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It is shown that within the class of n x n rational matrix functions which a.re 
analytic at infinity with value W(oc) =In, any rational matrix function W is the product 
W = W1 • · · WP of rational matrix functions W17 • •• , Wp of McMillan degree one. Fur­
thermore, such a factorization can be established with a number of factors not exceeding 
28(W) - 1, where 6(W) denotes the McMillan degree of W. 

1 Introduction 

We study factorizations of complex rational n x n matrix functions W which are analytic 
at infinity with value W(oo) =In· Let us first consider the case when n == 1; the scalar 
case. The rational scalar functions w under consideration are the quotient of two monic 
polynomials ax and a of the same degree: w(>.) = ax(>.)/a(>.). We may assume that ax and 
a are relative prime. The McMillan degree 8( w) of w is then defined equal to the degree, say 
m, of the polynomials ax and a. The main theorem of algebra gives that 

w(>.) = -- . . . __ m . (,\-Q:r) (A-Q:X) 
). - a1 >.- G'm 

In other terms, w is the product of 6(w) factors of McMillan degree one. 
Also in the matrix case, i.e., in the case when n > 1, the McMillan degree 6(W) 

of a rational n x n matrix function W can be defined, and factorizations within the class of 
rational matrix functions can be studied. In fact, such factorizations arise in mathematical 
systems theory and have received considerable attention; see [1] and references given there. 
In Section 2 of this paper, a short discussion on the subject is given. 

In contrast to the scalar case, not all rational matrix functions W are the product 
of 8(W) factors of McMillan degree one. For example, the rational 2 x 2 matrix function 
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has McMillan degree c5(W) = 2, but requires at least three factors of McMillan degree one 
(see Example 4.3). Note that we require the factors to be rational matrix functions with 
an invertible value at infinity. If one gives up this restriction and allows for factorizations 
into possibly non-square factors, minimal factorizations into factors of McMillan degree one 
always can be achieved; see [16]. 

For two n x n rational matrix functions W1 and W2, the McMillan degree satisfies 
the sublogarithmic property c5(W1W2 ) :S c5(W1) + c5(W2). Therefore, if W = W1 · ·· WN is 
a factorization into factors of McMillan degree one, we get o(W) ~ :Lt:1 c5(WJ) = N. In 
other words, the number of elementary factors, i.e., factors of McMillan degree one, for a 
given rational matrix function W is bounded from below by its McMillan degree 8(W). The 
main result of this paper, Theorem 4.2, gives an upper bound. It is shown that each rational 
matrix function W can be factorized into a number of elementary facton; not exceeding 
28(W) -- 1. In the forthcoming paper [6] this upper bound is proved to be sharp in a certain 
sense (see Remark 3 in the last section of this paper). The theorem is constructive; elements 
of pole assignment (see [12]) and of simultaneous reduction to complementary triangular 
forms (see Section 3) provide a method to obtain a factorization into elementary factors for 
a given rational matrix function. 

So each rational matrix function is the product of a finite number of elementary 
rational matrix functions. For a given rational matrix function W, the minimal number 
of elementary factors is denoted by p(W). A factorization of W into p(W) elementary 
factors is called a quasicomplete factorization. The notion complete factorization is reserved 
for factorizations of W into o(W) elementary factors (see [l]). Observe that a complete 
factorization is quasicomplete, that all rational matrix functions admit a quasicomplete 
factorization by Theorem 4.2, and that not all rational matrix functions a,dmit a complete 
factorization by Example 4.3. 

We conclude the introduction by some remarks on notation used in this paper. 
Throughout this paper, we shall identify a matrix with its action as a linear mapping relative 
to the standard bases. For an n x rn matrix B, we denote its nullspace by Ker B and its 
range by Ran B. The linear span (in a given linear space) of a set S is denoted by span S. 
Let T = (T,J)i,j=1 be an m x m matrix, then u(T) denotes the spectrum of T, i.e., the 
set of eigenvalues of T in the complex plane C. The complement p(T) = rc\u(T) of the 
spectrum is called the resolvent set. Further, we define diag(T) = (T!l, ... , Tmm)T to be 
the diagonal vector of T. A vector (r1, ... ,rmf in <C"' is called a spectral vector of T if 
det(Alm - T) = J1~1 (A - rj)· Then x n identity matrix is denoted by In, while the symbol 
0 stands for a rectangular matrix with zero en.tries, the size of which is determined by the 
context. 

