
Why Learn Haskell?

Jan van Eijck
CWI & ILLC, Amsterdam

UvA Programming Summer School, July 2, 2013

Abstract

These slides will hopefully convince you that learning Haskell is going to change your life for
the better.

Key words:
Functional programming, functional algorithm design.

A Short History of Haskell

In the 1980s, efforts of researchers working on functional programming were scattered across many
languages (Lisp, Scheme, SASL, KRC, Hope, Id, Miranda, ML,. . .).

In 1987 a dozen functional programmers decided to meet in order to reduce unnecessary diversity in
functional programming languages by designing a common language [4]. The new language should
be:

• based on ideas that enjoyed wide consensus;

• suitable for further language research as well as applications, including building large systems;

• freely available (in particular: anyone should be permitted to implement the language and
distribute it to whomever they please).

The new language was called Haskell, after the logician and mathematician Haskell Brooks Curry
(1900–1982). Curry is known for his work on the lambda calculus and on combinatory logic. The
lambda calculus is the foundation of Haskell.

Haskell B. Curry

In 1990, the first Haskell specification was published.

Right now, Haskell has a flourishing (and very friendly) user community, and many enthousiastic
supporters. If asked why learning Haskell is a good idea, they have things like this to say:

Haskell is a wide-spectrum language, suitable for a variety of applications. It is partic-
ularly suitable for programs which need to be highly modifiable and maintainable.

Much of a software product’s life is spent in specification, design and maintenance, and
not in programming. Functional languages are superb for writing specifications which
can actually be executed (and hence tested and debugged). Such a specification then is
the first prototype of the final program.

Functional programs are also relatively easy to maintain, because the code is shorter,
clearer, and the rigorous control of side effects eliminates a huge class of unforeseen
interactions.

From: http://www.haskell.org/haskellwiki/Introduction

Simon Peyton Jones, one of the moving forces behind Haskell, once expressed the following amus-
ing view on the life cycle of programming languages.

http://www.haskell.org/haskellwiki/Introduction

Simon Peyton Jones

The Life Cycle of Programming Languages

years

users

5 10 15

1

100

10 000

1Mill

critical mass

threshhold of immortality

Most Research Languages (the quick death)

years

users

5 10 15

1

100

10 000

1Mill

critical mass

threshhold of immortality

Successful Research Language (the slow death)

years

users

5 10 15

1

100

10 000

1Mill

critical mass

threshhold of immortality

C++, Java, Perl (the absence of death)

years

users

5 10 15

1

100

10 000

1Mill

critical mass

threshhold of immortality

The Life Cycle of Haskell

years

users

5 10 15

1

100

10 000

1Mill

critical mass

threshhold of immortality

So Haskell may yet become immortal, but it also “ . . . may just be a passing fancy, that in time will
go.”

Literate Programming

We will use literate Haskell in what follows. The Haskell code that we mention in this chapter is
collected into a so-called Haskell module. See [5] for the benefits of literate programming.

module WLH

where

import Data.List

You can find the module WLH.hs on the course website, at address http://www.homepages.
cwi/˜jve/courses/13/summerschool/.

http://www.homepages.cwi/~jve/courses/13/summerschool/
http://www.homepages.cwi/~jve/courses/13/summerschool/

How Haskell is Different

Here is a quote from an interview with John Goerzen, one of the authors of Real World Haskell [6].

Question: One of Haskell’s benefits is that you can use it as a purely functional language
– but that’s really different for people who’ve come up in the imperative or object-
oriented worlds. What does it take to learn how to think in a pure fashion?

Goerzen: That’s probably the single biggest mind-shift that you deal with coming from
a different language; that and laziness. Both of those are both pretty big.

As for how to learn about it, it’s a lot of relearning how to do some very basic things and
then building upon that. For instance, in imperative languages, you have for loops and
you have while loops. There’s a lot of having a variable there and then incrementing it
as you iterate over something. In Haskell, you tend to take a recursive approach rather
than that. It can be a little bit scary at first because you might be thinking if you’re using
a language such as C, incrementing a variable is a pretty cheap operation.

http://broadcast.oreilly.com/2009/01/why-you-should-learn-haskell.
html

Haskell allows for abstract, high order programming. (Ideally, more thinking and less writing and
debugging.)

Haskell is based on the lambda calculus, therefore the step from formal specification to implemen-
tation is very small.

http://broadcast.oreilly.com/2009/01/why-you-should-learn-haskell.html
http://broadcast.oreilly.com/2009/01/why-you-should-learn-haskell.html

Haskell offers you a new perspective on programming, it is powerful, and it is fun.

