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Summary: This paper considers a single-server system where jobs arrive in accordance with a Pois-
son process. Each job involves an amount of work which is known upon arrival and is sampled from
an exponential distribution. The server has available two constant service rates 1 and 2 where rate

2 is faster than rate 1. The total work remaining to be processed in the system (= workload) is con-
trolled by a switch-over policy which switches from rate 1 to rate 2 only when the workload ex-
ceeds the level y, and switches from rate 2 to rate 1 only when the workload falls to the level y,
where 0 <y, <y,. The costs of this system consist of a linear holding cost, a service-cost rate and
fixed switch-over costs. The purpose of this paper is to derive an explicit expression for the average
cost of this policy.

Zusammenfassung: Es wird ein einzelner Bedienungskanal betrachtet, bei dem die Belastungen ge-
miifl einem Poisson-Prozef eintreffen und unabhingig voneinander dieselbe Exponentialverteilung
besitzen. Der Bedienungskanal verfiigt iiber zwei verschiedene konstante Bedienungsraten. Wenn die
Gesamtbelastung iiber einen vorgegebenen Wert y, steigt, so wird von der kleineren auf die grofere
Bedienungsrate umgeschaltet. Auf die kleinere Bedienungsrate wird zusiickgeschaltet, wenn die Ge-
samtbelastung unter den vorgegebenen Wert y, fillt, wobei 0 < y, <y, sei. Jedes Umschalten von
einer Bedienungsrate auf die andere verursache fixe Kosten. Auerdem entstehen Kosten pro Zeit-
einheit fiir die Bedienung und die Gesamtbelastung.

Die Bedienungskostenrate hiingt von der jeweiligen verwendeten Bedienungsrate ab wihrend die
durch die Belastung bedingte Kostenrateproportional zur Gesamtbelastung ist. Der Zweck der Ar-
beit ist die Angabe eines expliziten Ausdrucks fiir die entstehenden durchschnittlichen Gesamtko-
sten.

1. Introduction

We consider a service station with a single server where jobs arrive in accordance
with a Poisson process with rate A. Each job involves an amount of work. The amounts

1) This paper is registered as Mathematical Centre Report BW 45/75
2) Dr. H.C. Tijms, Department of Operations Research, Mathematisch Centrum, Amsterdam
2e Boerhavestraat 49, Amsterdam 1005.
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of work of the jobs are known upon arrival and are independently sampled from an ex-
ponential distribution with mean 1/u. At any time the server may choose between the
service rates 1 and 2. When the server is in service and uses service rate / an amount of
work o; will be processed per unit time, i = 1, 2. It is assumed that 0, > 0, > Nu. De-
fine the workload at time ¢ as the total amount of work remaining to be processed in
the system at time ¢, ¢ > 0. The server provides service when the system is not empty
and uses the following switch-over policy. The server switches from rate 1 to rate 2
only when the workload exceeds the level y, and switches from rate 2 to rate 1 only
when the workload falls to the level y,, where y, and y, are given numbers with

0 <y, <y,. It is assumed that it takes no time to switch from one service rate to
another. We denote the above switch-over policy as the (¥, y,) policy.

The following costs are incurred. There is a holding cost of # > 0 per unit work in
the system per unit time. When the server is busy and uses service rate 7 there is a
service cost at rate ;> 0,7 = 1, 2. There is a service cost at rate r 2 0 when the
system is empty. The cost of switching from rate 1 (2) to rate 2 (1) is K, (K,), where
K, K,=>0.

The purpose of this paper is to derive an explicit expression for the average cost of
the (¥;,¥,) policy®). Roughly, this will be done as follows. We first consider a Markov
chain embedded at the epochs where the server switches from one rate to another and
the epochs where the system becomes empty. It will be shown that this Markov chain
has a unique stationary probability distribution which can be explicitly given. Because
of the existence of this distribution, a formula familiar from the theory of semi-Markov
reward processes applies to the average cost. From this formula we shall derive an alter-
native one which allows to give an explicit expression for the average cost. This analy-
sis will be done in the sections 3 and 4 after we have given some preparatory results in
section 2. Finally, section S discusses the minimization of the obtained expression for
the average cost.

