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TRIANGULARLY IMPLICIT ITERATION METHODS FOR ODE-IVP 
SOLVERS* 

P. J. VAN DER HOUWENt AND J. J. B. DE SWARTt 

Abstract. It often happens that iteration processes used for solving the implicit relations 
arising in ODE-IVP methods only start to converge rapidly after a certain number of iterations. 
Fast convergence right from the beginning is particularly important if we want to use so-called step
parallel iteration in which the iteration method is concurrently applied at a number of step points. 
In this paper, we construct highly parallel iteration methods that do converge fast from the first 
iteration on. Our starting point is the PDIRK method (parallel, diagonally implicit, iterated Runge
Kutta method), designed for solving implicit Runge-Kutta equations on parallel computers. The 
PDIRK method may be considered as a Newton-type iteration in which the Newton Jacobian is 
'·simplified" to block-diagonal form. However, when applied in a step-parallel mode, it turns out 
that its relatively slow convergence, or even divergent behavior, reduces the effectiveness of the step
parallel scheme. By replacing the block-diagonal Newton Jacobian approximation in PDIRK by a 
block-triangular approximation, we do achieve convergence right from the beginning at a modest 
increase of the computational costs. Our convergence analysis of the block-triangular approach will 
be given for the wide class of general linear methods, but the derivation of iteration schemes is limited 
to Runge--Kutta-based methods. A number of experiments show that the new parallel, triangularly 
implicit, iterated Runge-Kutta method (PTIRK method) is a considerable improvement over the 
PDIRK method. 
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1. Introduction. Suppose that we integrate the IVP 

Y1 = f(y), y(to) =yo, y, f E Rd 

by an implicit step-by-step method. For the class of general linear methods ( cf. 
Butcher [7, p. 367]), this requires in each step the solution of a nonlinear system of 
the form 

(1.1) R(Y) = 0, R(Y) := Y - h(A ® I)F(Y) - W, 

where A denotes a nonsingular s x s matrix, W is an sd-dimensional vector containing 
information computed in preceding integration steps, I is the d x d identity matrix, h 
is the stepsize tn - tn-i, and© denotes the Kronecker product. The s components Y,; 
of the sd-dimensional solution vector Y represent s numerical approximations to the 
s exact solution vectors y(tn-l + Cih); here, the ci denote the abscissas. Furthermore, 
for any vector V =(Vi), F(V) contains the derivative values UCVi)). It is assumed 
that the Ci are distinct. In the following, we shall use the notation I for any identity 
matrix. However, its order will always be clear from the context. 

The solution Y of (1.1) will be called the stage vector and s will be referred to 
as the number of stages. The most well-known examples of step-by-step methods 
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that lead to implicit relations of the form ( 1.1) are provided by the class of implicit 
Runge-Kutta (RK) methods. In that case, s equals the number of implicit stages of 
the RK method. (Note that for RK methods having explicit stages, s is less than the 
total number of stages of the RK method, e.g., this happens for Lobatto methods.) 

We want to solve the system (1.1), to be referred to as the corrector, by a parallel 
iteration process. Our starting point is the PDIRK method (Parallel, Diagonally im
plicit Iterated Runge-Kutta method) developed in [15]. The PDIRK method may be 
considered as a Newton-type iteration in which the Newton Jacobian is "simplified" 
to block-diagonal form, so that we have parallelism across the stages. Earlier compar
isons on a four-processor ALLIANT FX/4 of the codes LSODE and RADAU5 (con
sidered as belonging to the best sequential codes for stiff problems) with the PDIRK
based code PSODE (Parallel Software for ODEs) of Sommeijer [21] showed that in 
general PSODE is the most efficient one. On the average, it produces the same accu
racy in half the CPU time as required by LSODE and RADAU5. In [16] the PDIRK 
method was applied in a step-parallel setting, where the iteration procedure is concur
rently applied at a number of step points; that is, iteration at the point tn+i is already 
started without waiting until the iterates yU) at tn have converged. (For details and 
analysis of various step-parallel methods we refer to, e.g., [l], [2], [4], [5], [8], [11], [16], 
[17], [19].) This approach requires that the predictor formula needed to start iteration 
at tn+i is based on a sufficiently "safe" iterate yUl. In order to have an efficient step
parallel iteration process, the value of j for which yU) is sufficiently "safe" should be 
small, that is, substantially smaller than the order of the method (1.1). Thus, in the 
step-parallel approach it is particularly important that we are near convergence right 
from the beginning. Although the PDIRK iteration method is quite efficient when 
iterating until convergence, it does have the drawback of a rather slow initial conver
gence, and hence it is less suitable for combination with a step-parallel approach. 

The aim of the present paper is to improve the initial convergence of the PD IRK 
method by replacing the Newton Jacobian I -ACZJhJ with a matrix I -BCZ;hJ, where 
B is block-triangular instead of block-diagonal as it is in the PD IRK method. (Here, 
J is an approximation to the Jacobian of the right-hand side function f at tn-1.) The 
intrinsic parallelism of these "triangularly" iterated methods is hardly less than in 
the PDIRK methods. The approach for determining the triangular matrix B is the 
same as for the PDIRK methods and is based on minimizing the spectral radius of 
the amplification matrix for the stiff iteration errors. However, instead of a numerical 
search as used for PDIRK [15], B can now be computed by means of the Crout 
decomposition of A. Although the asymptotic speed of convergence of PDIRK and 
the new method are often comparable, it happens that the departure from normality 
of the amplification matrix is considerably less than for the new methods. Hence, we 
may expect faster initial convergence. 