2 Rational Matrix Functions 

In this section, known material from systems theory pertinent to the main result of this 
paper (Theorem 4.2) is reviewed. For more background information, the reader is referred 
to [l] and [2] and the references given there. 

Ann x n rational matrix function W : .A f-> ( Wij(>.) )f.i=l is an n x n matrix with 
rational functions Wij as its entries. In this paper, all rational n x n matrix functions W are 
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assumed analytic at infinity with value W( oo) = In. From systems theory it is known (see 
for example Theorem 2.2 in [l]) that such a matrix function W can be written in the form 

W(.A) =I.,,. + C(>.Im - At 1 B, .A E p(A), (1) 

where the matrices A, B and C are of the appropriate sizes. An expression of the form (1) 
is called a realization of W. With the realization (1), we associate a node (A,B,C;m,n). 
The first three entries in this tuple provide the three realization matrices, while the last two 
entries are integers denoting the dimensions of the spaces on which these matrices act. 

The smallest possible integer m for which W admits a realization (1) is called 
the Mc.Millan degree of W and is denoted by 5(W). A realization (1) for which m = 6(W) 
is called a minimal realization. The node associated with a minimal realization is called a 
minimal node. An equivalent requirement for ( 1) to be a minimal realization (or its associated 
node to be minimal) is that the pair of matrices A, B satisfies the controllability condition 

Ran B + Ran(A.B)-;- · · · + Ran(Am-l B) =IC"', 

and that the pair of matrices C, A satisfies the observability condition 

Ker C .'I Ker(CA) n · · · n Ker(CAm- 1) = (0). 

\"ote that a rational matrix function W :=:: In if and only if 6(W) = 0. Recall that by the 
state space isomorphism theorem ([I], Theorem 3.1), all minimal nodes for a given rational 
matrix function are mutually similar: If (A, B, C; m, n) and (F, G, H; m, n) are two minimal 
nodes for the rational matrix function W, then there exists an invertible m x m matrix S, 
such that s-1AS = F, s- 1B = G, and CS = H. If (1) is a (not necessarily minimal) 
realization for w, then the inverse w- 1 is given by the realization 

where Ax== A - BC. As a consequence, we get cS(w- 1) = 6(W). 
We now turn to factorizations of rational matrix functions. If W1, W2 and W 

are rational matrix functions, then W = W1 W2 denotes a factorization of W. If the minimal 
realizations of the factors are given by Wj(.A) =In+ Cj(.AimJ - AJ)-1 Bj for j = 1, 2, then 
the realization 

(2) 

is called a product realization of W. Observe that the McMillan degree satisfies the sublog­
ari thmic property 

o(W) :S: m1 + m2 = 8(W1) + 5(W2). 

In the case when 8(W) = 8(Wr) + 6(W2 ), i.e., when the product realization (2) is a minimal 
realization of W, the factorization W = W 1 W2 is called a minimal factorization. 
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A rational matrix function of McMillan degree one is called an elementary ratio­
nal matrix junction. A minimal realization of an elementary rational matrix function W is 
of the form W(..\) =I,.+(>. - a)-1cbT, where a is a complex number, and cbT is an n x n 
matrix of rank one (band c are column vectors here). The inverse of W can be written as 
W(,\)-1 :::::: /,,, - (,\ - axtlcbT, where a:x =a - bTc. 

Let W be an n x n rational matrix function with minimal realization as in 
(1), so 6(W) = m. If W admits a factorization W = W1 ···Wm where Wi, ... , Wm are 
elementary rational matrix functions, we say that w. admits a complete factorization. Note 
that a complete factorization is minimal. A necessary and sufficient condition for complete 
factorization of a rational matrix function in terms of its realization matrices is given by the 
following theorem (Theorem 1.6 in [l] or Theorem 6.1 in [2]). 

