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Abstract

This talk proposes a logic for reasoning about (multi-agent) epistemic probability models,
and for epistemic probabilistic model checking.

Epistemic probability models are multi-agent Kripke models that assign to each agent an
equivalence relation on worlds and an equivalence relation on lotteries over worlds, where a
lottery over (finite) world set W is a function from W to the positive rational numbers.

Uncertainty about probability is modelled as equivalence of lotteries. The difference with
the usual approach is that probability is linked to knowledge rather than belief, and that “agent
A knows that ϕ” is equated with “agent A assigns probability 1 to ϕ.”

To motivate our approach, we formulate and prove a Certainty Theorem, stating that certainty
in an epistemic probability model M corresponds to knowledge in the epistemic model that
results when all lottery information gets erased from M. It follows immediately from this that
the certainty operator in epistemic probability logic is an S5 operator.

We define a generic update mechanism for epistemic probability logic by means of update
models that are like epistemic probability models, but with their valuations replaced by precon-
dition/action pairs. The actions assign lotteries that are in turn used to recompute the lotteries of
the input model. E.g., the act of drawing a marble from an urn containing m white and n black
marbles is viewed as a lottery that assigns m to white and n to black.

If there is time, we will end with an “oratio pro demo”, a short demonstration with PRO-
DEMO, a model checker for epistemic probability logic that can be used to keep track of infor-
mation flow about aleatory acts among multiple agents.



Probability as a function of degree of information

Dans les choses qui ne sont que vraisemblables, la différence
des données que chaque homme a sur elles, est une des causes
principales de la diversité des opinions que l’on voit régner
sur les mêmes objects.

Laplace [Lap14]



Relation between Probability and Knowledge

Agent a knows ϕ iff the probability a assigns to ϕ equals 1.

Let Paϕ be the probability that agent a assigns to ϕ.

Certainty implies Truth
Paϕ = 1→ ϕ.

Positive Introspection into Certainty
Paϕ = 1→ Pa(Paϕ = 1) = 1.

Negative Introspection into Certainty
Paϕ < 1→ Pa(Paϕ < 1) = 1.

Earlier proposals on combining knowledge and probability [FH94,
Koo03b, Koo03a, BGK09, BS08, Gie09], and many more. These
proposals do not equate knowledge with certainty.



Lotteries

A W -lottery l is a function from a set of worlds W to the set of pos-
itive rationals, i.e., l : W → Q+. Two W -lotteries l, l′ are equivalent
if for some q ∈ Q+, l′ = (λp 7→ q ∗ p) · l.
We say that two W -lotteries l, l′ have the same scale if∑

{l(w) | w ∈ W} =
∑
{l′(w) | w ∈ W}.

A W -lottery l is normalized on B ⊆ W if
∑
{l(w) | w ∈ B} = 1.

If we have a lottery l : W → Q+ and a block B ⊆ W in a partition of
W , then this determines a probability distribution P on B, by means
of (we assume that B 6= ∅):

P (w) =
l(w)∑

{l(w′) | w′ ∈ B}
.



Lotteries with Unknowns, or Lottery Functionals

To handle cases where it is given that no probability distribution for
an event exists, we allow lotteries with unknown factors.

A W -lottery with unknowns Q ⊆ P (or: a W -lottery functional over
Q) is a function from (0..1)Q to W -lotteries, where (0..1) is the open
unit interval ⊆ Q.

Thus, the type of a W -lottery with unknowns Q is:

(Q→ (0..1))→ W → Q+



Constructing Lotteries from Lottery Functionals

Let F be a function that assigns probabilities to the members of Q,
i.e., F : Q → (0..1). Let l be a normalized W -lottery (i.e., a lottery
with scale 1), and let V be a valuation for W . Then Ll,V,F is the
W -lottery given by:

Ll,V,F (w) = l(w)

×
∏
{F (p) | p ∈ Q, p ∈ V (w)}

×
∏
{1− F (p) | p ∈ P, p /∈ V (w)}.

