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In this article we give a concise history of factoring, thereby concentrating on 
ideas and methods which can be found in the Number Field Sieve method. 
For more information about the history of factoring or about other important 
methods like ECM, Pollard p- 1, Pollard p and SQUFOF, we refer to [5], [30], 
[2], [16]. 

1. EUCLID 

One of the first persons concerning himself with primality and compositeness 
of natural numbers was Euclid. In his work 'Elements' [7], written in about 
300 B.C., he gave in Book VII the following definitions: 

An unit is that by virtue of which each of the things that exist is called one. 

A prime number is that which is measured (= divided) by an unit alone. 

A composite number is that which is measured by some number. 

Although modern definitions are slightly different, it is clear that Euclid con
sidered the same numbers being a unit, prime or composite among the natural 
numbers as we do today. In the same book he states in Proposition 30: 

If two numbers by multiplying one another make some number, and any 
prime number measure the product, it will also measure one of the original 
numbers. 

From this proposition one can deduce the Fundamental Theorem of Arithmetic, 
which states that factorization into primes is unique up to order. 
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2. ERATOSTHENES 
The first algorithm which finds all primes up to a user-chosen bound n and 
which can also be used for factoring the numbers up ton, is due to Eratosthenes 
(276-194 B.C.). His 'Sieve of Eratosthenes' starts by listing all integers from 
2 to n. Repeatedly the first number of the remaining list is prime, after which 
we cross off in the list all multiples of that prime. Because every composite 
number has a factor less than or equal to its square root, we can stop after we 
have found a prime larger than the square root of n. All remaining numbers 
in the list have to be prime. The strength of the Sieve of Eratosthenes is that 
it requires no expensive multiplications or divisions. This idea is also used in 
the Number Field Sieve. 

The simplest algorithm to factor a given number is the 'trial division' 
method, which is still in use for finding prime divisors up to approximately 
six or seven decimal digits. It tries to divide a number by the primes which 
are in a prepared table or by 2, 3 and subsequently by the terms of a sequence 
which contains the primes 5, 7, ... as a subsequence (like the numbers 6k ± 1). 
To find larger divisors, faster, less memory consuming methods are known at 
present; they will be discussed further on. 

3. FERMAT 
In 1643 FERMAT [8] noted that when n is composite and odd, then n = xy with 
x, y odd and 1 < x ~fa. With a= (x + y)/2, b = (x - y)/2, we can deduce 
n = a 2 - b2 and fa ~ a < (n + 1)/2. Thus to factor n, one can consider 
all values of r; = ar - n for ao = I fal, ai = ao + 1, ... , a;+1 = a; + 1, ... 
until r; is a perfect square. Such an r; does exist and (a; + yfri)(a; - yfri) 
will be a non-trivial factorization of n. As Fermat noticed, his method can 
be made faster by calculating r;+l from r;+ 1 = r; + 2a.; + 1 and by using 
that for example a number ending on 19 cannot be a square. In an example 
Fermat factored 2027651281 = 44021 · 46061. If one knows that the factors 
of a composite number n are very close to fa this method can still be used, 
otherwise for large nit is very ineffective. But the idea of constructing integers 
a2 and b2 such that n equals or - as used first in 1886 by SEELHOFF [26] -- more 
generally divides their difference, is used in many factoring methods, including 
the Number Field Sieve. Until 1886 however, most effort was spent in another 
direction. 

4. LEGENDRE 
In his - originally published in 1798 -- 'Theorie des Nombres' [11] LEGENDRE 
gave a method to exclude more and more primes from being a possible divisor 
of n by finding more and more independent quadratic residues modulo n. If 
x 2 = a mod n has a solution x for a certain a, then a is a quadratic residue 
modulo n (denoted with the Legendre symbol ( ~) = 1) and a is also a quadratic 
residue for any prime divisor p of n. Since a is quadratic residue of only about 
half of the primes, this excludes the other primes as a possible divisor of n. If 
one has found k independent quadratic residues, the number of trial divisions 

• 
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of n can be reduced to about 2-k7r( ..jn). Legendre finds quadratic residues 
modulo n by calculating continued fraction expansions of the square root of n 
and small multiples of n. Such expansions 

...(k;,, = Co + 1 1 
C1 + c2+_1_ 

c3+ ... 

