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A general categorical description of subtyping 17 <: 171 and of bounded quantification 

Va <: 17 .• T,. and 3a <: 17. T is presented in terms of fibrations. In fact, we shall 

generalize these bounded quantifiers to "constrained quantifiers" Va[17 <: 171].T and 

3a[17 <: 171]. T. In these cases one quantifies over those type variables a for which 

17(a) <: 171(a) holds. Semantically we distinguish three levels: types T, which are 

fibred over (depend on) subtypings 17 <: 171 , which in turn are fibred over (depend on) 

kinds K . In this setting we can describe constrained quantification Va[ 17 <: 171] . ( - ) 

and 3a[17 <: 171] . ( - ) as right and left adjoints to the weakening functor which adds 

the (dummy) hypothesis 17 <: 171 to an appropriate context . This shows that, like 

ordinary quantifiers, these constrained (and hence especially bounded) quantifiers 

are adjoints. 

1 Introduction 

One of the features of object-oriented programming is subtyping: for types 

17, T: Type, the relation O' <: T expresses that O' is a subtype of T. It means 

that every time a term of type T is expected, one may also use a term of type 

O' . Typical examples are N <: IQ and IQ <: JR, but also O' <: Top, where 

Top is the type which contains all types. For record types (labelled cartesian 

products) { l 1 : 0'1 , ... , ln: O'n} one usually has a subtyping rule 

where the li are labels. 

In higher order object-oriented programming one may have higher order 

quantification 

Va: Type. T(a): Type. 
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This type Va: Type. r( a) is obtained by impredicative quantification over all 

types. One may also wish to quantify over type variables a: Type which are 

restricted to be subtypes of a given type a, as in 

Va<: a. r(a): Type. 

This is called bounded quantification. It is called "F-bounded" quantification 

(see [CCHOM89]) if the type variable a is allowed to occur free in a. This may 

be written explicitly as Va<: a(a). T. One can have Va: Type. r(a) as special 

case, namely as Va<: Top. r(a). Of course, one may also have :3 instead of V, 

see [CW85, 6.4] for use of bounded :J's in "partial data abstraction"; this is 

data abstraction with :J as in [MP88], but where some subtyping information 

about the hidden state is available. 

Instead of quantifying over a: Type with a <: a one may wish to quan­

tify over a with a <: a, i.e. over those a that are supertypes of a. More 

generally, one may wish to restrict a to satisfy a(a) <: a'(a), for given 

types a(a), a'(a): Type possibly containing a. The above subtype and su­

pertype cases are then special instances. We write such "constrained quan­

tification" as Va[a <:a']. T and :Ja[a <:a']. T. The intuitive meaning of the 

type Va[iT <: a']. T is the collection of maps which take a type variable a for 

which a(a) <: a-'(a) holds to a value in r(a). Similarly, :Ja[a <:a'] . T is the 

collection of pairs (p, M) where p: Type is a type with a [p/a] < "a'[p/a] and 

M : r[p/a] is a term. 

In [BL90] a subtyping statement a <: a' is called a type constraint. And 

a subtyping a <:a where a is a type variable is a simple type constraint. A 

derivation system is described for sequents of the form a 1 <: a1, ... , a.. <: 

an f- T <: T 1 with simple type constraints as assumptions, but arbitrary 

constraints as conclusion. It is both proof-theoretically and categorically 

more natural to have arbitrary constraints as assumptions, like in a1 <: 

aL ... , D"n <: a~ f- T <: r', so that one has, for example, a cut rule. Once this 

step has been taken, it becomes natural also to quantify over these more gen­

eral constraints, like with the above constrained quantifiers Va[ a <: a']. T and 

:Ja[a- <: a']. T 1 . One may wish to generalize these even further to multiple 

constraints Va[a1 <: a~, ... , an <: a~]. T so that one can have quantification 

over intervals, like in Va[a <: a, a<: a']. T. 

