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Abstract 
In 1812 Gauss, in a letter to Laplace, proposed without proof a formula explaining 
the statistical regularity of continued fractions. There has since been speculation 
concerning the manner in which Gauss arrived at this formula. In this article we 
present a plausible explanation, which at the same time gives an elementary proof 
of the full ergodic nature of the underlying dynamical system. The method seems 
to be of interest for other number-theoretic expansions. 

1. INTRODUCTION 

In 1812 Gauss, in a letter to Laplace,2 announced his discovery of the statistical regularity 
underlying the seemingly random sequence of integers obtained by expanding a positive 
real number in a continued fraction. Over one hundred years later, Ku.zmin5 published a 
proof of this regularity, now known as Kuzmin's theorem. The nature of Kuzmin's proof 
and subsequent investigations (Refs. 1, 4 and 6 among others) led to the now prevalent 
point of view that Gauss, whose letter and other works contained no indications of proof, 
was led to his discovery through his considerable mathematical intuition, as a magician 
pulls a rabbit out of a hat. The interest in and the perplexing nature of similar statistical 
regularities for other number-theoretical expansions (e.g. the Jacobi-Perron algorithm, a 
two-dimensional continued fraction which is known to be regular but for which a formula a 
la Gauss is still lacking {but see Ref. 3) gave rise to a number of attempts to derive Gauss' 
formula (e.g. Refs. 1 and 6) Up until now, these interesting derivations have not been of a 
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simple nature. In the following, we present using modern terminology a simple derivation 
which at the same time provides a plausible explanation of Gauss' thoughts. Our ideas, 
which we suspect were also known to Gauss, provide an elegant proof not only of Kuzmin's 
theorem, but also of the full ergodic nature, i.e. weak Bernoullicity, of the continued fraction 
dynamical system, in a predominately geometric setting. Moreover, the simple calculations 
are accessible at the first year undergraduate level and provide interesting exercises for an 
elementary course. Finally, we hope that extensions will be useful in answering related open 
problems. 

2. A GRECIAN VIEW OF CONTINUED FRACTIONS 

In ancient times, geometers were very interested in proportions. Consider two rods A and 
B, rod A being longer than rod B. Now use rod B as a measuring stick in an attempt to 
explain how long rod A is, relative to the length of rod B. If rod A is at least n1 times as 

long as rod B, but less than n1 + 1 times as long as rod B, then we record the integer ni 
and make a new rod C by removing from rod A a piece which is n1 times as long as rod B. 

We are now left with two rods B and C, rod B being longer than rod C, and thus we can 
repeat the above procedure. This is simply the original version of the Euclidean algorithm; 
the (lengths of the) original rods A and B are said to be commensurable if at some finite stage 
k, the longer rod is exactly explained by the shorter one, and otherwise incommensurable. 
If 

length B 
a·-----

.- length A 

and if ni, n2, ... , nk are the successive positive integers obtained from the commensurable 
rods A and B, then it is easy to see that 

1 a= _____ 1 __ _ 

ni + ----..,,.1--

by induction, since for the first step 

and hence 

length A= n1length B +length C 

length B 1 
- -----= length A length C · 

ni+---
length B 

If rods A and B are incommensurable, then clearly 

and we write 

1 
a= lim -----1--

k-+oo + ni -----=-1--
n2 + ---1 ·.+
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the sequence ni, n2, ... is called the continued fraction expansion of a, and nk is called the 
kth partial quotient. 

Remark 

• It is interesting to notice that the above algorithm is one of the first instances of repeated 
scaling, and the division of the initial rod A into successive intervals at scale level k can 
be seen as an elementary fractal object. Thus a number o in the unit interval can itself 
be thought of as a fractal, and the choice of a random number as a random fractal! 

• The continued fraction representation of a: is known to be the "most efficient" approxi
mation of o by rationals. 

• If each nk = 1 in the continued fraction expansion of o, then a is called the golden ratio. 
A rectangle whose sides a.re in the proportion 1: a, a being the golden ratio, was (and 
perhaps still is) regarded as resthetically the most pleasing to the eye. 

