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The travelling salesman problem arises in many different contexts. In this paper we
report on typical applications in computer wiring, vehicle routing, clustering and
job-shop scheduling. The formulation as a travelling salesman problem is essentially
the simplest way to solve these problems. Most applications originated from real
world problems and thus seem to be of particular interest. Illustrated examples are
provided with each application.

THE TRAVELLING SALESMAN PROBLEM
Introduction

IN THIS paper we discuss four apparently unrelated problems that arise in the
context of computer wiring, vehicle routing, clustering a data array and job-shop
scheduling with no intermediate storage. It turns out that each of these problems
can be formulated as a travelling salesman problem (TSP). Three of them
originated from real world situations and were not immediately recognized as
TSPs; use of TSP algorithms led to better solutions, as will be illustrated below.

Moreover, not only are the four problems special cases of the TSP, but the
TSP can conversely be interpreted as a special case of any of these problems.
Formulation as a TSP thus is essentially the simplest way to solve them. For the
last two problems, their complete equivalence to the TSP is non-trivial.l-2

After introducing the TSP and reviewing the methods for its solution, we will
deal with the applications in the remaining sections. Each of the four problems is
first described verbally, then formulated as a TSP and finally illustrated by some
examples.

Formulation of the TSP

A salesman wishes to find the shortest route through a number of cities and
back home again. This problem is known as the travelling salesman problem and
can be stated more formally as follows.

Given a finite set of cities N and a distance matrix (c;) (i, j€ N), determine

min, 3 e
ieN
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where 7 runs over all cyclic permutations of N; w*(i) is the kth city reached by
the salesman from city i. If N = {1, ..., n}, then an equivalent formulation is

{=n-—1 -
mm,( 421 cv({)v(i+1)+cv(n)v(l))’

where v runs over all permutations of N; here v(k) is the kth city in a saleman’s
tour. If G denotes the complete directed graph on the vertex set N with a weight
¢;; for each arc (i, j), then an optimal tour corresponds to a hamiltonian circuit
on G (i.e. a circuit passing through each vertex exactly once) of minimum total
weight.

If ¢;; = ¢;; for all (i, j), the problem is called symmetric, otherwise it is called
asymmetric. If ¢, < cy+ ¢y, for all (i, j, k), the problem is called euclidean.

Solution methods

References 3, 4 and 5 contain recent surveys of known solution methods.

We can distinguish between optimal and suboptimal algorithms. The first type
of algorithm produces solutions that are guaranteed to be optimal but may
require inordinate running times; of special interest are the branch-and-bound
methods developed by Little et al.,* Held and Karp’® and Bellmore and
Malone.’® Suboptimal algorithms which produce approximate solutions in
reasonable times include Lin, Christofides and Eilon* and Lin and
Kernighan.!3

In fact, we shall be using the following algorithms:

(a) a branch-and-bound procedure based on Little et al%, incorporating an
improved branching strategy that allows early pruning of a branch
through sufficiently large penalties;

(b) a branch-and-bound procedure based on Held and Karp® for symmetric
TSPs;

(c) a heuristic procedure for generating 3-optimal tours for symmetric TSPs,
following the enumeration scheme given by Lin!! with deletion of some
superfluous checks for improvement,

Descriptions of these algorithms as well as computational experience and
ALGOL 60 procedures can be found in Lenstra.}

COMPUTER WIRING
Problem description
The following problem arises frequently during the design of computer inter-
faces at the Institute for Nuclear Physical Research in Amsterdam.
An interface consists of a number of modules, and on each module several
pins are located. The position of each module has been determined in advance.
A given subset of pins has to be interconnected by wires. In view of possible
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future changes or corrections and of the small size of the pin, at most two wires
are to be attached to any pin. In order to avoid signal cross-talk and to improve
ease and neatness of wirability, the total wire length has to be minimized.

TSP formulation

Let P denote the set of pins to be interconnected, c,; the distance between pin i
and pin j and H the complete graph on the vertex set P with weights ¢y on the
arcs.