We tested the triangular iteration strategy on a few nonlinear problems from 
the literature. These experiments do show a considerable improvement of the initial 
speed of convergence for the new methods. Furthermore, we applied both methods to 
a rather difficult problem from circuit analysis and estimated CPU times on a four
processor Cray C98/ 4256 showing that the CPU time increases by less than 10%. A 
comparison with the RADAU5 code reveals that for this problem the new method is 
at least twice as fast. 

2. The iteration scheme. Our starting point for solving the corrector equation 
(1.1) is the simplified (or modified) Newton iteration scheme 

(2.1) (I - A 0 hJ)t::.Y(j+ll = -R(Y(jl), 

y(j+1) = yUl + t::,.yU+1)' j = 0, 1, ... ' 
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where J is an approximation to the Jacobian of the right-hand side function f at 
tn-1, and y(o) is the initial iterate to be provided by some predictor formula. Each 
iteration with (2.1) requires the solution of an sd-dimensional linear system for the 
Newton correction b.Y(j+l). In actual computation, the costs for solving this system 
can be reduced by first performing a similarity transformation of the iterates ( cf. 
Butcher [6]) y(j) = ( Q ®!)XU), where Q is a nonsingular matrix. Q should be such 
that the system 

(2.2) (I - Q- 1 AQ ® hJ)b.X(j+l) = -(Q-1 ® I)R(Y(jl), 

y(J+1l = yCj) + (Q@ I)Lixu+1l, j = o, 1, ... , 

is easier to solve than (2.1). 
For example, if A has positive eigenvalues, then the Schur decomposition of A 

has the form A = QTQ-1 , where Q is orthogonal and T is lower triangular with 
the eigenvalues of A on its diagonal. Hence, the linear system (2.2) is '"triangularly 
implicit" and consists of s subsystems of dimension d that can be solved sequentially. 
On sequential computers, this is most effective if A has a one-point spectrum, so that 
only one LU decomposition is required (see, e.g., Burrage [3]). On parallel computers, 
the condition on the spectrum of A can be relaxed to requiring that A is nondefec
tive and has arbitrary positive eigenvalues. Since the s LU decompositions can be 
computed in parallel, only one decomposition per processor is required. Similarly, in 
each iteration, the s forward-backward substitutions for the diagonal blocks and the 
s components of R(YCil) can also be computed in parallel. RK methods whose RK 
matrices have positive eigenvalues can be found in Ore! [20]. 

Unfortunately, the most powerful implicit methods (with respect to order of ac
curacy and stability) have matrices A with complex eigenvalues. One option to deal 
with the complex eigenvalue case is to decompose A into a real block-triangular ma
trix of which the diagonal blocks are either diagonal or 2 x 2 matrices. This leads to 
an sd-dimensional system that can be split into a sequence of subsystems of either 
dimension d or dimension 2d. (This approach was followed in the implementation of 
the RADAU5 code of Hairer and Wanner [14].) A block-diagonal structure of Q- 1 AQ 

implies that (2.2) is suitable for implementation on a parallel system. 
Another option for reducing computational costs that will be the subject of this 

paper replaces the matrix A in (2.1) by a "more convenient" matrix B. In this paper, 
we consider the case where B is lower triangular, i.e., B = L + D, where L is strictly 
lower triangular and D is diagonal with positive diagonal entries dii· This leads to 
the iteration scheme 

(2.3) (I - D 0 hJ)b.Y(j+lJ = (L ® hJ)fiY(J+l) - R(YUl), 

yU+l) = yUl + ,0.yU+ 1l, j = 0, 1, .... 

In the case where L vanishes and (1.1) represents a Runge--Kutta (RK) method, 
the resulting iteration scheme is the PDIRK method mentioned in section 1. The 
method (2.3) requires LU decompositions of the d x d matrices I - hd;;l, i = 1, ... , s, 
and, in each iteration, the evaluation of the residue R(YU) ), s forward-backward 
substitutions, and the matrix·-vector multiplication (L 0 hJ)D.Y(J+I). By expressing 

this multiplication in terms of F, the scheme (2.3) can be replaced by 

(2.4) (I - D 0 hJ)b.Y(J+l) = h(L ® I)(F(YU+ 1l) - F(Y<Jl)) - R(YUl). 

This version may yield better convergence if the right-hand side Jacobian is a less 
accurate approximation of the true Jacobian. Just like the scheme (2.2), the LU 



44 P. J. VAN DER HOUWEN AND J. J. B. DE SWART 

TABLE 2.1 
Computational costs due to m iterations. 

Method 

(2.3) with L = 0 
(2.3) with L =j::. 0: LJ version 
(2.4) with L =j::. 0: LF version 
(2.5) transformed LJ version 

on one processor 

msd(Ct + 2d + 2s) 
msd(Ct + 4d + 3s) 
msd(Ct + 2d+ 3s) 
msd(Ct + 2d + 4s) 

on s processors 

md(Ct + 2d + 2s) 
md(CJ + 4ds + s2 ) 

md(sCJ + 2ds + s 2 ) 

md(CJ + 2d + 4s) 

decompositions and the components of the residue R(Y(j)) occurring in (2.3) and 
(2.4) can be evaluated in parallel. The schemes (2.3) and (2.4) will be called parallel, 
triangularly implicit, iterated methods. 