Then for all w ∈ W , Ll,V,F (w) ∈ (0..1) ⊆ Q, so Ll,V,F is a W -lottery.
The function F 7→ Ll,V,F is a lottery functional.



Example: Von Neumann’s Trick

How to obtain fair results from a coin with unknown bias [vN51]:

Toss the coin twice. If the results match, start over and forget
both results. If the results differ, use the first result.



Example: Von Neumann’s Trick

How to obtain fair results from a coin with unknown bias [vN51]:

Toss the coin twice. If the results match, start over and forget
both results. If the results differ, use the first result.

Represent the coin as a lottery functional for the set {h}. Let F assign
a probability to h. That is, F (h) is the coin bias b. Then the probabil-
ities of the four possible outcomes of Von Neumann’s procedure are
represented by the following lottery:

{hh : b2, ht : b− b2, th : b− b2, tt : (1− b)2}.

This shows that the cases ht and th are equally likely, so interpreting
the first as h and the second as t gives indeed a model of a fair coin.



Urn Example

Say there are two urns, U and V . U contains one black marble and
two white marbles, V contains one black marble and one white mar-
ble. This is common knowledge among a, b and c. Now a selects
one of the urns, without revealing which one to b, c. Then b picks a
marble from it, without revealing the marble to a, c.



Representation

0 : (U, b)

1 : (U,w)

2 : (V, b)

3 : (V,w)

{0 : 1
6, 1 :

1
3, 2 :

1
4, 3 :

1
4}



Another Representation

0 : b

1 : w

l0 : {0 : 1
2, 1 :

1
2}

l1 : {0 : 1
3, 1 :

2
3}



Lotteries over lotteries

Example from [Gne75]:

There are five urns with the following compositions: 2 urns with 2
white and 3 black balls each, 2 urns with 1 white and 4 black balls
each, and one urn with 4 white balls and 1 black ball. A ball is chosen
from one of the urns taken at random. It turns out to be white. What
is the probability (after the experiment) that the ball was taken from
the last urn?



Representation

0 : b

1 : w

l0 : {0 : 3
5, 1 :

2
5}

l1 : {0 : 4
5, 1 :

1
5}

l1 : {0 : 1
5, 1 :

4
5}

L : {l0 : 2
5, l1 :

2
5, l2 :

1
5}



Another Representation

0 : b

1 : w

l0 : {0 : 3
5, 1 :

2
5}

l1 : {0 : 3
5, 1 :

2
5}

l2 : {0 : 4
5, 1 :

1
5}

l3 : {0 : 4
5, 1 :

1
5}

l4 : {0 : 1
5, 1 :

4
5}



Coin Tossing

Suppose Alice is tossing a coin while Bob is watching. Both know
that the coin can either be fair or biased (say, with bias 2

3 towards
heads). Bob does not know which coin Alice is using, but Alice
knows.

0 : H

1 : T

l0 : {0 : 1
2, 1 :

1
2}

l1 : {0 : 2
3, 1 :

1
3}



Standard Epistemic Models

A standard epistemic model for a set P of propositions and a set A of
agents is a tuple (W,V,R) where

• W is a non-empty set of worlds,

• V is a valuation function that assigns to every w ∈ W a subset of
P.

• R is a function that assigns to every agent a ∈ A an equivalence
relation Ra on W .

L0 language of multi-agent epistemic logic:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Kaϕ

where p ranges over a set P of basic propositions and a ranges over a
set of agents A.



Epistemic Probability Models

To change a standard epistemic model into an epistemic probability
model, we assign to each agent an equivalence relation over a list of
lotteries. This represents subjective probabilities.

An epistemic probability model is a tuple (W,V,R, L, I, E) where

• W , V , R are as above.

• L is a set ofW -lotteries indexed by natural numbers (displayed as
{l0, l1, . . .}), with index set I , all lotteries having the same scale.

