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ON A CONJECTURE OF IGLEHART*{

ARIE HORDIJK axo HENK TIJMS

This paper gives an elementary proof of Iglehart’s conjecture about the classical
dynamic inventory model. This conjecture states that the minimal total expected cost
for a planning horizon of n periods minus n times the minimal long-run average ex-
pected cost per period has a finite limit as n — o« for each initial stock.

1. Introduction

In a fundamental paper Iglehart [4] conjectured for the dynamic inventory model
with a linear purchase cost, a fixed set-up cost and convex holding and shortage costs
that the minimal total expected cost for a planning horizon of n periods minus » times
the minimal long-run average expected cost has a finite limit as n — = for each initial
stock. In [1] this conjecture was proved amongst other results for the case of a positive
discrete demand by using results in [2]. In this paper we present an elementary proof
of the original conjecture offered under the assumption of a continuous demand with a
density that is not concentrated on a bounded interval. The proof applies equally well
to the discrete demand case.

In §2 we formulate the model and give some preliminaries. Also, we state in §2 the
main theorem that will be proved in §3.

2. Model and Preliminaries

We consider the single-item inventory model in which the demands in successive
periods form a sequence of independent random variables having a common proba-
bility distribution function ®(-) with density ¢(-). It is assumed that ®(§) < 1 for
all £. Further we suppose that the demand per period has a finite expectation g. Any
unfilled demand in a period is backlogged. Hence the stock level may take on any real
value, where a negative value indicates the existence of a backlog. At the beginning of
each period the stock on hand is reviewed. At each review an order may be placed for
any positive amount of stock. An order, when placed, is delivered instantaneously.
The demand in each period takes place after review and delivery (if any). The follow-
ing costs are involved. The cost of ordering an amount of z is K6(z) + cz, where
K=0,¢20,560) =0, and, 8(z) =1 for z > 0. Let L(y) be the expected holding
and shortage costs in a period when y is the amount of stock at the beginning of that
period just after any additions to stock. We assume that L(y) isa nonnegative convex
function that is continuous for all y. Further it is assumed that both L(y) — = and
¢y + L(y) — = as |y | — «. Finally, future costs are not discounted.

We now give some known results for this model that will be needed in the sequel.
For any real z, let fo(z) = 0. It was proved by Scarf [5] (see also [3]) that there is a
sequence { fu(+), n = 1} of continuous functions satisfying, for all z and alln 2 1,

(1) 7(0) = minge {er (3 = 2+ Koy = 2) + 200 + [ Frsly = Dol0) ),
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such that, foralln = 1,

@) Ja(x) = —cx + K + Gu(S,) forz <s,,

= —cx + Ga(2) forz = s, ,

where G.(y) = cy + L(y) + [2faur(y — £)¢(£) dt, S, is the smallest number that
minimizes the function G.(y), and s, is the smallest number less tHan or equal to S,
for which G.(ss) = K + G.(8S,). Hence the right side of (1) is minimal for y = S,
when z < s, and for y = = when z = s, . It was proved in [3] that the sequences
{sa} and {S.} are bounded. Observe that f,(z) denotes the minimal total expected
cost for a planning horizon of n periods when the initial stock is z.

Consider now the infinite period model. Denote by a(s, S) the average expected cost
per period when using the (s, S) policy under which the order is S — z when the stock
level z < s and is 0 when z 2 s, see [4]. Fix two finite numbers s* and S* such that
min, s a(s, ) = a(s* 8*) and L(s*) 4+ cu = g where g = min, sa(s, S). In [4] it
was shown that such numbers exist and that the (s*, S*) policy is average cost optimal
among the class of all possible policies (see also [6, p. 530]). Hence the minimal
average expected cost per period is independent of the initial stock and equals g. Next
define the function ¢/(-) by

