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Abstract. Medium-voltage distribution network expansion planning in-
volves finding the most economical adjustments of both the capacity and
the topology of the network such that no operational constraints are vi-
olated and the expected loads, that the expansion is planned for, can
be supplied. This paper tackles this important real-world problem us-
ing realistic yet computationally feasible models and, for the first time,
using two instances of the recently proposed class of Gene-pool Opti-
mal Mixing Evolutionary Algorithms (GOMEAs) that have previously
been shown to be a highly efficient integration of local search and ge-
netic recombination, but only on standard benchmark problems. One
GOMEA instance that we use employs linkage learning and one instance
assumes no dependencies among problem variables. We also conduct ex-
periments with a widely used traditional Genetic Algorithm (GA). Our
results show that the favorable performance of GOMEA instances over
traditional GAs extends to the real-world problem at hand. Moreover,
the use of linkage learning is shown to further increase the algorithm’s
effectiveness in converging toward optimal solutions.

Keywords: Evolutionary Algorithms, Linkage Learning, Distribution
Network, Power System Expansion Planning

1 Introduction

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) combines
genetic recombination as is reminiscent of Genetic Algorithms (GAs) with model-
building as is reminiscent of Estimation of Distribution Algorithm (EDAs) and
direct improvements as is reminiscent of Local Search (LS) [1]. The model used
in GOMEA describes linkage relations between variables, i.e. which variables
should be copied jointly when performing genetic recombination. Various sub-
classes of the general linkage model are possible, ranging from allowing only fully
independent linkage relations to allowing overlapping linkage relations. Based on
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the chosen and then learned linkage structure, GOMEA performs variation by
intensively mixing building blocks as identified by the linkage relations in a
greedy manner. The efficiency of GOMEA has so far been shown on a number
of academic benchmarks [1, 2], but not yet on real-world optimization problems.

A medium-voltage (MV) distribution network carries electricity from the
(sub)transmission network to MV consuming units [3]. MV distribution network
expansion planning (DNEP) is an important real-world engineering problem. As
the loads (i.e. power consumptions) at different locations increase and/or newly
appeared loads need connections to the network, various electrical components
in the distribution network require replacement or new components must be in-
stalled. Both the capacities of the components and the topology of the network
have to be taken into account. There exist various MV network layouts but the
two most common topologies are: radial topology and open loop topology [3]. Ra-
dial topologies, in which every consuming unit is supplied by only one electrical
feed path, are often used in distribution networks with overhead lines, especially
for rural areas [3]. This paper focuses on the open loop layout, which is used for
distribution networks with underground cables, typically found in urban areas
of dense populations. Such MV networks contain groups of several consuming
units (load points). In each group, consuming units are physically connected one
by one by cables forming the shape of a loop. However, in normal operation, due
to management and protection policies, one cable of every loop is put into an
inactive state which creates an opening in the loop so that the network operates
in a radial manner. Those cables are put in reserve to be used for reconfiguring
the MV network when unexpected faults happen on active cables [3]. A feasible
expansion plan is one that satisfies all operation and configuration constraints.
An optimal plan is one that is feasible and has minimum expansion costs. In this
paper, investment expenses are of sole interest.

There exist numerous studies into DNEP but the problem modelling is still
far from being standardized. Every network operator has a different policy re-
garding the operation constraints of their power systems and different reposi-
tories of electrical facilities. Most studies evaluate the reliability of distribution
networks based on the average failure rates and restoration times of compo-
nents, in which reserve cables are considered as options to enhance the network
reliability [4, 5]. The result of such reliability analysis can then be capitalized
into customer outage cost to include in the overall cost to be optimized [4] or
can be treated as a separate objective function [5]. However, it is shown that
reliability in practice is a relative index as its calculation involves many intri-
cate problems with high uncertainty [6]. In this paper, we therefore consider
the capacity of reserve cables, from a different and more practically relevant
perspective, as a network configuration constraint, which is termed as reconfig-
urability. Reconfigurability requires the network to have enough reserve cables
with adequate capacities to bring the network back to operation when an outage
happens on some active cable. Although the cost function to be optimized is
relatively simple and the problem variables are even pairwise independent in it,
the constraint functions are far more involved and require dedicated electrical
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engineering computations (e.g. power flow calculations) that involve the entire
network, effectively introducing dependencies between problem variables. It is
therefore interesting, in addition to comparing the effectiveness of GOMEA with
the commonly employed traditional GA, to see whether the use and usefulness of
linkage learning also extends from traditional benchmark problems to real-world
problems such as the one at hand.