Related work was done by Thatcher [1968] who studied the (y,, ) policy with
y1 =y, for an M/G/1 queue with no switch-over costs. Using busy period analysis
he derived for the average cost of this policy a formula involving the stationary distri-
bution of the workload under rate 1. Also, he proved that a policy of this type is aver-
age cost optimal among the class of all stationary policies (cf. also Mitchell [1973]).
For M/G/1 queueing system in which the control is based on the queue size, a policy
similar to the (y,, y,) policy has been studied-amongst others by Crabill [1972 a,
1972 b] and Meyer [1971]. Other related references can be found in the two papers on
the optimal control of queues given in Clarke [1974].

2. Preliminaries

In this section we give some preparatory results. We first consider the M/G/1 queue
in which jobs arrive in accordance with a Poisson process with rate A and the amounts

3) The analysis given in this paper is also applicable when we assume an arbitrary distribution
for the amount of work of a job. However, in this case no simple explicit results can be obtained.
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of work involved by the jobs are independent, positive random variables having a
common probability distribution function F with finite first moment 3 and finite se-
cond moment $(2). When there is work to be done in the system the server provides
service where an amount of work o is processed per unit time. It is assumed that

M [ o <1. Also, suppose that there is a holding cost of 4 per unit workload per unit
time. For this queueing system, let b (x) be the expectation of the first epoch at which
the system is empty and let / (x) be the expected total holding cost incurred up to that
epoch when workload equals x at epoch 0.

Lemma 1.
Forallx >0,
_ x K mgx
b = a9 ™) = =N 0) T3 (1= N 0)
Proof.

For completeness, we briefly sketch a proof of these known results. For any
x>0andn=0,1,...,letb, (x) be the expectation of the first epoch at which te
system becomes empty and let /,, (x) be the expected total holding cost incurred up
to that epoch given that the workload equals x at epoch 0 and that » jobs have arrived
during the initial occupation time x/o of the server. Then, for any x > 0,

b(x)= n:io b, (x)e"*"/"—(";‘1{")'l and h (x) = ngo hy e Axle QX0 ()

n'

Also, let:

B= b(x)dF(x)andH=[ h(x)dF (x), (2)
0 0

i.e. B is the expected length of a busy period generated by a single job and W is the ex-
pected total holding costs incurred during such a busy period. Now, using the fact that
both the time during which the server is busy and the workload are independent of the
order in which the jobs are served and observing that each job arriving during the initial
occupation time x/o generates a busy period, some reflections show that, for all x >0
and n >0,

b, (x)——+nBandw (x)——+@—zﬁx—+nw+h E (n—k)BB,

where the latter relation uses the fact that under the condition that 7 arrivals have
occured in (0, x/0) each of the n arrival epochs has expectation x/20 as follows from
Theorem 2.3 of Ross [1970]. Using (1) and (2) we obtain the desired results after some
algebra.
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We now return to the queueing system introduced in section 1. The state of this
system can be described by a point in {(x, 1)Ix =0} U {(x, 2)Ix = 0}, where state
(x, ©) corresponds to the situation that the workload equals x and the server is adjusted
to rate i. We now introduce a number of functions that will be needed hereafter. These
functions are defined independently of the (y,, y;) policy. Forany x >0andi =1, 2,
define ¢; (x) as the expectation of the first epoch at which the system becomes empty
and define k; (x) as the expected total cost incurred up to that epoch when the system
is in state (x, i) at epoch 0 and the server always uses rate /. Using lemma 1 with
B = 1/uand B2 = 2/u?, it follows that, forallx >Oandi=1, 2,

