral (b) Circle with triangle
subtracted

(c) A filled triangle

Fig. 2. Basic examples

To define functions which act on the geometry of a path, such as the stroke
function, we offer the analyze constructor which takes a path and a function
transforming the concrete geometry of the path, namely a list of lines and Bézier



curves, into a path, shape, texture, textured shape or transformation. To ensure
resolution-independence, analyze is a constructor rather than a function: in this
way we delay the sampling of the path until we know the desired resolution,
namely when the renderer runs. We also use this constructor to define resolution
independent constructive solid geometry operations on shapes, set operations
such as union and intersection operating on the set of points inside a shape. The
implementation of these operations involves analyzing the intersections between
the concrete geometry of both shapes. As an example, the shape in Figure 2(b)
can be obtained as follows:

pacman = subtract(circ, triangle)

3.2 Textures

To declare the interior of a shape, a texture can be created with the texture
constructor, which requires a function from a point to a color. A color is a value
with four numbers, all in the range [0, 1], namely red, green, blue and alpha
(transparency). For example, consider the following colors:

red = color(1, 0, 0, 1), black = color(0, 0, 0, 1), yellow = color(1, 1, 0, 1)

We can now create a radial gradient as follows:

radgrad = texture(λ〈x, y〉 → lerp(red , x2 + y2, black))

Where lerp performs linear interpolation of two colors on each of the four numbers.
A TexturedShape can then be created using the fill constructor. For example,
Figure 2(b) shows:

fill(pacman, radgrad)

As another example of defining textures in our framework, consider the
interior of the triangle shown in Figure 2(c). For this texture, we first declare a
one-dimensional cyclic gradient that cycles between red and yellow:

gradient(x) = if l ≤ 1
2 then lerp(red , 2×l, yellow)

else lerp(yellow , 2×(l − 1
2 ), red)

where l = x− bxc
We can then define the filling of the triangle as follows:

tritex = texture(λ〈x, y〉 → lerp(gradient(x×10), (2×|y|/x)2, black)

Where x×10 repeats the gradient ten times on the horizontal [0, 1] interval and
the linear interpolation argument5 (2×|y|/x)2 ensures that the color becomes
darker closer to the vertical border of the triangle. A further survey of the power
of this way of describing textures is beyond the scope of this paper, for some
fascinating examples see [6] and [2].

3.3 Transformations

The transformation constructor can be used to describe arbitrary transformations
and requires the forward transformation function and its inverse. For example,
we can define a scaling transformation as follows:

scale(sx, sy) = transformation(λ〈x, y〉 → 〈sx×x, sy×y〉,
λ〈x, y〉 → 〈x/sx, y/sy〉)

5 When x = 0, |y|/x will be ∞ or not-a-number, which will cause lerp to return black.



We can use this transformation to scale our previous examples. For example, to
make our filled triangle half as big, we can do the following:

transform(scale(1/2, 1/2),fill(triangle, tritex ))

Where the transform function is expressed as follows:

transform(transformation(f, f−1), path(p)) = path(f ◦ p)
transform(f, shape(l)) = shape([transform(f, p) |p← l])

transform(transformation(f, f−1), texture(t)) = texture(t ◦ f−1)

transform(f,fill(s, t)) = fill(transform(f, s), transform(f, t))

The only constraint on a transformation is that it must be continuous, other-
wise it would be possible to transform a closed path (defining an area) into an
open path (not defining an area). As an example of a non-affine transformation
consider the “wave” transformation shown in Figure 3(a):

wave = transform(λ〈x, y〉 → 〈x+ sin(y), y〉), λ〈x, y〉 → 〈x− sin(y), y〉)
These transformations can be composed using the following compose function,

which uses the well-known rule (f ◦ g)−1 = g−1 ◦ f−1.

compose(transform(f, f−1), transform(g, g−1))= transform(f ◦ g, g−1◦f−1)