Bruce, Cardelli and Longo [CL91,BL90] present a model of subtyping and 

bounded quantification (and of some other features as well) using partial equiv­

alence relations and omega-sets. The model is described by giving the inter­

pretation [ - ] of all expressions. There is thus a concrete model, but there is 

no general notion of model of subtyping or of bounded quantification. Accord­

ing to Cardelli and Longo: " ... the invention of a general categorical meaning 

of subtyping and subkinds would be a relevant contribution" [CL91, top of 

1 At MFPS Luca Cardelli pushed me to investigate also these constrained quantifiers. They 

did not occur in the conference version of this paper, but the general subtyping sequents 

a1 < : a~, ... , Un <:a~ f- T <: r 1 were already there. 
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page 435]). Phoa [Ph92] goes a step further and formulates in categorical 

terms what a model should be. His emphasis is mostly on subsumption, by 

giving an axiomatization of coercion maps as certain terms. Our approach 

below is based on a "logic of subtyping" (via an explicit fibration of subtyp­

ings) and not on subsumption. In fact, it does not play a role at all, see 

Remark 4.4 (ii). Phoa uses his coercion maps to explain powerkinds 1 u: Kind 

for a type u: Type in terms of Benabou's notion of definability. Bounded quan­

tification is described via these (auxiliary) power kinds, since quantification 

over kinds is present in Phoa's structures. This, by the way, is also how 

Cardelli and Longo proceed. 

Here we present a more intrinsic description of subtyping and constrained 

(and bounded) quantification. It also applies to situations where there are no 

powerkinds 1 CT. We have nothing against powerkinds, but we think that an 

explanation of subtypes and bounded quantification should not rely on them. 

The presentation is based on the categorical analysis of type theory given in 

the authors thesis [Jac91]. Fibrations play an important role in structuring 

the various dependencies that one may have. The key aspect is to separate 

contexts, notationally via vertical bars 'I' like in statements 

a:K I u(a) <: u'(a) I x:T(a) 1-- M(a,x):p(a). 

Here K is a kind, and a is a variable inhabiting this K : Kind. Next, u(a) , u'(a) 

are types, (possibly) containing the variable a: K. Thus 

a : K 1-- u(a): Type and a: K 1-- u'(a): Type. 

Also T( a), p( a) are types, but in another context, namely 

a :K I u(a) <: u'(a) 1-- T(a):Type 

a: K I u(a) <: u'(a) 1-- p(a): Type. 

We thus consider calculi where type formation may depend on subtyping state­

ments, see Remark 4.4 (iii). So there are three levels, which will be captured 

by three different categories IB, <C and D in two fibrations, 

<C 

l subtypings CT <: u' over kinds K, and 
JIB 

][)J 

l types T over subtypings CT <: u' 
IC 

In a next step we incorporate constrained quantification. In [Jac91] quan­

tification was described by left (3 ) and right (V) adjoints to weakening functors 

(which is a minor adaptation of Lawvere's presentation of quantifiers as ad­

joints to arbitrary substitution functors) . A weakening functor adds a dummy 

assumption A by moving from a context r to an extended context r, A. Quan­

tification acts in the other direction: from contexts r, A to r by binding the as-
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sumption A. We show how constrained (and bounded) quantification fits this 

pattern by taking for the assumption A a subtyping statement O"(a) <: 0" 1(a), 

where a is a type variable, and O", 0"1 are types, possibly containing a. 

(To prevent circularity, we restrict the types O", 0" 1 occurring in subtypings 

O" <: 0"1 and Va[O" <: O"']. T (or ::Ja[O" <: O"'j. r) to those whose type formation 

does not depend on other subtypings. Categorically this can be expressed 

quite naturally via a change-of-base situation, as in Definition 4.3 (b ). ) 

In this paper we describe in parallel a categorical set-up for subtyping and 

bounded quantification, and a concrete model, namely partial equivalence 

relations over omega-sets (as also used in [BL90,CL91,Ph92]). In the end, we 

also show how to build a (term) model from syntax. We should emphasize 

that we do not introduce any new mathematical models for subtyping, but 

we only investigate some of the categorical aspects involved. We hope this 

clarifies both the syntax and semantics. 