(1) 

are denoted by ../kn = [co, c1, c2, c3, ... ] and can be calculated by defining 
xo =Kn, Ci = lxd, Xi+1 = l/(xi - c;). They are infinite and periodic (see for 
example [24]). To calculate the partial denominators c; we look at the example 
given by Legendre. He tried to factor the number n = 333667 by calculating 
the continued fraction expansion of ..jn for which x0 = ./333667, c0 = 577 and 

X1 = 1 y'ii+577 = 1 + ..;n-161 
Tn-577 738 738 

X2 = 738 = fo+161 = 1 + fo-256 
Tn-161 417 417 

X3 
417 y'ii+256 

fo-256 643 = 1 + fo-387 
643 

X4 
643 fo+387 3 + vn-471 

fo-387 286 286 

which gives J333667 = [577, 1, 1, 1, 3, ... ]. If we define Qi by the denominator 
when we have written x; in the form (../fi7, + J)/Q; then for certain a; and b; 
the equation 

(2) 

holds, which means that (-l)iQ; is a quadratic residue modulo n. The ai and 
b; are the numerator and the denominator of the good (and in certain sense 
the best) rational approximation of ..jn obtained by stopping the expansion (1) 
after c;. They can also be calculated using the following sequences: 

Thus Legendre found -738 (hence also -82), 417, -643, and (by expanding ..jn 
further) also 69, -288 (hence also -2) as quadratic residues of n. The equality 
3n = 1001001 = (1001)2 - 10(102 ) gave him also 10 as quadratic residues of n. 

By using that the only primes p for which ( -;,2 ) = 1 are of the form 8m + 1 or 

8m + 3 and by using similar formulas for the restrictions ( 1~) = 1, ( 6:) = 1 

and ( -:2 ) = 1, Legendre found that the only primes which could divide n are 

83, 107, 163,401,409,467 and 569. None of them does divide n and therefore 
333667 is prime. As we will see these ideas of Legendre are the basis of the 
modern factoring method CFRAC. 

5. GAUSS 

A few years later, in 1801, Gauss indicated in his famous book 'Disquisitiones 
Arithmeticae' [9, Art. 329-332] that he was especially interested in small 
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quadratic residues, so that he could use his prepared table in which he had 
denoted for all primes up to some bound whether or not they are a quadratic 
residue modulo small numbers. Note that if ( ;-) = 1 and ( ~) = 1 then ( ~) = 1 

and if ( a!2
) = 1, then (;) = l. Therefore by finding many quadratic residues 

which factor over small primes, it is sometimes possible to construct small 
quadratic residues. Of the three methods to find quadratic residues that Gauss 
described, the simplest method writes a multiple of n as a sum: kn = a + b 
where b can be negative. Now -ab = a 2 mod n is a quadratic residue modulo 
n. By taking for a (a small multiple of) a square differing from kn by a num
ber that factors into small primes, one finds a useful quadratic residue. For 
example n = 997331 = 2 · 7062 + 3 · 17 · 32 gives -2 · 3 · 17 as a quadratic 
residue. Combining this with 3 · 7 · 17 and 17 which he found with one of his 
other methods, gave -14 and -6. After finding that -6, 13, -14, 17, 37 and 
-53 are quadratic residues modulo 997331, Gauss consulted his prepared table 
of which we show here a small part with only the columns of the mentioned 
quadratic residues: 

-6 13 -14 17 37 -53 
3 + + + + + 
5 + + 
7 + + + 

11 + + 

127 + + + + + + 

It appears that 127 is the only prime < fa for which -6, 13, -14, 17, 37 and 
-53 are all quadratic residues, and therefore the only candidate for being a 
divisor of n. Indeed n = 127 · 7853. Further on we will return to this idea of 
trying to find and combine numbers which factor into small primes. 

6. SIEVING DEVICES 

Another important idea of GAUSS [9, Art. 320] is nowadays called modular 
exclusion. He wanted to solve the equation x2 = a+ my, for integers x and 
y, but his observation applies to f(x) = g(y) for f(x),g(x) E Z[x]. Select 
different moduli E1, E2, ... Er and find for each value of x = 0, 1, ... E; the 
possible residue classes for y modulo E;. Combine these to find the permissible 
residue classes for y modulo the least common multiple of the Ei 's. This idea 
was used for factoring numbers of the form (ak -1)/(a -1) by PEPIN [21]. He 
found that an equation of the form 

az 2 + 2bz + c = u 2 (3) 

where a, band care known integers and the value of z is bounded (in terms of 
a, b, c), should have a solution for z and u. With help of the modular exclusion 



Historical background of the number field sieve factoring method 379 

technique of Gauss he tried to find solutions. LAWRENCE [10] was the first who 
had the idea of building a machine for mechanizing the process of solving (3). 
As described in [30]: 

"Lawrence suggested the construction of a machine in which gears of 
m teeth would be used for each exclusion modulus m. The gears (each 
with the same tooth size) would be driven by the same diving gear, and, 
as they would be of differing diameters, would have to be mounted on 
different shafts. The teeth on each m-toothed gear would be numbered 
0, 1, 2, ... , m - 1, and a brass stud would penetrate through it at the 
point(s) of an acceptable (mod m) residue (One for which (3) could hold 
for z mod m). When studs from each of the gears were all in contact a 
circuit would be completed and a bell would ring or the machine would 
stop, indicating to the operator that a solution of (3), modulo the least 
common multiple of the exclusion moduli, had been detected. Of course, 
in order to determine the z-value, a count would have to be recorded of 
the number of rotations of the driving gear." 