A benefit of having both directions of a transformation is that we can also
transform transformations. For example, if we have a rotation transformation and
we want to change the center of rotation, we can achieve this by transforming the
rotation by a translation. This is done by first applying the inverse translation,
then the rotation and then the forward translation. In general, we can transform
any transformation by another transformation as follows:

transform(t, r) = compose(t, compose(r, inverse(t)))

where inverse(transform(f, f−1)) = transform(f−1, f)

As an example, we can transform our wave transformation to produce smaller
waves:

scaledWave = transform(scale(1/30, 1/30),wave)

Applying this transformation to our filled triangle produces Figure 3(a).
Another example of a non-affine transformation is a “sweep”: mapping the

[0,1] interval on the x-axis to a given path. For example, by first scaling our filled
triangle to make it thinner we can obtain Figure 3(b) as follows:

fspir = transform(compose(sweep(spiral), scale(1, 1/40)), ftriangle)

Other papers [10, 9] have shown how to implement the sweep transformation when
only the forward transformation is required, we now show how to handle both
directions of this transformation. To define this transformation in a resolution-
independent way, we define it as a function which takes the concrete geometry of
the path and returns a transformation. Using the analyze constructor, we make
this function into a transformation.

To prevent changes in speed along the path, we want the norm of the derivative
to be constant along the path. To this end, we reparameterize the concrete



(a) Wave transformed trian-
gle.

(b) Triangle swept along
spiral.

(c) The filled triangle swept by
a spiral transformed by a wave.

Fig. 3. Non-affine transformation examples

geometry of the path to a new geometrical description, q, with the same shape
and a constant norm of the derivative, using an algorithm such as [11]. The
forward transformation can then be expressed as follows:

λ〈x, y〉 → q(x) + y×q̂′(x)

Here x̂ denotes a normalized vector and q′ is the derivative of q.
The inverse transformation works by finding the closest point on the path

to the point that is to be transformed. The horizontal coordinate is then the
parameter at that point on the path, and the vertical coordinate is the distance
of the point to be transformed from the path. More precisely:

λv → 〈t, sgn(q′(t))×|q(t)− v|〉where t = f(v)

Here sgn is the sign function and f computes the parameter of the closest point
on q to a given point, using an algorithm such as [12]. As a final example of the
compositionality this framework gives us, we transform the swept triangle using
our wave transformation to obtain Figure 3(c):

transform(scaledWave, fspir)

4 Implementation and Optimization

Our approach can be efficiently implemented by mapping it to a graphics host.
We first describe a basic implementation and then introduce some extensions
to allow more optimizations. Finally, we show how we can support clipping and
discuss potential further optimization. The implementation of Deform as sketched
in this section is surprisingly concise and simple and consists of just 983 lines of
Scala code.

4.1 Basic implementation

The main function to implement is the render function, which acts as an inter-
preter for the constructors that may occur in a TexturedShape. The pipeline of the
render function is shown in Figure 4 and is organized as follows; A TexturedShape
is produced by the user program and its shape is then translated into geometry,
i.e., lines and Bézier curves, which are in turn translated to their equivalent
representations in the graphics host. The graphics host then fills the shape,
producing a raster telling us which pixels are inside the shape. We then simply
iterate over these pixels and call the corresponding texture function for each
pixel, producing a color raster which is then sent to the display.
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Fig. 4. Rendering pipeline. Gray
indicates functionality from the
graphics host.

The toBézier function in this pipeline is also
used to interpret analyze constructors, namely
to generate the concrete geometry which is fed
to the function argument of the constructor. We
currently use a simple implementation of this
function: we sample the function until the sam-
ples are so close to each other that the error is
smaller that the size of a pixel. Afterwards, the
samples are joined by lines.