Theorem 2.1 Let W be a rational n x n matrix function with minimal realization (1). Then 
W admits a complete factorization if and only if there exists an invertible m x m matrix S 
such that s-1AS is an upper triangular matrix and s-1Axs is a lower triangular matrix. 

3 Complementary Triangular Forms 

Theorem 2.1 in the previous section motivates the study of the following property: 

A pair of m x m matrices A, Z admits simultaneous reduction to complementary 
triangular forms if there exists an invertible m x m matrix S such that s-1 AS is an upper 
triangular matrix and s-1 zs is a lower triangular matrix. 

Clearly, not all pairs of m x m matrices A, Z have this property; for example, 
consider the case when A = Z is nondiagonable. The collection of all pairs of m x m 
matrices that admit simultaneous reduction to complementary forms has been studied by 
various authors (cf. [2], [7], [8], [9], [11] and [17]). 

In this section, we discuss briefly two known results on simultaneous reduction 
to complementary triangular forms. Then, a new result on complementary triangular forms 
is presented, which involves the notion of a spectral polynomial. We mention the following 
theorem which was first stated in terms of complete factorization of rational matrix functions 
[1]. We state the result as it appeared in [2]. 

Theorem 3.1 Let A and Z be m x m matrices. If either A or Z is diagonable, then the 
pair A, Z admits simultaneous reduction to complementary triangular forms. 

Most results on simultaneous reduction to complementary triangular forms are 
concerned with pairs of matrices which belong to certain classes of matrices. As an example, 
we will give a result for pairs of first companion matrices. Recall that a first companion 
matrix is of the form (see also [13]) 
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0 0 0 

0 
Ca= 1 0 (3) 

0 0 1 
-a.a -a.1 -CLm-2 -a.m-l 

where ao, ... , a,,,_1 are complex numbers. Note that there is a one-to-one correspondence 
between monic polynomials of degree m and :first companion matrices, given by the equation 

<let(>. - Ca)= ao + a1>.+ ... + am-1>-"'-1 +.xm. 

The following theorem, which describes simultaneous reduction to complementary triangular 
forms for pairs of first companion matrices, is taken from [2], Theorem 3.2. 

Theorem 3.2 Let A and Z be first companion m x m matrices. The pair A, Z admits 
simultaneous reduction to complementary triangular forms if and only if there exist spectral 
vectors ( O!i, •.• , amf and ( (1, ... , (mf of A and Z, respectivily, such that 

In the remaining part of this section, we state and prove Theorem 3.3, which 
makes use of and is an extension of Theorem 3.1. Moreover, the theorem provides an 
important step in the proof of the main result of this paper. The theorem requires the 
notion of a spectral polynomial explained now: Let B be an m x m matrix and let the 
mutually distinct eigenvalues of B be denoted by /3i, ... , (3 •. Define the spectral polynomial 
of B by 

PB(>.)=(>. - /31) · · · (>. - fJ.). (4) 

This polynomial is the manic polynomial of minimal degree vanishing on the spectrum of 
B. Note that the matrix pa(B) is always nilpotent and that ps(B) = Om if and only if Bis 
diagonable. In fact, the subspace Ker Ps(B) is the linear span of aJl eigenvectors of B. 

Theorem 3.3 Let A and Z be m x m matrices. If either 

Ker PA(A) +Ker pz(Z) =IC""' (5) 

or 

Ran PA(A) n Ran pz(Z) = (0), (6) 

then the pair A, Z admits simultaneous reduction to complementary triangular forms. 

The subspace Ker PA(A) +Ker pz(Z) in (5) is the linear span of the eigenvectors of A and 
the eigenvectors of Z. Since the eigenvectors of a diagonable matrix span the whole space, 
it follows that Theorem 3.1 is a special case of Theorem 3.3. Before proving the theorem, 
we first give a lemma. 
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Lemma 3.4 Let A1 and Z1 be m 1 x m 1 matrices, A2 and Z2 be m 2 x m 2 matrices, A12 an 
m1 x m2 matrix, Z21 an m2 x m1 matri:&. Define m = m1 + m2 and consider the m x m 
matrices 

If both pairs Al> Z1 and A2 , Z2 admit simultaneous reduction to complementary forms, then 
the pair A, Z has the same property. 