• E is a function that assigns an equivalence relation on I to each
agent a ∈ A.



Epistemic Probability Language

L language of multi-agent epistemic probability logic:

ϕ ::= > | p | lj | ¬ϕ | ϕ ∧ ϕ | t ≥ t

q ::= 0 | 1 | m
n

where m,n ∈ N+,m < n

t ::= q | pa | Paϕ | Pa(ϕ|ϕ) | 1− t | t ∗ t |
t1 + · · · + tn

n

| t1 ∗ t2
t1

for t1 > 0



Abbreviations

• ⊥, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, ϕ1 ↔ ϕ2.

• t < t′ for ¬t ≥ t′.

• t > t′ for ¬t′ ≥ t.

• t ≤ t′ for t′ ≥ t.

• t = t′ for t ≥ t′ ∧ t ≤ t′.

• t 6= t′ for t > t′ ∨ t < t′.



• pa = q expresses that the probability of p according to a, for the
current lottery distribution, equals q. This allows us to talk about
things like coin bias.

• Paϕ = q expresses that the probability of ϕ according to a equals
q.

• Pa(ϕ1|ϕ2) = q expresses that the probability of ϕ1 conditioned
on ϕ2, according to a, equals q.



Truth

Let M = (W,V,R, L, I, E), let w ∈ W , let i ∈ I .

M,w, i |= > always
M,w, i |= p iff p ∈ V (w)

M,w, i |= lj iff i = j

M,w, i |= ¬ϕ iff it is not the case that M,w |= ϕ

M,w, i |= ϕ1 ∧ ϕ2 iff M,w, i |= ϕ1 and M,w, i |= ϕ2

M,w, i |= t1 ≥ t2 iff [[t1]]w,i ≥ [[t2]]w,i



Probability

[[q]]w,i := q

[[pa]]w,i := Da,w,i(p)

[[Paϕ]]w,i := Pa,w,i(ϕ)

[[Pa(ϕ1|ϕ2]]w,i :=

{
0 if [[Paϕ2]]w,i = 0,
[[Pa(ϕ1)]]w,i×[[Pa(ϕ2)]]w,i

[[Paϕ2]]w,i
otherwise

[[1− t]]w,i := 1− [[t]]w,i

[[t1 ∗ t2]]w,i := [[t1]]w,i × [[t2]]w,i

[[
t1 + · · · + tn

n
]]w,i :=

[[t1]]w,i + · · · + [[tn]]w,i
n



D and P Functions

Da,w,i(ϕ) =

∑
{li(u) | wRau and M,u, i |= ϕ}∑

{li(u) | wRau}
.

Da,w,i(ϕ) gives the probability that a assigns to ϕ in w, assuming that
a knows li, i.e., assuming that a does not confuse li with any other
lottery.

Note that Da,w,i(li) = 1, and for all j with j 6= i, Da,w,i(lj) = 0.

Pa,w,i(ϕ) =

∑
{Da,w,j(ϕ) | iEaj}
|{j | iEaj}|

.

Pa,w,i(ϕ) gives the average of the probabilities that a assigns to ϕ in
w, for all lotteries that a confuses with li.



Common Knowledge of Indifference Models

If M = (W,V,R) is an epistemic model, then M indif is the epistemic
probability model (W,V,R′, L, I, E) where

W ′ = W

V ′ = V

R′ = R

L = {l0} where l0 = λw ∈ W 7→ 1

I = {0}
E = λa ∈ A 7→ {(0, 0)}

Explanation: M indif is the epistemic probability model that is the re-
sult of putting a uniform probability distribution on the worlds in M ,
and making this uniform probability distribution common knowledge.



