
Implicit Coercions in Type Systems

Gilles Barthe

CWI, PO Box 94079, 1090 GB Amsterdam, The Netherlands.
Email:gilles@cwi.nl

Abstract. We propose a notion of pure type sy1tem with implicit co
ercions. In our framework, judgements are e:i:tended with a conte:i:t of
coercions Ll and the application rule is modified ao as to allow coercions
to be left implicit. The setting support1 multiple inheritance and can be
applied to all type theories with II -typea. One originality of our work is
to propose a computational interpretation for implicit coercions. In this
paper, we demonstrate how this interpretation allow1 a .strict control on
the logical propertiea of pure type systema with implicit coeciona.

1 Introduction

The increasing importance of mathematical software has been accompanied by
a drift of mainstream mathematics towards mathematical logic and the founda
tions of mathematics. Before mathematical software, formal systems were gen
erally seen both by logicians and mathematicians as safe heavens into which
mathematics could theoretically be embedded. With powerful mathematical soft
ware, there is now a genuine interest in developing mathematics within a formal
system (see e.g. (7, 13)). This radical change in the relationship between math
ematics and mathematical logic calls for a new strategy in the design of formal
systems. New criteria such as comfort, efficiency and suitability to implementa
tion, have to be taken into account when assessing the value of formal systems.
The new challenge is to provide formal systems for feasible formal mathematics.
Despite an early proposal by N.G. de Bruijn ((8]), much remains to be done in
this direction. There are still notable differences between formal and informal
mathematics:

- at the level of reasoning: the level of detail required in formal proofs is much
greater than the level of detail in informal proofs; reasoning in a formal
system requires every single step to be decomposed in terms of primitive
rules.

- at the level of language: formal mathematics requires extreme rigour in the
formulation of statements. Commonly used mathematical expressions, such
as a: E G, where G is a group, are not always well-formed in a formal language·
because it is often required that the expression on the right hand side of E
should be a set. Hereafter we shall refer to this problem as implicit syntax.

While the first problem has been partially solved by a variety of tools (tactics,
inductionless induction, partial reflection and decision procedures), the problem

2

of implicit syntax has" received little attention in the context of proof-checking1 •

The goal of this paper is to contribute to the study of implicit syntax in proof
checking. In this paper, we focus on one specific aspect of implicit syntax, namely
implicit coercions; by implicit coercions, we refer to a grammatical convention
which allows to apply a map f : A -+ B to an element a of A' whenever there is
a coercion from A' to A. We propose a notion of pure type system with implicit
coercions (PTSC for short) whose judgements a.re of the form ..::l!I' I- M: A where
..:1 is a set oflega.l terms. Elements of ..:1, which are called coercions, specify which
are the arguments that can be omitted in an expression. A typical derivation is

i: N-+ ?ll 1- 3: N i: N-+ ?ll 1- minus: ?l-+ 7l
i: N-+ ?ll 1- minus 3 : 7l

The derivation is valid because i : N -t 7l is assumed as an implicit coercion (of
course, there are suitable rules to introduce coercions in a context). One of the
novelties of our approach is to give a computational interpretation of implicit
coercions. We define a (conditional) reduction relation -+E which makes coercions
explicit. There are several advantages in having such a relation:

1. the equational theory of the type system is rich enough to identify terms
which should be identified (such as minus 3 and minus (i 3));

2. expliciting ·a term is viewed as a computational process interacting with
J3-reduction;

3. by identifying suitable terms, -+E forces pure type systems with implicit
coercions to be conservative extensions of pure type systems.

We shall show that under certain conditions -+E is normalising (i.e. the use of
implicit coercions can be·removed from any derivation) and confluent (i.e. there
is essentially an unique way of making a. term explicit). The relevance of these
properties will be discussed in Section 3.2.

Related work The use of implicit coercions or subtyping in proof-checking has
been considered by several authors (see (1, 3, 4] for the former and (2, 5, 14, 15] for
the latter). In [4], the author reports on a medium-scale example offormalisation
of ma.thematics using implicit coercions. See also (10, 16] for work on overloading
and implicit syntax respectively.

Contents of the paper The paper is organised as follows: in the next section, we
give an informal motivation of the syntax of pure type systems with implicit
coercions by giving an abstract definition of implicit syntax. In section 3, we
present the syntax for pure type systems with implicit coercions. In order to
look at interesting examples, we consider pure type systems with L'-types. In
section 4, we exemplify the use of our syntax in the formalisation of algebra.. In
section 5, we study the basic meta-theory of implicit coercions and show that

1 Some of the concepts involved in implicit syntax such as overloading and argument
synthesis have been thoroughly investigated in the context of programming languages
((9, 18, 19)).

