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Abstract 

Present·day modelling of traffic in broadband communication requires the use of rather sophisticated stochastic 

processes. Although a large class of suitable stochastic processes is known in the literature, their rather 

complicated structure limits their use because of the laborious numerical evaluation involved. The present 

study concerns the so·called periodic Pollaczek processes. The characteristics of the arrival process, such 

as service time Tn and interarrival time Un, are here periodic functions of n, i.e. the vector (Tn,lTn.) and 

( r n+N 1 an+N) have the same distribution, N being the period. The sequence Wn, n = 11 2, .. . 1 defined by 

Wn+l = [wn - Tn - Un]+ 

is investigated; as such the queue under consideration is a direct generalisation of the classical Pollaczek 

GI JG /1 queue. It appears that the model is a quite flexible one, and moreover very accessible for numerical 

evaluation if the distributions of all the service times, or of all the interarrival times, have rational Laplace­

Stieltjes transforms. 

AMS Sub1ect Classification (1991): 90822, 60K25 

Keywords Cf Phrases: periodic arrival processes, actual waiting times, stationary distributions 

1. INTRODUCTION 

For the classical G I/ G / 1 waiting time model Pollaczek characterises the structure of the actual 
waiting time process Wn, n = 1, 2, ... , by the relations 

n = 11 2, ... , 
(1.1) 

where wn is the actual waiting time of the nth arriving customer, w 1 the initial waiting time and 

Pn := 'Tn - O'ni (1.2) 

with Tn the service time of the nth arriving customer, Un the time between the nth and (n + l)st 
arrival. The Tn,n = 1,2, ... , and similarly, the un,n = 1,2, .. ., are i.i.d. nonnegative stochastic 
variables, and further {-r n, n = 1, 2, ... } and {er n, n = 1, 2, ... } are independent families. 

A generalisation of this classical model may be formulated as follows. let 

(1.3) 

be a discrete time Markov chain with a countable, irreducible state space S and with stationary 
transition probabilities. Here (p;; ), i, j E 5, shall denote the one-step transition probabilities; X1 = x 1 

shall be the initial state of the Xn-process. 
Further, let p(j),j ES, be a set of stochastic variables with distributions rj(·),j ES, and let 

Pn = p(Xn), n = 1, 2, ... , (1.4) 
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be stochastic variables defined on the Xn·process, such that for all n = 1, 2, ... , 

Pr{p,.+1 < p,Xn+i = ilxm = im,Pm = p(im),m = 1, ... , n} = r;, (p)p;.;, (1.5) 

for all in E S. 
Define the sequence Wn, n = 1, 2, .. ., by 

Wn+l = [wn + PnJ+, n = 1,2, ... , (1.6) 

for given initial w 1 = w1 ~ 0. 
The process (xn, w,.),n = 1, 2, ... , as defined above will be called a Pollaczek waiting time process. 

Obviously if we take Pn to be the difference of two nonnegative stochastic variables -r(xn) and u(x,.), 
so 

Pn = r(xn) - u(xn), (1.7} 

then Wn may be interpreted as the actual waiting time of the nth arriving customer whose service 
time -r(xn) and next interarrival time o-(xn) depend on the state of the Xn·process. 

The (xn, wn)-process has been introduced by ARJAS [2]. He presents a fairly detailed study, however, 
does not present results which are useful in actual performance studies. ASMUSSEN and THORISSON 
[3] study a similar model as Arjas, but with the Xn·process replaced by a Markov process with a 
general state space. Their goal concerns the modelling of periodic queues. Indeed, the classical 
queueing models are not suited to model queueing situations with arrival processes, which lack a 
simple regenerative structure. The introduction of semi-Markov processes, see e.g. [7], [8], [17], 
has provided a greater :flexibility in the modelling of the arrival, and also in that of the servicing 
process. The inherent numerical analysis is of course rather laborious, but generally within the limits 
of available computer facilities. 

Queueing models with periodic arrival processes have been studied by several authors, see e.g. [3], 
[4], [5], [6]. The relevant studies mainly concentrate on the derivation of limit theorems and ergodicity 
conditions. Tangible results suited for numerical evaluation are hardly obtained. Actually, authors 
experience with the investigation of an M/G/1 model with a periodical arrival process with rate>.(·) 
and >.(t + µ) = >.(t) for all t > O,µ being the period, is most disappointing indeed. Even for the very 
simple case with 

>.(t) for 

the analysis of the actual waiting time process is governed by a complicated integral equation, which 
seems hardly accessible for further analysis. 

A more promising approach of periodical queueing processes is obtained whenever the characteristics 
of the queueing model are periodical functions of the number of arrivals. Such a model and actually 
a very general one is provided by the (xn, Wn}-process introduced above, if we specify the state space 
S and the one-step transition probabilities as follows: 

S = {1,2, ... ,N}, 

p;; 1 for j = i + 1, i = 1, ... , N - 1, and for i = N, j = 1, 
0 otherwise. 

(1.8} 

This special process will be called a periodic Pollaczek process. In section 2 the structure of this 
process is described and some notations are introduced. The ergodicity conditions are introduced, 
and it is assumed that they apply. These conditions follow from a general study of LOYNES [9]. 
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In section 3 the functional equations for the Laplace-Stieltjes transforms of the stationary distribu­
tions of the actual waiting times w 1 , ... , w N are formulated for the case that the service times and 
the interarrival times do not all have lattice distributions. In section 4 the functional equations are 
derived for the case that all these distributions are lattice variables with state space the set of positive 
integers. 