_ ux . hux? hdx Ty ix
R ey e T e VRN AT VI e VAR

We note that the assumption \/o, u < 1 is needed to ensure that the functions t; (x)
and k, (x) are well defined and finite. The assumption Ao, u <1 will only be used for
this purpose. Next, let

Qg =r—)i’— + {) ky (x) ue **dx and B, =Xl+ (f) ty (x) e *¥dx, 4)

that is, B, is the expected time until the next return of the system to state (0, 1) and
0y is the expected total cost incurred during this time when the initial state is (0, 1)
and the server always uses rate 1. Then, by (3),

o —n ro,u ho, Oy U
= + and fp =———7.
%= e n-n T - M T G e

Finally, define the functions k (x) and # (x) by

k(x) = ky (x)—ky (x)and t (x) =1, (x)— t; (x) forx>0. (5
Then, by (3),
k(x) = oy x> +a,x and £ (x) = B, x forx >0, 6)
where
- hy?® (0, — 0,)
SR TCATS VAT VI O
. h I 2.\ e nu
o VN RS VR CATES VR RS VY ®
2 —
B, u” (0, —0,) (9)

T @H—N(0r—N)
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By direct integration, for all y > 0,

g k(x)pe M dx = e {k () + asy + (ap + @3) [ 1},

[t () ueidx = Y (£ () + By Jul,
y

_ hu (04 — 03)
(Oru—N(ou—N) "

Qa3
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(10)

(11

(12)

To end this section, we give some required results for a Markov chain with a general
state space. Consider a Markov chain {X,, n =0, 1, ... } with stationary transition
probability function P (+,+) on (S, B), where the state space S is a Borel set of a finite
dimensional Euclidean space and B is the class of all Borel sets in S. Suppose that this

Markov chain satisfies the following assumption.

Assumption.
There is some state s* (say) such that

Pr {X, =s*forsomen=>1|X, =s} =1 foralls €S,
and
E (NXo =s*)<oowhere N=inf {n>1]|X =s*}

We have the following theorem whose proof is included for completeness.

Theorem 1.
There is a unique stationary probability distribution function Q satisfying

Q) = fP(s A)Q(ds) forall A € B.
S

Moreover, when the initial state X, = s*, then
im LE{Z fx
nsw N k=g (X)) = gf(S) Q(@ds)

for any real-valued Baire function f such that [i| £ (s) | Q (ds) <oo.

(13)

(14)

(15)

(16)
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Proof.
Forany n> 0, let P" (s, A) = Pr {X,, €A | X, = s}. Further, forany n > 1, let

P" (s A)=Pr {X, €A, X, #s*for 1<k<n|X, =5}, and let P° (5, 4) =P° (s, 4).
Define f, (s)=Pr {N=n| X, =s} for n > 1, and define f (§) = 0. Then (cf. Feller
[1966, p. 365]), for all s and A.

~ n
P" (5, A)=P" (5, 4) +z Pk (s*, 4) f, (s) foralln>0. (17)

By (13), g f,, (s%) = 1. Hence the relation (17) with s = s* is a renewal equation

for any A. Further, for any 4,

T Pr(sn A)< T PP (s, S)=E (X, =5*) = T nf, (s*), (18)
n=0 n=0 n=0

50, by (14), both the first series and the last series in (18) are convergent. Now, by
applying the Key Renewal Theorem (see Feller [1957,p. 292],for any 4.