3

pure type systems with implicit coercions provide an implicit syntax for pure
type systems. Possible extensions to our work are discussed in section 6. Section
7 contains some final remarks.

Acknowledgements I would especially like to thank P. Aczel for many discussions
on classes and on the formalisation of mathematics. The paper has also benefited
from comments from A. Bailey, A. Saibi and the anonymous referees. This work
was partially carried out at the Universities of Manchester and Nijmegen with the
financial support of the Esprit project 'Types: Types for programs and proofs'.

2 What is implicit syntax?

In this section, we give an abstract definition of the concept of implicit syntax.
There are two fundamental assumptions about implicit syntax:

1. it is meant to improve (not to increase) the expressivity of a formal system;
2. it should not affect the theory of the formal system.

To fix ideas, we shall make the ideas precise in the abstract setting of formal
systems.

Definition 1 A formal system as a triple (A, =A, Thm) where A is a set of
expressions, =A is an equality relation on A and Thm is a binary relation on A.

For example, every pseudo-context I' of a pure type system >.S determines a
formal system F>.s(I') by taking A to be the set of I'-terms, =A to be ,B-equality
and ThmA to be the typing relation :.

Definition 2 An implicit syntax for a formal system A= (A, =A, ThmA) con
sists of a formal system Iffi = (B, =s, Th ms) and a map e : B ---> A such that:

1. A~ B;
2. for every b E B, b =s e(b);
3. for every ai, az EA, ai =A az ? ai =B az;
4. for every ai, az EA, (a1, az) E ThmA ? (a1,a2)EThmB;
5. for every bi, b2 E B, (b1, bz) E ThmB ? (e(b1),e(b2)) E ThmA.

The definition is meant to capture idea is that B should contain more terms
than A (requirement 1) and that every term in B could be translated into a
term in A with the same meaning (requirement 2). Moreover, =B (resp. Thms)
should coincide with =A (resp. ThmA) on A (requirements 3 and 4) and e should
preserve the logical structure of the formal system (requirement 5).

The emphasis of this paper will be on showing that PTSCs are an implicit
syntax for PTSs (this will be stated precisely in Section 9). We believe this
perspective to be fundamental for proof-checking as it provides a means to ensure
that PTSCs have a suitable logical interpretation.

4

S Pure type systems with implicit coercions

In this section, we define a deductive system for pure type systems with implicit

coercions. In order to treat interesting examples, we consider an extension of

pure type systems with L'-types. However, our approach is independent from

type constructors (we only need a function space former) and does not require
the presence of L'-types.

3.1 Syntax

Definition 3 1. A pure type system is specified by a quadruple

>..S = (Sort, Axiom, Rulerr, Rule.i;)

where Sort is a set, Axiom ~ Sort x Sort and Rulerr, RuleL' ~ Sort x Sort x Sort.
2. The set of pseudo-terms of a puTe type system >..S = (Sort, Axiom, Rulea, Ruler:)

is given by the following abstract syntax:

T = VISort\lIV: T.T\>..V: T.T\TT\EV: T.T\pair(T, T)\fst T\snd T

where V is a fixed set of vaTiables.
3. A pseudo-coercion is a paiT of the form (>..y : B.t, B -+ C) where >..y : B.t

and B -+ C are pseudo-terms. Sets of pseudo-coercions are usually denoted
by Ll.

4. The closure Ll + of a set Ll of pseudo-coercions: it is the least set such that

whenever (c,; : Ai -+ Bi) E L1 for i = 1, ... , n and A,;+1 =13 B,; for i =
1, ... , n - 1.

5. Let Ll be a set of pseudo-coercions. The relation -+.-(Ll) is defined on pseudo

terms as the compatible closure oft U-+ •(Ll)t (i u), where it is assumed that

i E Ll+. -<(Ll) (resp. =e(A)) is defined as the reflexive, transitive {resp.

reflexive, symmetric and transitive) closure of -+E(.A)-

6. A pseudo-context is a sequence of the form

>..y: B1.t1: B1-+ C1, .•. , >..y: Bm..tm: B-m-+ Cm\X1: Ai, ... , Xn: An

where the >..y : B; .t; : B,; -+ C, 's are pseudo-coercions, the Xi 's are variables

and the A; 's are pseudo-terms. Pseudo-contexts are usually written as Ll\I'.