In section 5 we briefly discuss the case M = 1, i.e. the classical Pollaczek model, as the well-known 
results given here are needed in the subsequent sections. 

The functional equations derived in section 3 and 4 formulate a Hilbert Boundary Value Problem 
for a set of functions. Such boundary value problems have been extensively studied, see e.g. [10], [11] 
[12]. The somewhat special type of coefficients in our functional equations, which is due to the fact 
that they consist of the L.S.-transforms of the service time and interarrival time distributions, makes it 
possible to construct quite explicit solutions if the L.S.-transforms of all the service time distributions 
are rational functions without a need to specify those of the interarrival time distributions. This is 
also the case, if all the L.S.-transforms of the interarrival time distributions are rational. 

In section 6 the periodical Pollaczek process is analysed for the case that all the service time 
distributions have a rational L.S.-transform. Section 7 discusses the case with the L.S.-tranforms of 
all the interarrival time distributions rational functions. Actually the results obtained in sections 6 
and 7 are extensions of the GI /Kn/land the Km/G/l model, see [14]. 

The solutions obtained in sections 6 and 7 are quite explicit apart from the solution of a set of linear 
equations. The number of equations depends on the degrees of the polynomials in the denominators 
of the rational L.S.-transforms. 

In section 8 some special variants of the periodic Pollaczek waiting process are shortly discussed; for 
a detailed analysis the reader is referred to (19]; the analysis concerns again the solution of standard 
Riemann Boundary Value Problems. 

The analysis of the periodical Pollaczek waiting process shows that this process is quite flexible in 
modelling queueing processes with a rather complicated traffic structure, in particular they seem to be 
useful to describe models with bursty traffic. In the performance analysis of present day multiservice 
networks the models of classical queueing theory are frequently inadequate for modelling the actual 
queueing processes. This is due to the complicated character of the traffic to be processed by such 
systems. This complicated character stems from the demand to transport speach, data and video via 
the same network and to optimize such transport. 

An intense world wide research activity is presently devoted to the modelling of traffic processing. 
The introduction of periodic Pollaczek waiting processes and its analysis is motivated by the need 
to incorporate bursty traffic in the modelling. Further algebraic and numerical analysis is needed to 
judge the usefulness of these period Pollaczek processes in actual performance analysis. 

2. THE PERIODIC POLLACZEK GJN/GN/l QUEUEING MODEL 

With a slightly different notation we reformulate the (xn, Wn)-process with the property (1.8) of 
the preceding section. 

For a fixed integer N ;::: 1 let 

Pn = (p\nl, ... ,p<;:>), n = 1,2, ... , (2.1) 

be a sequence of i.i.d. stochastic vectors, with the components of each vector independent stochastic 
variables. 

The sequence of vectors Wn, n = 1, 2, .. ., 

Wn=(w\nl, ... ,w<;:l), n=l,2, ... , (2.2) 

is recursively defined by: for n = 1, 2, ... , 
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(n) [ (n) (n) ]+ , . 2 N 
W; = W;-i + P;-i 1or J = , ... , , (2.3) 

with initial value 

Concerning the Pln) it will be assumed that it is the difference of two independent and positive 
variables, 

(2.5) 

The Wn-process so defined will be called a periodical Pollaczek GIN/GN/l queueing model with 
period N. 

We introduce some further notations and assumptions. 
By r;, u; and P;,i = 1, ... , N, we shall denote stochastic variables such that r 1 , u 1 , ... , r N, u N, 

are all independent and for n = 1, 2, ... , 

It will be always assumed that: for j = 1, ... , N, 

i. /3; := E{ri} < oo, a;:= E{ui} < oo, 'Yi:= E{pi}; 

ii. 'Y = (3 - a < O; 

where 

N N N 

/3 == 2: .ai. a:= 2:: ai, 'Y := L 'Yi· 
i=I i=I i=I 

Further we define for j = 1, ... , N, 

a;(p) := E{e-pu; }, f3;(p) := E{e-PT;}, 

"Y;(p) := a;(-p)f3;(p), 

N N 

a(p) := II a;(p), ,6(p) := fl.6;(p), 
i=I i=I 

'Y(P) := a(-p)f3(p), 

Rep;::: 0, 

Rep =O, 

Rep;::: O, 

Rep= 0. 

