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Abstract

This paper considers the discrete time Markov decision model with a denum-
erable state space and finite action space. Under certain conditions it is proved
that the minimal total expected cost for a planning horizon of # epochs minus n
times the minimal long-run average expected cost per unit time has a finite
limit as n— oo for each initial state.
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1. Introduction

This paper considers a discrete time Markov decision model with a denumerable
state space and a finite action space. We shall prove that under certain conditions
the minimal total expected cost for a planning horizon of n epochs minus n times
the minimal long-run average expected cost per unit time has a finite limit for
each initial state.

For the finite-state Markov decision model convergence results of this type
were established in Bather (1973), Brown (1965), Denardo (1973), Lanery (1967),
Lembersky (1973) and Schweitzer (1965) and (1974). The proofs in this paper
are based on the papers of Lanery (1967) and Schweitzer (1974).

In Section 2 we formulate the model. The convergence result will be proved
in Section 3. An application of this result to the dynamic inventory model can
be found in Hordijk and Tijms (1974).

2. Model

We are concerned with a dynamic system which at times ¢t = 1,2, --- is observed
to be in one of a possible number of states. The set of all possible states is assumed
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to be denumerable and will be denoted by #. After observing the state of the sys-
tem, an action must be chosen. It is assumed that the set A(i) of possible actions
in state i is finite for all i. If the system is in state i at time ¢ and action a is chosen,
then, regardless of the history of the system, two things happen: (i) we incur
an (expected) cost c(i,a) and (ii) at time ¢ + 1 the system will be in state j with
probability p,(a). The costs c(i,a) and the transition probabilities p;/(a) are as-
sumed to be known. We suppose that there is a finite number B such that
c(i,a) = B for all i and aq, i.e., the costs c(i, a) are bounded below.

Denote by X, and A,, t = 1,2, - the sequences of states and actions. A policy
R for controlling the system is any (possibly randomized) rule which for each ¢
specifies which action to take at time ¢ given the current state X, and the history
(X1,A4, -+, X,—1,A,~1) - A stationary policy f is a rule that for each i selects an
action f(l)EA(l) such that always action f(i) is taken whenever the system is
in state i. Denote by F the class of all stationary policies.

When policy fe F is used the process {X,} is a Markov chain with stationary
transition probabilities p;;(f) = p;;(f(i)). Denote by PP (f) the n-step transition
probabilities of this Markov chain, and forn = 1, let n,") H= {p,"( )+ +

pP()}/n. 1t is well known from Markov chain theory that (see Chung (1960))
the sequence {n{”(f)} has a limit ,;,(f) (say) for all i,jes.

For any ieJ and policy R, let

1) #(i,R) = liminf 1 Z Ep{c(X,,A) | X, =
n—w

where E, denotes the expectation under policy R. Observe that ¢(i,R) exists
(+ oo is admitted) since the costs c(i,a) are bounded below. When the limit
in (1) exists ¢(i, R) represents the long-run average expected cost per unit time
when the initial state is i and policy R is used. A policy R* is said to be average
cost optimal if ¢(i,R*) < ¢(i,R) for all i and all policies R.

Let vo( - ) be any function such that X p;;(a)vo(/) is finite for all i and is bounded
below in i and a. For n = 1,2,-:-, define
)} v,(i) = min {c(, a)+ Z p,,(a)v,, 1(N}, for ies.

a e A(i)

Observe that for any n = 1 the function v,( ) exists and is bounded below.
The quantity v,(i) can be interpreted as the minimal total expected cost for a
planning horizon of n epochs when the initial state is i and a salvage cost of vy(j)
is incurred when the final state is j.

We now introduce a2 number of assumptions.

Assumption. 1. There is a finite number g and a finite function v( - ) such that
(i) X ;.spij(@0v(j) is absolutely convergent for all i and a4, and

3 g +v(i) = min {c(i,a) + Z p,,(a)v( j)} for all ie s,

ae A(i)
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* (i) Ex{6(X,)|X, = i} is finite for all i, R and n, and n~ Ep{o(X,)| X, =i}
converges to zero as n — oo for all i and R.