The type system behind Haskell is a great tool for writing specifications that catch many coding
errors.

Your Haskell understanding will influence the way you look at programming: you will start to
appreciate abstraction.

Haskell comes with great tools for automated test generation: a tool we will employ at some point
is QuickCheck [1], which has served as inspiration for the development of similar tools for many
other programming languages.

Haskell is functional

A Haskell program consists entirely of functions. Running a Haskell program consists in evaluating
expressions (basically functions applied to arguments).

The main program itself is a function with the program’s input as argument and the program’s output
as result.

Typically the main function is defined in terms of other functions, which in turn are defined in terms
of still more functions, until at the bottom level the functions are language primitives.

This means that Haskell, like all functional languages, is extensible. If you need a certain program-
ming construct that the language does not provide as a primitive, it is up to you to define it. We will
use this feature a lot in this course.

Functions are first-class citizens, which means that they can be used as arguments to other (higher
order) functions. This is extremely powerful and extremely useful.

A shift in thinking

If you are an imperative thinker, you think mainly of:

• variables as pointers to storage locations whose value can be updated all the time

• sequences of commands telling the computer what to do (how to change certain memory
locations) step by step.

Here are some examples:

• initialize a variable examplelist of type integer list,
then add 1, then add 2, then add 3.

• in order to compute the factorial of n, initialize an integer variable f as 1, then for all i from
1 to n, set f to f×i

If you are a functional thinker, you view bound variables as place-holders for function arguments,
and you view unbound variables as identifiers for immutable persistent values, or as names for
functions.

Instead of telling the computer what actions to perform in what order, you prefer telling the computer
what things are.

Running through the same examples again:

• examplelist is a list of integers containing the elements
1, 2, and 3

• the factorial of n is the product of all integers from 1 to n.

Here is the Haskell code for the factorial function:

factorial :: Integer -> Integer
factorial n = product [1..n]

All the same, this course will stress that functional programming is an inclusive paradigm, well
capable of expressing the while loops, repeat loops and for loops that play such an important role in
pseudo-code presentations of algorithms.

Where Should I Begin?

Resources

For everything Haskell-related, start at http://haskell.orghaskell.org.

There are lots of free tutorials you may wish to consult:

• Chapter 1 of “The Haskell Road” [3], freely available from http://homepages.cwi.
nl/˜jve/HR/

• Real World Haskell [6], http://book.realworldhaskell.org/read/

• Learn you a Haskell for great good
http://learnyouahaskell.comlearnyouahaskell.com

• A gentle introduction to Haskell
http://haskell.org/tutorial.

• The Haskell Wikibook, secure.wikimedia.org/wikibooks/en/wiki/Haskell

• Hal Daume’s Yet Another Haskell Tutorial [2] is also available as a Wikibook, from secure.
wikimedia.org/wikibooks/en/wiki/Haskell/YAHT.

Some recommended books:

http://haskell.org
http://homepages.cwi.nl/~jve/HR/
http://homepages.cwi.nl/~jve/HR/
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com
http://haskell.org/tutorial
secure.wikimedia.org/wikibooks/en/wiki/Haskell
secure.wikimedia.org/wikibooks/en/wiki/Haskell/YAHT
secure.wikimedia.org/wikibooks/en/wiki/Haskell/YAHT

And some more:

If you are coming to Haskell from elsewhere, or are into specific applications, one of the following
might be for you:

Really Getting Started

Get the Haskell Platform:

• http://hackage.haskell.org/platform/

This includes the Glasgow Haskell Compiler (GHC) together with standard libraries and the inter-
active environment GHCi. Follow the instructions to install the platform.

http://hackage.haskell.org/platform/

Haskell as a Calculator

Start the interpreter:

jve@vuur:˜/courses/12/esslli12$ ghci
GHCi, version 7.0.3: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude>

The prompt Prelude> you are seeing indicates that the so-called Haskell Prelude, consisting of a
list of useful predefined functions, is loaded.

GHCi can be used to interactively evaluate expressions.

Prelude> 2+3

Prelude> 2+3*4

Prelude> 2ˆ10

Prelude> (42-10)/2

Prelude> (+) 2 3

Your first Haskell program

1. Write the following code to a text file and save it as first.hs:

double :: Int -> Int
double n = 2 * n

2. Inside GHCi, you can load the program with :l first.hs
(or by running ghci first.hs).
With :r you can reload it if you change something.