(2.6) 

(2.7) 

(2.8) 

Whenever the a;(p) and/or the /3;(P) are rational functions of p then we write: for j = 1, ... , N, 

( ) a1i(P) 
ai p = a2i(P)' 

/3·( ) = b1;(p) 
' p b2i(P)' 

Rep;::: 0, (2.9) 

with 

i. a2;(P) a polynomial of degree m;, 
b2; (p) n" '' 

(2.10) 

ii. a1;(p) a polynomial of degree <mi, 
b1i(P) < n;; 



iii. a1j(O) = a2;(0) #- 0, 
b1j(O) = b2j(O) #- O; 

iv. 
N 

ak (pi = II akJ (pi 
j=l 

N 

µ := .z:=m,, 
j=l 

N 

bk(P) == fibkj(p), 
j=l 

n 

v :== Lni; 
j=l 

k == 1, 2, Rep ~ o, 

and it is assumed that the various rational functions in (2.9) are irreducible, so that 

a 1 (p) has m 1 poles in Rep< 0, 

f3;(p) nj Rep< O; 

these poles counted according to their multiplicities. 
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(2.11) 

REMARK 2 .1. Unless stated otherwise it will always be assumed that r j and a j, j = 1, ... , N, have 
absolutely continuous distributions, so that, cf. [16], 

Ja1 (po)I = 1 with Re Po = 0 implies Po= 0, 

lf3;(po)I = 1 
(2.12) 

This restriction is for the greater part of the following analysis rather inessential, but the case with all 
r; and all <7j being lattice variables requires a slightly different approach. In such a case it is more 
convenient to work with the generating functions of the distributions of Tj and <7j, rather than using 
their Laplace-Stieltjes transforms, see section 4. D 

REMARK 2.2. The nth arriving customer with k = n mod N will be called a type "k"-customer. D 

REMARK 2.3. Next to the vector sequence Wn, n = 1, 2, ... , we introduce the vector sequence 

in= (i\nl, ... ,i~l), n = 1,2, .. ., 

with 

•(n) ·- [ (n) + (n)]-
lj .--Wj Pj ) j = 1, .. ., N. 

Obviously with probability one 

(2.13) 

iJn) ~ 0. 0 (2.14) 

3. DERIVATION OF THE FUNCTIONAL EQUATIONS 

From the definition of the Wn-process in the previous secton it follows that the successive epochs 
of the sequence 

w\nl, n = l, 2, .. with W1 = 0, (3.1) 

at which w\n} = 0 are regeneration points of the Wn-process. Note, however, that if T N >a N with 
probability one then the sequence does not have such epochs. But the assumption (2.7)ii implies that 
at least one h E {1, ... N} exists for which the sequence w~n+h), n = 1, 2, ... , does have epochs at 

which w~m} = 0. Therefore the generality of the analysis is not restricted by assuming that h = 1, 
because the arrival epoch of every type h-custorner may be taken as the starting point of the arrival 
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process. So we may and do assume that (3.1) possesses epochs at which w(n) = 0. 
Define 

n1 := min {n: w[n+i) = Olw1 = O}, 
n=l,2, ... 

(3.2) 

so that n 1 N is the number of customers served in a type 1-busy period, such a period being defined 
as the time interval between the successsive arrival epochs of two type I-customers with zero waiting 
time. Note: n 1 is also the number of type j-customers served in a type 1-busy period. 

Obviously, the w(n)·process is a random walk on [O, oo) with the zero state reflecting. It is readily 

seen that its drift is negative since 'Y < O, cf. (2.7)ii, so the w(n)_process is positive recurrent, cf. [9]. 
Its state space is not a subset of [O,oo) if at least one of the distributions of -r; or CTj is absolutely 
continuous. It is readily seen that the same conclusions hold for each of the sequences 

w)nl, n=l,2, ... , with j=l,2,. . .,N. (3.3) 

It follows that the w}n)_squences converge in distribution for n -+ oo for every j E N. Denote by 

w i a stochastic variable with distribution the limiting distribution of the wt) ·sequence. It is readily 

shown that the sequence i;n),n = 1,2,. . ., cf. (2.13), also converges in distribution for n-+ oo; denote 
by ij a stochastic variable with distribution this limiting distribution. It then follows from (2.3), (2.6) 
and (2.13): for j = 2, ... , N, 

w; - [w;-1 + P;-1]+, i;-1 - -[wj-1 + P;-1t, 

W1 - [wN + PN]+, i1 - -[wN + PNt· 
(3.4) 

From the identity: for real x 

e-P" + 1 = e-p[z]+ + e-p(z]-, 

we obtain from (2.3) and (3.4) 

(3.5) 

Hence by taking expections in (3.5) and by noting that w)n) and p}n) are independent, cf. section 2, 
it follows, cf. (2.8): for Rep= O; j = 2,. . ., N, 

i. 

(3.6) 

ii. 

REMARK 3.1. Note that if at least one of the distributions of -r; or er;, j = 1, ... , N, is absolutely 
continuous then all w; and i; are nonlattice variables. Further it is well known that 

1-E{ePi>} 

-pE{i;} ' 
(3.7) 

is the Laplace-Stieltjes transform of an absolutely continuous distribution with support (-oo, O); the 
ergodicity of the w;n)_sequence implies that E{i;} is finite. D 



Put for j = l, ... ,N, 

Rep~ 0, 

E{i1} 1 -E{ePi,} 
ill1(P) ·--- if E{i1}>0, Rep:S::O, .-a-(3 -pE{i;}' 

:= 0 = 0. 

Next introduce the vectors and matrices 

<l>(p) := (<l>i(p), ... ,<l>N(p)), 

W(p) := (Wi(p), ... , W N(p)), 

f;1(p) := -y1(p)6;;, i,j E {l, ... ,N}, 

O;j the Kronecker symbol, 

P = (Pij) with p;1 as in (2.8), 

I the identity matrix. 
Hence the relations in (3.6) may be rewritten as: for Rep= 0, 

<I>(p)[J - f(p)P) = ((3 - a)p 'I!(p)P. 