3. THE STATISTICS OF CONTINUED FRACTIONS 

Suppose now that a number o is chosen at random from the unit interval, and then expanded 
in its continued fraction: 

o = [n1, n2, ... ] . 

Of course, since o was chosen at random, we can have no certainty about the individual 
values nk appearing in the expansion. However, there is a.n amazing statistical regularity, 
as revealed by Gauss in his letter to Laplace.2 Suppose we fix a. finite block of integers 
(e.g. the block 1, 15, 3), and ask for the frequency of appearance of the fixed block in the 
continued fraction. Then with probability one, this frequency exists, does not depend on 
the particular a chosen, and can be calculated by the following procedure: 

• First, determine the interval I ~ {O, 1) for which the numbers belonging to I = (a, b) 
have a. continued fraction which begins with the given block of integers. 

• Then calculate 
1 ( dx l I+b 

ln2111 + x = og2 1 +a 

this number is the correct frequency. 

For example, suppose that the given block consists of the single integer 1. Then the corre
sponding interval I is (1/2, 1), since n1 is one if and only if the shorter rod is more than 
half a.s long as the longer rod. Thus the frequency of 1 in the continued fraction expansion 
is typically (i.e. with probability one) equal to 

1 11 dx -1 - -- = 2 - log2 3 ='= 0.41504. 
n2 1/2 1 +x 

More generally, for a. fixed positive integer k (as the block of length one), the corresponding 

interval is (1/k + 1, 1/k) and the frequency with which k appears is typically 

1 11/k dx 
-1 - -- = log2 (n+1)2 /n(n+2). 
n2 l/k+1 l+x 



the block 1, 
approximately 

is 

4. THE SCALING TRANSFORJVIATION 

is 

Suppose that a E (0, 1) and that we wish to compute a:'s continued fraction. This can be 
accomplished by a simple iterative procedure. First, determine n1 and f3 such that 

1 
a=--

n1 + f3 
and 

/3 E (0, 1). 

Next, determine n2 and "f such that 

and 
"f E (0, 1). 

Continuing in this manner yields a= [ni, n2, ... ]. The transformation from o: to {3, f3 to -y, 
etc., is called the scaling or continued fraction transformation. More formally, we define a 
mapping 

T: (0, 1) - [O, 1) 

by setting 

T(o:) = {~} 
where the curly braces denote the fractional part, and another mapping 

n: (0, l)--+ {1, 2, 3, ... } 

by setting 

n(a) = [~] , 

the square brackets denoting integral part. Then clearly 

1 
o:= ' n(a) +T(a) 

so that if we define 
nk := n(Tk-I(a)), 

then o: = [n1, n2, .. . ] is the continued fraction of a. If a is a rational number, then at some 
point we reach Tk(o:) = 0 and cannot continue, but since here we are interested in typical a, 
this is of little importance. In modern terminology, Gauss' result can be stated as follows: 

The mapping T: (0, 1) -+ [O, 1) possesses the invariant probability measure 

1 dx 
dµ.=---; 

ln2 l + x 

the corresponding dynamical system is ergodic. 
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It is an easy exercise to show that µ is a T-invaria.nt probability measure, once its formula. 
is known. Up until now, the ergodicity proof has required detailed calculations. We now 
proceed by showing how to determine the formula for µ, and as a corollary we can obtain 
the ergodicity (a.nd even a much stronger property, weak Bernoullicity) without calculation. 

5. QUADRATIC FORMS 

Gauss was seriously interested in quadratic forms, a.nd his results remain central for their 
classification. Thus the following viewpoint would have been quite natural. 

Let us consider a. number a E {O, 1) by supposing that it is the solution of a quadratic 
equation 

where a, b, and c are real numbers. If now 

1 
a=--

n + /3 

with n a positive integer and {3E(0,1), then clearly the quadratic equation 

c(n + y)2 - b(n + y) - a= 0 

possesses the solution /3. We expand the terms in this equation to determine the corre
sponding coefficients: 

cy2 + (2cn - b)y - (a+ bn- cn2) = 0 

has solution {3. Hence we may be able to replace a by a quadratic equation defining a, 
with coefficients (a, b, c) as above; in that case, the sea.ling transformation of the previous 
section will become 