If any number of wires could be attached to a pin, an optimal wiring would
correspond to a minimum spanning tree on H, which can be found efficiently by
the algorithms of Kruskal’® or Prim!® and Dijkstra.l” However, the degree
requirement implies that we have to find a minimum hamiltonian path on H
(i.e. a path passing through each vertex exactly once). This problem corresponds
to finding a minimum hamiltonian circuit on G with N = Pu {*} and Cro=Cy=0
for all ie N. The wiring problem can thus be converted into a symmetric
euclidean TSP.

A more difficult problem occurs if the positions of the modules have not been
fixed in advance but can be chosen so as to minimize the total wire length for all
subsets of pins that have to be interconnected. A review of this placement
problem and the associated quadratic assignment problem is given by Hanan and
Kurtzberg.18

Results

The procedure that was used originally produced clearly non-optimal wiring
schemes like the example with two subsets of pins in Figure 1(a). The size and
number of the problems was such that Lin’s heuristic had to be used. The
3-optimal results on the example are given in Figure 1(b) (see Visschers and
Ten Katel®),

VEHICLE ROUTING
Problem description

In 28 towns in the Dutch province of North-Holland telephone boxes have
been installed by the national postal service (PTT). A technical crew has to visit
each telephone box once or twice a week to empty the coin box and, if necessary,
to replace directories and perform minor repairs. Each working day of at most
445 min begins and ends in the provincial capital Haarlem. The problem is to
minimize the number of days in which all telephone boxes can be visited and the
total travelling time.

A similar problem arose in the city of Utrecht. Here about 200 mail boxes
have to be emptied each day within a period of one hour by trucks operating
from the central railway station. The problem is to find the minimum number of
trucks able to do this and the associated minimum travelling time.
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FiG. 1. (a) Wiring without optimization. (b) 3-Optimal wiring.

TSP formulation

Both problems are types of classical vehicle routing problems (VRP) (see
Eilon et al®). They will be denoted by P1 and P2, respectively, and can be
characterized more formally as follows:

n cities  (1<i<n) (the customers) are to be visited [P1: 28 towns; P2: 200

mail boxes] by m vehicles [P1: m working days; P2: m trucks} operating from

city * (the depor) [P1: Haarlem; P2: central railway station];

the travelling time between cities i and j is dj; = d;; minutes, for

irjE{I’ ---sn}U{*};

the time to be spent in city i is e; minutes, for i€{l,...,n} [P1: 8x number of
telephone boxes in town i; P2: 1];

the maximum allowable time for any vehicle to complete its route is f minutes
[P1: 445; P2: 60};
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there may be additional constraints [P1: one town (nr. 28, Den Helder) has

to be visited twice on different days];

criteria by which solutions are judged are:

A, the number of vehicles used;

B(A), the total time used for 4 vehicles.
If a city has to be visited twice, it is duplicated, appropriate travelling and visitin g
times are added, and » is increased by one.

[P1: Den Helder is split up into two cities 28 and 29; dygp9: =00; n:= 29.)
We replace the depot (city *) by m artificial depots (cities n+ 1, ...,n+m) and
extend the definition of (d;) and (e,) as follows (cf. Figure 2):

dp =d; forl<i<m;
dyyj=4d,y for 1<k<m;
dpigma=A for 1<k, I<m;

e =0 forl<k<gm.

1 oo} cocon n#l...nim
d"...d1j...d d, ...d

b B L ey £

T LERC TR LEEC 1 LPRRPOL I
L CYCTERTIRURL W L e it

n+"l d’t1'" *j"'dtn

Bamid, geead, e, A il

F1G. 2. The matrix (d,)).

We obtain a symmetric euclidean TSP by defining N={1,...,n+m} and
¢y = te;+dy;+de; for all i, jeN. A salesman’s tour is feasible for the VRP
provided that the time constraint for each vehicle and possible additional
constraints are respected. If a TSP solution contains m—A links between
artificial depots, then the corresponding VRP solution uses only A vehicles,
Adding another vehicle decreases the number of links between artificial depots
by one and hence decreases the objective function by A. Thus, — A may be
interpreted as the cost of a vehicle. We may now consider three possible choices
of A:

A =+ oo will lead to min, B(m), i.e. the minimum total time for m vehicles?;

A = 0 will lead to min{B(4)|1<A4<m}, i.e. the minimum total time for any

number of vehicles?;

A = —oo will lead to min, B(min {4 |1<A<m)}), i.e. the minimum total time

for the minimum number of vehicles.
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The latter objective is the criterion function for both P1 and P2,
An appropriate method for obtaining good VRP solutions is the following:
(1) Choose an initial tour which satisfies the VRP constraints,
(2) Apply an iterative procedure for improving the tour and check the con-
straints whenever a possible decrease in tour length occurs.
An interesting variation on this type of problem arises in the context of money
collection at post offices. For security reasons, several good routes have to be
available. The problem is then equivalent to the moonlighting salesman problem®
where k disjoint hamiltonian circuits of minimum total weight are sought. No
algorithms for this problem have been proposed so far.