7. A judgement is a triple of the form (Ll\I', M, A) where Ll\I' is a pseudo

context and M, A are pseudo-terms.
8. The derivability relation I- is defined by the rules of Table 1.

Few explanations seem in order to justify our syntax: all the rules except (En

try), (Method) and the conversion rules are straightforward adaptations of the

rules for pure type systems. The (Method) rule introduces implicit syntax in

the system by allowing to apply f : Ilx : A.B to elements of several types (in

(Axiom)

(Start)

(Weakening)

(Product)

(Application)

(Abstraction)

(Sum)

(Pairing)

(First Projection)

(Second Projection)

(Entry)

(Method)

(,6-conversion)

(E-convcrsion)

11- c: s
LllI' I- A: s

Ll!I', :i: : A I- :i: : A
Ll!I' 1- t: A .:1II' I- B: s

.:1II', :i: : BI- t: A

5

LllI' I- A: St . LllI', :z: : A I- B : S2

LllI' I- II:i:: A.B: s3

LlJI' I- t: II:i: : A.B .dlI' I- 11. : A
.dlI' I- tu: B[u/:i:J

.::l!I', :i:: A I- t: B .6II' I- II:z:: A.B: s
.6II' I- A:z:: A.t: II:i:: A.B

.::i1r 1- A: st ..1II',:z:: A 1- B: s,
.dlI' I- E:i: : A.B : s3

.::i1r 1- tt : A .a.1r 1- t, : B[tt/:i:J
<llI' I- E:i: : A.B: s

.:1II' I- pair(tt, t2): E:r:: A.B
.:1II' I- t: E:r: : A.B

LllI' I- fst t: A
LllI' I- t: E:r: : A.B

.:1II' I- snd t: B[fst t/:r:]

..1II' I- c : c ..1'II'' I- t : A _, B
.d, t : A _, BII' I- c : c

..1II' 1- t: II:i:: A.B .6II' I- 11.: A'
Ll!I' 1- tu: B[i u/:z:J

if (c,s) E x1om

PROVISO

if (i,A"-+ Ao) E ..1+
with A =f!J A"

.::i1r 1- c: c 1r' 1- c: s 1r' 1- c' : s
..1jI' I- c: c if c =J!J C' and r _,<(A) I"

.:1II' I- c: C .::llI' I- C' : s
LliI' 1- c: C' if C l<(a) C'

Table 1. RULES FOR DERIVATIONS rN PURE TYPE SYSTEMS WITH IMPLICIT COERCIONS

fact to all the types which are linked to A by a pseudo-coercion). Note that
the predicate of the conclusion is B[i u/x] rather than B[u/x] because we do
not know if the latter is legal. The (Entry) rule enables new coercions to be
introduced provided a certain PROVISO is satisfied. The role of the PROVISO is
discussed in Subsection 3.2. As for the conversion rules, there are two rules: one
for ,8-conversion and one for €-conversion. The choice for these rules is given in
Subsection 3.3.

3.2 The coherence and conservativity properties

In Section 2, we made two fundamental assumptions for implicit syntax and
formalised these assumptions in Definition 2. Here we see how to instantiate the
definition to the framework of pure type systems with implicit coercions.

In our context, the translation map from implicit to explicit syntax has an
obvious candidate namely €-reduction. We would like that for every legal contexts

6

L1II' a.nd JI'' such that I' -<(A.) I'', the set of legal LljI'-terms (with ,8€(..1)
equality) is an implicit syntax for the set of legal I''-terms (with ;3-equality).
This is a. consequence of the following two properties:

1. for every derivation LllI' f- M : A, there exists a derivation JI'' f- M' : A'
with I' ~E(.<1) I'', M·-E{..:1) M' and A -e(A) A';

2. for every derivations LliI' f- M : A, IT' f- M' : A' and II'" I- M" : A"
such that r-E(A.) r 1,I'11 , M-E(A.) M 1,M11 and A ~E(.<1) A 1 ,A11 one has
I'' = 13 I'", M' =13 M" and A' =13 A 11 •

We respectively call them the conservativity property and the coherence property.
The role of the proviso is to ensure that both properties hold. In order to simplify
the problem, we require coercions to be closed.

Definition 4 - A pseudo-coercion ..\x : A.t : A --+ B is simple if .:\:c : A.t and
A --+ B are closed.

