
Electronic Notes in Theoretical Computer Science 1 (1995)
URL: http: //wwv. elsevier. nl/locate/ entcs/volume1. html 17 pages

Subtypes and bounded quantification
from a fibred perspective

Abstract

B.P.F. Jacobs

CW!
K ruislaan 413

1098 SJ Amsterdam
The Netherlands

A general categorical description of subtyping 17 <: 171 and of bounded quantification

Va <: 17 .• T,. and 3a <: 17. T is presented in terms of fibrations. In fact, we shall

generalize these bounded quantifiers to "constrained quantifiers" Va[17 <: 171].T and

3a[17 <: 171]. T. In these cases one quantifies over those type variables a for which

17(a) <: 171(a) holds. Semantically we distinguish three levels: types T, which are

fibred over (depend on) subtypings 17 <: 171 , which in turn are fibred over (depend on)

kinds K . In this setting we can describe constrained quantification Va[17 <: 171] . (-)

and 3a[17 <: 171] . (-) as right and left adjoints to the weakening functor which adds

the (dummy) hypothesis 17 <: 171 to an appropriate context . This shows that, like

ordinary quantifiers, these constrained (and hence especially bounded) quantifiers

are adjoints.

1 Introduction

One of the features of object-oriented programming is subtyping: for types

17, T: Type, the relation O' <: T expresses that O' is a subtype of T. It means

that every time a term of type T is expected, one may also use a term of type

O' . Typical examples are N <: IQ and IQ <: JR, but also O' <: Top, where

Top is the type which contains all types. For record types (labelled cartesian

products) { l 1 : 0'1 , ... , ln: O'n} one usually has a subtyping rule

where the li are labels.

In higher order object-oriented programming one may have higher order

quantification

Va: Type. T(a): Type.

@ 1995 Elsevier Science B . V.

JACOBS

This type Va: Type. r(a) is obtained by impredicative quantification over all

types. One may also wish to quantify over type variables a: Type which are

restricted to be subtypes of a given type a, as in

Va<: a. r(a): Type.

This is called bounded quantification. It is called "F-bounded" quantification

(see [CCHOM89]) if the type variable a is allowed to occur free in a. This may

be written explicitly as Va<: a(a). T. One can have Va: Type. r(a) as special

case, namely as Va<: Top. r(a). Of course, one may also have :3 instead of V,

see [CW85, 6.4] for use of bounded :J's in "partial data abstraction"; this is

data abstraction with :J as in [MP88], but where some subtyping information

about the hidden state is available.

Instead of quantifying over a: Type with a <: a one may wish to quan

tify over a with a <: a, i.e. over those a that are supertypes of a. More

generally, one may wish to restrict a to satisfy a(a) <: a'(a), for given

types a(a), a'(a): Type possibly containing a. The above subtype and su

pertype cases are then special instances. We write such "constrained quan

tification" as Va[a <:a']. T and :Ja[a <:a']. T. The intuitive meaning of the

type Va[iT <: a']. T is the collection of maps which take a type variable a for

which a(a) <: a-'(a) holds to a value in r(a). Similarly, :Ja[a <:a'] . T is the

collection of pairs (p, M) where p: Type is a type with a [p/a] < "a'[p/a] and

M : r[p/a] is a term.

In [BL90] a subtyping statement a <: a' is called a type constraint. And

a subtyping a <:a where a is a type variable is a simple type constraint. A

derivation system is described for sequents of the form a 1 <: a1, ... , a.. <:

an f- T <: T 1 with simple type constraints as assumptions, but arbitrary

constraints as conclusion. It is both proof-theoretically and categorically

more natural to have arbitrary constraints as assumptions, like in a1 <:

aL ... , D"n <: a~ f- T <: r', so that one has, for example, a cut rule. Once this

step has been taken, it becomes natural also to quantify over these more gen

eral constraints, like with the above constrained quantifiers Va[a <: a']. T and

:Ja[a- <: a']. T 1 . One may wish to generalize these even further to multiple

constraints Va[a1 <: a~, ... , an <: a~]. T so that one can have quantification

over intervals, like in Va[a <: a, a<: a']. T.