The remainder of this paper is organized as follows. Section 2 outlines GOMEA
and explains its components. Section 3 presents the anatomy of a conventional
distribution network and important constraints. Section 4 shows and discusses
the experimental results, while Section 5 concludes the paper.

2 Gene-pool Optimal Mixing Evolutionary Algorithm

Classic GAs have difficulty solving an optimization problem that has optimal
solutions made of multivariate building blocks whose constitutive problem vari-
ables are scattered over the solution representation string [7]. Traditional re-
combination operators of GAs are either not able to juxtapose building blocks
of nonconsecutive variables (i.e. 1- or 2-point, or uniform crossover) or too disrup-
tive to preserve enough long building blocks (i.e. in case of uniform crossover).
EDAs were developed with an emphasis on linkage learning to help to detect
and preserve multivariate dependencies, but in EDAs this comes at the cost of
estimating the complete probability distribution, which is expensive and may
be unnecessary. On the other hand, problems with hierarchical dependencies
provide a huge challenge for a classic GA as its genetic recombination is only
horizontal and hierarchical dependencies (i.e. building blocks of building blocks)
cannot be exploited directly. The reason for this is that there is no intermediate
checking for improvements during genetic recombination, causing higher-level
building blocks to automatically overwrite and undo the effects of mixing lower-
level building blocks. GOMEA overcomes these issues by effectively integrating
local search into variation, making its overall procedure closer to that of genetic
local search [8]. For solving DNEP, GOMEA is therefore a strong candidate
optimization algorithm.

2.1 Family of Subsets

The GOMEA uses the concept of family of subsets (FOS) as the linkage model
to match the structure of optimization problems [1]. A FOS, denoted F , is a set
of subsets of a certain set S , which means F ⊂ P(S ), i.e. the powerset of S .
Normally, set S is the set of all variable indices {1, 2, . . . , l}. A FOS F can be

written as F = {F 1,F 2, . . . ,F |F|} where F i ⊆ {1, 2, . . . , l}, i ∈ {1, 2, . . . , |F|}.
To ensure all decision variables are considered in the variation operator, every
variable index is contained in at least one subset in F , i.e. ∀i ∈ {1, 2, . . . , l} :
(∃j ∈ {1, 2, . . . , |F|} : i ∈ F j). In this paper, we consider two FOS structures.

Univariate Structure: This structure, which is arguably the simplest struc-
ture possible, considers every decision variable to be independent from each
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other. The corresponding FOS F thus contains only singleton subsets F i =
{i}, i ∈ {1, 2, . . . , l}. As there is only one possible configuration, no linkage learn-
ing is required. The use of the univariate structure is perhaps best known from
GAs, where it translates into the well-known uniform crossover operator (UX).

Linkage Tree Structure: The linkage tree (LT) structure represents depen-
dencies among decision variables in a hierarchical manner. The bottom level of
the tree (i.e. leaf nodes) contains all singleton subsets, i.e. the univariate struc-
ture. Intermediate levels contains subsets F i having more than one decision
variable index. Any bivariate or multivariate subset F i is the result of combin-
ing two subsets F j and F k such that F j ∩ F k = ∅, |F j | < |F i|, |F k| < |F i|
and F j ∪ F k = F i. The top level (root node) is the set S itself containing all
decision variable indices. This root node, which indicates that all variables are
jointly dependent, is excluded from the linkage tree FOS as performing building
block mixing based on this subset for any two solutions only results in the same
solutions.

The LT is learned from the selected candidate solutions at every generation by
performing a hierarchical clustering procedure where distances between clusters
are computed using the average pair-wise distance over all pairs of variables.
For details about clustering algorithms and different distance metrics, please
refer to the literature [1, 2]. Here, we used mutual information (MI) as the basis
of distance between two variables (higher MI values mean a lower distance).
We further note that in this paper, variables are not binary but rather have a
larger bounded integer domain. However, since the search space is still Cartesian,
the extension of MI from binary to integer variables is straightforward. The
GOMEA variant that uses the LT structure as its linkage model is also known
as Linkage Tree Genetic Algorithm (LTGA)[1]. It is worthwhile to mention that
the computational complexity of learning an LT is low compared to typical
higher-order models in EDAs (i.e. O(nl2) versus O(nl3)).