Let F* = {fe F: f(i) minimizes the right side of (3) for all ie #}. By the re-
mark following the proof of Theorem 1 in Ross (1968) we have under Assumption
1 that g = infr@(i,R) for all i and ¢(i,f) = g for all i and fe F*. That is, the
minimal average expected cost is independent of the initial state and equals g,
and any policy f'e F* is average cost optimal. Assumption 1(ii) will be needed
only for these statements.

Assumption 2. The function vy(+) - v(+) is bounded.

Assumption 3. For any feF, the Markov chain {X,} is non-dissipative, that
is, X,;.sm(f)=1forall ies.

Assumption 4. For any fe F* holds that each state which is positive recurrent
under policy f is aperiodic.

Assumption 5. For any average cost optimal stationary policy the associated
Markov chain {X,} has no two disjoint closed sets.

We note that Assumptions 1(ii) and 2 hold when the functions vo( - ) and v( - )
are bounded. However, we make these assumptions in view of applications (cf.
Hordijk and Tijms (1974)).

In the next section we shall prove that under Assumptions 1(i) and 2-4 the
sequence {v,(i) — ng — v(i)} has a finite limit for all i e #. Moreover, if in addition
Assumptions 1(ii) and 5 hold the limit is independent of i€ .#.

3, The asymptotic behaviour of the minimal total cost

Forany n =1, let
e (i) = v, (i) — ng — v(i) for ie s,

Lemma 1. Suppose that Assumptions 1(i) and 2 are satisfied. Then there is
a finite number N such that |e,(i)| < N forall ie# and n = 1.

Proof. By Assumption 2, there is a finite number N such that e,( - ) is bounded
by N . Assume now that |ek(i)| < N for all i. Observe that together the induction
hypothesis and part (i) of Assumption 1 imply that X pif(a)v,(j) converges ab-
solutely for all i and a. Let f€ F*, and let f, € F be such that f,(i) minimizes the
right side of (2) with n = k + 1 for all ie 4. It now follows from (2) and (3)
that, for all ie 4,

4 e+1(i) = pX pij(.f)ek(j)’ ei() 2 z pij(fk)ek(j)'
jes jeJs

From these inequalities and the induction hypothesis we get e, ,( +) is bounded
by N which completes the proof.
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The following lemma is well known (e.g., p. 232 in Royden (1968)).

Lemma 2. For any n = 1, let {a,(i),ic#) be a probability distribution.
Suppose that {a(i), i€#} is a probability distribution and that a,(i) converges
to a(i) as n — oo for all i€ £, Then, for any sequence {h,(-)} of bounded func-
tions which converge pointwise to the function h(-) on £,

lim X h(ja () = Z h(ja(j).
n—*w jeJS jes

Theorem 1. Suppose that Assumptions 1(i), 2 and 3 are satisfied. Let fe F*,
and, for the Markov chain {X,} associated with f, let C be a class of positive
recurrent states. Assume that the states of C are aperiodic. Then the sequence
{e.(i)} has a finite limit for all i e C, and, moreover, this limit is independent
of ieC.

Proof. The reasoning of this proof parallels to that in Lanery (1967) and
Schweitzer (1965). Fix some state re C. Let « and § be two limit points of the
sequence {e,(r)}. By the well-known diagonalization method and the bounded-
ness of the sequences {e,(i), n = 1}, i€ #, we can get two sequences {n,} and
{m,} with n, - o0 and m, — oo such that, for all ie.#, e, (i) converges to a(i)
(say) as k — oo with a(r) = « and e, (i) converges to B(i) (say) as h —» co with
B(r) = B. Observe that a(i) and f(i) are bounded in i € £. Since r was arbitrarily
chosen in C and a(i) is a limit point of {e,(i)}, the theorem follows when we have
proved that, for some constant c,

5) a(i) =p(i)=c for all ieC.