It is readily verified that, cf. (2.8), for Rep = 0, 

DN(P) :=III - f(p)Pll = 1 - -y(p), 

DN(p)P[I - f(p)P)- 1 = 

i2i3 · · · i N ')-2 
')-3 · · ·'i'N i1i3 ·· ·'i'N 

where for brevity we have written 

:yj = 'Y;(p). 

It follows from (3.10) that : for Rep= 0, 

<l>(p) = ((3 - a)p il.J(p) P[I - f(p)Pi- 1 , 

· · · i2i3 · · · iN-1 
'i'3 · · -iN-1 

i1 i2 · · · 'i'N-1 

note that DN(P) has in p = 0 a zero with multiplicity one, because 

From the definition of <I>1 (p) and w1(p), j = 1, ... , N, it follows that: 
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(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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i. if!j(P) is regular for Rep> 0, continuous for Rep~ 0, 

if!i(P) = 1 for p= 0, 

1 
if!j(p) = 0(1) for IPI -> oo, I arg PI :'5 2ir; 

ii. iI!j(p) is regular for Rep< 0, continuous for Rep::; O; 

if!i(P) = E{i;} for p =0, 
a-(:J 

1 1 1 
iI!i(P) = 0( jpj) for IP!-> oo, 211' :'5 arg p :$ 12ir. 

(3.15) 

The set of equations (3.13) for the unknown vectors il>(p) and 'li(p), and similarly the equivalent 
set (3.10), formulate together with the conditions (3.15) a homogeneous Hilbert Boundary Value 
Problem for the 2N unknown components of il>(p) and iI!(p), with the imaginary axis Rep= 0 the 
line of discontinuity, cf. (10]. p. 384, see also (11], (12]. Actually, the functional equation (3.13) differs 
slightly from that discussed in [10] because the line of discontinuity is not a closed contour bounding 
a finite domain. 

The construction of explicit solutions of these types of boundary value problem is generally hardly 
possible except in the three cases: 
i. all f:J; (p) are rational functions, 
ii. )l a:;(p) n 1' H 

111. for a subset of N all f:J;(p) are rational 
and for the complementary subset all a;(p) 
are rational. 

In the context of Queueing Theory the Hilbert Boundary Value Problem formulated above have 
been studied in a slightly more general form by Miller [13]. In his approach it is shown that the matrix 
1-r(p)P can be written as the product of two matrices, one with all its elements regular for Rep< 0, 
the other with its elements regular for Rep > 0. The existence of such a factorisation is also shown in 
[10], however, it leads to a rather formal solution of the problem. The cases, i and ii mentioned above 
will be analysed in the next section which quickly leads to results accessible for numerical evaluation. 

REMARK 3.2. It is readily verified that for p = 0 the relation (3.10) is an identity; note that f(O) is 
the identity matrix and q;i(O) = 1, j = 1, ... , N. We next consider the relation (3.10) for Rep = 0, 
p .... 0. 

Because of (2. 7) we have for Rep = O, p -+ O, 

f;;(p) = 1 - fY'fi + o(p) for i = j, 
= 0 i # j, 

(3.16) 

so 

d 
r(p) =I+ p dp f(p) + o(p)I. (3.17) 

Since P has an inverse we have from (3.10) for Rep= 0, 

4>(p)(P-1 - f(p)] = (f:J - a)p iI!(p), 

and so by using (3.17) for Rep= 0, p-> 0, 



d 
<P(p)[P- 1 -1 - p d/(p) + o(p)J) = (/3 - a)p W(p). 

Multiply (3.18) on the right by 1 r, the transposed of the unit vector (1, ... , 1), then since 

rp- 1 - r11r = (o, ... , o), 

we obtain for Rep= 0, p ___, 0, 

[-<I>(p) dd/(p) lp=O + o(l)J]lT = ((3 - a) iJJ(p)lT, 

Since, cf. (3.8) and (3.15), 

<I>(O) = (1, ... , 1), iJi(O) = ~(J(E{i1}, ... ,E{iN}), 
a-

we have from (3.16) and (3.19) by letting p--> 0 that 

N N N 

a-(3 = Ll'j = l::E{ij} = 2::-E{[wj +Pjn• 
j=l j==l r==-1 
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(3.18) 

(3.19) 

(3.20) 

The relation (3.20) shows that the average total idle time during a 1-cycle, i.e. the time between 
successive arrivals of type 1-customers is equal to a - (3; it is readily seen that the same result applies 
for a j-cycle; a j-cycle being defined analogously as a I-cycle. O 

4. THE FUNCTIONAL EQUATIONS FOR THE LATTICE CASE. 

In the derivations of the preceding section we have used the Laplace-Stieltjes transforms of the 
various distributions involved. When, however, the state space of all Tj and a 1 , j = 1, ... , N, is 
the set of positive integers it is preferable to use generating functions instead of Laplace-Stieltjes 
transforms. In this section we shall derive the functional equation for the case of lattice variables. 
Exactly the same notation will be used but p shall stand for the variable of the various generating 
functions. So we have for j = 1, ... , N, 

N 

1'1(P) := (>1(P-l )(Jj(p), "Y(P) :=II /j(p), !PI= 1, 
(4.1) 

j:.:l 

and if aj(p) or (Ji(P) is a rational function of p then 

(3 ·(·) = b1 1(p) 
1 p b2J(P)' 

!PI :; 1, (4.2) 

with 

i. a2J(P) (L polynomial in p with degree Tnj, 

b2j(p) p nj; 
(4.3) 

ii. a11(P) p < mj, 

blj(P) p < nj; 
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iv. a2;(P) has m; poles in IPI > I, 

b2;(p) n; ,, IPI >I. 