Results

Figures 3 and 4 illustrate some results, obtained for P1 and P2. In both
figures, the links with the depot (*) have not been drawn.

For P1, Lin’s heuristic method was used. All 3-optimal solutions obtained
require 4 days, representing a 50 per cent decrease with respect to the schedule
that was previously used. An example is given in Figure 3(a). Exchanging three
links in this solution resulted in the schedule given in Figure 3(b); it involves
only 3 days, including however one of 449} min. Computational experience
revealed that the heuristic procedure converged much faster with A = —co than
with A = 0 (see Kuiper®).

For P2, a variation on Lin’s method was used, whereby only a limited
number of promising potential improvements was checked. The number of
trucks needed was reduced from ten (Figure 4(a)) to eight (Figures 4(b—d)). In
view of the size of the problem, both possibilities A = 0 and A = —o0 have been
run only once; the convergence with A = —o0 was relatively slow.

tour time
444
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pe— 1 1]
L

4494
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4324
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U 207

(@ {b)

[111%

FiG. 3. (a) P1: 3-optimal solution; A = —0; B(4) = 13384. (b) P1: infeasible solution,
obtained by hand from Fig. 3(a); B(3) = 1338¢.
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F1G. 4. (a) P2: previously used solution; B(10) = 442. (b) P2: locally optimal solution,

starting from Fig. 4a); A = 0; B(8) = 404. (c) P2: locally optimal solution, starting from

Fig. 4a); A = —o0; B(8) = 405. (d) P2: locally optimal solution, starting from an improve-
ment by hand on Fig. 4(c); A = —0; B(8) = 398.
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CLUSTERING A DATA ARRAY
Problem description

Suppose that a data array (a;) (i€ R, j€S) is given, where a;; measures the
strength of the relationship between elements i€ R and j€S. A clustering of the
array is obtained by permuting its rows and columns and should identify sub-
sets of R that are strongly related to subsets of S.

This situation occurs in widely different contexts. Here we will apply a
clustering technique to three examples. In the first one®® R is a collection of 24
marketing techniques, S is a collection of 17 marketing applications, a;; = 1 if
technique 7 has been successfully used for application j, and a;; =0 otherwise.
The second example®® arises in airport design; R(= S) is a set of 27 control
variables and a,; measures their interdependence. The third example® deals with
an import—export matrix; R(= S) is a set of 50 regions on the Indonesian
islands, a;; = 1 if in 1971 a quantity of at least 50 tons of rice was transported
from region i to region j, and a;; = 0 otherwise.

These three examples indicate that the approach is useful for problem decom-
position and data reorganization (see McCormick et al®?),

To convert this problem into an optimization problem, some criterion has
to be defined. The proposed measure of effectiveness (ME) is the sum of all
products of horizontally or vertically adjacent elements in the array.? Figure 5
shows how this criterion relates to various permutations of a 4 x4 array. The
problem is to find permutations of rows and columns of (a;;) maximizing ME.

123% 12314 1234 132% 1324
11010 1]1010 1{1010 1{1100 111100
20101 2{o101 3{1010 2(o011 3/1100
3f1010 blo101 20101 4joo11 20011
hjo101 31010 Lio101 3{1100 4loo11
ME = 0 ME = 2 ME = L ME = 6 ME = 8
FiG. 5. ME for various permutations of a 4x 4 array.
TSP formulation