3 13 * e - 5 *
lim — zopk (s% 4) —"‘:‘.OP" (s*, A) /n§0 nf, (s*). (19)

n—oo n k=

Now, for any A4, define Q (4) as the right side of (19). Then, by (18), Q is a proba-
bility measure. Next observe that, by (13), % f, (5)=1and P (s, A) >0 as n—>oofor

all s and A. Using this we obtain from (17) and (19) that

1

lim——kgoPk(s,A)=Q(A) foralls €S and 4 € B,

n—>o

from which it is easy to derive that Q satisfies the steady state equation (15) (cf.
Breiman [1968, pp. 133—134]). Since the Markov chain X, has no two disjoint closed
sets, we have by Theorem 7.16 in Breiman [1968] that Q is the unique probability distri-
bution satisfying (15). To prove (16), let m be a finite measure on (S, B) such that

m (A) >0 if and oty if s* € A. Then, by (13), m (4) > 0 implies Pr {X,, €A for some
n=1|X, =s}=1forall s €S. Consequently, the Markov chain {X,,} satisfies the
so-called recurrence condition of Harris (cf. Jain [1966, pp. 206—207] ). Relation (15)
now follows from Theorem 3.3 in Jain [1966].
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3. An Embedded Markov Chain

In this section we shall determine the stationary probability distribution of the
Markov chain embedded at the epochs where the server switches from one rate to
another and the epochs where the system becomes empty.

Consider the queueing system which is controlled by an (y,, ¥,) policy with
0 <y, <y, (the (y,, y2) policy with y, = 0 will be considered separately in the
next section). For ease we assume from now on that the system is empty at epoch
0. Let Ty =0, and, forn > 1, let T,, be the n-th epoch at which either the server
switches from one rate to another or the system becomes empty. For any n = 0, define
X, as the state of the system at epoch 7,, with the convention that we take X, equal
to (x, 1) [(x, 2)] when at epoch T,, the workload equals x and the server switches from
rate 1 [2] to rate 2 [1]. Observe that X, = (0, 1). The embedded process {X,,, n = 0}
is a Markov chain with state space

§={0, D)}V {(x, DIx>y;}V {(2, 2}

Denote by P (-, *) the one-step transition probability function of this Markov chain,
that is, P (s, A) = Pr {X, €4 | X,,_; = s}. For the above Markov chain the assumption
of Theorem 1 is satisfied for s* = (0, 1), so, this Markov chain has a unique stationary
probability distribution Q (-) (say) satisfying (15). This stationary distribution Q will
now be determined explicitly. To do this, define, for all 0 <x <y, andv >y,

p (x, v) = probability that the state of the first entry of the system into the
set of states {(0, 1)} U {(u, 1) | u >y, } belongs to the set
{(u, 1) | u > v} when the initial state is (x, 1).
Further, let py (x) =1 —p (x, y,) for 0 <x <y,. For shortness we write
Q=0 0, D})A2M=0{w )Iu>v})and @, =Q({(y2,2)}). Then, (15)

gives

y
Qo = Qapo (72) + Qo ({lPo ) ue*¥dy, 0; =0 (1), and

y
Q) = Q:p (2, v) + Qo {e™ + (f; p (v, v) pe Yy} forall v >y,

Further, by Qo + Q (1) + Q> =1, we have @, =(1 — Q,) / 2. We shall now deter-
mine p (x, v). Using a standard argument, we get for any v > y; and Ax very small,

1—X

plx+Axv) = %‘1 { J pe+yvyuedy +e ¥ (”—x)}+
t Lo

+ (1—-)‘(—;‘1)p(x, v) + o0 (Ax) for 0 <x <y,
t
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which implies that, forally > y,,

op (x, v) yy—x
axx > =Z,\_l["P(x. v) + } plx+y, v)ue"‘ydy+e‘“(""‘)]
0
for0<x <y,.

Routine analysis using Laplace transforms and the boundary condition p (x, v) >0
as x - 0 yields after some algebra

p(x, v)=2e (o, uv—2Ay,)o, [e(o,u—}\)x/o, — 1] [01 “_N;(O: B-A)Y, /01]

forall 0 <x <y, andv=y,. Frompy (x)=1—p(x, »,),

-1
Po (x)=[o, y-—)\e'("l“_}‘) ()’l—x)/a,] [01 “_;‘e-(a.n—k)y,/og]
for0<x <y;.