It will always be assumed that a1;(p) and a2;(p) have no common factors, similarly for b1;(p) and 
ba; (p) and that the Ti and O' j are aperiodic lattice variables, i.e. 

la;(P)I = 1 for a p with 

l.Bhll = 1 , , P 

IPI = 1 implies p = 1, 

IPl=l p=l. 
(4.4) 

Again it is assumed that the sequences w;n), n = 1, 2, ... , converge in distribution for n _, oo. 
The variables w1, i;, j = 1, ... , N, a.re introduced as in the previous section. 
We start from the identity: for real y, 

p[yj+ + p[Y]- = pY + 1. 

Hence 

So for IPI = 1, j = 2, ... , N, 

W· w -1 1 . 1 - E{p-i,_,} 
E{p '}-1';-1(p)E{p' }=-(1--)E{i;-i} (l 1)E{' }' 

p - - :;; lj-1 

Put for j = 1, ... ,N, 

IPI :5 1, 

E{i;} 1 - E{pi;} 
W·(p) ·- -- IPI >_ l, 

' .- a - (3 -(1- ~)E{i,}' 

and introduce the vectors and matrices 

q,(p) := (q,,(p),. ·., q,N(P)), 

w(p) := (W1(p),. .. , 1h(p)), 

I';;(p) := '"Y;(p)8;;, i,j E {l,. . ., N}. 

The relations ( 4.6) may now be rewritten as: for IPI = 1, 

q,(p)[l - I'(p)P] = ((3- a)(l - p- 1 ) '1t(p)P. 

From (4.9) we obtain as before: for JPI = 1, p # 1, 

q,(p) = ((3 - a)(l - ~) P[I - I'(p)PJ-1. 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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From the definition of 4>1(P) and 'l';(p), j = 1, ... ,N, it follows that 

i. 4>j(p) is regular for IPI < 1, continuous for !PI :S 1, (4.11) 

'1>1(1) = 1, 

ii. w1(p) is regular for IPI > 1, continuous for IPI 2: 1, 

w( ) = E{ii} 
J 1 ()/-(J' 

'¥1(P) = 0(1) for IPI-+ oo. 

The relation (4.9) for the vectors cf!(p) and W(p), and similarly the equivalent relation (4.10), 
formulates together with the condition (4.11) a homogeneous Hilbert Boundary Value Problem with 
the unit circle IPI = 1 the contour of discontinuity, cf. [10] p. 384. 

5. so~rn REMARKS ON THE CASE N = 1 

For the case N = 1 the relation (3.10) becomes: for Rep= 0, 

E{i} 1-E{ePi} 
a - (J -pE{i} ' 

where we have written 

w for W1 and i for i1. 

By taking p = 0 in (5.1) it follows, cf. also (3.20), 

E{i} =a - (J. 

Let v be a positive stochastic variable with distribution 

then 

v 

Pr{v < v} = E~i} j Pr{i 2: u}d·u, 11 > 0, 
0 

= 0, 11 '.O'. 0, 

Hence, it follows from (5.1), (5.2) and (5.4), that: for Rep= 0, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

The present case is actually the classical GJ/G/1 model with a(p) and (J(p) the Laplace-Stieltjes 
transforms of the interarrival time and of the service time distribution, with w a stochastic variable 
with distribution the stationary distribution of the actual waiting time process and i the idle time in 
a busy cycle, d. [14], [15]. From the results of Queueing Theory of the GJ/G/1 model, or from those 
of Fluctuation Theory, cf. [14], II.5 and I.6.6, it follows that there exists a unique pair of functions 
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K_(p) and K+(P) such that 

1. K_(p) is regular for Rep> 0, continuous for Rep::'.'. 0, 

K_(O) = 1, K_(p) == 0(1) for IPI -> oo, 
7r 

larg PI :S 2' 

K_(p) has no zeros in Rep;::: 0, 

ii. K+(p) is regular for Rep< 0, continuous for Rep :S 0, 

1 3 
K+(O) = 1, K+(P) = 0(-log IPI) for IPI-> oo, 271' :S arg P :S 271'' 

iii. eK+(p)-K-(p) _ 1 - 'Y(P) 
- ({3-a)p' 

provided /3 - °' < 0, and 

N 

L (r,-a,) 
j=::l 

Rep==O, 

(5.6) 

is not a lattice variable and nonzero with positive probability. For integral expressions expressing 
K+(-) and K_(-) a;; functionals of 1'(·), see [14], p. 143 and [15]. 