As can be read in [30], [29], [14] and [20] many persons, the most prominent 
being Lehmer, have actually built these kind of machines and factored numbers 
with them. Up to 1970 these sieve methods were the fastest techniques for 
factoring. 

7. SEELHOFF 
In 1886 SEELHOFF [26] published a method in which he used the ideas of Fermat 
and Gauss. Put n = w 2 + r, where w = L y'n"J. If p is any prime such that 

( ~) = 1, solve p2 = n mod pk. Seelhoff suggested that for values of n of 

approximately 15 digits, one could try for pk: p = 2 with k :::; 10, 3 with k :5: 6, 
5 with k :::;; 4 and the primes from 7 to 97 with k :::;; 2. Try to find a y such 
that b = a(2w - a) + r where a = w + (p + ypk) factors into a square and 
small primes. We then have n = (w - a) 2 + b and pk Jb. When Jal is near pk, 
then lbl will be approximately 2pk y'n". Because b is divisible by pk, b should be 
much easier to factor than n. One hopes to find a selection of the equalities 
(w - a)2 = -b + n such that the multiplication of their various -b's gives a 
square. 

As an illustration of this method we give Seelhoff's example. For n = 
7 · 234 + 1 we get w = 346783 and r = 635200. He found three solutions of 
p2 = n mod pk and values of a, such that b factored in a square times small 
primes: 

p2 - nmodpk °' b (w-a)2 = -b+n 

1552 - n mod 372 1950 2 . 7 . 11 . 29602 3448332 = -2 · 7 · 11 · 29602 + n 
63262 - n mod 1272 143432 7. 1061722 203351 2 = -7 · 1061722 + n 
12142 - n mod 372 -3836 -2 . 11 . 110262 3506192 = 2 · 11 · 110262 + n = 
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From the first two equations he obtained: 

11·8320820292 = 2 · 1504797402 mod n 

and combining this result with the third equation gave: 

5045995048464 72 = 263805279795302 mod n 

or 

n 1 (50459950484647-26380527979530) x (50459950484647 +26380527979530). 

Now gcd( 50459950484647 - 26380527979530, n) = 317306291 gives a factor of 
n. Thus Seelhoff - as can be read in (30] - and not Kraitchik as for example 
stated in [24], was the first who combined congruences consisting of squares 
and small primes modulo n to an equation of the form a2 = b2 mod n. 

8. LEHMER AND POWERS 
From the way Seelhoffused his equations (w-a)2 = -b+n one can deduce that 
the only thing one really needs are congruences of the form a2 = b mod n such 
that the product of the b's is a square. It was noted by LEHMER and POWERS 
[12] that one can use equation (2) to construct these kind of congruences. If 
we define R; := (-l)iQ;, then equation (2) gives the congruence 

a~= Ri mod n. 

When { R;,, Ri2 , ••• , Rik} is a subset of the R; 's such that their product is R 2 , 

then we have 

(IT ai;) 2 
= R 2 mod n. 

J=l 

If n is odd and not a prime(power), calculating the greatest common divisor 

of f1~= 1 a;, - R and n gives a factor of n for at least half of the solutions of 

x2 = y 2 mod n with y -;/:. 0 mod n. Because of the tedious calculations to find 
an appropriate subset, which often gave a trivial factorization, Lehmer and 
Powers did not consider their method to be practical. It was however the basis 
for the Continued Fraction method of Morrison and Brillhart. 

9. MORRISON AND BRILLHART 

In 1970 MORRISON and BRILLHART [18] developed the Continued Fraction 
method (CFRAC), by combining the idea of Lehmer and Powers with a method 
to construct R from a set of 'promising' R; 's. With their method they set a 
new record by factoring F1, the seventh Fermat number of 39 digits [19]. They 
introduced the 'factor base', a collection :F(B) of primes up to a certain bound 
B, and searched for R;'s which factor completely over these primes. Since 

by (2) primes p for which ( kpn) = -1 will never appear in the factorization of 
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Ri's, they defined :F(B) as the set of primes pup to B with ( ~n) 2: 0. If an 

Ri factors completely over :F(B) we can write 

R; = (-l)e(i,-1) rr Pe(i,p) 

pE:F(B) 

and call Ri a relation. In order that the product over a subset S of the relations 
is a square, every exponent 2:8 e(i,s) in 

II Ri = (-l)Ls e(i,-1) II pLs e(i,p) = R2 (4) 
R;ES pE:F(B) 

should be even. For every R; which factors completely over the factor base, 
Morrison and Brillhart defined a vector v(i) of length 1 + l:F(b)I. This vector 
contains all e(i, s) mod 2 -- indicating ifs occurs in R; to an even or an odd 
power - in an order which is the same for all R;'s. The vectors are put as 
columns in a matrix, and a non-trivial vector of the null space over lF2 of this 
matrix indicates a subset S for which ( 4) holds. 