2 PERs and w-sets 

The category w-Sets of omega-sets combines the set theoretic with the recur­

sion theoretic. Its objects will be written as I= (I, E1), or simply as (I, E), 

where I is a set and E is an 'existence' predicate E: I -t PN, such that for 

each i EI the set E(i) <;;; N is non-empty. A morphism u: (I, E1) -t (J, EJ) is 

a function u: I -t J between the underlying sets which is 'tracked': for some 

e E N one has Vi E I. \In E E1(i). e · n E EJ(u(i)), where e · n is Kleene's 

application of the e-th recursive function to n. It is not hard to verify that 

w-Sets is cartesian closed. There is a functor \7: Sets -t w-Sets which maps 

a set I to I with the existence predicate I -t PN which is constantly N. This 

\7 is right adjoint to the forgetful functor w-Sets -t Sets. 

A partial equivalence relation (PER) on N is a subset R <;;; N x N which 

is symmetric and transitive. We write 

IRI = { n E N I nRn} 

[n]R = {m E N I mRn} 

N/R = {[n]R In E IRI} 

for the domain of R 

for the R-class of n E N 

for the quotient of R 

PER= {R <;;; N x NI R is symmetric and transitive}. 

(Notice that R is an equivalence relation on its domain /RI, so we should write 

IRI/ R instead of N/ R. But the latter is clearer.) 

Every PER R yields an w-set (N/ R, E), with E ([n]R) = [n]R· We write 

PER for the category with PERs as objects, and maps (N/ R, E) -t (N/ S, E) 

in w-Sets as morphisms R -t S. By construction there is a full and faithful 

functor PER L-t w-Sets. One can identify the PERs inside w-Sets as those 

(I, E) where E(i) n E(j) = 0 for if- j. Forcing images of existence predicates 

to be disjoint yields a left adjoint to PER L-t w-Sets. 
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We shall mostly be interested in PERs indexed by w-sets. For an w-set 

(I, E) there is a 'fibre' category of (I, E)-indexed PERs with 

objects I-indexed collections (R.)iEI of PERs R;. These may be 

described as maps R: (I, E) ---7 \7PER in w-Sets. 
morphisms (R.)iEI ---7 (Si)iEI are I-indexed collections f = (fi)iEI of 

functions k N/ R; ---7 N/ Si which are 'tracked uniformly' : 

for some e E N, 

Vi E J. Vn E E1(i). e · n tracks fi 

i.e. 

Vi EI. Vn E E1(i). Vm E IR.I. fi( [m]RJ = [e · n · m]s,. 

Mapping an object (I, E) in w-Sets to this fibre category of (I, E)-indexed 

PERs yields a functor w-Sets0 P ---7 Cat, with for a morphism u: (I, E) ---7 

( J, E) in w-Sets a 'substitution' functor u* given by composition. Apply­

ing the Grothendieck construction yields a split fibration, which we write as 
UFarn(PER) 

! , where 'UFam' stands for 'uniform families'. This fibration is a 
W-Sets 

standard_ model of higher order polymorphic >.-calculus ( ' >.w' or < Fw'); it is due 

to Moggi' and Hyland, see [Hyl88]. One thinks of w-sets I = (I, E) as kinds 

I: Kind, and of (I, E)-indexed PERs (R.)iEI as types in kind context I, i.e. as 

i: I f- R;: Type. Morphisms f : R ---7 S over I are terms i: I I x: R; f- fi(x ): Si 

involving variables i: I in a kind and x : R; in a type. 

3 Subtypes 

The standard way to describe subtyping for PERs R, S E PER, considered 

as types, is via inclusion R ~ S as relations on N. We formulate this in the 

following category of conditional subtypings. 

Definition 3.1 Let PER<: be the category of "indexed PERs and inclusions". 

It has 

objects triples (I, R, R') where I is an w-set and R, R' are I-indexed 

PERs. Hence we may describe such an object as a pair of 

parallel maps R, R': (I, E) =l \7PER in w-Sets. 
morphisms (I, R, R') ---7 (J, S, S') are morphisms u: (I, E) ---7 (J, E) of 

w-sets for which one has 

R; ~ R~ :::} Su(i) ~ S~(i) 

for all i EI. 

There is an obvious projection functor PER<: ---7 w-Sets, namely (I, R, R') ~ 
PER<: 

I. This is a fibration, which we write as lFst . Every fibre is a poset. We 
W-Sets 

think of (R, R') ::; (S, S') in the fibre over I as an entailment i: I I R; <: R~ f-

Si<: Si-
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Notice that the inclusion relation ~ on PERs may be described as a (reg­

ular) mono in w-Sets, 

~ >------+- VPER x VPER. 