- A set Ll of pseudo-coercions is coherent if all coercions are simple and
1. V(..\x: A.i, A--+ B), (>.x': A'.i', A'--+ B') E ,1+.

A=13A1 /\ B=13B1 =>i[x'/x]=fJj
2. V(..\x : A.i, A--+ B) E Ll+. A =13 B => i =13 :c

The entry rule is now formulated as

.air 1- c: c I r- t : A--+ B . .
Ll, t: A--+ BJI' I- c: C if Ll U {t, A--+ B} IS coherent.

Note that for the sake of simplicity we require coercions to be fully explicit, i.e.
to be derivable in the empty context.

3.3 The conversion :i;ule

The conversion rule is split in two (see Table 1). There is a ,$-conversion rule
which allows to convert fully explicit types (i.e. types which are derivable in
a context with no pseudo-coercions) and an €-conversion rule which allows to
convert types which a.re related by €-reduction. There are two reasons for such
a choice:

- it seems natural to postpone computations until the term is fully explicit.
With this view, reduction is a succession of two processes, explicitation (i.e.
€-reduction) and computation (i.e. ,8-reduction).

it is unclear what may be the effects of a very general conversion rule, such
as

.air r- c: c .air r- C': s if c =/JE(A.) c1

Lljr f- c: C'

4 Implicit coercions at work

In this section, we exemplify the use of implicit coercions in the formalisation of
mathematics.

7

4.1 Formalising algebra with implicit coercions

The Calculus of Constructions with strong sums CC E has two sorts, * and 0,
related by the axiom * : 0. The rules for products are (*, *), (0, *), (*, 0),
(0, 0). The rules for sums are (*• *• *) and (0, *• 0). The system is Church
Rosser, strongly normalising, consistent and has decidable type-checking. In
CC E, it is possible to define several basic algebraic types, such as sets, groupoids,
monoids ... We give some of these definitions here. For the sake of simplicity, we
take Set=*·

Gpd = ET : Set.Eo : T-+ T-+ T.AxGpd o
AbGpd =ET: Set.Eo: T-+ T-+ T.(AxGpd o) /\(Comm o)

Mon = ET : Set.Eo : T-+ T -+ T.Ee : T.AxMon o e
AbMon =ET: Se~.Eo: T-+ T-+ T.Ee: T.(AxMon o e) /\(Comm o)

Grp = ET : Set.Eo : T-+ T-+ T.Ee : T.Ei : T-+ T.AxGrp o e i
AbGrp =ET: Set.Eo: T-+ T-+ T.Ee: T.Ei: T-+ T.(AxGrp o e i) /\(Comm o)

where Comm o is the proposition stating that o is commutative and AxGpd, Ax
Mon and AxGrp respectively state the axioms of groupoids, monoids and groups.
The canonical maps between the;e types, as shown in figure 1, yield a. coherent
set Ll of coercions. The context of coercions Ll can be used to formalise algebra.

AbGrptoGrp
Grp--------- AbGrp

GrptoMon l l AbGrptoAbMon
AbMontoMon

Mon AbMon

MontoGpdl lAbMontoAbGpd
AbGpdtoGpd

Gpd AbGpd

GpdtoSetl

Set

Fig. 1. Basic coercions for algebra

For example, we can apply comp= >.G: Gpd.fst (snd G) to monoids, groups ...
If moreover we define Op2 as >.T : Set.T -+ T -+ T then comp G is of type
Op2 G whenever G: Monoid, G: Group ...

4.2 Typical features of implicit coercions

They include:

8

- uniformity: we do not have any restriction on the domain and codomain of a
coercion. This enables us to treat in an identical manner canonical coercions
of a different nature, such as the one from naturals to integers or the one
from groups to sets;

- multiple inheritance: there can be several coercions maps with the same do
main and there might be more than one path between two types. For exam
ple, one can have four coercion maps f : A ---+ B, g : B -+ C, h : A -+ B'
and i : B' -+ C provided g o f and i o h are extensionally equal.

- top-down introduction of coercions: it is possible to introduce a coercion f :
A ---+ B and then a coercion g : B ---+ C. In fact, coercions can be introduced
in any order. This solves the problem of "super-type" which occurs when
coercions are required to be built up in a tree-like manner. In our syntax,
there is no problem in defining the natural, then the integers and declaring
a coercion from natural to integers, then build the rationals and declare a
coercion from integers to rationals ...