The formula for pg (x) was also found in Keilson [1963). Using these results we get
after some algebra

Theorem 2.
The stationary distribution Q is given by

Qo =c"{al p— e~ @12 O, ~y,)/o,}

0; =c! (g p—)\)e-(oxn—A)y./a,

g@)=c ! u(o, p—Ne (=M e,
forallv = y,, where q (v) = — 0Q (v)/dv, and

c=olp+(Zaly—z)\)e-(ox#—h)y./t?. — e (0 B-27) O, ~yi)o,

Remark 1.

For the case where the amount of work of a job has an arbitrary distribution func-
tion F the resulting differential equation for p (x, v) can be converted into a delayed
renewal equation by integration, and this fact allows to give a closed expression for

Yy
p (x, v) in which the renewal function of the defective distribution function (\/g, f

0
{1 — F (u)} du appears, cf. Cohen [1974]. Hence Q can be explicitly given in terms of
this renewal function.
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4. The Average Cost of the (y, y,) Policy

In this section we shall derive an explicit expression for the average cost of the
(1, ¥2) policy. To get to this expression, we first establish a formula which is familiar
from the theory of semi-Markov processes with a cost structure. Next we derive
from this formula an altemative one which allows to give an explicit for the average
cost of the (y,, ¥,) policy.

Consider in the first instance the (y;, y,) policy with 0 <y, <y;. Let Z (¢) be the
total cost incurred during [0, #), > 0. Foranyn>0,let7, =T, . —T,, ie., 7, is
the length of the time interval between the n-th and the (n + 1)st epoch at which either
the server switches from one rate to another or the system becomes empty. Further,
for any n > 0, denote by Z, the total cost incurred during [T}, T}, ), where Z,, in-
cludes the appropriate switch-over cost when at epoch T, the server switches from one
rate to another. Finally, let 7 (s) = £ (7,1X,, =), and let ¢ (s) = E (Z,,|X,, =) for
SES.

Lemma 2.

e tl—EZ (1=1c© Q@) {700 (@) (20)

Procf

We first observe that the process describing the behaviour of the state of the system
is regenerative where the epochs at which the system becomes empty are regeneration
epochs. There is a cost structure imposed on the process. Now, since both the expected
time until the first return of the system to state (0, 1) and the expected cost incurred
during this time are finite, we have by the renewal theoretic argument used in the proof
of Theorem 7.5 of Ross [1970],

im LBz =tim LE"s 2 \im LIS
im = im k/hm ’—I—Ekzork.

] n—oo n-»roo

Next the Lemma follows from Theorem 1 (using formula (3) it is immediate from
their definitions that the functions 7 (s) and ¢ (s) are bounded by a linear and quadratic
function, respectively, so , by Theorem 2, both integrals in (20) are absolutely conver-
gent). O

Remark 2.

By Theorem 3.16 of Ross [1970], we also have that, with probability 1, Z (¢)/t
converges to the right side of (20) as t —>eo.

We shall now convert formula (20) into an alternative form which allows to give an
explicit expression for the average cost of the (y,, y,) policy. To do this, recall that
k; (x) has been defined as the expected cost incurred until the system is empty when
the initial state is (x, 2) and the server always uses rate 2 (see section 2), and, so ,
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K, +k, (x) represents the expected cost incurred until the system is empty when in
the initial state (x, 1) the server was to switch to rate 2 and always remains using rate 2.
From these interpretations and the definition of ¢ ((x, 1)) it now follows that

K, +ky x)=c((x,1)) +k; (y2) forallx > y,. 21

Let S;= {(x, 1) | x > y,}. Similarly, it is easily seen that

Ky tky (r2) =c((v2, 2))+£ ky (x) P((y2, 2), ds) (22)
% + ‘(}; ky () ue™Mdy =c ((0,1) +J k; x)P((0, 1), ds) (23)
S