Common Knowledge of Indifference about p, q

0 : pq

1 : pq

2 : pq

3 : pq

l0 = {0 : 1
4, 1 :

1
4, 2 :

1
4, 3 :

1
4}



Erasing Probability Information From Models

If M = (W,V,R, L, I, E) is an epistemic probability model, then we
can map this to an epistemic modelM ◦ by puttingM ◦ = (W ◦, V ◦, R◦)

with

• W ◦ = {(w, i) | w ∈ W, i ∈ I}

• V ◦ = λ(w, i) 7→ V (w)

• R◦ is given by (w, i)R◦a(u, j) iff wRau and iEaj.

Note that if M is an epistemic probability model where the agents
share a single lottery, then M ◦ is the result of removing the lottery
information.



Relation of Knowledge and Indifference

Theorem 1 Any epistemic model M = (W,V,R) is isomorphic to
(M indif)◦.

Proof. Immediate from the definitions of the maps M 7→M indif and
M indif 7→ (M indif)◦. 2



Relation of Knowledge and Certainty

Define a translation t : L0 → L from the language of multi-agent
epistemic logic to the language of epistemic probability logic by means
of:

t(p) = p

t(¬ϕ) = ¬t(ϕ)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)

t(Kaϕ) = Pat(ϕ) = 1

This translates knowledge statements of L0 into certainty statements
of L, and allows us to prove the Certainty Theorem.



Certainty Theorem

Theorem 2 (Certainty) For any epistemic probability model

M = (W,V,R, L, I, E),

any world-index pair (w, i) for M , any ϕ ∈ L0:

M ◦, (w, i) |= ϕ iff M,w, i |= t(ϕ).

Proof. Induction on the structure of ϕ. The only case you have to
check is Kaϕ. 2

This theorem motivates the following abbreviation for L:

Use Kaϕ for Paϕ = 1.

This abbreviation reflects the equation of knowledge and certainty.

It follows immediately from the Certainty Theorem that the certainty
operator Paϕ = 1 is an S5 operator.



Example: Uncertainty about q-bias

0 : pq

1 : pq

2 : pq

3 : pq

l0 = {0 : 1
4, 1 :

1
4, 2 :

1
4, 3 :

1
4}

l1 = {0 : 1
3, 1 :

1
6, 2 :

1
3, 3 :

1
6}

In this model, at world 0 and lottery l0, the probability that a (repre-
sented by solid lines) assigns to p is 1, so Kap is true at 0, l0. Kaq is
false at 0, l0, for the probability that a assigns to q is less than 1. It
equals the average of the probabilities that a assigns to q for the two
lotteries. For lottery l0, the probability a assigns to q is 1

2. For lottery
l1, it is 2

3.



So the formula qa = 1
2 is true at 0, l0, and so is the formula Paq =

7
12. The probability that a assigns to Paq = 7

12 at 0, l0 equals 1, so
Ka(Paq = 7

12) is also true at 0, l0. On the other hand, Ka(qa = 1
2) is

false at 0, l0, for a confuses the two lotteries.



So the formula qa = 1
2 is true at 0, l0, and so is the formula Paq =

7
12. The probability that a assigns to Paq = 7

12 at 0, l0 equals 1, so
Ka(Paq = 7

12) is also true at 0, l0. On the other hand, Ka(qa = 1
2) is

false at 0, l0, for a confuses the two lotteries.

Since a confuses the two lotteries, Kal0 is false at 0, l0.



So the formula qa = 1
2 is true at 0, l0, and so is the formula Paq =

7
12. The probability that a assigns to Paq = 7

12 at 0, l0 equals 1, so
Ka(Paq = 7

12) is also true at 0, l0. On the other hand, Ka(qa = 1
2) is

false at 0, l0, for a confuses the two lotteries.

Since a confuses the two lotteries, Kal0 is false at 0, l0.

Note that agents do not have to know whether a coin flip was made
with a biased coin or not in order to be able to compute a probability.



Axioms

Propositional Logic Axioms

• All (instances of) tautologies of propositional logic are axioms.

• The Modus Ponens Rule: from ` ϕ and ` ϕ1 → ϕ2 conclude
` ϕ2.