3. Now you can evaluate expressions like double 5,
double (2+3), and double (double 5).

4. With :t you can ask GHCi about the type of an expression.

5. Leave the interactive environment with :q.

Some simple samples of lazy lists

“Sentences can go on and on and on (and on)∗”

Here is a so-called lazy list implementation:

sentence = "Sentences can go " ++ onAndOn

onAndOn = "on and " ++ onAndOn

This uses the operation ++ for list concatenation plus the double quote notation for character strings.

If you grab the module WLH.hs from http://www.homepages.cwi/˜jve/courses/13/
summerschool/ and load it, you will see the following:

jve@vuur:˜/courses/12/esslli12$ ghci WLH.hs
GHCi, version 7.0.3: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
[1 of 1] Compiling WLH (WLH.hs, interpreted)
Ok, modules loaded: WLH.

*WLH>

http://www.homepages.cwi/~jve/courses/13/summerschool/
http://www.homepages.cwi/~jve/courses/13/summerschool/

If you now type sentence and hit the return (enter) key, you will see that sentences can indeed go
on and on and You can quit the infinite loop by hitting ˆC (control-C). Next, check an initial
segment:

*WLH> take 65 sentence
"Sentences can go on and on and on and on and on and on and on and"

*WLH>

Next, consider the following:

sentences = "Sentences can go on" :
map (++ " and on") sentences

New ingredients here are : for putting a item in front of a list, and the function map that will be
explained below.

The function sentences generates an infinite list of sentences. Here is the start of the list:

*WLH> take 10 sentences
["Sentences can go on","Sentences can go on and on","Sentences can go
on and on and on","Sentences can go on and on and on and on","Sentences
can go on and on and on and on and on","Sentences can go on and on and

on and on and on and on","Sentences can go on and on and on and on and
on and on and on","Sentences can go on and on and on and on and on and
on and on and on","Sentences can go on and on and on and on and on and
on and on and on and on","Sentences can go on and on and on and on and
on and on and on and on and on and on"]

*WLH>

Lambda Abstraction in Haskell

In Haskell, \ x expresses lambda abstraction over variable x.

sqr :: Int -> Int
sqr = \ x -> x * x

The standard mathematical notation for this is λx 7→ x∗x. Haskell notation aims at remaining close
to mathematical notation.

• The intention is that variabele x stands proxy for a number of type Int.

• The result, the squared number, also has type Int.

• The function sqr is a function that, when combined with an argument of type Int, yields a
value of type Int.

• This is precisely what the type-indication Int -> Int expresses.

String Functions in Haskell

Prelude> (\ x -> x ++ " emeritus") "professor"
"professor emeritus"

This combines lambda abstraction and concatenation.

The types:

Prelude> :t (\ x -> x ++ " emeritus")
\x -> x ++ " emeritus" :: [Char] -> [Char]
Prelude> :t "professor"
"professor" :: String
Prelude> :t (\ x -> x ++ " emeritus") "professor"
(\x -> x ++ " emeritus") "professor" :: [Char]

Concatenation

The type of the concatenation function:

Prelude> :t (++)
(++) :: forall a. [a] -> [a] -> [a]

The type indicates that (++) not only concatenates strings. It works for lists in general.

More String Functions in Haskell

Prelude> (\ x -> "nice " ++ x) "guy"
"nice guy"
Prelude> (\ f -> \ x -> "very " ++ (f x))

(\ x -> "nice " ++ x) "guy"
"very nice guy"

The types:

Prelude> :t "guy"
"guy" :: [Char]
Prelude> :t (\ x -> "nice " ++ x)
(\ x -> "nice " ++ x) :: [Char] -> [Char]
Prelude> :t (\ f -> \ x -> "very " ++ (f x))
(\ f -> \ x -> "very " ++ (f x))

:: forall t. (t -> [Char]) -> t -> [Char]

Characters and Strings

• The Haskell type of characters is Char. Strings of characters have type [Char].

• Similarly, lists of integers have type [Int].

• The empty string (or the empty list) is [].

• The type [Char] is abbreviated as String.

• Examples of characters are ’a’, ’b’ (note the single quotes).

• Examples of strings are "Turing" and "Chomsky" (note the double quotes).

• In fact, "Chomsky" can be seen as an abbreviation of the following character list:

[’C’,’h’,’o’,’m’,’s’,’k’,’y’].

Properties of Strings

• If strings have type [Char] (or String), properties of strings have type [Char] -> Bool.