1

where P (-, *) is the one-step transition probability function of the embedded
Markov chain introduced in section 3. For notational convenience, we now introduce
functions 4, (5) and A, (5), s €S. Let h; ((x, 1))) be equal to the left side of (21) for
x>y, let hy (72, 1)) be equal to the left side of (22), and let 2, ((0,1)) be equal to
the left side of (23). Further, let &y ((x, 1)) = k; (), let Ay (2, 2)) =k, (2), and
let &, ((0, 1)) = 0. Then, together (21) — (23) can be summarized as

hy ()=c(s)+ [ hy W)P(s, dw) foralls €S. 24
S

Integrating both sides of (24) with respect to the stationary distribution Q and
using (15), we get after an interchange of the order of integration (it is immediate to
verify that all integrals are absolutely convergent, since any function involved is boun-
ded by a quadratic function),

g hy (5) Q (ds) = g c(s) Q(ds) + g h2 (w) @ (dw),

from which we get by using (4), (5) and Theorem 2,

[e@Q@=1 th )l 910 @)=
— 000 +f Ky +kM)IqO)dx+ Ko k()i Qs (25)
Y,

In the same way, we obtain

[76)09)=o0s +5 1) q () dx—1 () 0s (26)

Y
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(this relation can also be directly obtained from (25) by puttingro =r, =r, =1
and K, = K, = h =0, and noting that for these values the cost functions ¢ () and
ky (+) reduce to the corresponding time functions 7 (<) and ¢, (*)). Now, by Lemma
2 and the relations (25) and (26), the average cost of the (y,, ¥,) policy with
0 <y, <y, is given by the formula*)

0000 +J {Ky +k ()} () dx + Kz —k ()} O3
Y

BoQo + 1 1 () q () dx —1 (1) Qs
Y

g(ylryZ) =

Using the relations (6), (10) and (11) and Theorem 2, we find

Theorem 3.
Forany (y,,y,) policy with 0 <y, <y, the average (expected) cost per unit time
is given by

- WROLY )t PR =yt 0 —y) tasys H(am tas)/utK
BoR (1, y2) + B 1 —y2)+ 6y [ 1

where K = K, + K, and (27)

g0, y2)

Ry, y2)= (01 u— A)"{alue“"“‘”y' for —ele: "‘“h/“x} :

Remark 3.

The above formula for the average cost holds also for the (y,, y,) policy with
y2 = 0. This result which will be intuitively clear from continuity considerations fol-
lows by considering the process embedded at points in time where either the server
switches from rate 1 to rate 2 or the system becomes empty and by repeating the above
analysis with obvious modifications.

Remark 4.
Consider the case of K = 0. Denote an (y,, y,) policy with y, =y, by the y-policy.
Then, the average cost of an y-policy is given by

aoe(a, u—2A)y/o, +azy +(a; +as) /I-‘
Boelors—Myloi g 1y

g = (28)

This formula agrees with the results in Thatcher [1968, p.78].

4) The idea used to derive this formula from (2) is generally applicable and a sophisticated use
of it has been made in the Markov decision model considered in De Leve and Tijms [1974].
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Remark 5.
The average cost of the policy that always uses rate i equals
= (lm—— )+t —— fori=1,2 29
£ = "o ( ai#) o u(ou—N ! 29)

as follows by putting o, = 04, r; =r, and K = 0 in (27). Observe that g (0) = g,,
however g (0, 0) > g, when K > 0. Also, observe that, for any y,, g (1, ¥3) converges
toag /Bo =g asy, > .

5. Minimization of the Average Cost

This section discusses the determination of the numbers T and y; for which the
average cost function g (»,, y,) is minimal. We shall distinguish between the cases
K =0and K > 0. First we consider

Case 1.