4.2 Special cases

We optimize the basic implementation by inter-
cepting special cases and mapping them to the
corresponding functionality of the graphics host.
We add a new constructor for each special case,
which are shown in Table 3. Several of these new
constructors were presented earlier as functions
and by transforming them into constructors the
render function can recognize them and act ac-
cordingly. We now discuss the special cases for
shapes, textures and transformations.
Shapes The first special case for shapes con-
cerns paths that consist of lines and Bézier curves.
It is of course wasteful to use a combination of
lines and Bézier curves, only to later approximate
it with other lines and Bézier curves. Hence, we
extend our Path type with extra constructors for
these types of paths and a constructor for join, so that the toBézier function can
immediately use these descriptions without sampling.

The second special case for shapes deals with constructive solid geometry
operations. The default implementation of these operations is to obtain a concrete
geometry of the shapes using toBézier and then analyze intersections to produce
the new shape. In the case of union or symmetric difference we can skip this
analysis. The union of a set of shapes can be implemented by supplying the set
of shapes to the fill function of the graphics host and using the non-zero fill rule.
This tells the renderer to fill any pixel that is inside at least one of the shapes,
effectively rendering the union of the shapes. Analogously, we can render the
symmetric difference of a list of shapes by using the even-odd fill rule, which
states that a pixel should be filled if it is inside an odd number of shapes.
Textures If the graphics host has support for a texture, we would like to make
use of these optimized capabilities, because then we can completely skip the
Texturer step in the pipeline. Hence, we include the constructor nativeTexture
for these cases, which takes a function that given an affine transformation gives
the specific representation for the graphics host of the transformed texture and a
regular texture function for use when the transformation of the texture is not
affine.



Transformations If a transformation is affine and the path consists of lines
and Bézier curves, we transform the geometry directly, instead of by sampling a
function. The constructor affineTransformation represents such an affine trans-
formation by two matrices (the specification of this type is left open), one for the
forward transformation and one for the inverse transformation. We also change
the transform function into a constructor so that the toBezier function can
intercept this special case. The compose function is also adapted to intercept
the special case of composing an affine transformation with another affine trans-
formation, which can be done using matrix multiplication instead of function
composition, saving computations when points are transformed.

Constructor Type

line R2 × R2 → Path
quadBezier R2 × R2 × R2 → Path
cubicBezier R2 × R2 × R2 × R2 → Path
join [Path]→ Path
union [Shape]→ Shape
symdiff [Shape]→ Shape
nativeTexture (Matrix → NativeTextureDesc)× (R2 → Color)→ Texture
transformation (R2 → R2)× (R2 → R2)→ Transformation
transform Transformation ×A→ A

where A ∈ {Path,Shape,TexturedShape,Transformation}
affineTransformation Matrix ×Matrix → Transformation
pathbb (R→ R2)× BBox → Path
transformationbb (R2 → R2)× (R2 → R2)× (BBox → BBox )→ Transformation

Table 3. Additional constructors for special cases.

Performance Note that in traditional frameworks such as Java2D or Processing,
the special cases presented above are the only things that are expressible. Thus,
the interception of these special cases guarantees that drawings that could also
be produced using such a library are approximately as fast. We verified this by
generating equivalent Java2D and Deform code in which 100,000 shapes (letters)
were rendered, each with their own native texture and affine transformation.
The Deform code performed 0.8% slower than the direct Java2D calls. This
minor difference in speed is due to the fact that the Deform code first builds an
intermediate representation of the textured shapes.

4.3 Clipping

For large scenes, involving many shapes, a valuable optimization is clipping :
determining the bounding boxes of shapes and then ignoring the shapes that are
not in view. However, since in our framework shapes and transformations can
be arbitrary functions, it is impossible to discover the bounding box of a shape
without sampling it.

For this reason we add two new constructors: one to declare a path and its
bounding box (the specification of this type is left open) and one to declare a
transformation and also a function to forwardly transform a bounding box. In this
way the user can optionally give the bounding boxes of transformed shapes. If the



bounding boxes are not supplied, the shapes will simply not profit from clipping.
In Deform, all library functions to construct paths and transformations also deal
with bounding boxes. For example, lines and Bézier curves get the bounding
box induced by their (control) points and join produces the smallest bounding
box that contains the bounding boxes of its arguments. Affine transformations
transform a bounding box by transforming each of its vertices. We currently
use axis-aligned bounding boxes, but it is also possible to use non-axis-aligned
bounding boxes that fit the shapes more tightly, at the cost of more computations.