Using this mono we can describe a morphism u: (I, R, R') ---+ ( J, S, S') alter­

natively as a map u: (I, E) ---+ ( J, E) in w-Sets for which one has a necessarily 
. . 

umque map - --t m 

I {~ }:~~.:-------,;s~:.y7---1 
\7PER2 (R, R') (I, E) u (J, E) (S, S') \7PER2 

Here we have suggestively written 

{R <: R'} for the w-set {i EI I~~ Ra, with Eason I . 

Notice that the assignment 

( 
{R<:R'} ) 

(I,R,R') ~ (lE!i•R') 
yields a full and faithful fibred functor in a situation 

PER i w-Sets-

~ fa 
w-Sets 

(It may be described as a 'full comprehension category with unit', in the 

terminology of [Jac91] . This functor i actually restricts to a functor 

PER<: i RegSub(w-Sets) 

~fa 
w-Sets 

which tells that subtypings form a "sublogic" of the (classical) logic of regular 

subobjects over w-Sets. Indeed, the fibration Fst on the left captures a logic 

of subtypings for indexed PERs.) 

We write { - }:PER<: ---+ w-Sets for the functor (J, R, R') i--t {R <: R'}. 

Definition 3.2 Write Top = N x N for the maximal PER, with respect to ~ , 

and Topr = Topcr,E) = (Top)iEI for the I-indexed Top. Put T r = Tcr,E) = 

(I, Topr, Topr) E PER<: over I. 
For PERs R, S let RU S be the PER 

RU S = {((n,O), (m,O)) I nRm} U {((n, 1), (m, 1)) I nSm} 
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where (-, - ) is a recursive coding N x N ..::'.t N. We use U to define a meet /\ 

in the fibres of PER<: by 

(1,R,R') /\ (1,s,s') = (1,(~ u si)iE1,(R~ u sI)iEI ). 

Lemma 3.3 The operations T, /\ yield fibred finite products (meets) in the 
PER<: 

fibration l : one has meets (T, /\) in every fibre, and these are preserved 
W-Sets 

by substitution functors u•. 

With these we can express reflexivity and transitivity of subtypings {in con­

text l E w-Sets) as morphisms over l: 

T 1 :::; (I, R, R) and (I, R, R') /\(I, R', R") :::; (I, R, R"). 

Proof. One has (R, R') :::; T over 1, since Top ~ Top always holds. Further 

one has over l, 

(Q,Q1):::; (R,R') and (Q,Q'):::; (S,S') 

iff Vi E J. Qi ~ Q~ =? (Ri ~ R~ and Si ~ SD 

iff Vi E J. Qi ~ Q~ =? ~ U Si ~ R~ U SI 

iff ( Q, Q') :::; ( R, R') /\ ( S, S'). 

By the pointwise definition of T and /\, substitution functors preserve these 

meets. 0 

PER<: 

There is one further aspect of l that we wish to axiomatize. Recall 
W-Sets 

E 

that a split fibration ~p has a split generic object if there is an object 

S1 E JIB with an isomorphism 

JIB( 1, n )-'P-;--obj IE.1 

which is natural in J: for u:J --t I one has cp1(v o u) = u*cp1(v). Note 

that the object \7PER x \7PER E w-Sets is a split generic object for the 
PER<: 

fibration l of PER-inclusions: the required isomorphisms cp 1 are simply 
W-Sets 

identities. And the object \7PER E w-Sets is split generic object for the 

UFam(PER) 

fibration l of PERs over w-sets. 
W-Sets 

Each fibre category of this latter fibration is cartesian closed, via definitions 

of Top, x, =? which are pointwise as on PER. This cartesian closed structure 

is related to the finite meets (T, /\) between PER inclusions via the following 

7 
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T ~ (R, Top) 

(R, R') /\ (S, S') ~ (Rx S, R' x S') 

(R', R) /\ (S, S') ~ (R =? S, R' =? S'). 

They correspond to the familiar axioms in the logic of subtyping: 

i: I I 0 f- R <: Top 

i : I 1 R <: si,R~ <: s: f- (Rx s), <: (R' x S')i 

i: I I R~ <: R, Si <: s: f- (R =? S)i <: (R' =? S')i. 

We summarize the structure that we have found in the following definition. 