• Here is a simple property:

aword :: [Char] -> Bool
aword [] = False
aword (x:xs) = (x == ’a’) || (aword xs)

• This definition uses pattern matching: (x:xs) is the prototypical non-empty list.

• The head of (x:xs) is x, the tail is xs.

• The head and tail are glued together by means of the operation :, of type a -> [a] -> [a].

• The operation combines an object of type a with a list of objects of the same type to a new list
of objects, again of the same type.

List Patterns

• It is common Haskell practice to refer to non-empty lists as x:xs, y:ys, and so on, as a
useful reminder of the facts that x is an element of a list of x’s and that xs is a list.

• Note that the function aword is called again from the body of its own definition. We will
encounter such recursive function definitions again and again.

• What the definition of aword says is that the empty string is not an aword, and a non-empty
string is an aword if either the head of the string is the character a, or the tail of the sring is
an aword.

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

List Reversal

The reversal of the string ”CHOMSKY” is the string ”YKSMOHC”. The reversal of the string
”GNIRUT” is the string ”TURING”.

reversal :: [a] -> [a]
reversal [] = []
reversal (x:t) = reversal t ++ [x]

Reversal works for any list, not just for strings. This is indicated by the type specification [a] -> [a].

Haskell Basic Types

• Int and Integer, to represent integers. Elements of Integer are unbounded (can be of
any size).

• Float and Double represent floating point numbers. The elements of Double have higher
precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.

To denote arbitrary types, Haskell allows the use of type variables. For these, a, b, . . . , are used.

Haskell Derived Types

Derived types can be constructed in the following way:

• By list-formation: if a is a type, [a] is the type of lists over a. Examples: [Int] is the type
of lists of integers; [Char] is the type of lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the type of pairs with an
object of type a as their first component, and an object of type b as their second component.
If a, b and c are types, then (a,b,c) is the type of triples with an object of type a as their
first component, an object of type b as their second component, and an object of type c as
their third component . . .

• By function definition: a -> b is the type of a function that takes arguments of type a and
returns values of type b.

• By defining your own datatype from scratch, with a data type declaration. More about this
in due course.

Mapping

If you use the Hugs command :t to find the types of the predefined function map, you get the
following:

Prelude> :t map
map :: forall a b. (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing the results of applying the
function to the individual list members.

This is an example of higher order functional programming, of a function taking another function as
an argument.

If f is a function of type a -> b and xs is a list of type [a], then map f xs will return a list of
type [b]. E.g., map (ˆ2) [1..9] will produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

Sections

But let us first explain the notation (ˆ2).

• In general, if op is an infix operator, (op x) is the operation resulting from applying op to
its righthand side argument.

• (x op) is the operation resulting from applying op to its lefthand side argument.

• (op) is the prefix version of the operator.

• Thus (2ˆ) is the operation that computes powers of 2, and map (2ˆ) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Similarly, (>3) denotes the property of being greater than 3, and (3>) the property of being
smaller than 3.

• (++ " and on") denotes the operation of appending " and on" to a string.

Map again

If p is a property (an operation of type a -> Bool) and l is a list of type [a], then map p l
will produce a list of type Bool (a list of truth values), like this:

Prelude> map (>3) [1..6]
[False, False, False, True, True, True]
Prelude>

Here is a definition of map, including a type declaration.

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x) : map f xs

The code is in light grey . This indicates that this definition will not be added to the chapter
module. Adding it to the chapter module would result in a compiler error, for map is already defined.

Filter

A function for filtering out the elements from a list that satisfy a given property:

Prelude> filter (>3) [1..10]
[4,5,6,7,8,9,10]

The type declaration and the function definition:

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

List comprehension

List comprehension is defining lists by the following method:

[x | x <- xs, property x]

This defines the sublist of xs of all items satisfying property. It is equivalent to:

filter property xs

Here are some examples:

someEvens = [x | x <- [1..1000], even x]

evensUntil n = [x | x <- [1..n], even x]

allEvens = [x | x <- [1..], even x]

Equivalently:

someEvens = filter even [1..1000]

evensUntil n = filter even [1..n]

allEvens = filter even [1..]

Nub

The function nub removes duplicates, as follows:

nub :: Eq a => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub (filter (/= x) xs)

Note the indication Eq a => in the type declaration. This is to indicate that the type a has to satisfy
some special properties, to ensurethat (/=), the operation for non-equality, is defined on it.

Function Composition

The composition of two functions f and g, pronounced ‘f after g’ is the function that results from
first applying g and next f .