In the case where (1.1) is an RK method, we shall refer to such methods as a 
PTIRK method and to distinguish them, we shall speak of the LJ and LF versions. 
In the case of (2.3), a further degree of parallelism is obtained by using the Butcher 
similarity transformation. This enables us to eliminate the triangularly implicit term 
(L ® hJ)t:.YU+l) and leads to 

(2.5) (J - D 0 hJ)f::i.X(Hll = -(Q-1 0 I)R(YUl), 

yCH1l = y(j) + (Q 0 I)f::i.X(i+l), BQ = QD. 

In addition to the parallelism already present in (2.3) and (2.4), the scheme (2.5) also 
allows that in each iteration the s forward-backward substitutions can be done in 
parallel. Since the schemes (2.3) and (2.5) are algebraically identicai, we shall call 
(2.5) the transformed LJ version. 

Finally, we compare the computational costs of the various iteration schemes. 
These costs consists of two contributions, respectively, due to Jacobian updates and 
due to the successive iterations. In all schemes, the number of flops per step originating 
from the Jacobian updates is given by 

C1 = - -C1+-d+1 , sd2 (1 2 ) 
1J s 3 

where v denotes the averaged number of steps during which the Jacobian and the 
LU decomposition are kept constant, and C1 denotes the average numbers of flops 
for computing one entry of J. The contribution C1 is perfectly parallelizable and can 
be reduced effectively by a factors on s processors. The contribution due tom (say) 
iterations are summarized in Table 2.1. In this table, Ct denotes the average numbers 
of flops for computing one component of f. Evidently, on a parallel computer, the 
methods (2.3) with L = 0 and (2.5) are the less expensive ones. 

3. Convergence of the iteration process. In order to analyze convergence, 
we define the iteration error e<j) = y(i) - Y, and we write the LJ and LF versions 
(2.3) and (2.4) in the respective forms 

(3.1) (I - B ® hJ)( €(j+l) - E(j)) = -E(j) + h(A 0 I) (F(Y + E(j)) - F(Y) ), 

(I - D ® hJ)(c(Hl) - E(j)) = -e(j) + h((A- L) ® I)(F(Y + eUl) - F(Y)) 

+h(L 0 I)(F(Y + e<H1l) - F(Y)). 

The components of F(Y + e) - F(Y) can be expanded according to Jiei + C::>(et), 
where Ji is the Jacobian matrix of the right-hand side function at Yi. Assuming that 
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J is nonsingular, we may define the block-diagonal matrix D..J of which the diagonal 
blocks are given by J- 1 D...Ji = J- 1 (Ji - J) to obtain 

F(Y + E(j)) - F(Y) =(I@ J)E(j) +(I 0 J)b..JE(j) + 0((1/j))2). 

Ignoring the second-order terms (first-order convergence analysis), the error recursions 
for the LJ and LF versions can be represented in the forms 

(3.2) 

(3.3) 

where 

E(j+l) = M(I + PD..J)E(j), 

E(j+l) = (I - N D..J)- 1 M(I + QD..J)E(j), 

M :=(I - B ® hJ)- 1((A - B)@ hJ), 

N :=(I - B@ h.J)- 1(L@hJ), 

P:=(A-B)- 1A@I, Q:=(A-B)- 1(A-L)@I. 

If we ignore D..J (linear convergence analysis), then the error recursions of both ver
sions are characterized by the matrix M. However, if D.J cannot be neglected, then 
the error recursions may behave quite differently. For example, as h ~ 0, then we 
have 

(3.4) 

(3.5) 

E(j+l) ;:::; h( (A - B)@ J + (A 0 J)D.J)c(j), 

E(j+l);:::; h((A - B)@ .J +((A - L) 0 J)D..J)E(j)_ 

Since the strictly lower triangular blocks of the amplification matrices in (3.4) and 
(:3.5) differ by the matrices hLij D..Jj, the convergence behavior may differ considerably 
fLnd is highly problem dependent. In the remainder of this paper, we shall focus on 
the matrix M. 

3.1. Rate of convergence. In order to select a suitable matrix B, we consider 
the convergence of the individual error components corresponding to the eigenvalues 
A of .J. From (3.1) it follows that these error components are amplified by the matrix 
Z defined by 

Z = Z(z) = z(I - zB)- 1(A- B), z := h>.. 

Z will be called the arnpl'ification rrwtri:r associated with M. A measure for the 
rnte of convergPnce of the individual error components is defined by the (averaged) 
amplification factorn 

(3.fi) 

where II · 1/ 00 denotes the maximum norm. Note that p00 (z) = p(Z(z)), p(-) being 
the spectral radius function. For the test equation :1/ = >.y, the value of Pj(z) may 
be interpreted as the averaged factor by which the iteration error corresponding to 
z = h.A is reduced in each iteration, until the corrector solution is reached. For more 
general problems, we have to deal with pj(z) where z runs through the spectrum of 
h.J. 

The amplification factor at z = oo will be called the stiff amplification factor. In 
the neighborhood of the origin we may write 
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The quantity pj(z) will be called the nonstiff amplification factor. Furthermore, we 
denote the maximal amplification factor in the left-hand plane by pj. Of course, pj 
refers to the worst case situation, but it serves as an indicator for the robustness of 
the method. 