Proof By assumption, there exist invertible matrices S1 and S2 , such that 
511 A1S1 and Si 1 A2S2 are upper triangular and S11 Z1S1 and 821 Z2S2 are lower trian­
gular. Put S = S1 EfJ 82 and verify that s-1 AS is upper triangular and s-1 ZS is lower 
triangular. D 

Proof of Theorem 3.3 We first prove that (5) implies that the pair A, Z admits 
simultaneous reduction to complementary triangular forms. Write dim Ker PA(A) :::: k and 
dim Ker pz(Z) = l. There exist vectors <Pi, .. ., </Jk and complex numbers a:1,. .. , a:k such 
that 

Ker PA(A) = span{<P1, ... , </Jk}, Act>;= a:;<Pi, i = 1, ... , k, 

and there exist vectors 'l/;1, ... , 'ljJ1 and complex numbers ( 1, .•• , (i such that 

Ker pz(Z) =span{ '1{;1 , ... , 1/J1}, Ztf;; = (fi/J;, j = 1, ... , l. 

Then (5) implies that k + l ;:::: m and that the vectors <P1, ..• , rp1., Wl> ... , 'lf>i span the whole 
space cm. From this collection of vectors, a basis for IC"' can be selected: There exist an inte­
ger 0:::::; s:::; m, a strictly increasing mapping 7l': {l, .. .,s} ---t {1, ... ,k} and a strictly in­
creasing mapping p: {l, ... , m-s} --> {l, ... , l} such that r/J"(l)• .•• , </>"'(•)• Wp(ll> •.. , 1/Jp(m-•) 

is a basis for cm. With respect to this basis, A and Z assume the forms 

where D 1 is an s x s diagonal matrix with diagonal vector (O!,.(i), ... , a,,(s)? and D2 is an 
(m - s) x (m - s) diagonal matrix with diagonal vector ((p(l), ... ,(p(m-sJ)T. By Theorem 
3.1 and Lemma 3.4 it now follows that the pair A, Z admits simultaneous reduction to 
complementary triangular forms. 

Next, we prove that (6) implies that the pair A, Z admits simultaneous reduction 
to complementary triangular forms. First note that (6) is equivalent to 

Ker PA·(A*) +Ker pz.(Z*) == C"'. 

By the argument given in the first part of the proof, it follows that the pair A* a.nd Z* 
admits simultaneous reduction to complementary triangular forms. It easily follows that the 
pair A, Z has the same property. The theorem is proved. D 
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The sufficient conditions (5) and (6) in Theorem 3.3 are easily seen not to be 
necessary: Consider the pair of 3 x 3 matrices 

( 0 1 0) 
A= 0 0 1 , 

0 0 0 
( 0 0 0) 

Z= 1 0 0 . 
0 1 0 

It follows that PA(>.) = pz(>.) = .A, and that the conditions (5) and (6) are not fulfilled. On 
the other hand, the pair of matrices A, Z are in complementary triangular forms. 

4 Factorizations into Elementary Factors 

k. demonstrated in the introduction, rational scalar functions always admit a complete 
factorization. In general, however, rational matrix functions need not admit a complete 
factorization. Indeed, for each pair of m x m matrices A, Z, one can construct a minimal 
realization W(,\.) =I,..+ C(Alm - A)-1B such that Z = Ax = A - BC (for details, see 
Theorem 5.1 in [2]). Hence if the pair A, Z does not admit simultaneous reduction to com­
plementary triangular forms, then the minimal realization W(>.) =I,.. +C(>.I,,.. -A)-1B does 
not admit a complete factorization. For this reason, more relaxed notions of factorization 
into elementary factors have been considered. In [16], it is shown that each rational matrix 
function admits a minimal factorization into possibly non-square elementary rational matrix 
functions. In Theorem 4.2, th.e main result of this paper, it will be proved that each rational 
matrix function (1) is the product of elementary rational matrix functions, i.e., is of the form 

(7) 

where W1, ... , W N again are elementary rational matrix functions, but where the number of 
factors N may exceed the McMillan degree of W. 