For convenience we restrict ourselves to split fibrations with split structure, 

without always saying so explicitly. What we call a A---+-fibration is a fibra­
IE 

tion lP which is a fibred CCC, has finite products in its base category JIB, 
lR • 

.. . . UFam(PER) 

and has a generic object. As we have seen, l is such a A---+-fibration. 
W-Sets 

Definition 3.4 A subtyping fibration for a A---+-fibration 
IC 

another fibration lq on JIB which 
lR 

• is a preorder fibration, i. e. has preorder fibre categories; 

• has fibred finite meets ( T, /\); 

lE 

lP consists of 
lR 

• has a generic object 0 x n E JIB-where 0 is the generic object of p; 

• satisfies for objects X, X', X", Y, Y' E IE in the same fibre 

T ~ (X,X) 

(X, X') /\ (X', X") ~ (X, X") 

T ~ (X, Top) 

(X,X') /\ (Y, Y') ~ (X x Y,X' x Y') 

(X', X) /\ (Y, Y') ~ (X =? Y, X' =? Y'), 

where we have identified a pair of objects (X, X') in IE over I with an object 

of C over I. This can be done by the previous requirement. 

Remark 3.5 In the PER model we have been able to capture multiple inclu­

sions R ~ R' and S ~ S' as a single inclusion R U S ~ R' U S'. If such 

possibility does not exist, we have to modify the generic object requirement 
IC 

for ~q a bit: then we require that this fibration has a family of generic 
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objects 

natural in I. If we write Gn = 'P(nxn)n((n,id}) E lE over (0 x nr, then 

for each A E C there is a unique n E N and u: qA ---+ (0 x nr such that 

A= u*(Gn)· 
JE: 

For a fibration ~p write the pullback of p against itself as 

JE:2 

The resulting fibration lP2 is then the cartesian product p x p in the 
lll\ 

lE 

2-category of split fibrations over JIB. For a split fibration lP we write 
JIB 

Split(IE) '------t lE for the category with the same objects as IE, but with only 

the splittings as morphisms. 

Lemma 3.6 Assume fibrations 

with generic object isomorphisms 

JE: 

lP and 
JIB 

Then we can define a functor I in 

IC 

lq as in the previous definition, 
lll\ 

Split(IE)2 I Split(C) 

~/ 
by 

for X,X' E IE1. 

Proof. We get a functor since for a morphism (u*(X),u*(X'))---+ (X,X') in 

SPlit(IE)2 over u: J---+ I we have I( u*(X), u*(X')) = u*I(X, X') by naturality 

of 'P and 'l/J. D 
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lE c 
Definition 3. 7 Let lP and lq be as in Definition 3.4. Form the fibration 

JIB JIB 
c 
~ by change-of-base in 

(:----+-• Split(IE)2 

!_J l _J ! 
<C q lB\ (-)xn lB\ 

An object of C is thus a triple of objects A E <C, X E IE, X' E IE with 

qA x n = pX = pX' in lB\. We can define a functor P in 

by (X, X,,X') ~ (the composite 7r*(A) /\ I(X, X') ::::; 7r*(A) ---t A), where the 

functor I comes from the previous lemma. 

This functor P constitutes a "comprehension category", in the termi­

nology of [Jac91]. It provides us with abstract projections P(A,X,X') = 

( 7r*(A) /\ I(X, X') ---t A) in <C, along which we can quantify. Intuitively, these 

projections are maps between subtyping contexts 

(r, a:: Type I e, a(a:) <: a'(a:)) -t (r I e) 
see Section 5. 

We close this section by describing the functor P for our running example 

of PERs over w-Sets, It maps a subtyping A = (S, S': (I, E) :::::;: \lPER) in 

PER<: and two (I, E) x \lPER-indexed PERs R, R' to the projection 

7r*(A) /\ I(R, R') = ( (S, U R.,x )iEI,XEPER, (SIU R~.x )iEI,XEPER) 

!P(A, R , R') 

A 

in PER<:· It is given by the underlying projection ?r: (I, E) x \lPER ---t (I , E) 
in w-Sets, since we have 

Si U R.,x S: s: U R~ x =} Si S: s:. 
' 

4 Constrained quantification 

llJ: 

In [ J ac91] one finds how a fibration bq may have quantification with respect 

to a comprehension category P: IE ---t c-+ . This means that for each X E 

IE, the "weakening functor" PX* between the fibres of D-induced by the 

10 
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projection map PX in JB-has a left/right adjoint (plus a Beck-Chevalley 

condition, which regulates the proper distrubution of substitution over the 

quantifiers). We shall show that this abstract set-up gives the right level 

of generality to describe constrained (and thus F-bounded) quantification in 

terms of adjunctions, by applying it to the comprehension category P : C ---t 

c- that we introduced in the previous section. 