3.2. Iteration strategies. In this section, we discuss the choice of the free 
matrix B = L + D in the iteration schemes ( 2.3) and ( 2 .4). We first briefly review the 
diagonal iteration strategy of [15], i.e., L = 0, and then we focus on the triangular 
iteration strategy, where L is allowed to be an arbitrary strictly (lower) triangular 
matrix. A nonvanishing matrix L enables us to reduce the norm of zj considerably. 

The reason for restricting B to the class of triangular matrices is that we have 
direct control on the eigenvalues of B. As a consequence, suitable matrices B can be 
constructed without performing a many-parameter search as was carried out in [15]. 
Since our main source of correctors is the class of RK methods which usually possess 
a dominant lower triangular part, B is also assumed to be lower triangular. (Recall 
that ideally B should equal A.) For both the diagonal iteration and the triangular 
iteration approach, the matrices B, Zo := A - B, and Z00 := I - B-1 A associated 
with a number of classical RK methods are specified in the appendix to this paper. 

3.2.1. Diagonal iteration. The diagonal iteration strategy is characterized by 
a diagonal matrix B with positive diagonal entries. In this strategy, it was found 
for a large number of classical RK correctors that small iteration error amplification 
factors for the stiff error components are crucial for a satisfactory overall convergence 
[15]. This is due to an order reduction effect common in stiff situations and can be 
explained by considering the error recursions (3.2) and (3.3). Due to the "Jacobian
defect" matrix t::..J, the stiff error components are not damped as strongly as the 
nonstiff error components. Therefore, we determined in [15] the diagonal matrix 
B = D such that Z00 has a minimal spectral radius; that is, the asymptotic value 
p00 (00) = p(Z00 ) of the stiff amplification factor is minimized. In [15] this was achieved 
by a multiparameter search over the diagonal entries of D. For a large number of 
collocation-based RK correctors, it turned out that the spectral radius p(Z00 ) of 
Z00 =I - B-1 A is extremely small. In fact, we conjecture that for collocation-based 
RK correctors, there exist matrices D with positive diagonal entries for which p(Z00 ) 

actually vanishes. This suggests an alternative construction of the matrix B = D. 
Writing down the characteristic equation for Z00 and imposing the condition that this 
equation has only zero roots, we arrive at a (nonlinear) system for the entries dii of 
D. If this system can be solved for positive dii, i = 1, ... , s, then we have found 
an optimal matrix D. It has been verified for the Radau IIA correctors with s ~ 8 
that such optimal matrices D do exist (see [18]). Notice that a zero spectral radius 
p(Z00 ) implies that Zlx, vanishes for j 2:: s. (This can be seen by considering the Schur 
decomposition Z00 = QTQ- 1 with Q orthogonal and T strictly lower triangular.) 

If the matrices D are obtained by a numerical search as in [15], then they will 
always give rise to a small but yet nonzero p(Z00 ). Nevertheless, for both the nonstiff 
and the highly stiff error components, the generated PDIRK methods show a satis
factory convergence rate for larger values of j. On the other hand, it also turns out 
that for the higher-order methods, there may be regions in the z-plane where pj(z) 
exceeds one for small j, so that initially error components corresponding to points 
lying in such regions will diverge [16, Table 3.2b]. The reason for this behavior is the 
"abnormality" of the matrix Z. In particular, for larger values of lzl, i.e., for the stiff 
error components, the matrix Z(z) may differ considerably from a normal matrix. 
To be more precise, let the departure from normality of the matrix Z be defined by 
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.6.2 (Z) := llZ!li - ll((Z)ll~, where ((Z) denotes the vector of eigenvalues of Zand 
II · llF and II · 112, respectively, denote the Frobenius matrix norm and the Euclidean 
vector norm (see, e.g., [12, p. 336]). By considering plots of .6.2 (Z) as a function of lzl 
with arg(z) constant, we found that in the left-hand half-plane .6.2 (Z) monotonically 
increases from 0 to values greater than 20. This situation is particularly unfortunate 
if we want to apply the step-parallel iteration approach mentioned in section 1. In 
such an approach, it is crucial that in the whole left-hand half-plane the amplification 
factor is less than one right from the beginning. 

3.2.2. Triangular iteration. In the triangular iteration strategy we choose B 
lower triangular with positive diagonal entries such that Z 00 is strictly upper trian

gular. As a consequence, we have a zero stiff amplification factor for j 2: s. For the 
construction of such a matrix B we use the LU decomposition of A Let A = TLTu 

with TL lower triangular and Tu unit upper triangular (Crout decomposition), and 
define B = TL. Since Z00 = I - B-1 A, we immediately obtain the strictly upper 
triangular matrix Z 00 = I - Tu. The following lemma provides an explicit criterion 
for the positiveness of the diagonal entries of B = TL. 

LEMMA 3.1. Let A, L, D, and U be s x s matrices s1J,ch that A= LDU with L 

unit lower triangular, D diagonal, and U unit upper triangular, and let Ak denote the 

k x k principal submatrix of A. Then D has diagonal entries given by 

(3.8) dk = det(Ak) 
det(Ak_i)' k = 1' ... ' 3 ' 

where det(Ao) := 1 and det(Ai) := a 11 . 