(a, b, c,) --+ (c, 2nc - b, a+ bn - cn2) 

for n properly chosen. In order to make sure that a is defined by the equation ax2+bx-c = 0, 
it is natural to require that the other root of this equation does not belong to (0, 1); to 
have a definite geometric picture, let us suppose that a > 0 and that the other root is to 
the left of the origin, so that we have 

a+b-c>O 

(the value at 1 is positive) and 

c>O 

(the value at 0 is negative). Now we can discuss the choice of n, which we want to make so 
that the same geometric picture appears. That is, n should be chosen such that 

a+bn-cn2 > 0 

and 

c + 2cn - b - (a+ bn- cn2) =-(a+ b(n + 1) - c(n + 1)2) < 0, 



646 M. Keane 

which are the corresponding conditions on the transformed values. Hence n should be 
chosen maximal such that 

a+ bn - cn2 > 0; 

since c was assumed positive, and since (the case n = 1) a+ b - c > 0, this determines n 
uniquely. 

Let us also discuss the value of the other root P of the transformed equation. If the other 
root a of the original equation is less than zero, then the relation 

- 1 
/3=-=-n a 

shows that 'iJ :::; -1, since n 2:: 1, which then persists in the following steps. If at the 
beginning we would have had a> 1, then in the second step 'iJ becomes negative and thus 
the other root is less than -1 from the third step on. Thus it is natural to assume from the 
beginning that a< -1. 

Now we are prepared to turn the above discussion into mathematical statements. Con
sider the quadratic equation 

p(x) := ax2 +bx - c = 0, 

with coefficients a, b, c real and a > 0. 

Lemma 5.1. The equation p(x) = 0 has one root between 0 and 1 and another root less 
than -1 if and only if 

c>O 

and 

la-cl< b. 

Proof. The equivalent conditions p(l) > 0, p(O) < 0, and p(-1) < 0, together with a > 0, 
translate into 

a>O 

a+b-c>O 

c>O 

a-b-c<O, 

yielding the desired result. • 

Definition 5.1. Let 

r :={(a, b, c): a> 0, c > 0, la - cl< b}. 

For (a, b, c) Er define 

- 2 T(a, b, c) := (c, 2nc - b, a+ bn - en ) , 

where n is chosen maximal such that a+ bn - cn2 > 0. 
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Lemma 5.2. T maps r tor (closure off). Moreover, T is locally linear, a.e. invertible, 
and preserves Lebesgue measure restricted to r. 

Proof. Clearly 

f(a, b, c) = [~ ~I ~:, J [!] 
on the set of (a, b, c) corresponding to n, a.nd the determinant of the given matrix is 1. 
Moreover, the value of n can be determined from the image, since the other root of the 
transformed equation must lie between -n - 1 and -n. Hence T is a..e. invertible and must 
preserve Lebesgue measure. • 

6. SOME DIFFERENTIAL GEOMETRY IN THREE 
DIMENSIONS 

Among other things, Gauss had a special interest for differential geometry. Hence it is 
plausible that the following arguments were available. 

The region r defined above consists of a family of rays emanating from the origin; on 
each ray, the two solutions of p(x) = 0 remain the same, since the coefficients a, b, and c 
are just multiplied by a positive consta.nt. We remove this ambiguity by noting that if we 
set 

D(a, b, c) := b2 + 4ac 

(the discriminant of p(x)), then 

D(T(a, b, c)) = D(a, b, c), 

since 
(2nc - b)2 + 4c(a + bn- cn2) = b2 + 4ac 

regardless of the value of n. Hence T leaves each of the surfaces D = constant in r invariant, 
and we may reduce the number of variables to two by requiring, say, D = 1. 

Definition 6.1. Let 

b.:= {(a, c): a> O,c > O,a+c < 1} 

6. :={(a, v'l - 4ac, c): (a, c) E b.} 

T(a, c) := (c, a+ nv'l - 4ac- n2c) 

with n maximal such that a+ nv'l - 4ac - n2c > 0. 

Lemma 6.1. Each ray in r pierces .6.. Moreover, i'.6. =D.. almost everywhere. 