Let W be a rational matrix function, and let p(W) denote the infimum of all inte­
gers N, such that W admits a factorization into N elementary rational matrix functions. In 
Theorem 4.2 below, it is shown that p(W) < oo, i.e., that all rational matrix function admit 
a factorization into a finite number of elementary rational matrix functions. A factorization 
involving the minimal number p = p(W) of elementary factors 

W=W1 ···Wp 

is called a quasicomplete factorization. As explained in the introduction, p(W) ~ 6(W). 

Let W be a rational matrix function with minimal node (A, B, C; m, n) and 
let N 2: m be an integer. The tu pie (A, B, C; N, n) is called a dilated node of the node 
(A, B, C; m, n), if it is of the form 

A12 
A 
0 
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where .41 is a teXK, matrix for some integer 0:::; "":::; N -m, A.33 is an (N -m- K.) x (N-m-n.) 
matrix, and A12 , A13 and A23 are of corresponding sizes. Further, B 1 is a tC x n matrix, and 
C3 is an n x (N - m - K.) matrix. By computation, one can verify that 

(8) 

so that the tuple (A, B, C; 1V, n) indeed is a node for W. Observe that in the case when 
N > m, the realization in (8) is not minimal. The following lemma shows how the notion of 
a dilated node is used to study factorizations into elementary factors. 

Lemma 4.1 Let W be a rational n x n matrix function with minimal node (A, B, C; m, n), 
and let N :2: m be an integer. Then W admits a factorization W = W 1 • • • WN into N 
elementary factors if and only if there exzsts a dilated node (A, B, C; N, n) of (A, B, C; rn, n) 
such that the pair of N x N matrices A, Ax = A - BC admits simultaneous reduction to 
complementary triangular forms. 

Proof To prove the only if part, assume that W admits a factorization as in 
(7). Denote the product realization by W(.A) = In+ C(.AIN - A.)-1 B. Then A is upper 
triangular, and A - BC is lower triangular: See the only if part of the proof of Theorem 
6.1 in [l]. By Theorem 3.2 in [1], there exists an invertible N x N matrix T, such that 
(T-1 AT, r-1 B, GT; N, n) is a dilation of some minimal node (F, G, H; m, n) for W. The state 
space isomorphism theorem provides an invertible m x m matrix V such that v··lFV =A, 
v-1c =Band HV =C. Define the invertible N x N matrix (with the same block structure 
as A) 

( 
I 0 0 ) 

Y= 0 V 0 , 
0 0 I 

and write S """TY. Then A.= s- 1,4s, B = s- 1[3 and C =CS provide a dilated node as 
described in the lemma. The if part is proved in the same fashion as the if part of Theorem 
6.1 in [2]). D 

We now come to the main result in this paper. 

Theorem 4.2 Consider the minimal realization 

(9) 

Define the integerk(W) = m-dim (Ker PA(A) +Ker PAx (Ax)), where Ax =A- BC. Then 
the minimal number of elementary factors p(W) for W satisfies the estimate 

p(W) S:: 6(Vfl) + k(W) S:: 26(W) - 1. 
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Proof The pair of matrices A, B in the minimal realization (9) is controllable. 
Therefore, according to the spectral assignment theorem (Theorem 6.5.l in [12]), there exists 
for each m-tuple of complex numbers g1, ... , 9m an n x m matrix K, such that A+ BK has 
eigenvalues gi, ... , 9m· We will assume these eigenvalues to be distinct, so that A + BK 
is diagonable. We will also assume that this set of complex numbers does not intersect 
a(A) U a(Ax). 