As an example Morrison and Brillhart factored the number n = 13290059. 
By expanding .Jii, and by using trial division they found the following R;'s 
which factor completely over the primes in :F(113): 

i a; mod n R; factored 
5 171341 -1·2·5'.l·41 
10 6700527 31 ·43 
22 5235158 41·113 
23 1914221 -1·2·113 
26 11455708 2. 31. 53 
31 1895246 -1 . 2 . 52 . 113 
40 3213960 2. 43. 53 

Subsequently a matrix is formed by taking as columns the vectors v ( i). Here 
we only show the rows corresponding to the factors which occur in the factor-
izations of the above stated Ri 's: 

v(5) v(lO) v(22) v(23) v(26) v(31) v(40) 

-1 1 0 0 1 0 1 0 
2 1 0 0 1 1 1 1 
5 0 0 0 0 0 0 0 

31 0 1 0 0 1 0 0 
41 1 0 1 0 0 0 0 
43 0 1 0 0 0 0 1 
53 0 0 0 0 1 0 1 
113 0 0 1 1 0 1 0 

Using Gaussian elimination over lF2 , Morrison and Brillhart found that the 
three vectors (O,l,0,0,1,0,l)t, (1,0,1,0,0,l,O)t and (1,0,1,1,0,0,0)t are in 
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the kernel of this matrix. The first vector corresponds with S = {Rio, R2a, R4o} 
and gives the congruence 

(6700527 · 11455708 · 3213960)2 = (2 · 31 · 43 · 53)2 mod n 

or 1412982 = 1412982 mod n, which does not give a factorization of n. From 
the second vector we can deduce 

(171341·5235158·1895246) 2 = (2 · 52 • 41·113)2 mod n, 

what reduces to 130584092 = 2316502 mod n. But gcd(13058409-231650, n) = 
1 and this dependency fails also to give a non-trivial factorization of n. Finally 
the last vector leads via 

(171341 · 5235158 · 1914221 )2 = (2 · 5 · 41 · 113)2 mod n 

and 14695042 = 463302 mod n to the factor gcd(1469504- 46330, n) = 4261 of 
n. 

Morrison and Brillhart also introduced a refinement of the factor base ap
proach, which cuts the total running time by almost one half. They used what 
had been previously noticed by Eratosthenes: if one has removed all prime 
divisors up to a bound B from a number r, and the remaining cofactor is less 
than B 2 , then the cofactor is prime. Now also Ri's which - after removing the 
factors up to B with trial division - have a remaining (prime) cofactor between 
B and B2 are used as relation. Because these relations factor over F(B2 ) in
stead ofover F(B), the vectors v(i) should be of length 1 + IF(B2 )1 and contain 
the values of e( i, s) for all factors s < B2 • The corresponding matrix will have 
more rows and therefore, to guarantee the existence of non-trivial vectors in 
the kernel, also more relations have to be found. But the increase in efficiency 
of finding relations is so large, that the net result is positive. Morrison and 
Brillhart spent up to 953 of the computer time on the trial divisions. With 
use of computers the method defeated the sieving devices and reigned until the 
introduction in 1982 of the Quadratic Sieve method, in which the trial divi
sions are replaced by sieving. Before we discuss this method, we describe the 
discovery of the so-called RSA cryptosystem. 

10. RIVEST, SHAMIR AND ADLEMAN 
In 1977 Rivest, Shamir and Adleman introduced the RSA public-key cryptosys
tem [25). Together with the increase of computing power, this application of 
the supposed difficulty of factoring was an enormous stimulus for the interest 
in and development of factoring methods. The idea of a public-key cryptosys
tem, where each user u has his own encryption and decryption procedure, was 
introduced in 1976 by DIFFIE and HELLMAN [6]. The encryption procedure Eu 
is placed in a public file and other persons can use this procedure to encrypt 
their message Mand send the resulting cipher-text Eu(M) to the user. Only 
the user u has the corresponding secret decryption procedure Du, which he can 
apply to reveal the original message M = Du(Eu(M)). Besides encryption a 
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public-key cryptosystem can also be used to sign a message. User u can sign a 
message M by sending Du(A1). Anyone can apply the publicly known encryp
tion procedure Eu of the user to reveal J\,f = Eu(Du(.AJ)) and concludes that 
only user u himself could have constructed Du(lvf). The procedures D and E 
must be bijections and inverses of each other: D(E(M) = E(D(M)) = M for 
all M. Furthermore both D(lv1) and E(M) should be quickly to compute, pairs 
(D, E) should be easy to construct and it should be computationally infeasible 
to find D given E. 