2.2 Optimal Mixing and Forced Improvements

GOMEA uses a procedure called Gene-pool Optimal Mixing (GOM) as its vari-
ation operator [1]. For each existing parent solution in the population, exactly
one offspring is generated by mixing building blocks of that parent with those of
other solutions following the linkages specified by subsets in FOS F . First, the
parent solution is cloned. Then, the FOS is traversed and for each subset F i ∈ F
a donor solution is chosen randomly from the population. The values in the donor
corresponding to the variables in the linkage group are copied into the parent
solution. If such mixing results in an improvement, the changes are accepted,
otherwise the changes are reverted. Bosman et al. [2] showed that if GOM also
accepts changes that generate equally good solutions, better performance can be
achieved.

If a solution cannot be improved by GOM alone, a procedure called forced
improvement (FI) is performed [9]. In essence, FI is an additional GOM opera-
tion with the current best solution always as the donor. However, in this case,
optimal mixing stops as soon as any single improvement is achieved. Because
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GOMEA //population size n
for i ∈ {1, 2, . . . , n} do
Pi ← CreateRandomSolution()
EvaluateFitness(Pi)

xbest ← argmaxx∈P{fitness[x]}
t← 0; tNIS ← 0
while ¬TerminationConditionsSatisfied do
S ← TournamentSelection(P, n, 2)
LearnModel(S)
for i ∈ {1, 2, . . . , n} do
Oi ← FI-GOM(Pi)

P ← O
xbest ← argmaxx∈P{fitness[x]}
if fitness[xbest(t)] > fitness[xbest] then

tNIS ← 0;xbest ← xbest(t)
else

tNIS ← tNIS + 1
t← t + 1

FI-GOM(x)
b← o← x; fitness[b]← fitness[o]← fitness[x]; changed← false
for i ∈ {1, 2, . . . , |F|} do

p← Random({P1,P2, . . . ,Pn})
oF i ← pF i

if oF i 6= bF i then
EvaluateFitness(o)
if fitness[o] ≥ fitness[b] then

bF i ← oF i ; fitness[b]← fitness[o]; changed← true
else

oF i ← bF i ; fitness[o]← fitness[b]

if ¬changed or tNIS > 1 + blog10(n)c then
changed← false
for i ∈ {1, 2, . . . , |F|} do

oF i ← xbest
F i

if oF i 6= bF i then
EvaluateFitness(o)
if fitness[o] > fitness[b] then

bF i ← oF i ; fitness[b]← fitness[o]; changed← true
else

oF i ← bF i ; fitness[o]← fitness[b]
if changed then breakfor

if ¬improved then

o← xbest; fitness[o]← fitness[xbest]

Fig. 1: Pseudo-code for GOMEA [2]

accepting solutions of equal quality can potentially stall the algorithm indefi-
nitely on a fitness plateau, GOMEA is found to have better performance if FI
is also triggered when the number of continuous generations that the best solu-
tion is not updated, which is termed as no-improvement stretch (NIS), is larger
than 1 + blog10(n)c [2]. FI is reported to ensure efficient convergence while not
continuously reducing population diversity [9]. The pseudo-code for GOMEA
with GOM and FI is outlined in Figure 1. Note that GOMEA typically does a
lot more evaluations per generation than a classic GA would do, but GOMEA
also typically requires far smaller population sizes and far less generations to
converge.

3 MV Distribution Network Expansion Planning

Distribution network expansion planning (DNEP) involves decision making about
what, where, when and how electrical components in a power distribution sys-
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tem should be adjusted to meet the forecasted growth in power demands at
consuming units. In this paper, we take a traditional conservative approach and
consider only the highest possible peak load for each consuming unit in the net-
work. The network must be configured such that it can handle those loads and
thus it is tested with that load profile. In this paper, we focus on a key part of the
problem: deciding upon the locations and the types of adjustments. Available
enhancement options are: changing existing devices, and installing new devices
in the network, without specifying the time horizon. This paper considers two
kinds of electrical devices: cables and transformers. An optimal expansion plan
requires minimum investment cost while satisfying all operation and configura-
tion constraints (see Section 3.2).