Consider the subspace M =Ker PA(A)+Ker PAx (Ax). By definition, codim M = 
k(W). Write k = k(W), and note that 0 ~ k ~ m-1. There exist k eigenvectors x1, ... Xk for 
A+ BK, such that M EB span{xi, ... , xk} =IC"'. After renumbering the eigenvalues, we may 
write (A+ BK)xj = gixi for j = 1, ... , k. Define them x k matrix X = (xi, x2, ... , xk)· 
Then (A+BK)X = XG, where G is an kxk diagonal matrix with diagonal vectordiag(G) = 
(g1, .•. , g,.)r. Define then x k matrix F = -KX to obtain AX - XG =BF. Consider 
the matrices 

Further, write 

where, as usual, Ax =A - BC. Note that 

( Im -X ) ( A 0 ) ( Im x ) = 
0 Ik 0 G 0 I,. 

( A AX - XG ) _ ( A BF ) _A. 
0 G -oc -. 

Since a(A) n 17( G) = 0, we get p A.(.>.) = PA(>.)pc(>.). Hence 

PA(A) = ( 1i ~~ ) ( PobA) PA~G) ) ( PAbA) gk ) ( 16' ~ ) ' 
where Pa(A) and PA(G) are invertible matrices. We have also used Pa(G) =Ok. Therefore, 

· ( Im -X ) ( PA(A) 0 ) Ker PA.(A) = O I,. Ker O Ok · 

Also, 

Ker PA.x (Ax) =Ker ( PAxbAx) gk ) . 
It is not difficult to verify, that 
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if and only if 

Ker PA(A) +Ker PAx(Ax) +Ran x = M +Ran x =en. 
By construction, the latter is the case. Theorem 3.3 then yields that the pair A, A.x admits 
simultaneous reduction to complementary triangular forms. Next, use Lemma 4.1 to obtain 
that W admits a factorization as in (7), with N = m + k = 6(W) +k(W). The theorem is 
proved. D 

To illustrate Theorem 4.2 and its proof, we will factorize a given rational matrix 
function whlch does not admit a complete factorization into elementary factors. Such a 
factorization of this particular rational matrix function was already known to Thijsse [14]. 

Example 4.3 In this example, we will compute a quasicomplete factorization for the ratio­
nal matrix function 

with minimal realization 

W(>.) = ( 1 Xf ) 
\ 0 1 ' 

where the realization matrices are given by 

Compute 

Since A = A" is nondiagonable, it follows that the pair A, A" does not admit simultaneous 
reduction to complementary triangular forms. By Theorem 2.1, W does not admit a complete 
factorization, so p(W) > 2. We will now follow the proof of Theorem 4.2. Note that with 

we have 

K={O 0) 
\ 1 0 

( 0 l) A+ BK= 1 O , 

so A+ BK is diagonable. Observe that k(W) = 1, and take 

( 1 ) x = ~ 1 ' G=l, 
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so that AX - XG =BF. We now obtain the matrices 

( 
0 1 0 ) A= o o -1 , 
0 0 1 

• ( -1 C= 
0 ~ ~1)' 

and 

k = A. - 86 == ( ~ ~ ~ ) . 
0 0 1 

By construction, the pair A, Ax admits simultaneous reduction to complementary triangular 
forms. In fact, the similarity 

( 1 1 0) s = 1 0 0 
-1 0 1 

transforms A and ,.ix into complementary triangular forms as follows: 

s-1.4s = ( ~ ~ ~1 
) , 

0 0 0 
( 0 0 0) s-1 Ax s = 1 o o . 

-1 0 1 

In addition, 

As explained in the proof of Theorem 6.1 in [2], we may now calculate the elementary factors 
explicitly and obtain W(>.) = W1(>.)W2 (>.)W3 , with 

W1 (>.) = ( ~ ~ ) + >. ~ l ( ~ 1 ) ( 0 1 ) = ( ~ :~1: ) , 

W3(,\) = ( ~ ~ ) + ,\ ~ l ( ~l ) ( 0 1 ) = ( ~ A~l ) • 

We may conclude that p(W) = 3. D 

We finish this section with a number of remarks which are related to Theorem 
4.2. 
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1. In the proof of Theorem 4.2, only the controllability of the pair A, Bis used explicitly. 
The observability of the pair C, A enters in the proof through the minimality condition 
m = S(W). 