- splitting a coercion: it is possible to "split" a coercion f : A ---+ B into two
coercions g : A ---+ C and h : C -+ B provided f and h o g are extensionally
equal. This allows to postpone the introduction of new notions until they are
needed. For example, one does not need to introduce the notion of monoid
before the notion of group in order to split the coercion from groups to
groupoids into a coercion from groups to monoids and from monoids to
groupoids;

- back and forth coercions: it is possible to have two coercions f : A ---+ B and
g : B -+ A provided the maps are mutually inverse. Back and forth coer
cions allow for equivalent representations of a same mathematical object to
be used without any major bureaucratic difficulty. This is very convenient
for re-usability as experience shows that different users chose different but
equivalent representations of a same mathematical object. However, the ab
sence of 17-conversion limits significantly the usefulness of back and forth
coercions, as seen in the next subsection.

4.3 Limitations of implicit coercions

Our syntax for implicit coercions suffers from some limitations and should be
considered as a preliminary step towards a theory of implicit syntax. We try to
discuss some of these limitations briefly.

Re-usability The definition of the closure of a. set of coercions does not al
low for an immediate re-use of methods as can be seen in the following exam
ple. Assume we have a two types ColourPoint and Point with an implicit coer
cion i : ColourPoint --> Point. If we have a map move : Nat x Point ---+ Point
and c : ColourPoint, then we will not have movepair(n, c) : Point for every
natural number n. This choice has been made deliberately for the simplicity
of the syntax. Besides, we can always define another implicit coercion from
Nat x ColourPoint to Nat x Point.

9

Efficient proof-checking The conversion rules are rather inefficient for proof
checking because they require computations to be postponed until terms are
fully explicit. We conjecture it can be solved by considering a more general
form of conversion. In fact, the essential property to prove the coherence and
conservativity properties is that for every application of conversion

LllI' I- c: C LllI' I- C': s
LllI' I- c: C'

and derivations II'1 I- C1 : 81 and II'{ I- c~ : s~ with r """°*E(.tl) I'1, I'{ and
c """°*E(.tl) C1, CL one has C1 =13 c~.

The coherence requirement The definition of coherent set of pseudo-coercions
requires equality up to ,B-conversion. In practice, natural sets of pseudo-coercions
do not respect equality up to ,B-conversion. For example, the swapping maps
swap1 : (A x B) -4 (B x A) and swap2 : (B x A) - (A x B) where A and B are
closed types do not form a coherent set of coercions. However, this fact is closely
related to the choice of ,6-equality as the primitive notion of equality for pure
type systems. In our view, it is a problem of pure type systems not of implicit
coercions.

Polymorphic and general coercions The restriction to simple coercions is
a serious one. In practice, one might want to consider polymorphic coercions (of
closed type Ilx : A.B --> C) or even general coercions (of possibly open type
Ilx: A.B. For example, one might want to define the coercion collapse : IJT:
Type.List T - Multiset T which transforms a list of elements of an arbitrary
set into a multi-set by forgetting the ordering.

Unfortunately, the formulation of the proviso for polymorphic coercions be
comes quite intrinsic and is left as a subject for future work.

5 The coherence and conservativity properties

In this section, we prove that implicit coercions have the coherence and conser
vativity properties. Before we establish some preliminary results.

5.1 The rule (Ent1'y - A)

The set of derivable judgements remains unchanged if one considers the restricted
entry rule (Entry - A)

Lll 1- c: 8 I 1- t: A--> B if(c, s) E Axiom and L1 U {t, A - B} is coherent
.1, t: A - BI I- c: s

The set of derivable judgements remains unchanged if we replace (Entry) by
(Entry - A). The proof proceeds by induction on the derivations and uses in
duction loading: we prove that if .1II' I- M : A is derivable and .11 2 L1 is
coherent, then Ll'II' I- M : A in the system with (Entry - A).

10

5.2 Normal forms

We introduce the notion of e(L1)-normal form. Because of possible loops in the
graph of coercions, we are forced to consider a slightly weaker notion than usual.
We start with some preliminary results.

Definition 5 M -»E(LilI') N if there exists A such that L1II' f- M, N : A and
M -<(a) N.

The following fact is easy to establish but nevertheless important.

Lemma 6 If Ll!I' f- M: A and L1II' f- N: B with M -<(A) N, then LllI' f- N:
A.

The above lemma gives an alternative definition of -»E(AII')·

Definition 7 A term M is in e(LllI')-normal form if

- there exists A such that Ll II' f- M : A;
- if M -»E(.dlI') P, then there exists N such that P -»e(alI') N and N -»f3 M.