Bruce, Cardelli and Longo [CL91,BL90] present a model of subtyping and

bounded quantification (and of some other features as well) using partial equiv

alence relations and omega-sets. The model is described by giving the inter

pretation [-] of all expressions. There is thus a concrete model, but there is

no general notion of model of subtyping or of bounded quantification. Accord

ing to Cardelli and Longo: " ... the invention of a general categorical meaning

of subtyping and subkinds would be a relevant contribution" [CL91, top of

1 At MFPS Luca Cardelli pushed me to investigate also these constrained quantifiers. They

did not occur in the conference version of this paper, but the general subtyping sequents

a1 < : a~, ... , Un <:a~ f- T <: r 1 were already there.

2

- - ------ - ----

JACOBS

page 435]). Phoa [Ph92] goes a step further and formulates in categorical

terms what a model should be. His emphasis is mostly on subsumption, by

giving an axiomatization of coercion maps as certain terms. Our approach

below is based on a "logic of subtyping" (via an explicit fibration of subtyp

ings) and not on subsumption. In fact, it does not play a role at all, see

Remark 4.4 (ii). Phoa uses his coercion maps to explain powerkinds 1 u: Kind

for a type u: Type in terms of Benabou's notion of definability. Bounded quan

tification is described via these (auxiliary) power kinds, since quantification

over kinds is present in Phoa's structures. This, by the way, is also how

Cardelli and Longo proceed.

Here we present a more intrinsic description of subtyping and constrained

(and bounded) quantification. It also applies to situations where there are no

powerkinds 1 CT. We have nothing against powerkinds, but we think that an

explanation of subtypes and bounded quantification should not rely on them.

The presentation is based on the categorical analysis of type theory given in

the authors thesis [Jac91]. Fibrations play an important role in structuring

the various dependencies that one may have. The key aspect is to separate

contexts, notationally via vertical bars 'I' like in statements

a:K I u(a) <: u'(a) I x:T(a) 1-- M(a,x):p(a).

Here K is a kind, and a is a variable inhabiting this K : Kind. Next, u(a) , u'(a)

are types, (possibly) containing the variable a: K. Thus

a : K 1-- u(a): Type and a: K 1-- u'(a): Type.

Also T(a), p(a) are types, but in another context, namely

a :K I u(a) <: u'(a) 1-- T(a):Type

a: K I u(a) <: u'(a) 1-- p(a): Type.

We thus consider calculi where type formation may depend on subtyping state

ments, see Remark 4.4 (iii). So there are three levels, which will be captured

by three different categories IB, <C and D in two fibrations,

<C

l subtypings CT <: u' over kinds K, and
JIB

][)J

l types T over subtypings CT <: u'
IC

In a next step we incorporate constrained quantification. In [Jac91] quan

tification was described by left (3) and right (V) adjoints to weakening functors

(which is a minor adaptation of Lawvere's presentation of quantifiers as ad

joints to arbitrary substitution functors) . A weakening functor adds a dummy

assumption A by moving from a context r to an extended context r, A. Quan

tification acts in the other direction: from contexts r, A to r by binding the as-

3

-·- - - - ·- ----

JACOBS

sumption A. We show how constrained (and bounded) quantification fits this

pattern by taking for the assumption A a subtyping statement O"(a) <: 0" 1(a),

where a is a type variable, and O", 0"1 are types, possibly containing a.

(To prevent circularity, we restrict the types O", 0" 1 occurring in subtypings

O" <: 0"1 and Va[O" <: O"']. T (or ::Ja[O" <: O"'j. r) to those whose type formation

does not depend on other subtypings. Categorically this can be expressed

quite naturally via a change-of-base situation, as in Definition 4.3 (b).)

In this paper we describe in parallel a categorical set-up for subtyping and

bounded quantification, and a concrete model, namely partial equivalence

relations over omega-sets (as also used in [BL90,CL91,Ph92]). In the end, we

also show how to build a (term) model from syntax. We should emphasize

that we do not introduce any new mathematical models for subtyping, but

we only investigate some of the categorical aspects involved. We hope this

clarifies both the syntax and semantics.

2 PERs and w-sets

The category w-Sets of omega-sets combines the set theoretic with the recur

sion theoretic. Its objects will be written as I= (I, E1), or simply as (I, E),

where I is a set and E is an 'existence' predicate E: I -t PN, such that for

each i EI the set E(i) <;;; N is non-empty. A morphism u: (I, E1) -t (J, EJ) is

a function u: I -t J between the underlying sets which is 'tracked': for some

e E N one has Vi E I. \In E E1(i). e · n E EJ(u(i)), where e · n is Kleene's

application of the e-th recursive function to n. It is not hard to verify that

w-Sets is cartesian closed. There is a functor \7: Sets -t w-Sets which maps

a set I to I with the existence predicate I -t PN which is constantly N. This

\7 is right adjoint to the forgetful functor w-Sets -t Sets.