Probability Axioms

(P1) ` Pa> = 1

(P2) ` Pa(¬ϕ) = 1− Paϕ
(P3) ` Pa(ϕ1 ∧ ϕ2) = Paϕ1 ∗ Paϕ2

(P4) ` Pa(ϕ1) > 0→ Pa(ϕ2|ϕ1) =
Paϕ1 ∗ Paϕ2

Paϕ1



Derivable Principles

From (P2), (P3) we derive:

` Pa(ϕ1 ∨ ϕ2) = Paϕ1 + Paϕ2 − Paϕ1 ∗ Paϕ2

` Pa(ϕ1 → ϕ2) = 1 + Paϕ1 ∗ Paϕ2 − Paϕ1

Pa(ϕ1 → ϕ2) = 1 ↔ 1 + Paϕ1 ∗ Paϕ2 − Paϕ1 = 1

↔ Paϕ1 ∗ Paϕ2 − Paϕ1 = 0

↔ Paϕ1 ∗ Paϕ2 = Paϕ1

↔ Paϕ1 = 0 ∨ Paϕ2 = 1

From this:

` Paϕ1 > 0 ∧ Pa(ϕ1 → ϕ2) = 1→ Paϕ2 = 1 (*)

Formula (∗) is a theorem of epistemic probability logic; it can be
viewed as a probabilistic version of the K-axiom in epistemic logic.



Certainty Axioms

(C1) ` Paϕ = 1→ ϕ

(C2) ` Paϕ ≥ t→ Pa(Paϕ ≥ t) = 1

(C3) ` Paϕ < t→ Pa(Paϕ < t) = 1

Note that the following is derivable from (C1) and (P2):

` Paϕ = 0→ ¬ϕ.



Lottery Axioms

(L1) ` li → pa = Pa(p ∧ li)

(L2) ` Pa(li1 ∨ · · · ∨ lin) = 1→ Palij =
1

n

(L3) ` Pa(pa = t1 ∨ · · · ∨ pa = tn) = 1 ↔ Pa(p) =
t1 + · · · + tn

n
.

L1 says that pa gives the probability a assigns to p for the current lot-
tery. L2 expresses the assumption of a uniform distribution (lottery)
over lotteries. L3 expresses the definition of the probability of a basic
fact as the average over its probabilities with respect to all accessible
lotteries.



Probability Rule

(PR) If ` ϕ1 → ϕ2 then ` Paϕ1 ≤ Paϕ2.

From (PR) we derive:

• If ` ϕ1 ↔ ϕ2 then ` Paϕ1 = Paϕ2.

Also derivable is the necessitation rule for certainty:

• If ` ϕ then ` Paϕ = 1.



Properties of 0, 1 and ≥

(LE1) ` t ≥ 0

(LE2) ` 1 ≥ t

(LE3) ` t1 ≥ t2 ∧ t2 ≥ t3 → t1 ≥ t3

Axioms for term simplification and (in-)equality reasoning
A system for simplifying terms, using principles such as

m1

n1
∗ m2

n2
=
m1 ∗m2

n1 ∗ n2
.



Commom Prior
The assumption that agents have a common prior, widely used in epis-
temic game theory, is not built into our concept of an epistemic prob-
ability model. If we want to impose this condition, we need a formula
or set of formulas for it. In case both the number of agents and the
number of atomic propositions are finite, we can express it in a single
formula: ∧

a,b∈A,p∈P

pa = pb.

For infinite sets of agents or propositions we need an infinite number
of formulas to express the fact that the agents have a common prior.



Completeness

Question 1 How should the details about (in-)equality reasoning with
probability terms be spelled out? How can we see that reasoning with
probability terms is decidable? Is there a normal form for probability
terms?

Question 2 Modulo the details about term reasoning, is this a com-
plete system for epistemic probability logic? If not, which additional
axioms are needed?



Allowing Lotteries with Unknowns

If we want to allow lotteries with unknowns in our models, then the
language should be extended with expressions Xp with meaning: the
(unknown) probability of p, and lotteries should allow for factors Xp.