RSA achieves these objectives by letting each user pick two large primes 
p and q with p =f. q. Furthermore it chooses two exponents d and e with 
de = 1 mod (p - l)(q - 1). With n = pq the encryption procedure is defined 
by E(M) =Me mod n and the decryption procedure by D(M) = Md mod n. 
The values of e and n are public, but d, p and q are private. With Euler's 
theorem one can prove that D(E(M) = E(D(M)) = J\,f for all M. The safety 
of this cryptosystem is supposed to be as difficult as factoring. \i\Then one can 
find p and q from n, together with e, one can deduce d. 

Rivest, Shamir and Adleman encrypted as an example the sentence "its all 
greek to me" (Julius Caesar). With p = 47, q = 59 and n = pq = 2773 they 
computed (with a variation ofEuclid's greatest common divisor algorithm) e = 
17 and d = 157. With n = 2773 they encoded two letters at a time, substituting 
a two-digit number for each letter: blank= 00, a= 01, b = 02, ... , z = 26. Thus 
the message 

its all greek to me 

is replaced by the numbers 

0920 1900 0112 1200 0718 0505 1100 2015 0013 0500. 

To encrypt this message every number of 4 digits is raised to the 17th power 
and taken modulo n. For example 92017 = 948 mod n. Thus the whole message 
is enciphered as: 

0948 2342 1084 1444 2663 2390 0778 0774 0219 1655. 

With deciphering, like 948157 = 920 mod n the original numbers can be re
vealed. 

11. POMERANCE 

In 1982 Pomerance published the Quadratic Sieve method [23], in which most 
of the time-consuming trial divisions of the CFRAC method have been replaced 
by - for a computer much cheaper - additions. He found congruences modulo 
n by searching for values of x for which f ( x) = x2 - n factors over the factor 
base. These values are found by initializing an array with lf(x)I for a range of 
consecutive x-values ( yn-M:::; x:::; fa+M, say) and by dividing these \f(x)l
values by all primes in F(B) in a cheap way. Note that if f(x) E Z[x], and 
plf(x0 ) for some xo, than Plf(xo + kp) Vk E Z. For every root f(r) = 0 mod p 
one constructs the smallest t = r mod p in the array and divides p from all 
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lf(t+ kp)I for 0 S k S l( fo+M -t)/pj. When this is done for all roots and all 
p E F(B), the array elements containing 1 betray that the corresponding f(x) 
factors over the primes and that a relation is found. To find the factorization of 
f(x) trial division should be applied, but note that we apply it to the relations 
only, which is a very small part of all investigated f(x) values. A refinement of 
this method was proposed by Davis and Holdridge and applied to factor several 
numbers in the range of 53-71 digits [4). 

Ifwe sieve the 2M values for ...jn-M S x S ..fii+M, then the largest residue 
is about 2M fo (assuming M «: n). MONTGOMERY [28) found a way to stunt 
this growth as M grows. His Multiple Polynomial Quadratic Sieve (MPQS) 
method finds many polynomials f(x) = a2x2 +bx+ c with b2 - 4a2c = kn. 
Note that 

( b ) 2 b2-4a2c ( b ) 2 
f(x) = ax + - - = ax + - mod n. 

2a 4a2 2a 

The values of a, b and c are selected such that when sieving over an interval 
lxl S Mo the largest residue is at most MoVnf2. To sieve 2M values of x, 
one can use M/Mo different polynomials, sieving 2Mo values per polynomial 
with largest residual M 0Vnfi.. The reduction of 2M ..fii, to the much smaller 
M 0 Jn/2 is important, since small numbers are more likely to have all prime 
factors in :F(B). 