We need the fibration of PERs indexed by subtyping statements. It is 

obtained by change-of-base: 

UFam<:(PER )----'>-UFam(PER) 

l _J ! 
PER<: { _} w-Sets 

Recall from Section 3 that the functor {-}maps (I, R, R') = (R, R': I ::::t PER) 

to the w-set {R <: R'} = {i E I I R s;;:: Ra, with existence E as on I . 
An object of UFam<:(PER) over (I, E) E w-Sets thus consists of a 3-tuple 

(R, R', U), where R, R': (I, E) ::::t \?PER are (I, E)-indexed PERs, and U is an 

{R <: R'}-indexed PERU: {i E I I R; s;;:: Ra---* PER. It clearly depends on 

an inclusion. 

Proposition 4.1 The PER-model has both constrained products TI and con­
UFam<:(PER) 

strained coproducts U. More precisely, the fibration l has products 
PER<: 

and coproducts with respect to the comprehension category 

PER<: ----t PER:?,. 

Proof. Assume A= (S, S': (I, E) ::::t \?PER) E PER<:, and R, R': I ::::t PER, 

as at the end of the previous section. For a family U of PERs in UFam<:(PER) 

over domP(A, R, R') = 7r*(A) /\ I(R, R') E PER<,, we have U as a map, 

{(i,X) EI x PER I Sis;;:: s: and R,x ~ R~.x} _ _:::U~~PER 

We have to define product Il(A,R,R')(U) and coproduct il(A,R,R')(U) objects in 

UFam<:(PER) over codP(A, R, R') =A E PER<:· They thus must be maps 

They are defined as 

IT(A R R')(U)i = n {Ui,X I R;,x ~ R~.x} 
' ' XEPER 

Il(A R R')(U)i = V {Ui,X I R;,x ~ R~.x} 
' ' X EPER 

11 
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where n and V are the meet and join in the complete lattice (PER,~) . The 

adjunctions P(A, R, R')* --l n(A,R,R') and il(A,R,R') --l P(A, R, R')* involve bi­

jective correspondences 

P(A, R, R')*(V) -----+ U over 7r*(A) /\ I(R, R') 

v ~ n(A,R,R')( U) over A 

U -----+ P(A, R, R')*(V) over 7r*(A) /\ I(R, R') 

il(A,R,R')(U) -----+ V over A 

where the weakening functor P(A, R, R')* moves V to a bigger context: 

({i EI I Si~ S:}~PER) 

f-t ({(i,X) EI x PER I Si~ s: and ~.x ~ R~.x} v 0 7r 
PER)· 

D 

The constrained products of PERs are thus obtained by intersection. Not 

over all PERs, like in Va.: Type. T(a.), but over PERs appropriately restricted. 

Example 4.2 {i) {From {BL90}}. For a (closed) type C7 1 interpreted as R E 

PER, consider the type 

Va.< : (7. a. -ta. :::::: Va.[a. <: e7]. a. -ta.. 

It is interpreted as the intersection 

S = ( n X -t x) E PER, 
XCR 

where X -t X = {(m, m') I \lk, k' E N. kXk' ==? m · kXm' · k'}. 

Assume e is an element of the domain ISI of S. For each n E IRI we have 

a sub-PER, 

Xn = {(n,n)} ~ R 

so that 

e E \Xn -t Xn\· 

But then e · n = n. Hence e is a code for the identity map on RE PER. The 

only term in Va.<: C7. a. -ta. is thus the identity on C7 . 