To prove this, observe that ¢,, (i) £ X pii(Ne(j) for all ie # and n = 1 (see
Relation (4)). Applying this inequality repeatedly and using Lemma 1, we get

(6) arm(D) S X P(e(j) for all ies and n,m = 1.
jes
Next we observe that from Markov chain theory (see Chung (1960)) it follows

that, for all i,jeC, the sequence {p{;’(f)} has a limit m;(f) (say) which is in-
dependent of i. Moreover,

) n;(f) >0 for all jeC
and
Z nj(f') =1.
jeC

Also, for all ieC and n 21, X p{P(f) = 1 where the sum is over je C. We
shall now prove that, for all ieC,

® BG) = jZCa(j)nj(f)
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and

i) = X B(Hmif).
jeC

For reasons of symmetry it suffices to prove the first part of (8). To do this,
choose for each integer k = 1 a positive integer h(k) such that ¢, > k, where
t, = Mygy — M- Taking n =n, and m = ¢t in (6), letting k — oo and using
Lemma 2, we get the first part of (8). Substituting the first inequality of (8) into
the second one and the second one into the first one, and using the second rela-
tion in (7), we have, for all ie C,

©) B S 2 UImf)

and

o) < £ a(mf).
jeC

Multiplying both sides of each inequality in (9) by m;(f), summing over ie C
and using (7), we find that the equality signs in (9) hold for all i e C. Together
this and (8) imply (5) which completes the proof.

Lemma 3. Suppose that Assumptions 1, 3 and 5 are satisfied. Assume that
d(-) is a bounded function on .# such that, for all i€,
(10) g + (i) +d() = min {c(i,a)+ X pi@)[v()) +d()]}.
jes

ae A(i)
Then, for some constant d, d(i) = d for all ies.

Proof. The reasoning of this proof is similar to that used to prove Theorem
2.4 in Schweitzer (1969). Choose f€ F*, and let h € F be such that k(i) minimizes
the right side of (10) for all i € #. Since d( - ) is bounded it follows from Assumption
1 that n—'Eg{u(X,) + d(X,,)|X1 =i} - 0 as n - oo for all i and R. Now, by
the remark following Theorem 1 in Ross (1968), we have ¢(i,h) = g for all i.
Hence policy h is average cost optimal. Since f and h are average cost optimal,
we have by Assumptions 3 and 5 that, for any je 4, mn;(f) and n;;(h) are inde-
pendent of ie# and are equal to n;(f) and my(h) (say) (cf. Chung (1960)).

By (3) and (10), d()< X p;;(f)d(j) for all ie S, Iterating this n times and
averaging over n, yields d(i) £ X n,(}')( d(j) for all ies and n = 1. By As-
sumption 3, X m(f) = 1. It now follows from Lemma 2 that

¢h)) d@) £ X d()rf) for all ies.
jes

Similarly, using the fact that d(i) = X p;(h)d(j) for all i, we get
(12) di) =2 X d(pryh) for all ies.
jes
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Denote by R(f) and R(h) the set of states that are positive recurrent under policy
S and h, respectively. Multiplying both sides of (11) by n,(f), summing over i,
and using that n,(f) > 0 for i€ R(f), it follows that the equality sign holds in
(11) for all ie R(f). Similarly, the equality sign holds in (12) for all ie R(k).
By Assumption 5 we have R(f)N R(h) is not empty. Together these facts, (11)
and (12) imply the lemma.

We are now in a position to prove the main result.

Theorem 2. Suppose that Assumptions 1(i) and 24 are satisfied. Then the
sequence {e,(i)} has a finite limit for all ie.#. This limit is independent of i € &
if in addition Assumptions 1(ii) and 5 are satisfied.