We will show that a term is in e(L1II')-normal form if it is typable in a con
text without coercions. As usual, we say M has e(LliI')-norma.l form N if N is
in e(LliI')-normal form, LllI' f- M : A and M -»•(.dlI') N. The notion of nor
mal form and reduction on contexts is defined recursively. We write, somewhat
loosely, r, x: A _,.E(.d) I'', x: A' if r -*<(A) I'' and A -.(air) A'.

5.3 Coherence

We show that that the coherence property holds.

Proposition 8 (Coherence) Let LllI' f- M: A be a derivable judgement. Let
Mi, M2 be e(LllI')-normal forms for M. Then Mi =/3 M2.

Proof: the proposition is proved by induction on the structure of the terms. The
only interesting case is when M = MiM2 • By induction hypothesis, Mi and M2

have at most one e(LliI')-norma.l form up to convertibility. Assume M has two
e(Ll I I')-normal forms N and P. We show they are ,B-convertible. First, note that
there exist coercions ii, ... , in, ji, ... , im such that N = Ni (ii (... (in N2) ...))
and P = Pi (j1 (... (jp P2) . ..)), where Nk and Pk are e(Ll!I')-normal forms
of Mk (k = 1, 2). By generation lemma, LliI' f- N{, P~ : IIx: A.Band L1II' f
N~, P~: A' with A' linked to A. Again by generation, Ll!x: A' f- i 1 (..• (in x) ...) :
A' -+ A and Ll!x : A' f- ii (... (jp x) .. .) : A' -+ A. Both terms have a
e(Ll, x: A')-normal form, say I and J respectively, with Lllx: A' f- I, J: A'-+ A.
By coherence, we know I =13 J. Hence I[N~/x] =/3 J[P~/x] and Ni (I[N~/x]) =f3
P{ (J[P~/x]).

11

5.4 Conservativity

To prove conservativity, we use induction loading.

Proposition 9 (Conservativity) Assume LljI' I- M: A is a derivable judge
ment. Then

- I', M and A have an <(LliI')-normal form;
- for every t(LliI')-normalforms I'', M 1 and A' of I', Mand A, the judgement

II'' I- M' : A' is derivable.

The result is proved by induction on the derivations.

5.5 Decidability of type-checking

Definition 10 - Let Ll be a set of pseudo-coercions. A pure type system has
decidable type-checking for Ll if for every context LllI' and pair of pseudo
terms (M, A), it is decidable if LliI' I- M: A is derivable.

- A pure type system has decidable type-checking if it has decidable type-checking
for all sets of pseudo-coercions.

- A pure type system has decidable type-checking for the standard syntax (STG)
if it has decidable type-checking for the empty set of pseudo-coercions.

The latter property is named so because derivation in the context without coer
cions correspond exactly to derivations in the standard syntax.

Lemma 11 Assume LliI' I- M: A, I'' -+>e(LI) r, M' E{LI) M and A' -+>e(LI) A.
Then LljI'' I- N': A'.

We can advocate Proposition 9 and Lemma 11 to prove decidability of type
checking.

Proposition 12 LllI' I- M : A is derivable iff Ll is a coherent set of coercions
and there exist I'', M' and A' such that II'' I- M': A' is derivable, I' -+>e(LI) I'',

M -+>e(LI) M' and A -+><(LI) A'.

One strategy to check whether LljI' I- M : A is derivable is therefore to compute
all possible legal t(Ll) reductions of I', M and A. This is achieved by defining
for every term M its set Exp LI (M) of possible explicitations of M relative to a
set of pseudo-coercions Ll. In the sequel, we let Ll• be the smallest subset of ..:1+
containing:

- all the pseudo-coercions c : A -+ B of Ll such that A "#!3 B;
- all the pseudo-coercions >.x : Ai.cn(Cn-1(... (c1x) ...) : Ai -+ Bn where for

i = 1, ... , n, Ci : Ai -+ Bi are pseudo-coercions in Ll and
- Ai+1 =f3 Bi for i = 1, ... , n - 1,
- Ai f.!3 Bj for i ~ j.