4.4 Potential optimization

A potential optimization might be to speed the toBézier function by using
techniques from the field of curve fitting. We could do the sampling and fitting
in parallel, by modifying a curve fitting algorithm such as [13]. We can then
stop the sampling earlier if the samples we take lie close enough to the current
approximation. We can also use the parameter of each point to improve the
speed of our approximation since this is often useful information for curve fitting
algorithms [13]. Finally, curve fitting algorithms often estimate a derivative of
the shape, so if we numerically compute the derivative, or supply it using an
automated differentiation system [14], we can also use this information to more
quickly find an approximation of the curve.

5 Case study: Focus+context Lenses

As a real world example of how this framework enables advanced, resolution-
independent computer graphics techniques in a compositional way, we show
how to implement the form of focus+context lenses that are presented in [15],
which have been shown to be useful in human computer interaction [16]. A
focus+context lens, such as the one in Figure 1, is a transformation that magnifies
a part of the space (the focus area) and shows how this magnified part fits into
the rest of the space (the context) through a deformation. We compare our
implementation to the previous implementation of this form of focus+context
lenses [16]. Our implementation is slightly harder, since we require both directions
of the transformation. As we will show, this effort is well spent since it yields a
faster implementation that gives better image quality at a fraction of the code.

5.1 Implementation

focus

deformation

context

v

rf

rl

Fig. 5. Lens elements.

We first consider the inverse transformation as presented
in [15, 16]. Figure 5 shows the elements of a lens: rf is
the radius of the focus area, rl is the radius of the lens
and we define m as the magnification factor. The inverse
transformation is then defined as follows:

l−1(v) =


v/m |v| < rf
v
|v|×n

−1(|v|) rf < |v| < rl

v otherwise

Where n−1 is the function that describes the deforma-
tion, by giving the new norm, i.e., distance from the



center of the lens, for the point to be transformed and is a continuous, monotoni-
cally increasing function from [rf , rl] to [rf/m, rl]:

n−1(d) =
d

(1− p(z))×(m− 1) + 1
where z = (d− rf )/(rl − rf )

Here z describes how far into the deformation area the point is, with zero if the
point is on the border of the magnification area and one if it is on the border of
the context area. The profile function, p, describes the shape of the deformation
and can be chosen freely as long as it is a continuous, monotonically increasing
function from [0, 1] to [0, 1], such as the identity function. Another variation
point is which norm to use to compute |v|, which decides the shape of the lens.
In general it is possible to use any LP norm, which are of the form p

√
xp + yp.

The lens is circular with L2 and with L∞ the norm resolves to max(x, y) and the
lens is square. The example in Figure 1 uses the Euclidian norm and a Gaussian
profile function and Figure 6 shows two more Deform screenshots of other lenses
in action.

We now need to derive the forward transformation from this inverse transfor-
mation. If we have the inverse of the function n−1, then the forward transformation
can be expressed as follows:

l(v) =


v×m |v| < ri/m
v
|v|×n(|v|) rf/m < |v| < rl

v otherwise

However, for many profile functions, there is no analytic solution for the inverse
of n−1. Luckily, n−1 is a continuous monotonically increasing function, so we
can implement n(t) by numerically searching for the x such that n−1(x) = t.
We use Newton’s method for this, since it is very efficient at finding the roots
of monotonic functions. This method requires the derivative of n−1, which can
be constructed using the derivative of the profile. In this way only the profile
function and its derivative are needed when creating a lens with a different profile.