Let R =({1,...,r}and S = {1,...,s}. With the conventions

p(0) = p(r+1) = o(0) = o(s+1) = *,
a,=a,;=0 forieR, jeS,

the ME, corresponding to permutations p of R and ¢ of S, is given by

ME(p, 0) = iiZR jzsa 0o @ptiroti—1 + Bt + Bpi-notp + Bpurno)
€ €

=8 {=r
=3 Ya,Ha + a0 ;
s Wy 10(f) Yo (54+1) i§01§8 p#)] & plit+1)j
= ME(0)+ME(p),
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80 ME(p, o) decomposes into two parts, and its maximization reduces to two
separate and similar optimizations, one of ME(o) for the columns and the
other of ME(p) for the rows. McCormick er al.?? state that both subproblems
may be rewritten as quadratic assignment problems. More precisely, they are
symmetric TSPs:

TSPCOI: NOOI = SU{*}, jkl = 2 a‘j a"k fOl‘j,kENWl,
ieR
TSProw: NT™W = Ru{*}, 3" =— ¥ aya; for h,ie N™v,
jeS

for ME(o) and ME(p), respectively®. In general, the clustering problem for a
p-dimensional array can be stated as p TSPs. It may be attacked by any algorithm
for the TSP; in fact, McCormick’s® bond energy algorithm (BEA) is a simple
suboptimal TSP method which constructs a tour by successively inserting the
cities?s,

If the data array is symmetric (i.e. a;; = a;; for all i, j), then TSP™¥ and
TSPeol are identical and only one optimization needs to be performed (see the
airport example).

If the data array is square (i.e. r = s5) but not necessarily symmetric and we
want to have equal permutations of rows and columns (i.e. p = g), then one
symmetric TSP results:

TSPeow: pAcow — pcol — Nrow, C;:;ww — C:;?l_*_c;;)w for i,jE Necow
(see the import-export example).
The size of the TSPs might be reduced by assigning identical rows or columns
to one single city under the assumption that these rows or columns will be

adjacent in at least one optimal solution. This assumption is justified under the
conditions expressed by the following theorem.

Theorem

If a;€{0,1} for all ieR, j€S, and 3" = 537 = cJ°¥ for some k, /e Nrow,
then row k and row / are identical, and adjacent in at least one optimal solution
to TSProw,

Proof: We define S; = {j| jeS,a;; = 1} for all ie N*o%_ Since ay,€{0, 1} for all
i€R, jeS§, we have
cY¥ = —|[S;nS;| for all i, je Nrow, )
and cjg" = cj3¥ = ¢j°" implies that S, = 5, nS; = S;. Hence row k and row /
are identical:
ay; = ay forall jeS. )

Now consider any permutation p of R with p(p) =k, p(q) =1, |p—q|>1.
Insert / between k and p(p+ 1). This will not decrease ME(p) if

oW TOW oW - oW TOW oW
Chptp+1) T ol + pigrn) Z ™ + % + e plat)
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By (1) and (2), this is equivalent to

| Sp(q—l) n SII +|SI 0 Sp(q+1)| < I SII +| Sp(q—l) N Sp(q+l)"
which is true, since

| Sptq-1 nS|+|8n Sp(q+1)|

=|§n (Spg-nY Sp(q+1))| +|8§n Spg-n0N Sp(q+l)|
<) 8y +| 8 pig—1 0 Spigin -

(c) )

Fi1G. 6 FiG. 7
FiG. 6. Marketing example; « = 0, [1 = 1. (a) Initial array; ME = 39. (b) BEA
clustering; ME = 97. (c) Optimal clustering; ME = 97.

FI1G. 7. Airport example; + =0, « =1, ® =2, @ = 3.(a) Initial array, ME = 592,
(b) BEA clustering; ME = 1154. (c) Optimal clustering; ME = 1160.
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Analogous theorems hold for TSPeo! and TSPe°¥. Definining R; = {i|i€R,
a;; = 1} for all je N°°l, we have in the latter case

9™ = —|8;0 ;|| Ryn Ry|  for all i, je Neow, 3)

and we have to show that
a,;=a; forall jeSs,
a; =ay forallieR. O]

It follows from (3) and c§9% = 9™ = c§°" that |Si|+|Ry|=|Se0 S|+
|Re 0 Ry| = | S|+ | Ry|. If | Si|>|Srn S|, then |R,|<|R; 0 Ry|, which is impos-
sible; hence |S;|=|S,n S| =S| and |R,| =|R.n R| =|R)|, which trivially
leads to (4).