The sieving procedure can be speeded up in several ways. One can initialize 
the array with log IJ(x)I instead of lf(x)I and subtract [log p] (where [.) is 
the nearest integer function) instead of dividing by p. One can use rounded 
logarithms to work with integers instead of reals. For an optimal balance 
between precision and efficiency one can use a base such that the maximum 
value of IJ(x)I just fits in one byte. Sieving over small primes is a lot of work 
and just a small amount of (log p) is added. Therefore it is more efficient to 
sieve over a power of the small primes ( < 30, say) only. All these adjustments 
do not only make the sieving faster, but also make the final value in the array 
elements less accurate. After sieving one should check if the remaining value 
looks 'promising', i.e. is smaller than some user-determined bound c. For 
these 'candidate relations' one can use trial division to investigate if they really 
factor over :F(B). In the 'large prime variation' one also wants to find relations 
containing one large prime q (with B < q SL< B 2 ) and therefore adds log L 
to c. There exists even a 'double large prime variation' where one adds 2 log 
L to c and tries to factor (with for example SQUFOF [27], (24, p. 186-193], 
[2, §8.7]) a remaining cofactor S L2 into at most two prime factors < L. This 
version was used in 1994 by A.K. Lenstra and Atkins and 600 volunteers when 
they factored the so-called RSA-129, a number that had been given in 1977 
by Rivest, Shamir and Adleman to challenge computer scientists [1]. All these 
ideas can be applied in the Number Field Sieve method as well, the original 
version of which was discovered by John Pollard. 
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12. POLLARD 

The Special Number Field Sieve (SNFS) method, introduced in 1988 by POL

LARD [22] and developed in [13), is nowadays the fastest method for numbers 
of the form c1rt +c2 s". The world record is the factorization of (12151 -1)/11, 
a number of 162 decimal digits, which was established in 1994 by Oregon State 
University, Oregon, USA and CWI, Amsterdam, The Netherlands. Already in 
[13) attempts were made to extend the method to arbitrary integers. Nowa
days the General Number Field Sieve (GNFS) method is much more developed 
and it beats the MPQS method for numbers of more than approximately 105 
decimal digits. 

The NFS method consists of five stages. In the first stage two irreducible 
polynomials f(x),g(x) E Z[x] and an integer mare selected, such that J(m) = 
g(m) = 0 mod n. Often one takes f(x) = x - m and for g(x) the base-m 
expansion of n, for suitable m. The smaller the coefficients are, the faster the 
method is. When applying SNFS, one can use the special form of the number 
and find very small coefficients for one of the polynomials. This makes SNFS 
considerably faster than GNFS. For simplicity we consider f(x) and g(x) to be 
monic in the rest of this chapter. 

Let a be a root off and /3 of g. In the sieving stage we find relations (a, b) 
with gcd(a, b) = 1 such that the integral norms of a - ba and a - b/3 

N(a - ba) = bdeg(f) j(a/b) and N(a - b(J) = bdeg(g)g(a/b) 

factor over a factor base :F(B). This is done, similar to the MPQS method, by 
initializing for each value of b and for a range of a-values, an array, first with 
the values of log JN(a - ba)j followed by the values of log JN(a - b,B)j. For 
values of a for which both residues look promising, N(a - ba) and N(a - b{3) 
can be investigated further with trial division. Although we require two values 
to be smooth - instead of only one value in MPQS -, the values of N(a - ba) 
and N(a - b/3) are so much smaller that there is an overall gain. In fact one 
sieves for pairs (a,b) such that both ideals (a - ba)O°' and (a - b{3)0(3 factor 
over prime ideals with norm <B. 

In the filtering stage we try to reduce the size of the matrix. If a prime ideal 
is occurring only once to an odd power, the corresponding relation is thrown 
away. If a prime ideal is occurring twice to an odd power, the two relations are 
grouped and the prime ideal will disappear from the matrix. 

Denote by Qn the ring of rational numbers with denominator coprime to 
n. The subring Qn[a) of Q(a) consists of expressions L:,~::,,~(f)-l(sifti)ai with 
s;, ti E Zand gcd(n, ti) = 1. In the linear algebra stage a matrix is built such 
that a vector of the kernel corresponds with a subset S of the relations for 
which both fl 5 (a - ba) and fl5 (a -b/3) are squares - say "(2 and 82 - in Qn [a) 
and Qn [/3], respectively. Among other requirements Sis constructed such that 
all occurring prime ideals occur to an even power. 

The final square root stage serves to construct "( and 8 from the found 
"12 and 82 • Thus we have to extract two square roots in algebraic num
ber fields. Having obtained "( and 8 one constructs a quadratic congruence 
modulo n in the following way: Define two natural ring homomorphisms: 
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</>a : 'Oln[a] --+- Z/n'll and</>~ : 'Oln[,8]--+- Z/n'll by </>a(a) = </>~(,8) = m mod n. 
Th ,/.. ("'deg(f)-1( / ) i) _ ("'deg(f)-1 -1 i d ) £ rn d us '!'a L...i=O s; t; a - L..i=O Sit; m mo n or si, t; E /1.J an 
gcd(n, t;) = 1. When <l>ab) = c mod n and </>~(6) = d mod n, we have 

c2 ~{</>a(!')} 2 =</>a('y2 )=4>a( II (a-ba))~ II (a-bm)~ 
(a,b)ES (a,b)ES 

c1>~< II (a-b,8))=4>~(02 )={<1>~<on2 ~d2 , 
(a,b)ES 

where~ means equality modulo n. 
Montgomery, who has done important work in developing the NFS method 