Actually, the relation (5.6)iii describes the factorisation of 

Rep== 0, 

as the product of two functions with one the boundary value of a function regular in Rep < 0, the 
other regular in Rep > 0. A further result from G I/ G /l queueing theory is that: 

E{e-pw} == eK-(p), Rep::'.'. 0, 

E{ePv} == eK+(P), Rep :S 0. 

6. THE CASE WITH ALL (Jj(p) RATIONAL 

(5.7) 

In this section we shall consider the case that all /3j (p), j = 1, ... , N, are rational functions of p, 
and no assumptions are made concerning the a,(p), j = 1, ... , N. 

We start from the relation (3.13) written as: for j = 1, 2, ... , N, and Rep= 0, 

((3 - a)p 
<P,(p) = 1 _ 'Y(P) [IJ!(p) P[I - f(p) Pt 1], (1 - 1(p)), (6.1) 

(6.2) 

By using (5.6)iii we rewrite this relation as: for j = 1, ... , N, Rep = 0, 

b2 (p) e-K-(p) if!J(P) = e-K+(P) b2 (p) [W(p) P[l - f(p)Pt 1Ji (1 - 'Y(P)). 
b2j(p) b2j(p) 

(6.3) 

From (3.10), (3.15) and (5.6)i it is seen that the function in the lefthand side of (6.2) is the boundary 
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value of a regular function in Re P > 0 which for IPI -> oo, I arg PI < ~",behaves as IPl"-n;. By noting 
that in the elements of the jth column of the matrix in (3.12) the factor 1;(p) does not occur it is 
readily seen from (3.15) and (5.6)ii that the righthand side of (6.2) is the boundary value of a function 
regular in Rep < 0 and that for !PI -> oo, ~" < arg p < ~"• it behaves as !Pl"-n;. Consequently, 
these functions for Rep > 0 and Re p < 0, respectively are each other's analytic continuation. Hence 
by applying Liouville's theorem it follows that these functions are both a polynomial say, P;(p), of 
degree v - n;, i.e. for j = 1, ... , N, 

4>·( ) - b2;(P) eK-(p) P·(p) Rep>_ 0, 
1 p - b2(p) 1 ' 

N 

P;(p) a polynomial in p of degree v - n;, v = ~ n; the degree of b2 (p). 
i=l 

Substitution of (6.4) into (3.6) leads to: for j = 2, ... , N, Rep= 0, 

b::c~ieK-CPlP;(p)- b2i;(~~)1;-1(p)eK-(p)p;-1(p) = -p i{l;-1(p), 

or by using (5.6)iii: for j = 2, ... , N, Rep= 0, 

(6.4) 

(6.5) 

The function in the lefthand side of (6.5) is the boundary value of a function regular for Rep< O, 
cf. (5.6)ii and (6.4), that in the righthand side is also such a function, cf. (3.9) and note that 
{l - '")'(p)}b2 (p)/ p has no poles in Rep ::5 0, since all /3;(p) are rational. Hence by analytic continuation 
(6.5) holds for Rep ::5 0. It follows from the continuity of i{l;- 1 (p) in Rep::=; 0 that the zeros of 

1 - -y(p) b (p) in Rep< 0 
(/3 - c;)p 2 - ' 

should be zeros of 

note that K+(P) is continuous in Rep ::5 0. 

(6.6) 

(6.7) 

By applying Rouche's theorem it is readily shown, cf. [14], p. 323, that the function in (6.6) has 
for f3 - o < 0 exactly v zeros £1 , •.. e.,, say, in Rep::::; 0 and their real parts are all negative. Hence, if 
all these zeros have multiplicitly one; see remark 6.1 below, then: for p =Ek, k = 1, ... , v, 

i. (6.8) 

the relation in (6.S)ii follows from the last realtion in (3.6) by using the same arguments as above. 
From (3.15)i, (5.6)i and (6.4) we have 

b21(0) 
b2 (0) P;(O)=l, j=l, .. .,N. (6.9) 

Because P;(p) is a polynomial of degree v - n;, cf. (6.4), and so has v - n; + 1 coefficients the 
determination of these polynomials requires the determination of 
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N 

l:)i, nj + 1) = N + (N - l)v, (6.10) 
j=l 

unknowns. Because 1 - 1(p) is the main determinant of the set of equations (3.6) for the if>J(p), cf. 
(3.11), it follows that the relation (6.S)ii depends linearly on those in (6.S)i. So it is seen that the 
conditions (6.8)i and (6.9) represent (N-l)v+N inhomogeneous linear equations for the N +(N-l)v, 
cf. (6.10), coefficients of the polynomials Pj (p), j = l, ... , N. Because the condition {3- a < 0 implies 
that the w,,-process has a unique stationary distribution, it follows that there exists a unique <l>(p), 
satisfying (3.15)i, and consequently, the system of linear, inhomogeneous equations (6.S)i and (6.9) 
has a unique solution if all zeros p = <k, k = 1, ... , v, have multiplicity one. 