Standard notation for this: f · g. This is pronounced as “f after g”.

Haskell implementation:

(.) :: (a -> b) -> (c -> a) -> (c -> b)
f . g = \ x -> f (g x)

Note the types!

Elem, all, and

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y:ys) = x == y || elem x ys

all :: Eq a => (a -> Bool) -> [a] -> Bool
all p = and . map p

Note the use of . for function composition.

and :: [Bool] -> Bool
and [] = True
and (x:xs) = x && and xs

Shakespeare’s Sonnet 73

sonnet73 =
"That time of year thou mayst in me behold\n"
++ "When yellow leaves, or none, or few, do hang\n"
++ "Upon those boughs which shake against the cold,\n"
++ "Bare ruin’d choirs, where late the sweet birds sang.\n"
++ "In me thou seest the twilight of such day\n"
++ "As after sunset fadeth in the west,\n"
++ "Which by and by black night doth take away,\n"
++ "Death’s second self, that seals up all in rest.\n"
++ "In me thou see’st the glowing of such fire\n"
++ "That on the ashes of his youth doth lie,\n"
++ "As the death-bed whereon it must expire\n"
++ "Consumed with that which it was nourish’d by.\n"
++ "This thou perceivest, which makes thy love more strong,\n"
++ "To love that well which thou must leave ere long."

Counting

count :: Eq a => a -> [a] -> Int
count x [] = 0
count x (y:ys) | x == y = succ (count x ys)

| otherwise = count x ys

average :: [Int] -> Rational
average [] = error "empty list"
average xs = toRational (sum xs) / toRational (length xs)

Here length is a built-in function that computes the length of a list.

Exercise 1 Give your own definition of length.

Some commands to try out

• putStrLn sonnet73

• map toLower sonnet73

• map toUpper sonnet73

• filter (‘elem‘ "aeiou") sonnet73

• count ’t’ sonnet73

• count ’t’ (map toLower sonnet73)

• count "thou" (words sonnet73)

• count "thou" (words (map toLower sonnet73))

Next, attempt the programming exercises from Chapter 1 and 2 of “The Haskell Road” [3].

Expressing the Essence of Recursion over Lists with Fold

The pattern of recursive definitions over lists consists of matching the empty list [] for the base
case, and matching the non-empty list (x:xs) for the recursive case. Witness:

and :: [Bool] -> Bool
and [] = True
and (x:xs) = x && and xs

This occurs so often that Haskell provides a standard higher-order function that captures the essence
of what goes on in this kind of definition:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

Here is what happens if you call foldr with a function f , and identity element z, and a list
[x1, x2, x3, . . . , xn]:

foldr f z [x1, x2, ..., xn] = (f x1 (f x2 (f x3 . . . (f xn z) . . .).

And the same thing using infix notation:

foldr f z [x1, x2, ..., xn] = (x1 ‘f ‘ (x2 ‘f ‘ (x3 ‘f ‘ (. . . (xn ‘f ‘ z) . . .).

For instance, the and function can be defined using foldr as follows:

and = foldr (&&) True

Exercise 2

1. Define length in terms of foldr.

2. Define elem x in terms of foldr.

3. Find out what or does, and next define your own version of or in terms of foldr.

4. Define map f in terms of foldr.

5. Define filter p in terms of foldr.

6. Define (++) in terms of foldr.

7. Define reversal in terms of foldr.

While foldr folds to the right, the following built-in function folds to the left.

Official definition:

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z0 xs0 = lgo z0 xs0

where
lgo z [] = z
lgo z (x:xs) = lgo (f z x) xs

Equivalent definition:

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

If you apply foldl to a function f :: α → β → α, a left identity element z :: α for the function,
and a list of arguments of type β, then we get:

foldl f z [x1, x2, ..., xn] = (f . . . (f(f(f z x1) x2) x3) . . . xn)

Or, if you write f as an infix operator:

foldl f z [x1, x2, ..., xn] = (. . . (((z ‘f ‘ x1) ‘f ‘ x2) ‘f ‘ x3) . . . ‘f ‘ xn)

Exercise 3 Give an alternative definition of reverse, in terms of foldl.

Solving Logic Puzzles with Haskell

We can use Haskell to solve logical puzzles such as the famous Lady or Tiger puzzles by Raymond
Smullyan [7].