Proof. Obvious. • 

Now we can use a bit of elementary differential geometry to calculate the density of an 
invariant measure on b. with respect to the mapping T. The idea is as follows. The surface 
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!::,,, lies above the triangle .6. in the a-c-plane, and has the equation b = ../1 - 4ac. The 
mapping T on .6. corresponds to the mapping T on a. The pieces of rays from the origin 
to!::,,, a.re mapped to each other by T, which preserves Lebesgue measure. Hence if we take 
a surface element da de in the triangle .6., lift it to A via b = ../1 - 4ac, and calculate the 
volume of the cone between the origin and the lifted surface element, then this volume will 
be proportional to the density of a T-invaria.nt measure on .6.. The calculation is simple. 
Fix (a, c) E .6.. Then the corresponding point on A has coordinates 

(a, ../1 - 4ac, c), 

a.nd the lifted surface element is determined by the partial differentials in the a and c 
directions: 

and 

( da -2cda o) 
' ../1 -4ac' 

( O, -2adc 1 de) . 
../1 - 4ac 

Thus we define p(a, c)dadc to be the determinant of the matrix 

or 

We have thus proved 

-2cda 
da 0 

../1-4ac 
a 

0 

../1-4ac c 
-2adc 

de 
../1-4ac 

1 
p( a, c) = -_ 1;:;::===:;::= 

vl-4ac 

Lemma 6.2. p is the density of a T-invariant measure on .6.. 

7. GEOMETRICAL INTERPRETATION OF (6,T) AND THE 
DERIVATION OF GAUSS' FORMULA 

We now return to our primary objective. Each point (a, c} E .6. gives rise to the quadratic 
equation 

ax2 + ../1 - 4acx - c = 0 , 

which has two solutions, one lying in the unit interval and one to the left of -1. We now 
wish to determine the invariant measure for the root in the unit interval by integrating over 
the second root. So fix a in the unit interval and set 

We have 

if and only if 

F(o:) :={(a, c} E .6.: ao.2 + ../1 - 4aco: - c = O}. 

ao:2 + ../1 - 4aoo - c = 0 

c 
ao:+-=1, 

a 
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50 that F(a) is simply the straight line segment between the points (0, a) and (1/1 +a, 
a/1 +a) on the boundary of A. Similarly, if we fix the other root a< -1 and set & = -~ 
with w in the unit interval, and define 

then this results in the linear equation 

a 
-+cw=l, 
w 

so that P(w) is simply the straight line segment between the points (w, O) and (w/1 + w, 
1/1 + w) on the boundary of A. Solving these equations for a and c in terms of a and w 
results in 

so that 

w 
a=--

l+aw 
a 

c=--
l+aw 

dadc dadw 
p(a, c)dadc = = ----...,,.. 

v'l - 4ac (1 + aw)2 

after a simple calculation. Finally, integration over w yields 

da {1 dw da 
lo (1 + aw)2 = 1 +a' 

which is the Gauss measure up to a normalization factor. Thus we have proved in a 
constructive manner 

Theorem 7 .1. The measure 
1 da 

dµ( a) = ln 2 1 + a 

is an invariant probability measure under the scaling transformation T of section 4. 

8. ERGODIC PROPERTIES 

Here we only sketch the simple proofs of ergodic properties using the representation above, 
assuming that the reader is acquainted with the basic notions of ergodic theory. 

Theorem 8.1. T is ergodic on A with respect to the measure da dcv'l - 4ac. 

Proof. If A is a T-invariant set, then A belongs both to the remote future and to the remote 
past. It is easy to see that, taking the standard defining partition, the future u-algebra :F 
consists of unions of the sets F(o:), while the past u-algebra P consists of unions of the 
sets P(w). But A E :F n P implies immediately that either A or its complement mtist have 
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zero measure, from the geometry and the fact that the density of the invariant measure is 
strictly positive on ~. • 

Theorem 8.2. T is a K -system. 

Proof. If A belongs to the Pinsker algebra, then it also belongs both to the future and the 
past, and the argument in the proof of the preceding theorem applies. • 

Theorem 8.3. T is weak Bernoulli. 

Proof This follows again from the geometric picture and the formula for the invariant 
measure - the conditional measures are equivalent. • 
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