REMARK 6.1. The sum of the multiplicities of the zeros of the function in (6.9) is always equal to n. 
If such a zero, say <1 , has a multiplicity larger than one, then <1 should be also a zero with the same 
multiplicity of (6. 7), and it is readily seen that again a system of linear equations for the coefficients 
of the PJ(-) is obtained which determines these coefficients. D 

From the above it is seen that the polynomials P1(P), j 1, ... , N, may be considered to have 
been determined. Hence, for the ultimate determination of the vectors if>(p) and w(p) it remains 
to determine K+(P) and K_(p). From the preceding section it follows, cf. (5.7), that exp K(p), 
Rep 2 0 is the Laplace-Stieltjes transform of the stationary distribution of the actual waiting time 

N 
of a GI/Kn/l queue, since (3(p) = Il f3J(P) is a rational function of p. That transform has been 

j=l 

determined in [14], section !I.5.10. From the results obtained there it follows that, cf. (II.5.190): for 
Rep 2 0, 

(6.11) 

Hence from (6.4), (6.9) and (6.11) it follows that: for j = 1, ... , N, Rep;::: 0, 

Rep 2 0, (6.12) 

if it is assumed that all <k have multiplicity one. Note that b2j(p)Pj(P) is a polynomial of degree v. 
So we have reached the following result. 
For {3 - °' < 0 the Laplace-Stieltjes transforms if!J(p), j = 1, ... , N; Rep 2: 0, of the stationary 

distributions of the actual waiting times w;, j = 1, ... , N (in an arrival-cycle) are given by 

i. j = 1, ... ,N; Rep;::: 0, (6.13) 

with 
ii. fki k = 1, ... , v, the zeros of 

N b1;(P) . 
1- IT~( )a1(-p) m Rep< 0, 

j;l 2; p 

iii. P1(p), j = 1, ... , N, polynomials of degree v - nj, determined by the conditions 

b21(0) P1(0) = b2(0), j = 1, ... , N, 

and 



forp=Ek. k=l, ... ,v, 

b2i(p)Pi(p) - w(p)b2N(P) P,v(p) = 0, 

b23 (p)P3 (p) - r 3 -1(p)b2j-1(P) P3.-dp) = 0, j = 2,. .. ,N. 

/. THE CASE WITH ALI. O.j(p) RATIONAL 

In this section we consider the case that all o,(p), j =I, ... , N. are rational functiuns of p. and"" 
assumptions will be made concerning the .Bj(p), j = 1. .. , N. 

We start from the relations (3.6) and by using (2.9) we have, cf. (3.8): for R<'p = O. J = 2, . . :\'. 

i) a2i-l ( -p)if!1 (p) - a2j-1 ( -phj-1 (p)'Pj-1 (p) = (B - a)plJ!i-1 (p)a2;-1 ( -p), ( 7 l) 

From (2.10) and (3.15) it is seen that the lefthand side of (7.l)i is the boundary value of a function 
regular in Rep > 0, continuous in Rep ?: 0, which for jpj -+ oo, I arg pj S ~11' behaves as jpJm1->, 
Similarly, it is seen that the righthand side in (7.l)i is the boundary value of a function regular in 
Rep< 0, continuous in Rep':'. 0 and which behaves as IPl'"1 - 1 for IP[--+ oo, ~" S argp :S: ~rr. Hence 
these functions for Rep< 0 and Rep> 0 are each other's analytic continuation, and so hy applying 
Liouville's theorem it follows that: for Rep S 0, j = 1,. . .,N, 

( 7.2) 

Q1(p) a polynomial in p of degree mj, Qj(O) = 0, d. (3.8.) 

For the present case we have, cf. (3.10), (3.11), (5.6)iii: for Rep= 0, 

DN(P) _ 1 - "r'(P) _ a2(-p) - a2(-p)r(p) _ K+(P)-K-(p) 

({3 - a)p - ({3 - a)p - ({3 - a)pa2(-p) - e · (i 3) 

Because {3 - n < 0 it follows readily, cf. [14], p. 330, that for the present case DN(P) hasµ zeros 
8k, k = 1,. . , 11, in Rep ~ 0, and 81 = 0, Re Ok > 0, k = 2, ... , µ,a result easily obtained by applying 
Rouche's theorem. 

REMARK 7. l. For the sake of simplicity it is again assumed that these zeros all have multiplicity one: 
see also remark 6.1. 0 

From [14] p. 330, and from section 5 we obtain: 

eK-(p) _ -a2(0)(a - {3)p fr Dk - p 
· - a2 (-p) - a.1(-p)b(p) k= 2 bk ' 

For Rep= 0, we have, cf. (3.13), 

if?(p) = ({3 - a()p) w(p)Dn(p)P[I - f(p)Pi- 1 , 
1 - 1' p 

and so from (7.3): for Rep= 0, 

Rep:::; 0, (74) 

Rep~ 0. 
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(7.5) 

Hence by using (7.2) and (7.3) we have: for Rep= 0, j = 1, .. .,N, 

(7.6) 

From the structure of the matrix in (3.12) and from the fact that the factor a2 (-p)/a2;( -p) occurs 
in the righthand side it is seen that this righthand side has a meromorphic continuation in Rep > O, 
since Q;(p) is a polynomial. The lefthand side of (7.6) has an analytic continuation in Rep> 0, see 
(3.15)i and (5.6)i. Because these continuations are unique it follows that: for j = 1, ... , N, 

k = 2, . .. ,µ, (7.7) 

note that these Ok, k = 2, ... ,µ,are the only poles of the mentioned meromorphic continuation. 
Next we multiply (7.1) by e-K-(P). Then by using (7.2), (7.3) and (7.4) we obtain: for Rep= O, 

j=2, .. .,N, 

i. if> ( ) -K-(p) 1 [ ( ) ( )if> ( ) -K_(p)+ i P e = a 21 _,(-p) <>2;-1 -p /;-1 p ;-1 p e (7.8) 

ii. 