([17], [15]) gives an example of this method in [16]. Using CWI's address, 
he picks the number 1098413 and applies SNFS by noticing that 1098413 = 
12·453 +173• With m =!~,he uses 

f(x) = x3 +12 (f(m) = (!~) 3 + 12 = 0 mod n) 
g(x) = 45x -17 (g(m) = 45 (!~) -17 = 0 mod n) 

For these polynomials we find the following set S = {(6, 1), (-3, 2), (7, 3), 
( -1, 3) , (2, 5), (3, 8), (-9, 10) }. With a = r-12 and (3 = !~ one can deduce: 

II(a-ba) = 7400772 + 1138236a - 1054950!2 

s 
= (2694 + 2130: - 28a2 ) 2 = 1 2 

II (a - b,8) = 
28 · 112 • 132 • 232 = ( 52624) 2 

s 312 . 54 18225 

Because <Pa (I') = 5~10°225°3 mod n, Montgomery gets the congruence 

( 52624) 2 = (5610203) 2 mod n 
18225 2025 

and gcd(52624 · 2025 - 5610203 · 18225, n) = 1951 gives the factor 1951 of 
1098413. 

13. RSA130 
On April 10, 1996 a new world record was set by the factorization of RSA130, a 
number (not having a special form) of 130 decimal digits [3]. An international 
team under guidance of A.K. Lenstra used the General Number Field Sieve 
method to beat the 129-digit record that was set on April 2, 1994 by the 
Quadratic Sieve method. The gathering of the needed 56 · 106 relations would 
have taken 16.5 years on a Spare 10 workstation with 24 megabytes available 
for the sieving process. However, with the help of the World Wide Web many 
people could contribute and the sieving phase was done in a few months. The 
filtering stage resulted in a 3516502 x 3504823 matrix over IF2 . Using the 
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'block Lanczos method' [17] it took 67.5 CPU-hours and 700 megabytes central 
memory on a Cray C-90 supercomputer to find 18 vectors of the kernel. The 
first two vectors gave trivial factorizations, but the third vector produced: 

RSA130 = 
18070 82088 687 40 48059 51656 16440 59055 66278 10251 67694 01349 17012 70214 
50056 66254 02440 48387 34112 75908 12303 37178 18879 66563 18201 32148 80557 

39685 99945 95974 54290 16112 61628 83786 06757 64491 12810 06483 25551 57243 
x 

45534 49864 67359 72188 40368 68972 74408 86435 63012 63205 06960 09990 44599 

ACKNOWLEDGEMENTS 
The author thanks H.J.J. te Riele and R. Tijdeman for reading the paper and 
for suggesting several improvements. 

REFERENCES 
1. D. ATKINS, M. GRAFF, A.K. LENSTRA, AND P.C. LEYLAND, 1995, The 

magic words are squeamish ossifrage. In J. Pieprzyk and R. Safavi-Naini, 
editors, Advances in Cryptology - Asiacrypt '94, volume 917 of Lecture 
Notes in Computer Science, pages 265-277, Springer-Verlag, Berlin. 

2. H. COHEN, 1993, A Course in Computational Algebraic Number Theory. 
Springer-Verlag, Berlin. 

3. J. COWIE, B. DODSON, R.-M. ELKENBRACHT-HUIZING, A.K. LENSTRA, 
P.L. MONTGOMERY AND J. ZAYER. A world wide number field sieve 
factoring record: on to 512 bits. In Advances in Cryptology - Asiacrypt '96, 
Lecture Notes in Computer Science. To appear. 

4. J.A. DAVIS, D.B. HOLDRIDGE, AND G.J. SIMMONS, 1985, Status report 
on factoring (at the Sandia National Laboratories). In T. Beth, N. Cot and I. 
Ingemarsson, editors, Advances in Cryptology - EUROCRYPT '84, volume 
209 of Lecture Notes in Computer Science, pages 183-215, Springer-Verlag, 
Berlin. 

5. L.E. DICKSON, 1934, History of the theory of numbers. Carnegie Institution 
of Washington, Washington, 1919-1920. Reprint: Stechert, New York. 

6. W. DIFFIE AND M. HELLMAN, 1976, New directions in cryptography. 
IEEE Trans. Inform. Theory IT-22, 6:644-654. 

7. EUCLID, 1926, The thirteen books of Euclid's Elements. Cambridge Uni
versity Press, Cambridge, 2nd edition. Translated with introduction and 
commentary by J.L. Heiberg and T. L. Heath. Reprint: Dover publications, 
inc., New York, 1956. 