Y(z) = —co(x — 8% for z < s*,

@) =L(x) —g+ / v(z — £)o() dt forz = s*

0
The relation (3) constitutes for z = s* a renewal equation. Using this and the relation
L(s*) + cu = g it is easy to verify that (3) has a unique finite solution ¢ (z) which is
continuous for all z. It was proved in [4] that, for all z,

(4) g+ ¥(2) = min,, {c-(y —z) + Ké(y —z) + L(y) + /nw(y —8e(d) dE},

where the right side of (4) is minimal for y = 8* when z < s* and for y = z when
T = s*
In the next section we prove

TuEOREM 1. There is some finite number b such that
limn.o { fa(z) —ng} = ¢(z) +b forall z.
Moreover, the convergence of fo(z) — ng — ¥(x) for n — o is exponentially fast and
uniform for all x in any interval bounded from above.

Iglehart [4] proved this result for the case of K = 0 and offered it as a conjecture
for the case of K > 0. Actually Iglehart [4] imposed no condition on the density
¢(+). However, it is easy to give an example showing that f.(z) — ng may diverge
as 7 — « when the demand per period is bounded, see also [1].

3. The Proof

To prove Theorem 1, we fix two finite numbers L and U suchthat L <s, < 8, = U
for al n21 and L<s*< S*=<U. Let X ={z|z < U}, and let A(z) =
{ylyz L,z <y < U} for € X. By the results in §2 we have, for all x € X and
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@) = minscair {60 = ) + Koty = 2) + L) + [ Sty — Dote) d),

and, forallz € X,
(6)

0+ ¥(@) = minyea {e-(y —2) + Ky —2) + L) + [ ¥ - De(®) ds}.

Observe that, by (2) and (3), the above integrals converge absolutely. Define = by
7(z) = S*forz < s*andn(z) = zforz = s*and, forn = 1, define =, by ma(z) = S»
for < s, and wa(2) = z for z 2 s, . Then, for any z € X, x(z) minimizes the right
side of (6) and x.(z) minimizes the right side of (5).

Foranyz € X and n 2 1, let e.(z) = fu(z) — ng — ¢(z). Using the definitions of
= and =, , it follows from (5) and (G) that, for allz € X and n = 1,

ena(@ 3 [ ealn(@) — D) d,
) _
enis(@) Z [ ealman(z) — D() dk.

Since U can be chosen arbitrarily large, Theorem 1 is an immediate consequence of
the following theorem.

THEOREM 2. The sequence {e.(x),n = 1} has a finite limit for all z € X and this
limit is independent of x € X. Moreover, the convergence of e,(z) for n — = s expo-
nentially fast and uniform for all x € X.

Proor. Using the continuity of fi(+) and ¢(-), it follows from (2) and (3) that
there is a finite number N such that | e;(z) | < N for all z € X. By induction we have
from (7) that | es(z) | < Nforallz € X and n 2 1, cf. [4, p. 15].

Now, define M, = sup.cx e.(z) and define m, = infrex e,(x) forn = 1. It imme-
diately follows from (7) that M., < M, and m.4; = m, for all » = 1. Hence the
bounded sequences {M,} and {m,} have finite limits M and m, respectively.

Let a = ®(U — L). Since ®(¢) < 1 for all £, we have 0 < a < 1. By (2) and (3),
en(z) = e for all 2 <L and n 21 where e = K + G.(S.) — ng — cs*. Since
L £#(x) 2 U for all z € X, we get from the first part of (7) that e.ja(z) =<
aM, + (1 — a)e, for all z € X and n = 1. Hence Moy S aM, + (1 — a)e, for all
n 2 1. Similarly, we derive from the second part of (7) that 7,41 = ama. + (1 - a)e,
foralln = 1. Hence M,y — mup1 < a(M, — m,) foralln = 1, so,

(8) 0=M,—ms £a(M; —m) foralln = 1.

Since 0 < @ < 1 and the bounded sequences {M,} and {m.} are convergent, the
theorem now follows from (8) and m, < e,(z) £ M, forallz €¢ Xandn = 1.
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