3.1 MV Distribution Network Encoding

An MV distribution network can be seen as a graph with a set of nodes (vertices)
and a set of branches (edges). A node can be a substation, which is the source
of power supply, or it can be a consuming unit, which demands and consumes
power. Every branch connects two nodes, and all branches together form feed
paths for electric currents flowing from power substations to consuming units. In
a DNEP problem, the power supply capacities of substations and power demands
of consuming units form the inputs. The outputs are decisions about capacities
of all branches. Available options are: whether to connect two nodes by a branch
(an overhead line or an underground cable, or a transformer if two nodes have
different voltages), the capacity of the branch, and whether the branch should
be active or in reserve.

To solve the DNEP for a network, we need to specify all the currently existing
branches and a restricted set of potential candidate branches that can be newly
added into the network. This set of potential branches is often determined by
using expert knowledge to disregard unnecessary branches. Let l denote the total
number of branches, and let m denote the total number of nodes. We represent
a distribution network as a vector of length l of integer-value elements

x = (x1, x2, . . . , xl), xi ∈ Ω(xi), i ∈ {1, 2, . . . , l} (1)

where each xi corresponds with the i-th branch of the network. The set of possible
devices Ω(xi) that can be installed at each branch xi depends on policies and
the repository of each network operator. We use an integer number to indicate
which device to install at a branch. The status of each xi is defined as follows

• xi = 0: There is no device at the i-th branch. This means that the previously
existing device is removed or that no device is decided to be installed at the
i-th branch.
• xi = id > 0: A device with identification number id ∈ Ω(xi) is installed at

the i-th branch.
• xi = −id < 0: A device with identification number id ∈ Ω(xi) is put in

reserve at the i-th branch. The device is installed into the network but it
does not take part in the normal operation. It is used to reconfigure the
system in emergency cases.
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Note that the original MV network has the xi of currently non-existing branches
set to 0.

3.2 Optimization Problem Formulation

Let x = (x1, x2, . . . , xl) be the original network and let x′ = (x′1, x
′
2, . . . , x

′
l) be

an adjusted network. DNEP minimizes the investment cost as follows

Min f(x,x′) =

l∑
i=1

cost(xi, x
′
i) (2)

where

cost(xi, x
′
i) =

{
0 if xi = x′i

cost of changing xi to x′i if xi 6= x′i
(3)

For a given (test) load profile, the following constraints must be satisfied:

I Voltage constraints

|Vi|MIN ≤ |Vi| ≤ |Vi|MAX
, i ∈ {1, 2, . . . ,m} (4)

where |Vi| is the voltage magnitude at node i, and [|Vi|MIN
, |Vi|MAX

] is
the allowable range of voltage magnitude at node i. We quantify the degree
of the voltage constraint violation of a network by summing the amount
of out-of-bound voltage magnitude at every node (i.e. (|Vi|MIN − |Vi|) if

|Vi| < |Vi|MIN
or (|Vi| − |Vi|MAX

) if |Vi| > |Vi|MAX
).

II Line flow constraints (or device capacity constraints)

|Si| ≤ |Si|MAX
, i ∈ {1, 2, . . . , l} (5)

where |Si| is the power flow through the device installed at branch xi, i.e. a

cable or a transformer, and |Si|MAX
is the nominal capacity of that device.

There should be no overload at any device. We quantify the degree of the line
flow constraint violation of a network by summing the amount of overload
at every branch (i.e. (|Si| − |Si|MAX

) if |Si| > |Si|MAX
).

III Radial operation constraint: All the active cables together have to form
a radial configuration. This means that any consuming unit is supplied
electricity via one single feed path in normal operation.

IV Reconfigurability constraint: When, during normal operation, faults
happen on an active branch, that branch is isolated from the network by
opening its corresponding switches. The network is then reconfigured by
closing the switches of reserve branches so that disconnected consuming
units are served again. The network may operate with loops in an emergency
situation and can endure a mild overload in a short time while the faulty
branch is being repaired. The degrees of emergency capacity of equipments
are decided by network operators. In this paper, we assume that equipment
emergency capacity is 120% of its nominal capacity.