Here is the first puzzle. There are two rooms, and a prisoner has to choose between them. Each
room contains either a lady or a tiger. In the first test the prisoner has to choose between a door with
the sign “In this room there is a lady, and in the other room there is a tiger”, and a second door with
the sign “In one of these rooms there is a lady and in the other room there is a tiger.” A final given

is that one of the two signs tells the truth and the other does not. Here is a Haskell implementation
that states the puzzle:

data Creature = Lady | Tiger deriving (Eq,Show)

sign1, sign2 :: (Creature,Creature) -> Bool
sign1 (x,y) = x == Lady && y == Tiger
sign2 (x,y) = x /= y

And here is the Haskell solution:

solution1 :: [(Creature,Creature)]
solution1 = [(x,y) | x <- [Lady,Tiger],

y <- [Lady,Tiger],
(sign1 (x,y) && not (sign2 (x,y)))
|| (not (sign1 (x,y)) && sign2 (x,y))]

Running this reveals that the first room has a tiger in it, and the second room a lady:

*WLH> solution1
[(Tiger,Lady)]

Exercise 4 The second puzzle of the book runs as follows. Again there are two signs. The sign
on the first door says: “At least one of these rooms contains a lady.” The sign on the second door
says: “A tiger is in the other room.” This time either the statements are both true or both false.
Give a Haskell implementation of solution2 that solves the puzzle. You will also have to write
functions for the new signs, of course.

On the island of knights and knaves made famous in another logic puzzle book by Raymond
Smullyan [8], there are two kinds of people. Knights always tell the truth, and knaves always lie. Of
course, if you ask inhabitants of the island whether they are knights, they will always say “yes.”

Suppose John and Bill are residents of the island. They are standing next to each other, with John
left and Bill right. John says: “We are both knaves.” Who is what? Here is a Haskell solution:

data Islander = Knight | Knave deriving (Eq,Show)

john :: (Islander,Islander) -> Bool
john (x,y) = (x,y) == (Knave,Knave)

solution3 :: [(Islander,Islander)]
solution3 = [(x,y) | x <- [Knight,Knave],

y <- [Knight,Knave],
john (x,y) == (x == Knight)]

This reveals that John is a knave and Bill a knight:
*WLH> solution3
[(Knave,Knight)]

Exercise 5 In this puzzle, again John is on the left, Bill on the right. John says: “We are both of
the same kind.” Bill says: “We are both of different kinds.” Who is what? Implement a Haskell
solution.

A Puzzling Program

Use a minute or so to analyze the following program.

main = putStrLn (s ++ show s)
where s = "main = putStrLn (s ++ show s) \n where s = "

This has the following ingredients that may still be unfamiliar to you:

• show for displaying an item as a string (if the item to be displayed is already a string, then
this string is quoted);

• \n for the newline character.

Now that this was explained to you, reflect again, and tackle the exercises below.

Exercise 6 Predict what will happen when the function main is executed. Next write down your
prediction, and check it by executing the function.

Exercise 7 (Only for those who know some logic.) What does this have to do with logic? Hint:
think of Kurt Gödel’s famous proof of the incompleteness of the first order theory of arithmetic.

Summary

If this was your first acquaintance with Haskell, make sure to actually play around and do some
exercises. You will find that you will be up and running in no time.

If you already have some Haskell experience, this first chapter should have been plain sailing for
you.

In the rest of this course we will focus on a particular aspect of functional programming: the use of
executable specifications for programs.

References
[1] Koen Claessen and John Hughes. QuickCheck: A lightweight tool for random testing of Haskell

programs. In Proc. Of International Conference on Functional Programming (ICFP), ACM
SIGPLAN, 2000.

[2] Hal Daume. Yet another Haskell tutorial. www.cs.utah.edu/˜hal/docs/
daume02yaht.pdf.

[3] K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and Programming, volume 4 of
Texts in Computing. College Publications, London, 2004.

[4] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell: Being
lazy with class. In Third ACM SIGPLAN History of Programming Languages Conference
(HOPL-III), 2007.

[5] D.E. Knuth. Literate Programming. CSLI Lecture Notes, no. 27. CSLI, Stanford, 1992.

[6] Bryan O’Sullivan, John Goerzen, and Don Stewart. Real World Haskell. O’Reilly, 2009.

[7] Raymond M. Smullyan. The Lady or the Tiger?: and Other Logic Puzzles. Dover, 2009. First
edition: 1982.

[8] Raymond M. Smullyan. What is the name of this book? Dover, first edition 1990 edition, 2011.

www.cs.utah.edu/~hal/docs/daume02yaht.pdf
www.cs.utah.edu/~hal/docs/daume02yaht.pdf