note that for p = 0 the relations (7.8) imply that 

<Pi(O) = <li2(0) = ... = <liN(O). (7.9) 

To determine the polynomials Q;(p), j = 1, ... , N, note that Q;(p) contains m; coefficients because 
Q;(O) = 0, d. (7.2); so in totalµ= m 1 + ... + mN coefficients have to be determined. Now consider 
(7.7) for j = 1, then these conditions lead to µ - 1 equations for the µ unknown coefficients in 
the polynomials Q;, j = 1, .. ., N. Hence together with the norming condition if> 1 (0) = 1, i.e. by 
using (7.6) for j = 1 and p = 0, we obtain a system of µ linear inhomogeneous equations for the 
I' unknowns. Assume for the present that this system possesses a unique solution. Then if> 1 (p), 
Rep :S 0, is determined by (7.6). By taking successively j = 2, .. ., Nin (7.8)i explicit expressions 
for <P;(p), Rep = 0, are obtained. It also follows from (7.8)i, or equivalently from (7.l)i and (7.2), 
that for the expressions so obtained a 21 _1 ( - p) <II i (p), Rep > 0, j = 2, ... , N, has a unique analytic 
continuation in Rep> 0. Consequently, it follows from (7.6) that the relations (7.8)i for j = 2, ... , N, 
are identically satisfied. Hence, by using (7.6) for j = 2, ... , N, it follows that the expressions for 
<P1(p), j = 2, ... , N, as constructed above, are regular for Rep> 0 (note the structure of the matrix 
in (3.12)), which implies that the zeros of <>2j-i(-p) in Rep> 0 are zeros of the sum between the 
square brackets in (7.8)i for every j = 2, ... , N. 

REMARK 7.2. The analysis above is based, apart from the assumption introduced above, on the 
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relations (7.8)i, for j = 2, ... , N, and on the relation (7.7) for j = l. It is readily verified that this set 
of relations is equivalent with the system (7.1), cf. also (3.10), and also equivalent with (3.13), Hence 
the solution constructed above satisfies (7.l)ii, and similarly (7.8)ii. Note further, cf. also (7.9), that 
this solution leads to a unique determination of '11j(p), Rep~ 0, j = 1,. . .,N, and that this solution 
possesses the properties (3.15). The verification of this is not difficult but requires some algebras. O 

To complete our analysis it remains to justify the assumption introduced above concerning the 
uniqueness of the solution of the linear system of inhomogeneous equations. This justification is 
obtained as in the previous section. Viz. the condition /3 - a < 0 implies that the wn-process has a 
unique stationary distribution and so there exits a unique <l'(p) satisfying (3.15)i, and consequently 
the system of equations (7.l)i for j = 2, ... , N, together with (7.6) for j = 1, should have a unique 
solution satisfying (3.15)i, and this is only possible if the system (7.7) for j = 1, together with 
<l? 1 (0) = 1 determines theµ coefficients of the Qj(p}, j = 1,. .. , N, uniquely. 

8. SOME SPECIAL CASES 

The discussions in the two preceding sections show that an effective analysis of the periodic Pollaczek 
waiting processes is possible for quite general cases. In this section we comment briefly on a number 
of special cases of this Pollaczek model. 

A first variant is the mixed case, i.e.: the aj(p),j E A, and the {33(p),j E B are rational, here A 
and B are disjoint set and their union is the set { 1, 2,. . ., N}. The analysis for general N, A and B is 
possible, but quite intricate for N > 2. For N = 2 this case has been discussed in detail in [19]. 

A second variant concerns the case where the Tj = tj = 2, ... , N and the tTj,j = 1, ... , N - 1, are 
constants, Tj = t1 and <rj = s3, so only T1 and f7N are true stochastic variables. Again an explicit 
solution can be constructed, cf.[19]. Actually, the functional equation to be solved here is a standard 
Riemann Boundary Value Problem. A special case of this variant is the periodic GI/G/1 queueing 
model where every first customer of the cycle generates the arrival of a fixed number i.e. N - 1, of 
subsequent customers with constant service - and interarrival times, each service time being equal to 
the next interarrival time. This variant may serve as a simple model for bursty traffic. 

A third variant of interest concerns the case with all u3 constant, '7j = s1, say, j = 1, ... , N. Put 

s = s1 + ... +SN. Consider for this process the embedded process w("l, n = 1,2,. . ., and compare 
it with the single server model D/G/1 with interarrival times equal to sand service time distribution 
that of the sum of r 1 , ... , r N. For this D /G / 1 process the supply to the workload of the server occurs 
at the equally spaced arrival moments, where as in the w(n)_process the supply to the workload is 
distributed, (discretely and unevenly) over each of the intervals of length s. Hence the supply of the 
workload for the w('"-process is a smoother process than that in the D/G/1 system. Consequently, 
the workload process in this periodic Pollaczek process is smoother, i.e. its jumps are less pronounced 
than those of the workload process of the D /G/1 system. 
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