12

In other words, ..:1 • is the set of pseudo-coercions which do not contain any loop.
Exp .:l (M) is defined inductively on the structure of the terms:

Exp.:l(:r:) = {:r:}

Exp.:l(s) = {s}

Exp.:l(.ll:r:: A.B) = {.llx: A1.B1 I A' E Exp(A) /\ B' E Exp..:l(B)}

Exp.c,{L':r:: A.B) = {E:r:: A'.B' I A' E Exp(A) /\ B' E Exp.::i(B)}

Exp.c,(.X:r:: A.b) = {.X:r:: A'.b' j A' E Exp(A) /\ b' E Exp..:l(b)}

Exp.::i(M N) = {M'(i N') IM' E Exp.c,(M), N' E Exp 4 (N) and (i,A-+ B) E Ll•}

Exp..:1({a,b)) = {{a',b') I a' E Exp(a) /\ b' E Exp4 (b)}

Exp4 (fst M) = {fst M' IM' E Exp..:1(M)}

Exp4 (snd M) = {snd M' IM' E Exp.L\(M)}

where it is assumed that x is a variable and sis a sort. Note that Exp.L\(M) is
finite and contains all the possible legal reducts of M.

Lemma 13 LllI' 1- M : A is derivable if! Ll is a coherent set of coercions
and \I'' I- M' : A' is derivable for some I'' E Exp,::1(I'), M' E Exp(M) and
A' E Exp.L\(A).

We have a procedure to check whether a judgement with implicit coercions is
derivable in provided that:

- STC holds;
- it is decidable whether a set ..:1 of coercions is coherent;

- the closure ..:1° of a coherent set of coercions Ll can be computed effectively.

Note that the last two requirements are automatically fulfilled when the domains
and codomains of the coercions are normalising.

Definition 14 A pure type system with implicit coercions is standard strongly
normalising (SSN) if for every derivable judgement \I' I- M : A, the term M is
strongly normalising w.r.t. -4f3.

We have:

Theorem 15 A pure type system with implicit coercions has decidable type
checking (and type-synthesis) if it has STC and SSN.

In [17], L.S. van Benthem Jutting has proved that type-checking and type
synthesis are decidable for a normalising pure type system with finitely many

sorts. It follows:

Corollary 16 The systems of the >.-cube with implicit coercions have decidable
type-checking and type-synthesis.

13

6 Possible extensions and related work

In this section, we put our work into a more general perspective by looking at
some related work. We also discuss the possibility of using implicit coercions to
define subtyping.

6.1 Implicit coercions with principal typing

P. Aczel and A. Bailey have recently suggested an alternative approach to im
plicit coercions. Their approach is based on type systems with type-casting and
principal types such as the type system of Lego. Principal types are crucially
used in the method rule: if i : A'-+ A is a coercion, f: A-+ Band a :: A' (where
:: denotes principal typing), then f a : B. If a : A but not a :: A', then f a will
not be legal. However, one will be able to type-cast a and apply it to f. In other
words, f (a: A) : B. In our view, their approach is extremely syntactic and does
not fully reflect the mathematical intuition behind the use of implicit coercions.
However their approach has the considerable advantage to yield a simple and
efficient type-checking algorithm.

6.2 Records

G. Beta.rte and A. Tasistro have recently provided an alternative solution to the
problem of implicit syntax based on dependent records ([5, 6]). Roughly speak
ing, record types correspond to E-types and coercions correspond to projections.
The specific structure of the coercions has the pleasant effect to simplify the co
herence problem and to allow for coercions between records with free variables.
Moreover, the problem of conversion seems to disappear. Because of the obvious
advantages of their approach, it would be interesting whether their results can
be carried over to the framework of pure type systems.

6.3 Classes

The original motivation for our work was to enhance proof-checkers with a notion
similar to that of type class as it is used in Gofer {[11, 12]) or Haskell ([10]).
Although our work shares many motivations with type classes as developed in
these languages, the actual formalisms of type classes and implicit coercions are
quite distinct. It makes it difficult to compare formalisms.

6.4 Subtyping

The type system for implicit coercions remains strongly typed in the sense that
every term has at most one type (provided the pure type system is functional).
One might consider replacing the Method rule with a subsumption rule

LllI' I- M: A if(t: A-+ A') E Ll
LllI' I- M: A'

14

and redefine e(..:1)-reduction as the compatible closure oft -+E(A) it if i E ,.:1+. In
this way, one would obtain type systems with subtyping. It would be interesting
to see whether the coherence and conservativity conditions hold for this new
syntax.

6.5 Implementation

This work originates from previous work with Peter Aczel on formalising Galois
theory in Lego. In absence of a mechanism to handle multiple inheritance, we
realised that the syntax was becoming too heavy and the number of identifiers
was becoming disproportionate very rapidly. This led us to consider the possi
bility of implementing implicit coercions in Lego; this was done by September
1993. However, this implementation only supports single inheritance. It would
be nice to have an implementation of the syntax proposed in this paper.