Proof Let Ai be decomposed according to Ak = LkDkUk with Lk unit lower 
triangular, Dk diagonal, and Uk unit upper triangular. Then 

Since the first k - 1 pivots in the Gaussian elimination process do not depend on the 
entries aij with i 2: k and j 2: k, it follows therefore that the diagonal entries dik of 
Dk are defined by dik = di. Hence, det(Dk) = det(Dk-i)dk, which is equivalent with 
(3.8). D 

From this lemma it follows that the diagonal entries of the matrix B defined above 
are given by (3.8), so that they are all positive, if all values det(Ak), k = 1, ... , s, are 
positive. In the following, we restrict our considerations to collocation methods with 
distinct abscissas Ci· Such methods are generated by matrices A of the form (see, e.g., 
[14, p. 82]) 

(3.9) 
A= CVRv- 1 , 

c = (ci), 

C = diag(c), R = diag(r), 

V = ( e c c2 . . . cs- l), 

where i = 1, ... , s and e is the vector with unit entries. 
THEOREM 3.1. If A results from a collocation method with positive, distinct ab

scissas ordered according to 0 < c1 < c2 < · · · < Cs, then the following results hold: 

1. The values of det(A1 ) and det(A8 ) are positive for alls. 

2. Let V and R be partitioned according to (3.10), where Vk and Rk denote 

the k x k principal submatrices of the matrices V and R defined in (3.9). Then, for 

1 < k < s, det( Ak) is positive if 

(3.10) qk := det(ViRk - Psw- 1Q) > 0, v = [ ~ : ] ) R = [ R; ~ ] . 
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Proof. 
l. For collocation methods we have that 

a11 = ----- ... ---dt. l CJ C2 - t C3 - t C8 - t 

O C2 - C1 C3 - C1 Cs - C1 

From·the condition on the collocation points it is immediate that det(A1) = au ~ 
and from (3.9) it follows that det(A) = det(C)det(VRv- 1) = det(C)det(R) > 0. 

2. By means of (3.9) it is easily verified that Ak can be presented in the fori 

(3.11) Ak = Ck(VkRk - Psw-1Q)(Vk - pw-1Q)-1, 

where Ck is the k x k principal submatrix of C and Vi, Rk, P, S, W, and Q • 
specified in (3.10). We now prove that det(h - pw- 1Q) is positive by consideri 
the factorizations 

[ v" - PQw-1Q 

[ Vk-P;- 1Q 0 ] w· 
From these two relations it follows that det(V) = det(Vk - pw-1Q)det(W). Since 
is a Vandermonde matrix and W is a row-scaled Vandermonde matrix, we conch 
that both V and W have a positive determinant. Thus, det(Vk - pw- 1 Q) > 0, a 
by virtue of (3.11), it follows that det(Ak) is positive whenever the quantity qk defir 
in (3.10) is positive. D 

Theorem 3.1 directly implies the positiveness of the diagonal entries of B = TL 
all two-stage collocation methods. For higher-stage methods, it provides the relativ 
simple criterion qk > 0, 1 < k < s, for verifying the condition det(Ak) > 0. ' 
conjecture that the condition det(Ak) > 0, 1 :::; k :::; s, is true for all s, but so 
we are not able to prove it. Instead, we verified the correctness of this conjecture 
s :::; 6. An easy way of verifying the conditions Qk > 0 replaces the abscissas ci in 
by c; =Pi +Pi-1 + · · · +P1 and expresses qk as a rational function of the s paramet 
Pi· Fors:::; 6, it turns out that all coefficients in this rational expression are positi 
Since the parameters Pi are all positive (because Pi := ci - Ci-l with co := 0), t 
implies that Qk is positive. 

Example 3.1. For s = 3, we have to prove that q2 > 0. A straightforwi 
calculation yields 

which is obviously positive. D 
Summarizing we conclude that, unlike the diagonal approach, the triangular < 

proach provides an extremely simple construction of the matrix B and an expli 
criterion for checking the positiveness of its diagonal entries. Moreover, it turns < 
that for larger values of izl the departure from normality 6.2 (Z) := \\ZllJ,, - l\((Z 
is considerably reduced. This can be explained by the fact that the magnitude of 1 
entries of the matrix Z (and hence l\Zll}) can be made much smaller by a triangu 
matrix B than by a diagonal matrix B. (Recall that Z contains the factor A - J 

Plots show that b..2(Z) monotonically increases from zero at the origin to values 1 
than 0.4 at infinity, resulting in amplification factors that are less than one in 1 

whole left half-plane for all j. This will be quantified in the following subsection. 
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TABLE 3.1 
Amplification factors Pj, PJ ( oo), and pj. 

Method Gauss Lo batto IIIA Radau !IA 
s=2 s = 2 s=3 s=2 s=3 s=4 

"P1(z) PD IRK 0.79lzl 0.89lzl 0.9llzl 1.15lzl 1.15lzl · l.lO[zl 
PT IRK 0.08lzl 0.08lzl 0.13lzl 0.15[zl 0.2llzl 0.25lzl 

,02(z) PD IRK 0.36lzl 0.3llzl 0.32lzl 0.52[zl 0.44lzl 0.52lzl 
PT IRK 0.08lzl 0.08lzl 0.13lzl 0.15lzl 0.20lzl 0.22lzl 

p3(z) PD IRK 0.45lzl 0.2llzl 0.30lzl 0.40lzl 0.34lzl 0.25lzl 
PT IRK 0.08lzl 0.08[zl 0.12lzl 0.15lzl 0.20[zl 0.20lzl 