(a) L3 norm, linear profile (b) L4 norm, quadratic profile

Fig. 6. Different types of lenses in action



5.2 Comparison

The previous implementation [16] of this form of focus+context lenses is in the
Zoomable Visual Transformation Machine (ZVTM) [17] framework for zoomable
user interfaces. The advantage of their approach to implementing these lenses is
that it is very loosely coupled with the graphics host, and is thus applicable in
many graphical frameworks. In our approach these lenses can be added easily
and this yields a better implementation in terms of length of code, speed and
image quality.
Code size In the ZVTM implementation, defining the lenses requires about
700 lines of code, and each new lens (with a different norm or profile) requires
about 100 lines of code [16]. In our declarative framework, the implementation of
these lenses requires 43 lines of code, including the definition of the (reusable)
numeric approximation code, while defining a new lens can be done in a single
line of code. For example, a rounded square lens with a quadratic profile (with
derivative 2×x), as shown in Figure 6(b), is declared as follows:

lens(λ〈x, y〉 → 4
√
x4 + y4, λx→ x2, λx→ 2×x)

Performance As a performance comparison, we implemented the setup shown
in Figure 1 in both Deform and ZVTM and measured the time it took to render
a single image at different magnification factors. This was chosen because it is a
simple example of a combination of shapes (text) and a texture (bitmap image).
The entire picture was 1600x1000 pixels big and the lens had a focus radius of
100 pixels and a lens radius of 200 pixels. Note that both ZVTM and Deform
run on the JVM and are built on top of Java2D. Figure 7(a) shows the results
of our measurements on an Intel i7 2.8GHz CPU running OpenJDK 1.11.3. All
measurements are the average of 100 runs.

We can see that in ZVTM the magnification factor has a huge impact on
performance, whereas in Deform it has no effect at all. This is because ZVTM
does not feature non-affine transformations in general and uses a trick to achieve
focus+context lenses; It renders the lens area twice: once without magnification
and once with magnification. Afterwards, both renderings are sampled to produce
the lens area. The second, magnified rendering uses a buffer of width and height
2×m×rl. Hence the amount of pixels in this buffer is (2×m×rl)2, which explains
the quadratic growth of the ZVTM rendering time.
Image quality As a final comparison, we consider the image quality of both
approaches as shown in Figure 7(b). This notable difference in image quality is
caused by the fact that Deform performs the discretization of shapes and textures
later. ZVTM performs the discretization before applying the lens, while Deform
performs the discretization after applying the lens. Hence Deform does not suffer
from aliasing artifacts.

6 Discussion

While our framework is very expressive, it currently does not support post-
processing image filters such as blurs. These filters are computationally very ex-
pensive and require low-level optimizations for real-time performance. Halide [18]
is an example of a language that is specifically designed for such filters; the
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Fig. 7. Performance and image quality comparison.

programmer gives a concise declarative description of the filter along with a
schedule that states how the filter must be implemented. This yields very good
results, outperforming hand tuned assembly code in some cases. It would be
interesting to explore how the Halide way of describing filters can be fitted into
our framework.

Another open question is how we can exploit the massive power that is
available via GPUs: which paths, transformations and textures can be executed
on the GPU and how? How can these parts work together with functionality that
cannot be executed on the GPU? Answering these questions will lead to a truly
high-performance implementation of Deform.

7 Conclusion

We have presented a novel declarative framework for resolution-independent 2D
graphics that is simple, expressive and composable while still being applicable
to real-life graphics. We have shown how to implement this framework such
that it easily maps to readily available, highly-optimized procedural graphics
libraries and have also shown how this framework can support clipping, so that
it is possible to render very large scenes. We have shown a simple benchmark
that shows that our framework is as fast as directly using the graphics host,
thanks to the interception of special cases. As a real-world example, we have
implemented focus+context lenses. The result is faster and smaller than the
state-of-the-art implementation and has better image quality. Our framework
liberates the programmer from the limitations of traditional frameworks and we
expect that it forms an excellent foundation for creating resolution-independent
graphics and higher-level visualization tools in a wide range of domains.
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