7 Conclusion

In this paper, we have presented a modified syntax for pure type systems which
allows for a uniform treatment of implicit coercions. The syntax enjoys some
important properties and has proved useful in the formalisation of mathematics
in Lego ([4]). However, the syntax also suffers from some severe limitations.
Future research should concentrate on the possility of overcoming some of these
limitations, especially the one to simple coercions.

In the longer term, it seems important to understand the interaction between
inheritance, subtyping and argument synthesis in order to be able to bring the
flexibility of expression in formal systems close to the one of informal mathe
matics. Such a program, if completed, would constitute a definite step towards
feasible formal mathematics.

References

1. P. Aczel. A notion of class for type theory. Note, 1995.
2. D. Aspinall a.nd A. Compagnoni. Subtyping dependent types. In Proceedinga of

LICS'96. IEEE Computer Society Press, 1996. To a.ppea.r.
3. A. Bailey. Lego with classes. Note, 1995.
4. G. Barthe. Formalising algebra. in type theory: fundamentals and applications to

group theory. Manuscript. An earlier version appeared as technical report CSI
R9508, University of Nijmegen, under the title 'Formalising mathematics in type
theory: fundamentals and case studies', 1995.

5. G. Beta.rte and A. Tasistro. Extension of Ma.rtin-Lof's theory of types with record
types and subtyping: motivation, rules and type checking. Manuscript, 1995.

6. G. Beta.rte and A. Tasistro. Formalisation of systems of algebras using dependent
record types and subtyping: an example. Manuscript, 1995.

7. R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W.
Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Pana.nga.den, J.T. Sasaki,
a.nd S.F. Smith. Implementing Mathematic1 with the NuPrl Development Syatem.
Prentice-Hall, inc., Englewood Cliff's, New Jersey, first edition, 1986.

15

8. N.G. de Bruijn. The ma.thema.tical vernacular, a. langua.ge for ma.thematics with
typed sets. In R. Nederpelt, H. Geuvers, and R. de Vrijer, editors, Selected pa.per•
on Automath, volume 133 of Studie1 in Logic and the Foundation. of Mathematica,
pages 865-935. North-Holla.nd, Amsterdam, 1994.

9. C.A. Gunter and J.C. Mitchell. Theoretical Aapecta of Object-Oriented Program
ming: Typea, Semantic& and Language Deaign. The MIT Press, 1994.

10. P. Hudak, S.L. Peyton Jones, P.L. Wadler, Arvind, B. Boutel, J. Fairbairn,
J. Fasel, K. Guzman, K. Hammond, J. Hughes, T. Johnsson, R. Kieburtz, R.S.
Nikhil, W. Partain, and J. Peterson. Report on the functional programming la.n
gua.ge Haskell, version 1.2. Special l11ue of SIGPLAN Noticea, 27, 1992.

11. M. Jones. Introduction to Gofer. Included as part of the Gofer distribu
tion. Available by anonymous ftp from nebula.cs.yale.edu in the directory
pub/haskell/gofer, 1991.

12. M. Jones. A system of constructor classes: overloading and implicit higher-order
polymorphism. Journal of Functional Programming, pages 1-251 January 1995.

13. Z. Luo. Computation and Rea1oning: A Type Theory for Computer Science. Num
ber 11 in International Series of Monographs on Computer Science. Oxford Uni
versity Press, 1994.

14. Z. Luo. Coercive subtyping. Draft, 1995.
15. F. Pfenning. Refinement types for logical frameworks. In H. Geuvers, edi

tor, Informal Proceeding1 of TYPES'93, pages 285-299, 1993. Available from
http://www.dcs.ed.a.c.uk/lfcsinfo /research/ types-bra/ proc /index.html.

16. R. Pollack. Implicit syntax. In G. Huet and G. Plotkin, editors, Informal Proceed
inga of Firat Workahop on Logical Framework•, Antibea, May 1990.

17. L. S. van Benthem Jutting. Typing in pure type systems. Information and Com
putation, 105(1):30-41, July 1993.

18. P. Wadler and S. Blott. How to make ad hoe polymorphism less a.d hoe. In
Proceeding1 of POPL '89, pa.ges 60-76. ACM Press, 1989.

19. A. Wikstrom. Functional Progrmmaming u1ing Standard ML. lnterntional Series
in Computer Science. Prenctice Hall, 1987.