Constraints I, II, and III are commonly adopted in the literature [4, 5]. The
constraint IV is employed here due to reasons mentioned in Section 1.
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3.3 Solution Evaluation

As DNEP is a constrained optimization problem, the fitness evaluation for an
expansion plan involves both the investment cost calculation and constraint eval-
uations. When we need to compare any two solutions, as in selection or the opti-
mal mixing procedures, we use the concept of constraint domination. A feasible
solution is one that satisfies all constraints. A feasible solution is always better
than an infeasible one, a cheap feasible solution is better than a more expensive
one, and if both solutions are infeasible then the one with less or equal degree
of violation of all constraints and strictly less violation of at least one constraint
is the better solution.

While calculating investment cost is a trivial operation, constraint evalua-
tions are computationally expensive. For each expansion plan, we must perform
a power flow calculation (PLC) [10] to obtain the value of the voltage at each
node and the power flowing through each branch. These are used to check the
constraints (I) and (II). In essence, a PLC involves solving a system of non-linear
equations, called the AC power flow model. Due to inherent technical reasons,
the commonly used cheaper linear DC model cannot be used for distribution
network evaluation without a significant compromise on accuracy. For details
of PLC, see e.g. [10]. Therefore, constraints evaluations are computationally ex-
pensive.

A complete fulfilment of the reconfigurability constraint requires performing
a single-line contingency for every branch in the network: a branch is assumed
to be failed, the network is then reconfigured back to operation, and the power
flowing in each branch is re-calculated. This paper considers a computationally
cheaper constraint evaluation commonly adopted in practice. It performs single
line contingency only on cables branching directly from substations as these
cables carry the heaviest loads before distributing power to subsequent nodes.

4 Experiments

4.1 Test cases and experiment setup

Based on real-world data, we designed two MV distribution networks as opti-
mization benchmarks.

• Network 1: an MV distribution network of one open loop contains 18 nodes
(1 substation, 9 consuming units, in which each transformer is represented
by 2 nodes having different base voltages) and 25 possible branches (10
existing cables, 8 existing transformers, and 7 potential cable connections).
The topology and experiment current and forecasted loads of Network 1 can
be found in Fig. 2 and Table 1.

• Network 2: an MV distribution network of two open loops contains 31 nodes
(1 substation and 30 consuming units) and 59 possible branches (32 existing
cables and 27 potential cable connections). Further details are withheld for
reasons of confidentiality.
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In this paper, we consider 5 common types of MV cables, differentiated by their
areas of conductor: 120, 150, 240, 400, and 630 mm2. We also consider 5 common
options of transformers, denoted by their nominal capacities: 100, 160, 250, 400,
and 630 kV A.

Table 1: Network 1: current loads and forecasted loads at each consuming unit. PD and
QD are the active and reactive power demands, which make up the load at each node.
Other nodes have the base voltage of 10 kV and do not have power demand.

Node ID
Base voltage Current Load Forecasted Load

(kV) PD QD PD QD

3 10 0.6735 0.3951 3.6735 0.3951
11 0.4 0.187 0.1159 0.287 0.1159
12 0.4 0.272 0.1686 0.372 0.1686
13 0.4 0.2818 0.1747 0.2818 0.1747
14 0.4 0.272 0.1747 0.272 0.1686
15 0.4 0.255 0.158 0.355 0.158
16 0.4 0.0808 0.050 0.3808 0.05
17 0.4 0.1785 0.1106 0.2785 0.1106
18 0.4 0.2975 0.1844 0.3975 0.1844

We test 3 optimizers: GOMEA-LT (GOMEA with linkage tree FOS), GOMEA-
UNI (GOMEA with univariate FOS), and a traditional genetic algorithm (GA)
with uniform crossover and tournament selection similarly configured as in [1].
For every optimizer, we test it with 10 different population sizes which are ex-
ponentially increased from 21 to 210. For every population size that we con-
sider, we perform 30 independent runs of each optimizer. Each run starts with
a population of randomly generated expansion plans (network topology and the
equipment type at each element). We terminate a run only when the whole pop-
ulation converges to the same solution because in practice, the optimum is not
know beforehand and we would like to see the best solutions that each optimizer
possibly can obtain.

4.2 Results

Fig. 2 shows MV Network 1 before enhancement and the best found expansion
plan. To satisfy the forecast load demand, a new cable should connect node 1
(the substation) and node 3. The branch connecting node 2 and 3 should be put
in reserve so that the network can operate radially. There are five overloaded
transformers, and all of them should be replaced by ones with higher capacities.