Pl ( oo) PD IRK 1.58 2.29 5.62 1.78 4.17 4.68 
PT IRK 0.15 0.13 0.23 0.20 0.46 0.68 

p2(00) PD IRK 0 0 3.09 0 1.82 3.31 
PT IRK 0 0 0.17 0 0.26 0.47 

p:;(oo) PD IRK 0 0 0 0 0 2.09 
PT IRK 0 0 0 0 0 0.30 

Pi PD IRK 1.58 2.29 5.62 1.78 4.17 4.68 
PT IRK 0.15 0.13 0.23 0.20 0.46 0.68 

P2 PD IRK 0.59 0.58 3.09 0.63 1.82 3.31 
PT IRK 0.14 0.14 0.33 0.18 0.40 0.58 

Ps PD IRK 0.45 0.39 1.35 0.47 1.02 2.09 
PT IRK 0.14 0.14 0.32 0.18 0.39 0.55 

p~ PD IRK 0.25 0.17 0.45 0.26 0.40 0.52 
PT IRK 0.14 0.14 0.30 0.18 0.37 0.50 

3.3. Comparison of amplification factors. For a number of well-known RK 
correctors, we compare the amplification factors defined by (3.6) associated with the 
diagonal approach (PDIRK method) and the triangular approach (PTIRK method). 
For j = 1, 2, 3, Table 3.1 presents the nonstiff amp)ification factor Pj ( z) as defined 
in (3.7), the stiff amplification factor PJ(oo), and the maximal amplification factor 
pj. These figures indicate that, initially, the PTIRK strategy converges considerably 
faster than the PDIRK strategy. Hence, it should be a sound starting point for step
parallel applications. This will be subject of future research. 

4. Numerical illustration. In this section, we compare the diagonally implicit 
iteration (PDIRK) strategy with the triangularly implicit iteration (PTIRK) strategy. 
In all experiments, we used the four-stage Radau IIA corrector with constant stepsizes 
and a Jacobian update in each step. If necessary, the initial condition in the problems 
below is adapted such that the integration starts outside the transient phase, enabling 
us to use constant steps. Two predictors were tested, the simple last step value (LSV) 
predictor y(o) = (eY @I)Y and the extrapolation (EPL) predictor y(o) = (E 0 I)Y. 
Here, Y denotes the stage vector from the preceding step, e8 is the sth unit vector, 
and E is the extrapolation matrix. In the following two subsections we compare the 
accuracy and the CPU time on a four-processor Cray C98/4256 of the PDIRK and 
PTIRK methods. 

4.1. Accuracy tests. In the tables of results, the LF and LJ versions (2.3) and 
(2.4) of the PTIRK method are indicated by PTIRK(LJ) and PTIRK(LF). For a 
given number of iterations m, the tables of results below present the minimal number 
of correct digits cd of the components of the numerical solution at the end point t = T 
of the integration interval; that is, at the end point the absolute errors are written as 
10-cd. Our first example (Tables 4.la and 4.lb) is provided by a problem of Schafer, 
called the HIRES problem in [14, p. 157]. It was proposed in Gottwald [13] as a test 



50 P. J. VAN DER HOUWEN AND J. J.B. DE SWART 

TABLE 4.la 
LSV predictor: HIRES problem of Schafer. 

Method h m m 2 m 3 m 4 m 10 

PD IRK 15 * * * 4.3 6.5 

PTIRK(LJ) 15 3.4 3.5 3.8 4.2 6.3 

PTIRK(LF) 15 3.1 4.0 3.9 4.1 5.6 
PD IRK 7.5 * * * 5.4 7.7 

PTIRK(LJ) 7.5 4.0 4.2 4.7 5.1 8.3 
PTIRK(LF) 7.5 3.3 4.4 4.7 5.3 7.0 

TABLE 4.lb 
EPL pred-ictor: HIRES problem of Schafer. 

tv1ethod h m-1 m-2 m-3 m-4 m 10 

PD IRK 15 * * * * 6.4 
PTIRK(LJ) 15 * 3.0 4.8 5.1 7.3 
PD IRK 7.5 * * * 4.1 8.8 
PTIRK(LJ) 7.5 * 2.5 6.1 6.6 9.0 

TABLE 4.2a 
LSV predictor: Chemical reaction problem of Gear. 

Method h m= 1 m=2 m-3 m-4 m-10 
PD IRK 50 1.4 2.2 2.6 2.9 5.2 
PTIRK(LJ) 50 2.3 2.7 3.5 4.3 7.7 
PTIRK(LF) 50 1.8 2.9 3.9 3.0 3.3 
PD IRK 25 1.8 2.9 3.4 3.6 7.3 
PTIRK(LJ) 25 2.3 3.6 4.2 5.3 9.8 
PTIRK(LF) 25 2.1 4.3 4.4 4.6 6.4 

TABLE 4.2b 
EPL predictor: Chemical reaction problem of Gear. 

Method h m= 1 m=2 m=3 m=4 m-10 
PDIRK 25 2.4 2.8 3.2 3.6 7.4 
PTIRK(LJ) 25 2.9 3.7 4.3 5.6 9.8 

TABLE 4.3a 
LSV predictor: ATMOS20 problem of Verwer. 