8. P. DE FERMAT, 1894, In P. Tannery and C. Henry, editors, Oeuvres de 
Fermat, volume 2, pages 256-258. Gauthier-Villars et fils, Paris. Fragment 
of a letter of about 1643 to Mersenne or to Frenicle. 

9. C.F. GAUSS, 1966, Disquisitiones Arithmeticae. Yale University Press, 
New Haven and London. Originally published in 1801. 



388 R.-M. Elkenbracht-Huizing 

10. F.W. LAWRENCE, 1896, Factorisation of numbers. Quarterly Journal of 
Pure and Applied Mathematics, 28:285-311. 

11. A.-M. LEGENDRE, 1893, Zahlentheorie, volume 1, pages 331-336. B.G. 
Teubner, Leipzig. Originally published as 'Theorie des nombres' in 1798. 

12. D.H. LEHMER AND R.E. POWERS, 1931, On factoring large numbers. 
Bulletin of the American Mathematical Society, 37:770-776. 

13. A.K. LENSTRA AND H.W. LENSTRA, JR., 1993, The development of the 
number field sieve, volume 1554 of Lecture Notes in Mathematics. Springer
Verlag, Berlin. 

14. R.F. LUKES, C.D. PATTERSON AND H.C. WILLIAMS, 1995, Numerical 
Sieving Devices: Their History and Some Applications. Nieuw Archie/ voor 
Wiskunde, 13(1):113-139. 

15. P .L. MONTGOMERY, 1994, Square roots of products of algebraic num
bers. In W. Gautschi, editor, Mathematics of Computation 1943-1993: a 
Half-Century of Computational Mathematics, volume 48, pages 567-571. 
Proceedings of Symposia in Applied Mathematics, American Mathematical 
Society. 

16. P .L. MONTGOMERY, 1994, A survey of modern integer factoring algo
rithms. CW! Quarterly, 7 /4:337-366. 

17. P.L. MONTGOMERY, 1995, A block Lanczos algorithm for finding depen
dencies over GF(2). In L.C. Guillou and J.-J. Quisquater, editors, Advances 
in Cryptology - EUROCRYPT '95, volume 921 of Lecture Notes in Com
puter Science, pages 106-120, Springer-Verlag, Berlin. 

18. M.A. MORRISON AND J. BRILLHART, 1975, A method of factoring and 
the factorization of F7 . Mathematics of Computation, 29:183-205. 

19. M.A. MORRISON AND J. BRILLHART, 1971, The factorization of F7 • Bul
letin of the American Mathematical Society, 77:264. 

20. C. PATTERSON, 1991, The derivation of a high speed sieve device. PhD 
thesis, Department of Computer Science, University of Calgary, Calgary, 
Canada. 

21. T. PEPIN, 1889-1890, Sur la decomposition des grandes nombres en fac
teurs premiers. Atti della Accademia Pontificia dei Nuovi Lincei, 43:163-
191. 

22. J.M. POLLARD. Factoring with cubic integers, pages 4-10 in [13]. 
23. C. POMERANCE, 1982, Analysis and comparison of some integer factoring 

algorithms. In H.W. Lenstra, Jr. and R. Tijdeman, editors, Computational 
methods in number theory, volume 154 of Mathematical Centre Tracts, pages 
89-139. Mathematisch Centrum, Amsterdam. 

24. H. RIESEL, 1994, Prime Numbers and Computer Methods for Factorization. 
Birkhiiuser, Boston, 2nd edition. 

25. R.L. RIVEST, A. SHAMIR AND L. ADLEMAN, 1978, A method for obtaining 
digital signatures and public-key cryptosystems. Communications of the 
Association for Computing Machinery, 21(2):120-126. 

26. P. SEELHOFF, 1886, Die Auflosung grosser Zahlen in ihre Factoren. 
Zeitschrift fii,r Mathematik und Physik, 31:166-172. French translation in 
Sphinx-Oedipe, 7:84-88, 1912. 



Historical background of the number field sieve factoring method 389 

27. D. SHANKS, 1971, Class number, a theory of factorization, and genera. 
American Mathematical Society Proceedings of Symposia in Pure Mathe
matics, 20:415-440. 

28. R.D. SILVERMAN, 1987, The multiple polynomial quadratic sieve. Mathe
matics of Computation, 48(177):329-339. 

29. A.J. STEPHENS AND H.C. WILLIAMS, 1990, An open architecture number 
sieve. London Mathematical Society Lecture Note Series, 154:38-75. 

30. H.C. WILLIAMS AND J .0. SHALLIT, 1994, Factoring integers before com
puters. In W. Gautschi, editor, Mathematics of Computation 1943-1993: 
a Half-Century of Computational Mathematics, volume 48, pages 481-531. 
Proceedings of Symposia in Applied Mathematics, American Mathematical 
Society. 