2. By taking ad.joints and observin:g that o(W) = 6(W*) and p(W) = p(W*), we can state 
a dual version of Theorem 4.2. Indeed, 

k*(W) = codim [Ker PA·(A*) +Ker P(A")x((A"°Y)] =dim [Ran PA(A) n Ran PAx(Ax)] 

leads to p(W) $ o(W) + k*(W) $ 26(W) - 1. It follows that 

p(W) ~ 6(W) + min{k(W), k*(W)}. 

3. In the forthcoming paper [6], it is shown that the estimate p(W) :::; 26(W) - 1 is sharp 
in the following sense: For each positive integer m, the rational matrix function 

W(,\) = ( ~ -~-m ) 

satisfies o(W) = m and p(W) = 2m - 1. 

4. The dilated node (A, B, C; m + k, n) in the proof of Theorem 4.2 is of a special form. In 
fact, it is the product realization of the product W 111 with realizations 

5. Let W be an n x n rational matrix function, and let v(W) denote the maximal number of 
non-trivial factors that can occur in a minimal factorization of W. Then 1 $ v(W) :5 6(W). 
Write v(W) = 11, and consider the minimal factorization W = W1 · • • w ... By Theorem 4.2, 
applied on all factors separately, we get 

v v v 

p(W) :::; L p(Wj) :::; L [o(Wj) + k(W;)] :::; L [2o(Wj) - l] = 26(W) - v(W), 
j=l 

so p(W)+v(W) :::; 26(W). This inequality is not sharp. Indeed, the rational matrix function 
W(>.) =la+ C(>..13 - A)-1 B, with 

( 0 1 0) 
A= 0 0 1 , 

0 0 0 
B = ( ~ ~ ~l ) , 

1 0 0 

satisfies 8(W) = 3, p(W) = 4, and v(W) = 1. 

( 0 0 0) c = -1 1 0 ' 
-1 0 1 

6. A companion based rational matrix junction is a rational matrix function, which admits a 
minimal realization (1) with A and Ax first companion matrices. Complementary triangular 
forms for a pair of first companion matrices are now well understood; see Theorem 3.2. This 
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result states that a pair of first companion matrices admits simultaneous reduction to com­
plementary triangular forms if and only if a combinatorial condition is met. In this manner, 
complete factorization for companion based rational matrix functions is characterized. Sur­
prisingly enough, an important job scheduling problem, known as the Two Machine Flow 
Shop Problem, can be rewritten in terms of this combinatorial condition. In fact, there ex­
ists a correspondence between instances of the Two Machine Flow shop Problem on the one 
hand and companion based rational matrix functions on the other hand. For more details, 
see [3], [4], [5] and [6]. In particular, we mention the fact that the minimum processing time 
performed by an optimale schedule for such a Two Machine Flow shop Problem is closely 
related to the positive integer p(W) for the associated companion based rational matrix 
function W. 

Addendum 
After the completion of this paper, we learned a.bout another method, which was proposed 
in [10], to factorize rational matrix functions into elementary factors. One of the results from 
[10] comes down to p(W) :S 28(W) - max{dim Ker PA(A), dim Ker PAx(Ax)}, while ill this 
paper we arrive at the sharper estimate p(W) :S 28(W) - dim(Ker PA (A) +Ker PAx (Ax) ). 
To illustrate that the latter inequality is sharper indeed, we give an example. Let 

W(A) = ( A~r t ) · 
By the method in [lOJ, the rational matrix function W is multiplied to the left with an 
elementary rational matrix function V, such that VW admits a complete factorization and 
6(VW) = 8(W) = 2. For example, take V of the form (a# 0) 

V(A) = ( Aiia ~ ) . 
By construction, there exist elementary rational matrix functions Vi and V2, such that VW = 
V1 V2 . One then gets W = v-1v1 Vi. It turns out that 6(V-1V1) = 2, so that the factorization 
does not "collapse" into a complete one. By the methods presented in this paper, it follows 
immediately that W does admit a complete factorization. Indeed, given a minimal realization 
W(>.) = 12 + C(>.12 - At1 B, it is easy to verify that Ker A+ Ker Ax = C2 . 
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