Method h m= 1 m=2 m=3 m=4 m=lO 
PDIRK 11 2.7 2.1 2.8 5.4 9.8 
PTIRK(LJ) 11 3.3 5.0 6.1 6.7 11.0 
PTIRK(LF) 11 3.4 4.9 7.0 6.8 8.7 
PDIRK 5.5 1.3 * * 6.5 11.2 
PTIRK(LJ) 5.5 3.7 5.6 7.0 7.7 12.2 
PTIRK(LF) 5.5 3.7 5.5 7.6 8.3 11.5 
PD IRK 2.25 * * * 7.5 12.2 
PTIRK(LJ) 2.25 4.0 6.2 7.8 8.6 12.6 
PTIRK(LF) 2.25 4.0 6.2 8.2 10.0 12.1 

problem and consists of eight mildly stiff equations on the interval 5 :::; t :::; 305. (It 
included in the CWI test set [22].) The second test problem (Tables 4.2a and 4.2b) 
a set of three chemical reaction equations originating from Gear [10] on the interv 
[1,51] and is included in the test set of Enright, Hull, and Lindberg [9]. The ATMOS: 



TRIANGULARLY IMPLICIT ITERATION METHODS 51 

TABLE 4.3b 
EPL predictor: ATMOS20 problem of Ver111er. 

Method h m= 1 m=2 m=3 m=4 m=lO 
PDIRK 11 1.8 2.6 2.1 5.4 10.0 
PTIRK(LJ) 11 2.0 3.7 6.3 7.0 10.9 
PDIRK 5.5 * * * 6.4 11.8 
PTIRK(LJ) 5.5 * 4.2 7.4 8.2 12.2 
PDIRK 2.25 * * * 8.2 12.7 
PTIRK(LJ) 2.25 * * 8.6 9.4 12.7 

TABLE 4.4 
Ring modulator of Horneber. 

Method m=2 m=3 m=4 m=lO 
PD IRK cd= * * 4.6 8.5 

CPU(l) = * * 26.2 51.9 
CPU(4) = * * 8.2 16.7 

PTIRK(LJ) cd= 5.7 7.7 8.3 8.5 
CPU(l) = 20.1 23.1 28.1 56.6 
CPU(4) = 6.1 7.0 8.8 18.3 

RADAU5 cd= 5.8 6.5 7.2 
CPU(l) = 14.0 17.5 21.9 
l07h = 1.25 1.0 0.8 

problem is our third test problem (Tables 4.3a and 4.3b). It is a system of 20 stiff 
nonlinear ODEs originating from an air pollution model used by Verwer [23] and 
included in the CWI test set [22]. We solved this system in the integration interval 
[5, 60]. 

The tables of results clearly show for both predictors the superiority of the PTIRK 
strategy in the first few iterations. For large numbers of iterations, PDIRK and 
PTIRK(LJ) are better than PTIRK(LF). 

4.2. Cray C98/4256 tests. We applied the PDIRK and PTIRK(LJ) methods 
on a four-processor Cray C98/4256 to the Ring modulator of Horneber. This problem 
consists of 15 highly stiff differential equations on the interval [0,0.001]. (For de
tails, see the CWI test set [22].) PDIRK and PTIRK(LJ) were applied with the 
EPL predictor and stepsize h = 1.25 · 10-7 . We compiled the codes with cf77 
using the flags -dp, -Zp, -Wu-p, and -Wd-dj. The environmental variable NCPUS 
had the value 4. For the meaning of these settings, we refer to Cray Research 
Inc., CF77 Commands and Directives, SR-3771, 6.0 edition, 1994. Table 4.4 lists 
the cd-values and the CPU(l) and CPU(4) timings (in sec.) required on one and 
four processors, respectively. For the CPU(l) timings we used the internal func
tion SECOND and the CPU(4)-values were obtained by using the Cray tool ATExpert. 
These figures again show that PTIRK(LJ) is much more accurate than PDIRK, 
while it is hardly more expensive than PDIRK (less than 103). Since earlier ex
periments on a four-processor ALLIANT FX/4 indicated that the PDIRK-based code 
PSODE is in general twice as efficient as LSODE and RADAU5 [21, p. 12], we ex
pect that a PTIRK-based code should be at least twice as efficient as LSODE and 
RADAU5. The present version of the PTIRK code does not yet contain a suffi
ciently tested stepsize and iteration-stopping strategy. Therefore it is not yet pos
sible to compare it with codes like LSODE and RADAU5. Nevertheless, in order 
to have some indication how PTIRK performs in a parallel environment, we ap
plied RADAU5 with the same integration strategy as our present PTIRK code, that 
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is, with constant stepsizes (without step rejections) and with a Jacobian update in 
each step. In order to generate a range of cd-values, we ran RADAU5 with a few 
different stepsizes. The cd-values and CPU(l) timings obtained are also listed in 
Table 4.4. 

We finish this paper with the following conclusions: 
l. For a relatively difficult problem as provided by the Ring modulator, the 

PTIRK code on a Cray in four-processor mode shows a speed-up ranging from > 2.4 
to> 3.1 with respect to RADAU5 on a Cray in one-processor mode. 