Model representing a coin with unknown bias:

0 : p

1 : p

l0 : {0 : Xp, 1 : 1−Xp}



A Paradox of John Maynard Keynes

Represent an urn withmwhite marbles and n black marbles as (m,n).

0 : (0, 2)

1 : (1, 1)

2 : (2, 0)

l0 = {0 : 1
3, 1 :

1
3, 2 :

1
3}



Represent an urn as a stack of marbles:

0 : WW

1 : WB

2 : BW

3 : BB

l0 = {0 : 1
4, 1 :

1
4, 2 :

1
4, 3 :

1
4}



The ‘Paradox’

According to the first model, the probability that both marbles are
black is 1

3.

According to the second mode, the probability that both marbles are
black is 1

4.

How is this possible?

This is the question John Maynard Keynes posed in his book [Key63].

My answer is that it is all a matter of representation, and that both
models give a plausible representation of “consider an arbitrary urn
with two marbles, either black or white.” Once we have fixed the
representation, including the lottery or lotteries, epistemic probability
calculations can start.



Updates: Public Announcement

If M = (W,V,R, L, I, E) is an epistemic probability model, then
Mϕ = (W ′, V ′, R′, L′, I ′, E ′) is the epistemic probability model given
by

• W ′ = {w ∈ W | for some jinI :M,w, j |= ϕ}.

• V ′ is the restriction of V to W ′.

• R′ assigns to each agent a the relation R′a that is the restriction of
Ra to W ′.

• L′ is the set of lotteries from L with an index in I ′ = {j ∈ I |
for some w ∈ W :Mw, j |= ϕ}.

• E ′ assigns to each agent a the relation E ′a that is the restriction of
Ea to I ′.



A Language with Public Announcement

Let LPA be the extension of L with public announcements, where
[ϕ1]ϕ2 expresses that after the public announcement of ϕ1, ϕ2 holds.

More precisely:

M,w, i |= [ϕ1]ϕ2 iff M,w, i |= ϕ1 implies Mϕ1, w, i |= ϕ2.



Calculus for epistemic probability logic with PA

Add the following principles for public announcement:

(PA1) ` [ϕ]p↔ (ϕ→ p)

(PA2) ` [ϕ1]¬ϕ2 ↔ ¬[ϕ1]ϕ2

(PA3) ` [ϕ1](ϕ2 ∧ ϕ3)↔ ([ϕ1]ϕ2 ∧ [ϕ1]ϕ3)

(PA4) ` [ϕ1](Paϕ2 = q)↔ (Pa([ϕ1]ϕ2 | ϕ1) = q)

(PA5) ` [ϕ1](Pa(ϕ2|ϕ3) = q)↔ (Pa([ϕ1]ϕ2 | ϕ1 ∧ ϕ3) = q)

Plus the rule of announcement generalization:

From ` ϕ1 derive ` [ϕ2]ϕ1.

Question 3 What axioms and rules should be added to make this a
complete logic for epistemic probability logic with public announce-
ment?



Updates: Public Change

A P substitution is a finite list of bindings (p, ϕ). This determines a
substitution P→ L in the usual way.

A public change is a substitution σ applied to the valuation at all
worlds:

V M,σ,i(w) = {p ∈ P |M,w, i |= σ(p)}.
This depends on the lottery.

If we wish to avoid that dependence, then we have to restrict the for-
mulas ϕ allowed in substitutions.



Updates: Non-determinate Change

In a probabilistic setting, a public change update can be non-determined,
in the sense that different things might happen with certain probabili-
ties.

To model this, we can represent an action as a lottery over substitu-
tions.