These results cannot be generalized to cover the case where a;; can take on
other values than 0 or 1. For example, if R ={1,2,3} and a; = a3; =1, a3; = 2
for j€ S, then the identical rows 1 and 2 are separated by row 3 in the optimal
solution.

Results

The techniques and applications pertaining to the marketing example can be
found in McCormick et al.?? Figure 6 shows the initial data array, the clustering
produced by the BEA22 and a clustering corresponding to optimal solutions of
TSPee! and TSProv, found by Little’s algorithm after application of the theorem
on row identification. It turns out that the BEA clustering is optimal.

*
3 14
8 W 7 > ° .
" L]
U 1 o
\‘i‘ - - s [ n
o A 30
Q X C 4 P T N3 ot
. v ] b % ooy & - X
% A [w) » " ; 7| %
™ .
. - el /7 Y8 =
45
/ 29 ) P~
6 15 4 - o - /
CSor W 2
[ 4
1. Singapore 12. Ridar II 23, Jateng IT 34, Bulut I L3, Malub
2. Malay 13. Rikep 24, Surabaya 35. Buteng I kb, Malteng
3. Babang 1k, Jambi 25. Jatin 36, Buteng I k5. Malsel
L, Aceh T 15. Sumsel T 26, Pontianak 37. Makasar k6, Irvaut T
5. Aceh IT 16, Sumsel II 27. Kalbar 86. Bulsel 47, Irbeut IT
6, Belawan 17. Bengkulu 28. Kalteng 39. Bulteng 48, Irbaut IIT
T. Bumut X 18, Lampung 29. Kalsel L0, Bali k9. Irbasel I
8. Bumat IX 19. Jaya I 30, Kaltim T L1, Nusa Tenguars 50. Irbasel IT
9. Sumbar 20. Jaya II 31, Kaltin II Barat . :
10, Dumai 21. Jebar 32, Bulut I k2, Nusa Tenguara
11, Ridar I 22, Jateng T 33, Bitung Tigny

Fi1G. 8. Import—export example: regions on the Indonesian islands.
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The control variables in the airport example can be found in McCormick
et al.?2 Figure 7 shows the symmetric initial data array, the BEA clustering® and
a clustering corresponding to an optimal solution of TSPeol(= TSPro¥), found
by Held and Karp’s method. The BEA clustering is not optimal and, in fact,
not even 3-optimal, since it can be improved by exchanging three links.

The geographical distribution of the regions on the Indonesian islands in the
import-export example is given in Figure 8. Figure 9 shows the square but
asymmetric initial data array and a clustering corresponding to a 3-optimal
solution of TSPe°¥, found by Lin’s heuristic.

(b)

FiG. 9. Import-export example; - = 0, (1 = 1. (@) Initial array; ME = 223. (b) 3-
Optimal clustering subject to p = o; ME = 290.

JOB-SHOP SCHEDULING WITH NO INTERMEDIATE STORAGE

Problem description

One of the basic assumptions in most existing theory on machine scheduling
is that a job is allowed to wait arbitrarily long before being processed on its next
machine.28 This assumption is highly unrealistic in some real world situations
where intermediate storage space is finite or may even be non-existent. The
former situation exists for instance in a computer system where buffer space is
limited and costly; the latter situation is met in steel or aluminium rolling where
the very high temperature of the metal has to be maintained throughout the
production process.

Several researchers?’3 have studied the problem of minimizing the total
processing time under the restriction of no intermediate storage in a flow-shop,
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where the machine order of each job is identical, which implies that the pro-
cessing order on each machine will be identical, and simplifies the analysis.
Van Deman and Baker® used a different criterion.

Extensions both to non-zero but finite intermediate storage and to different
processing orders per machine seem to complicate the situation considerably.
We shall restrict our attention to a job-shop where:

(a) the machine order may vary per job;

(b) each job visits each machine at least once;

(c) no passing is permitted, i.e. the processing order is identical on all

machines;

(d) no intermediate storage is allowed.

Reddi and Ramamoorthy® consider a more general production process,
involving (a), (d) and a “‘non-subsumption” condition under which lower
bounds can be developed. The computation of this lower bound is equivalent
to solving a TSP, and the algorithm thus appears to be time-consuming.