2. It is not expected that a parallel implementation of RADAU5 is as efficient 
as PTIRK, because the intrinsic parallelism of PTIRK is much larger than that of 
RADAU5. For example, the effective LU costs and forward-backward substitutions 
are four times as expensive, due to the fact that the eigenvalues of the Radau IIA 
matrix are not all real, so that the Butcher transformation used in RADAU5 de
couples the 3d-dimensional system into one real and one complex system of dimen
sion d. The LU decompositions and the forward-backward substitutions associated 
with these systems can be done concurrently. However, complex arithmetic is about 
four times as expensive as real arithmetic, which explains the factor 4 mentioned 
above. 

A. Parameter matrices. For a number of RK methods, we have computed 
the matrices B = L + D according to the procedure outlined in subsections 3.2.1 and 
3.2.2, together with the amplification matrices Zo and Z00 • 

A.I. PDIRK strategy. 

Z(z) = z(I - zD)- 1(A- D), Zo =A- D, Z00 =I - D- 1 A. 

A.1.1. Radau IIA. 

$ = 2: 

D = [ o.2gs4 0.6~49 l ' z = [ 0.1582 
0 0.7500 

-0.0833 l 
-0.3949 ' 

z = [ -0.6124 
00 -1.1629 

0.3225 l 
0.6124 . 

$ = 3: 

[ 0.3204 0 
0 ] 

[ -0.1236 -0.0655 0.0238 l D= 0 0.1400 0 ' Zo = 0.3944 0.1521 -0.0415 , 
0 0 0.3717 0.3764 0.5125 -0.2606 

[ 0.3857 0.2045 -0.0742 l 
Zoo = -2.8179 -1.0867 0.2968 . 

-1.0127 -1.3789 0.7011 
$ = 4: 

[ 0~05 0 0 0 j r-02075 -0.0403 0.0258 
-00099 l D = 0 0.0892 0 O z = 0.2344 0.1177 -0.0479 0.0160 0 0 0.1817 0 , 0 0.2167 0.4061 0.0073 -0.0242 ' 0 0 0 0.2334 0.2205 0.3882 0.3288 -0.1709 

[ OM74 0.1258 -0.0805 
0.0309 l z = -2.6290 -1.3206 0.5368 -0.1800 

00 -1.1923 -2.2346 -0.0402 0.1331 . 
-0.9447 -1.6635 -1.4092 0.7322 
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A.1.2. Lobatto IIIA. 

s == 2: 

D = [ 0.2113 0 ] 
0 0.3943 ' 

z = [ 0.1220 -0.0417 ] 
0 0.6667 -0.2277 , 

z == [ -0.5774 0.1972 ] 
00 -1.6906 0.5774 . 

s =3: 

[ 0.4802 0 
0 l [ -0.2905 -0.0339 0.0103 l 

D= 0 0.1094 0 , Zo = 0.4506 0.1175 -0.0270 , 
0 0 0.1604 0.4167 0.4167 -0.0770 

Zoo== [ 
0.6049 0.0706 -0.0215 l 

-4.1179 -1.0743 0.2465 . 
-2.5981 -2.5981 0.4804 

A.1.3. Gauss. 
s == 2: 

D = [ 0.lg67 0.5~00 ] , 
z = [ 0.0833 

0 0.5387 
-0.0387 ] 
-0.2500 , 

z = [ -0.5000 0.2321 ] 
00 -1.0774 0.5000 . 

A.2. PTIRK strategy. 

Z(z) = z(I - zB)- 1 (A - B), Zo =A- B, Z00 =I - B- 1 A. 

A.2.1. Radau IIA. 

s = 2: 

[ 0.4167 0 ] 
B == 0.7500 0.4000 ' 

s = 3: 

[ 
0.1968 

B = 0.3944 
0.3764 

s =4: 

0.4~34 ~ ] ' 
0.6378 0.2000 

[ 0 1130 0 0 0 l 0.2344 0.2905 0 0 
B = 0.2167 0.4834 0.3083 0 ' 

0.2205 0.4668 0.4414 0.1176 

Zo = [ ~ 

Zoe= [ ~ 

Zo = [ g 

Zoo== [ ~ 

Zo" [ l 
z~" [ l 

-0.0833 ] 
-0.1500 , 

0.2000 ] 
0 . 

-0.0655 0.0238 ] 
-0.1313 -0.0415 , 
-0.1253 -0.0889 

0.3330 -0.1208 ] 
0 0.210~ . 
0 

-0.0403 0.0258 ~00099 l 
-0.0836 -0.0479 0.0160 
-0.0773 -0.1192 -0.0242 , 
-0.0786 -0.1126 -0.0551 

0.3567 -0.2283 0~77 l 0 0.3490 -0.1260 
0 0 0.2144 . 
0 0 0 
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A.2.2. Lobatto IHA. 

s= 2: 
B _ [ 0.3333 0 ] ' Zo = [ ~ -0.0417 ] 

- 0.6667 0.2500 -0.0833 ' 

Zoo= [ ~ 0.1250 ] 
0 . 

s=3: 

[ 0.1897 0 
0 l Zo = [ ~ 

-0.0339 0.0103 l 
B = 0.4506 0.3075 0 I -0.0805 -0.0270 , 

0.4167 0.4911 0.1429 -0.0745 -0.0595 

Zoo= [ ~ 
0.1787 -0.0543 ]· 0 0.1673 

0 0 

A.2.3. Gauss. 

s = 2: 
B _ [ 0.2500 0.3~33 ] I 

Zo = [ ~ 0.0387 
] I - 0.5387 0.0833 

Zoo= [ ~ 0.1547 ] . 0 
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