K = 0. For this case of no switch-over costs we only consider the y-policies (as
shown by Thatcher [1968] a policy of this type is average cost optimal among the
class of all stationary policies). We find after some algebra that the derivative of the
average cost function g () has the same sign as the function

h@)=y+X(0y —02) (0, g— N7 (0p—N) ! {1 —e (O BNY/0} g

where a = (ho )™ (00— N) {ro + (r2 0y —ry02)/(0, — 0y)}. It is immediate to
verify that 4 (0) = — a and that h (y) is strictly increasing for y = 0 with k (y) »> o

as y - o=, Hence, if a > 0, then the average cost is minimal for the y*-policy where

y* is the unique positive root to the equation & () = 0. If 2 <0, then g (¥) is minimal
for y* =0, that is, the policy that always uses rate 2 minimizes the average cost. In
table 1 we give the optimal y* and g (¥*) for a number of numerical examples.

Case 2.
K > 0. For this case we find after some algebra

- Koy (60— N
% a}l;yz =¢’()’hyz)[#e(o'“ Myl {')’1 01 =D+ 1201 —y2)— . ;ﬁl }

+_Z‘___{e(O.u—?\)yz/O,_e(U,u-K)}’:/On} {2 Y11 +m+72}
(G, p—2) M

+ By =y + 205 —3) K (@ —03)
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and

) W Y2) A
g(;;zyz =0 (1, y2) —e(a'” Ny lo {7 0l —h+m, 62 ‘J’2)+"_y1

2 Ko, (o.4— 1)
+%+7_;_ : le“ }"'R 01, 52) Gy +72)+123‘(}’1 _J’2)2

+‘LS 1 ‘J’2)+7 +K (0, ‘Uz)]

where

¢(Vl,J’2)=I-12 (011-1“7\)_| (172#’7\)_l {BoR (1, ¥2) + B, 0 —y2) + By /u}?

" ='h°lﬂ(°l —03) ¥ =(’0 —n)(o, —0;) +("1 —r)o,  ha, (0, —0y)
A (ou—n) "2 A A (01— N (o2 — )

ys = hu? (0, —0,)?
PTom—=N (o=

Tablel: p=2,0, =4,0,=5,h=1,r,=0,r, =5andr, =10

A 6 6.5 7 7.5 1.75
K= 0 y* 4.418 3.747 3.146 2.605 2.353
0% 5.168 5.925 6.812 7.855 8.450
K=10 y¢¥ 11.066 9.509 8.194 7.097 6.606
yr 3.108 2.209 1.463 0.878 0.636
g0y 5.237 6.121 7.226 8.541 9.270
K=25 y¥ 14.678 12.462 10.611 9.143 8.520
»¥ 3.024 2.016 1.155 0.496 0.234
g0 YD 5.247 6.181 7.429 8.979 9.838
£ 6.750 7.429 8.167 9.000 9.472

Observe that dg (7, 7)/dy, < 0 for all 7, so, for each point (y{, y3) minimizing the
function g (y{, y,) for 0 <y, <y, holds y5 < y{. Also observe that, for each y,, the
partial derivative ag (y:, y,) / @y, is positive for all y, sufficiently large and, so,

g (»1, y2) converges to g, from below as y, — o which proves that the policy which
always uses rate ] is not average cost optimal (of course, this conclusion also applies
to the case of K = 0). For the numerical computation of the minimum of the function
g (y1,y2) for 0 <y, <y,, we have used a computer program based on the variable
metric algorithm of Fletcher [1970] for unconstrained minimization. In table 1 we
give for a number of numerical examples the numbers y} and y3 for which the func-
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tion g (y,, ¥, ) is minimal for 0 < y, <y, (numerical computations indicate that the
function g (y,, ¥,) has a single minimum, although this function is not convex). We
note that g (¥§, ¥¥) should be compared with g, , since the average cost of the policy
that always uses rate 2 may be less than that of any (y,, y,) policy. Finally, we note
that it is reasonable to conjecture that either an (y,, y,) policy with y, <y, or the
policy that always uses rate 2 is a average cost optimal among the class of all possible
policies.
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