Example:

•

p := >

p := ⊥

1
2

1
2



Use of Non-determinate change for creating coin flip models

0 : p

1 : p

l0 : {0 : 1
2, 1 :

1
2}



A Puzzle of Lewis Carroll

An urn contains a single marble, either white or black. Mr A puts
another marble in the urn, a white one. The urn now contains two
marbles. Next, Mrs B draws one of the two marbles from the urn. It
turns out to be white. What is the probability that the other marble is
also white? (Gardner [Gar81])



Solution with PRODEMO

Call the first white marble p and the second one q. Mrs B does not
know whether she is drawing from ¬p + q or from p + q.

Let’s start with a model of complete ignorance about p, for two agents
a, b:

m1 :: Pem Prp
m1 = initPM [a,b] [P 0]



First Update

An update model for telling a the value of p, while b does not learn
this fact.



um1 :: FUM Prp
um1 = \ ags -> UM

ags
[0,1]
[((0,0),(p,[])),((0,1),(p,[])),
((1,0),(Ng p,[])),((1,1),(Ng p,[]))]

((a,[[0],[1]]) :
[ (x,[[0,1]]) | x <- ags \\ [a] ])

[0,1]
[[(0,1/2),(1,1/2)]]
[(x,[[0]]) | x <- ags ]
[0]



Result of updating with this

m2 :: Pem Prp
m2 = upd [P 0] m1 um1

This gives:

*PRODEMO> m2
MO [a,b] [0,1]
[(0,[p]),(1,[])]
[(a,[[0],[1]]),(b,[[0,1]])]
[0,1]
[[(0,1 % 2),(1,1 % 2)]]
[(a,[[0]]),(b,[[0]])]
[0]



Putting a second white marble in the urn.

A public change that makes q true:

m3 :: Pem Prp
m3 = upd_pc [P 0,Q 0] m2 [(Q 0,Top)]

The result:

*PRODEMO> m3
MO [a,b] [0,1] [(0,[p,q]),(1,[q])]
[(a,[[0],[1]]),(b,[[0,1]])]
[0,1]
[[(0,1 % 2),(1,1 % 2)]]
[(a,[[0]]),(b,[[0]])]
[0]



Removing either p or q from the bag

Nobody knows which of these two takes place. Note that removing p
from the bag has as precondition that p is true, and similarly for q.



um2 :: FUM Prp
um2 = \ ags -> UM

ags
[0,1]
[((0,0),(p,[(P 0,Ng Top)])),
((0,1),(p,[(P 0,Ng Top)])),
((1,0),(q,[(Q 0,Ng Top)])),
((1,1),(q,[(Q 0,Ng Top)]))]

[ (x,[[0,1]]) | x <- ags ]
[0,1]
[[(0,1/2),(1,1/2)]]
[(x,[[0]]) | x <- ags ]
[0]



The result of updating with this

m4 :: Pem Prp
m4 = upd [P 0,Q 0] m3 um2

Here is what this model looks like:

*PRODEMO> m4
MO [a,b] [0,1,2]
[(0,[q]),(1,[p]),(2,[])]
[(a,[[0,1],[2]]),(b,[[0,1,2]])]
[0,1,2]
[[(0,1 % 3),(1,1 % 3),(2,1 % 3)]]
[(a,[[0]]),(b,[[0]])]
[0]



What is the probability that the other marble is also white?

In our setting: what is the probability of p∨q? It is different for a and
b.
*PRODEMO> prob m4 a 0 0 p_or_q
1 % 1

*PRODEMO> prob m4 a 1 0 p_or_q
1 % 1

*PRODEMO> prob m4 a 2 0 p_or_q
0 % 1

*PRODEMO> prob m4 b 0 0 p_or_q
2 % 3

*PRODEMO> prob m4 b 1 0 p_or_q
2 % 3

*PRODEMO> prob m4 b 2 0 p_or_q
2 % 3



Work in Progress

• Implementation of epistemic probability model checking with
PRODEMO.

• Completeness proofs for axiom systems

• Extensions: Handling of Lottery Functionals

• Connections with Bayesian learning

• See homepages.cwi.nl/˜jve/software/prodemo/

homepages.cwi.nl/~jve/software/prodemo/
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