(ii) In the PER-model one has that quantification over a "singleton" inter­

val in Va.[Top <: a.]. T and :la.[Top <: a.] . T yields T[Top/a.], since one takes 

the meet or join of the set 

{Ui,X \Top~ X} = {Ui,Top}· 

The abstract structure that we recognize in the PER-model is axiomatized 

as follows. 
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Definition 4.3 A setting for constrained quantification is given by two fibra-
ID> <C 

tions lr and lq where 
<C JIB 

(a) r is a fibred CCC; 

(b) q has a fibred terminal object T: Ja -t <C such that q is a subtyping fibration 

for the fibration p = T*(r) obtained the change-of-base situation 

D------E 

rl L lp = T*(r) 
C T Ja 

This p is the fibration of types which do not depend on subtypings. 

The fibration r then has constrained products / coproducts if it has products 

/ coproducts with respect to the induced comprehension category P : C -t C-+ 

from Definition 3. 7. 

We note that this set-up indeed captures the PER models since there is a 

change-of-base sitution 

UFam<:(PER)---UFam(PER) 

l L l 
PER<: T w-Sets 

because {-} o T ~id: w-Sets -t w-Sets. 

A reader with experience in categorical type theory will (roughly) see how 

to interpret a polymorphically typed calculus with subtyping and constrained 

quantification in a structure as in the above definition. But actually carrying 

out such an interpretation may be complicated, due to coherence problems 

induced by the possibility of different derivations for a single term formation 

statement, see [BCGS91] . 

Remark 4.4 (i) It is not hard to verify that in a situation as in the defini­

tion, a projection ?r: Ix n -t I in Ja is mapped by the terminal object functor 

T: Ja -t C to a projection P(T(I), Top1, Top1): 7r*(T(J)) /\ I(Top1, Top1) -t 
E 

T(J) of the comprehension category. This yields that the fibration ~p has 

products and coproducts along the projections I x n -t I in Ja, and thus p 

becomes a >..2-fibration. This is a categorical way of saying that with con­

strained quantification Va[ a<: a']. T one also has second order quantification 

Va: Type. T as Va.[Top <:Top]. T. 

(ii) The subsumption rule 

r / e f- a < : a' 

r I e I x: a f- c.,.,.,., ( x): a' 

where c.,.,.,., is a coercer map, does not play a role in the above exposition. The 

subtyping fibration gives a logic with certain relations between types (namely 
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subtyping) which are used as restrictions in quantification. This is a distinctly 

logical approach. In the PER-model the subsumption rule is valid (as shown 

in [BL90, CL91}}: if we have a map in PER<: over I E w-Sets 

(S, S') ~ (R, R') 

then there is a coercer map R---> R' in UFam<:(PER) over {S <: S'}, namely 

[n]R; 1-+ [n]R~ . 
for i E I with Si ~ SI. 

(iii} In our categorical analysis we have explicitly included the possibility 

that type formation T: Type depends on subtyping u <: u'. For example, if we 

have a dependent type n: N f- List(n): Type of lists of length n (of some fixed 

type), then we can consider the type 

o::Type I o: <:NI n:N,m: o: f- List(n+ca,N(m)):Type 

depending on a subtyping. If this dependency of type formation is undesirable, 

then in the categorical set-up of Definition 4.3 one should require that the 

categories D and IE have the same objects. 

5 A term model 

In this final section we sketch how to obtain a term model which fits the cate­

gorical setting described in the previous two sections. It is instructive in that 

it shows the importance of separating contexts according to the dependencies 

that one has. 

We assume that we have some polymorphically typed calculus with sub­

typing and constrained quantification. Details of this language will become 

clear as we proceed. We form a base category lB with 

objects kind contexts r = (o:1 : K1 , ... , o:n: Kn) · The kinds Ki: Kind 

are built up from constants- including Type: Kind- with as 

possible kind constructors 1, x, --->, + , 0, but powerkinds are 

not assumed. 
morphisms r ---> !::!,. where!::!,. = ({J1 :L1 , . . . ,f3m:Lm) are sequences 

(M1 , .. . , Mm) of (equivalence classes of) terms r f- Mi: Li. 