Fig. 3 shows the capability of GOMEA-LT, GOMEA-UNI, and GA in min-
imizing the investment cost for the enhancement of Network 1 as the number
of fitness evaluations increases. Fitness evaluations for each candidate expan-
sion plan involve power flow calculations, which are the most computationally
expensive operations in the optimization process. Thus, different from academic
benchmarks, fitness evaluation for the DNEP problem, truly dominates the com-
puting time of all 3 optimizers. Hence, we use the number of fitness evaluations
that each optimizer needs to perform from beginning until convergence as an in-
dicator of computing time. Fig. 3 shows both instances of GOMEA have better
performances than the traditional GA. The traditional GA consumes much more
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Fig. 2: Network 1. Original topology: Potential cables are represented by dashed lines.
Reserve cables are marked with flag symbols. Transformers are denoted by pairs of
overlapped circles. Arrow symbols indicate power demands at consuming units. After
enhancement: Highlighted components are suggested to be replaced or newly installed.
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Fig. 3: Performance of GOMEA-LT, GOMEA-UNI and GA on minimizing the invest-
ment cost for enhancement of Network 1. Error bars show standard deviation.

computing time to come close to GOMEA but even for population size 1024, the
traditional GA still cannot converge reliably to the same best solution obtained
by GOMEA. If we use a too small population size, it is difficult to find feasible
solutions, which explains why the line representing GA goes up first (feasible
solutions can be more expensive than infeasible solutions) before it starts to go
down when feasible solutions are found. Network 1 is a small distribution net-
work containing only 25 branches (i.e. the number of decision variables), and
while the variables are independent when evaluating the investment cost func-
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tion, they are also linked when evaluating the constraints. However, depending
on the problem instance, these linkages may be weak and of little influence,
especially if the problem size is small. This explains why GOMEA-UNI, which
assumes no dependencies among variables, requires less computing times than
GOMEA-LT, which has an overhead of learning linkage trees and evaluating
unnecessary mixings of (weak) linkage groups. This calls for the need of filtering
spurious linkage groups in the linkage learning process as pointed out in [2]. It
should be noted that when considering reliable convergence (30/30 runs) to the
best solution ever found, GOMEA-LT requires less evaluations. The convenience
of independent decision variables that GOMEA-UNI can exploit is not available
in more complicated networks, which can be seen in case of Network 2.
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Fig. 4: Performance of GOMEA-LT, GOMEA-UNI and GA on minimizing the invest-
ment cost for enhancement of Network 2. Error bars show standard deviation.

Fig. 4 shows the experimental results of 3 optimizers on solving DNEP for
Network 2. This test case has a much larger and more complicated search space
compared to Network 1. It can be seen that if we continue to run the optimization
process with larger population sizes (and hence more power flow calculations),
better solutions may still be obtained. Here, GOMEA-LT demonstrates that
it has the best performance in comparison with the other 2 optimizers. The
traditional GA has difficulty finding feasible solutions, let alone the optimum.
GOMEA-UNI has a good performance here due to the intensive optimal mixing
variation operator. However, without linkage learning, GOMEA-UNI does not
obtain solutions of high quality as those found by GOMEA-LT. GOMEA-UNI
can locate good solutions only if the decision variables are independent or weakly
linked as in case of Network 1. Otherwise, GOMEA-UNI cannot efficiently find
solutions that require the juxtaposition of multivariate linkage groups, e.g. as
in the classic trap function benchmarks. GOMEA-LT wins over its univariate
sibling in these cases.
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5 Conclusions

The recently-developed gene-pool optimal mixing evolutionary algorithm
(GOMEA) has so far been benchmarked on various theoretical optimization
problems in the literature. Meanwhile, the long-existing traditional genetic al-
gorithm (GA) has been widely used for numerous real-world optimization tasks.
In this paper, we tackled the real-world problem of medium-voltage distribu-
tion network expansion planning (DNEP) with two instances of GOMEA: one
with the univariate structure and one with the linkage tree. GOMEA was found
to have much better performance than the traditional GA in terms of comput-
ing time and quality of the obtained solutions. Moreover, experimental results
showed that linkage learning is truly beneficial for finding (near-)optimal solu-
tions, not only in theoretical benchmarks but also in this engineering problem,
further underlining the robustness of GOMEA and encouraging further applica-
tions of GOMEA on other real-world optimization problems.
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