Proof. Since the sums in (2) and (3) converge absolutely (cf. Lemma 1), it
follows from (2) that, for all ie#£ and n 2 1,

(13) ens1(i) = m;r(l) {b(i,a) + Z P.,(a)e,.(J)}
where
(14) b(i,a) = c(i,a) — g + jZ,pij(a)v(i) —o(i).
By Assumption 1(i),
(15) min b(i,a) =0 for all ie s,

a e A(D)

Let M(i) = limsup,., . e,(i), and let m(i) =tliminf,_, _ e,(i) for i e #. By Lemma
1, the functions M( -) and m( - ) are bounded. To prove that m(i) = M(i) for all
i, we shall first show that

(16) m(i) 2 min {b(i,a) + Z p,,(a)m(])} for all ies,
ae A()

17 M@y £ min {b(i,a) + IZ p,,(a)M(j)} for all ie s,
acA@i)

We prove only (16). The proof of (17) is very similar. To prove (16), fix some
state ip € #. By the diagonalization method and Lemma 1, we can get a sequence
{n,} with n, — oo such that the sequence {e, (io)} has the limit m(i,) and, for
all ie#, the sequence {e, (i)} has a finite limit y(i) (say). Choose & > 0. Since
A(i,) is finite there is an integer k, such that, for all ae A(i,) and k = k,,

e, (io) = m(io) + &,

(18) % pf @) = pr @) —e.
jes jes

From these inequalities, (13) and the act that p(j) = m(j) for all j we easily
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get that m(i,) + 2¢ is larger than or equal to the right side of (16) with i = i,.
This proves Equation (16) since & and i, were chosen arbitrarily.

Let fe F be such that f(i) minimizes the right side of (16) for all ie.#. By
(16) and (17), for all ie S,

bG, () + Z py(HIm() < m(i) S M)
(19) jes
S BSE) + 2 pNHMO).

Multiply both sides of the first inequality in (19) by =;(f) and sum over ie £,
We have X n(f)p;;(f) = n;;(f) for all j where the sum is over i €.#, see Chung
(1960). Using this, we get after an interchange of the order of summation,

(20) 2 m(HbG.S() = 0.
ies

The summation operations used to derive (20) are justified by the boundedness
of m( +) and the non-negativity of b(-,-) (see Equation (15)). Let R(f) be the
set of states which are positive recurrent under policy f. Then, by Assumption 3,
R(f) is not empty. Since b( -, ) is non-negative and =;(f) > 0 for ie R(f),
the inequality (20) implies b(i,f(i)) = O for all ie R(f). Hence, by (14),

g +0() = (i, /() + X p(Hre(j) for all ieR(f),
jes

S0, f(i) minimizes the right side of (3) for all i e R(f). Choose f* € F* such that
S*(@) = fG) for all ie R(f). Then R(f) is contained in the set of states which
are positive recurrent under policy f*. Now, by Theorem 1, m(i) = M(i) for
all ieR(f). To prove m(i) = M(i) for all i, we observe that, by (19),

0= M)~ m() £ T p(N{MG)—m(j)} for all ie.s,
jes

Iterate the latter inequality n times and average over n. Letting n —» oo, and
using Assumption 3 and Lemma 2, we get

(21) 0= M) —m() < T mf){M()—m(j)} forall ies.
jes

Now, for any i € £, m;(f) = 0 when j ¢ R(f) (cf. Chung (1960)). Since m(j) = M(j)
for je R(f) it now follows from (21) that m(i) = M(i) for all i. This proves the
first part of the theorem. To prove the second part, observe that, by (16) and (17),
m(i) = min {b(i,a) + X p,(a)m(j)} for all ie S,
ae (i) jes
Substituting into this equality the expression for b(i,a) (see (14)), we find that
Lemma 3 applies with d(-) = m(-). This ends the proof.

Remark. Suppose that Assumptions 1-5 are satisfied. For any n = 1, let
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J» € F be such that £,(i) minimizes the right side of (2) for all i. Assume that, for
some fe F, f, = ffor infinitely many values of n. Using Theorem 2 and Lemma 1,
we easily derive from (2) that fe F*. Hence f is average cost optimal.
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