Our base category is thus the category of (kind) contexts and context mor­

phisms, as in simply typed .A-calculus. It has finite products by concatena­

tion of contexts where the empty context serves as terminal object. What 

is special is that the types r f- u: Type of our calculus appear as morphisms 

r ---> ( o:: Type) in IB. Hence the singleton kind context ( o:: Type) plays the role 

of the generic object n. 
Next there is a category C of type inclusions. It has 

objects pairs (r I e) with r is a kind context and e is a sub­

typing context of the form u1 <: u~, . .. , Un <: u~ where 

r f- Ui, u:: Type. Thus e can be understood as an n-typle 

Ui, u:: r =l n of parallel arrows in IB. 
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morphisms (r I 8) -+ (i6.. I 3) are context morphims M: r -+ i6.. in JIB 

such that for each inclusion Tj <: rj in 3 one can derive 

r I 8 f- Tj(M) <: rj(M) . 

There is an obvious projection functor (r I 8) ~ r, which yields a fibration 
c 
~q . Each fibre, say over r E JIB, has finite products by concatenation of 

subtyping contexts . Notice that we have a family of generic objects as in 

Remark 3.5: the set of subtyping contexts over r E JIB is the disjoint union 

UnE N JIB( r, (n x nr) of n-tuples of pairs of types in kind context r . 
There is a third category ID of types, whose formation may depend on 

subtypings. (If the calculus does not have this dependency, then these are 

the ordinary types, i.e. the maps r -+ n in JIB. Certainly term formation will 

involve subtypings.) This category ID has 

objects types (r I 8 f- a: Type) which are well-formed in kind con­

text r and subtyping context 8. 
morphisms (r I 8 f- a: Type) - (i6.. I 3 f- r: Type) are pairs (M, N) 

where M: (r I 8) -+ (i6.. I 3) is a morphism in C, and N is 

a term r I 8 Ix: a f- N :r(M) . 

Again there is a projection functor (r I 8 f- a: Type) ~ (r I 8) which forms a 
][Jl 

fibration br. This fibration is cartesian closed if we assume finite products 

1, x and exponents -+of types . 

The terminal object functor T : JIB-+ C maps a kind context r to the pair 
ID> 

(r I 0) E C consisting of r and the empty typing context 0. Pulling ~r back 
IE 

along T yields the fibration ip of types (and terms) which do not depend 

on subtypings. This fibration p has 0 = (a: Type) E JIB as split generic object. 

Moreover, we have the subtyping axioms in our calculus, 

r I 0 f- a < :Top, r I a < : a', T < : T1 f- a x T <: a' x T1, 

r I a' <: a, T <: T1 f- a - T < :a' - T1 

C IE 

so that i is a subtyping fibration for i 
The induced functor P : C -+ C from Definition 3. 7 maps a subtyping 

context (r I 8) and a pair of types r, a : Type f- a, a': Type possibly containing 

an extra free type variable, to the projection map between subtyping contexts 

(r,a:Type I 8,a <: a')~ (r I 0). 

The construction of the category C in Definition 3. 7 ensures that a may occur 
ID> 

in a, a' but not in 8 . The induced weakening functor 7r* in ~ maps 

(r I 8 f- p: Type) ~ (r,a: Type I 8,a <: a' f- p:Type) 

by adding the dummy assumption a<: a'. 

15 



JACOBS 

We finish by showing that the constrained quantifiers Va:[e7 <: <71] . ( - ) and 

:la:[u <: <71]. ( - ) are right and left adjoints to this 7r*. The ad junctions require 

bijective correspondences 

7r*(p) --t T over (r, a: Type I 0, O" <: u') 

p --t Va:[u <:a']. T over (r I 0) 

T --t 7r*(p) over (I', a:: Type I 0,a <:a') 

:Ja:[a <:a']. T --t p over (r I 0) 

i.e. correspondences between terms Mand Nin 

r,a::Type I 0,0" <: <71 I x:p f- M :T 

r I 0 I x: p f- N : Va [ C7 <: a'] . T 

r,a::Type I 0,0" <: <71 I y:T f- M : p 

r I 0 I z: :Ja:[C7 < :a']. T f- N: p 

These adjoint correspondences are precisely the introduction and elimination 

rules for Va:[e7 <: <71] . T and :Ja[a <: a']. T, plus the associated (/3)- and (17)­
conversions: for constrained products V: one takes 

M t-t >.a[a <a']. M and N t-t Na. 

And for constrained sums :3: 

M t-t M where (a, y) := z and N t-t N[ {a, y) / z]. 
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