TSP formulation

The job-shop scheduling problem can be described as follows:
n jobs J; (1 <i<n) have to be processed on m machines M; (1</<m);
job J; (1 <i<n) consists of my operations Oy, (1<k<my);
the machine order of J; (1 <i<n)is given by p; = (uy(l), ..., u(m,)), i.e. the kth
operation Oy, of J; has to be performed on M, ;,;
the processing time of O, (1 <i<n, 1 <k<m;)is given by p,.;
the total processing time has to be minimized under the conditions (a)~(d).
We define
ky=min{k|p k) =L1<k<my},
ki =max{k|p (k) =L1<k<m},

k-m‘

F,= X P
-1

Oy, and Oy . are the first and last operations of J; on M;; their existence is
ensured by condition (b).

For each pair of jobs (J;,J;), we will calculate a coefficient c,;, representing
the minimum difference between the starting times of O, and O, if J; is
scheduled directly after J;. By condition (c), O~ has to precede Ojr,y o0 M,
for 1 <I<m. We introduce a directed graph G;; with vertex set N;; and arc set
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Ay, defined by
Ny = {Oni| b =1, j, 1 <k<my);
Ay = {(Opp Op i) | B = i, J, 1 <k <my— 130{(Ogp, s Op)|1<I<m};

a weight p,, is attached to each vertex Oy; € Nyy. For an example with m = 3,
ps = (2,1,2,3,2) and p; = (1,2,3,1), the graph G, is given in Figure 10.

Fi1G. 10. An example of the graph G .

As to the path of maximum weight (also called longest or critical path) in G,
it is clear that

it starts from O;; and ends in O;p, 5)
it contains exactly one arc (O, Ojkﬂ,). (6)

Condition (d) implies that ¢;; is equal to the latest possible starting time of Oy,
in G;; if Oy starts at time zero and O;,, finishes as early as possible. It follows
from (5) and (6) that

Cl'j = max, (P:I+P;I)—Pj. (7)

The minimum total processing time is now given by

i=n—1
mmu( 21 Cv(i)v(i+l)+Pv(n))! ®)
f==

where v runs over all permutations of {1, ..., n}; v(i) is the ith job in a processing
schedule.

We add a job J. with m. = m, p.(k) = k and p,;, = O for 1 <k <m, represent-
ing beginning and end of a schedule. According to (7), its coefficients are given
by c.; =0, ¢;. = P; for 1 <i<n. Determination of (8) now corresponds to solving
a TSP with N = {*}U{l, ..., n} and (c;) defined by (7).

This TSP is asymmetric and euclidean. To prove the latter assertion we have
to show that c;;+ ¢ 2> ¢y, for any i, j, k € N, or, equivalently, that

max,(Pj,+ Pj) + max (P}, + Py, > max (P + Py + P;.
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This is true, since for any l€{l, ...,m}
(Py+Pp)+(Ph+Pr) > (Py+Pr)+ Py

We make two final remarks on this TSP formulation,

Remark 1. In a flow-shop we know that y; = (1,2, ...,m) for 1 <i<m, and (7)
simplifies to ¢;; = max(Pj;—P] ;_,) (note that P}, = ().27.28.33

Remark 2. So far, distances have been defined as differences between the
starting times of the first operations of jobs. More generally, one might arbitrarily
select any two operations Oyy,. and Oyy.. for each job J; and define c;; as the
minimum difference between the starting times of Oy, and Ojy.. if J; precedes

J; directly. This will lead to modifications in (7) and (8), but to an equivalent
TSP.31.32

Results

To illustrate the consequences of the no intermediate storage condition,
we solved three job-shop scheduling problems® under this restriction, using
Little’s TSP algorithm. In Table 1 the solution values are compared with the
lengths of the schedules when infinite intermediate storage is allowed. Figure 11
illustrates the optimal schedules for one of these problems; the unrestricted
schedule was found by a method of Florian et al.3® In general, the conditions
of no intermediate storage and no passing can be expected to lead to large
amounts of idle time on the machines.

Fi1G. 11. Optimal schedules for a 6 x 6 problem without and with intermediate storage.

TABLE 1. EFFECT OF NO INTERMEDIATE STORAGE

Number Number Value without Value with

of of intermediate intermediate
jobs machines storage storage
6 6 120 55
10 10 2433 972*
20 5 2132 1165

* Indicates that the optimality has not been proved.
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