A partial equivalence relation (PER) on N is a subset R <;;; N x N which

is symmetric and transitive. We write

IRI = { n E N I nRn}

[n]R = {m E N I mRn}

N/R = {[n]R In E IRI}

for the domain of R

for the R-class of n E N

for the quotient of R

PER= {R <;;; N x NI R is symmetric and transitive}.

(Notice that R is an equivalence relation on its domain /RI, so we should write

IRI/ R instead of N/ R. But the latter is clearer.)

Every PER R yields an w-set (N/ R, E), with E ([n]R) = [n]R· We write

PER for the category with PERs as objects, and maps (N/ R, E) -t (N/ S, E)

in w-Sets as morphisms R -t S. By construction there is a full and faithful

functor PER L-t w-Sets. One can identify the PERs inside w-Sets as those

(I, E) where E(i) n E(j) = 0 for if- j. Forcing images of existence predicates

to be disjoint yields a left adjoint to PER L-t w-Sets.

4

JACOBS

We shall mostly be interested in PERs indexed by w-sets. For an w-set

(I, E) there is a 'fibre' category of (I, E)-indexed PERs with

objects I-indexed collections (R.)iEI of PERs R;. These may be

described as maps R: (I, E) ---7 \7PER in w-Sets.
morphisms (R.)iEI ---7 (Si)iEI are I-indexed collections f = (fi)iEI of

functions k N/ R; ---7 N/ Si which are 'tracked uniformly' :

for some e E N,

Vi E J. Vn E E1(i). e · n tracks fi

i.e.

Vi EI. Vn E E1(i). Vm E IR.I. fi([m]RJ = [e · n · m]s,.

Mapping an object (I, E) in w-Sets to this fibre category of (I, E)-indexed

PERs yields a functor w-Sets0 P ---7 Cat, with for a morphism u: (I, E) ---7

(J, E) in w-Sets a 'substitution' functor u* given by composition. Apply

ing the Grothendieck construction yields a split fibration, which we write as
UFarn(PER)

! , where 'UFam' stands for 'uniform families'. This fibration is a
W-Sets

standard_ model of higher order polymorphic >.-calculus (' >.w' or < Fw'); it is due

to Moggi' and Hyland, see [Hyl88]. One thinks of w-sets I = (I, E) as kinds

I: Kind, and of (I, E)-indexed PERs (R.)iEI as types in kind context I, i.e. as

i: I f- R;: Type. Morphisms f : R ---7 S over I are terms i: I I x: R; f- fi(x): Si

involving variables i: I in a kind and x : R; in a type.

3 Subtypes

The standard way to describe subtyping for PERs R, S E PER, considered

as types, is via inclusion R ~ S as relations on N. We formulate this in the

following category of conditional subtypings.

Definition 3.1 Let PER<: be the category of "indexed PERs and inclusions".

It has

objects triples (I, R, R') where I is an w-set and R, R' are I-indexed

PERs. Hence we may describe such an object as a pair of

parallel maps R, R': (I, E) =l \7PER in w-Sets.
morphisms (I, R, R') ---7 (J, S, S') are morphisms u: (I, E) ---7 (J, E) of

w-sets for which one has

R; ~ R~ :::} Su(i) ~ S~(i)

for all i EI.

There is an obvious projection functor PER<: ---7 w-Sets, namely (I, R, R') ~
PER<:

I. This is a fibration, which we write as lFst . Every fibre is a poset. We
W-Sets

think of (R, R') ::; (S, S') in the fibre over I as an entailment i: I I R; <: R~ f-

Si<: Si-

5

JACOBS

Notice that the inclusion relation ~ on PERs may be described as a (reg

ular) mono in w-Sets,

~ >------+- VPER x VPER.

Using this mono we can describe a morphism u: (I, R, R') ---+ (J, S, S') alter

natively as a map u: (I, E) ---+ (J, E) in w-Sets for which one has a necessarily
. .

umque map - --t m

I {~ }:~~.:-------,;s~:.y7---1
\7PER2 (R, R') (I, E) u (J, E) (S, S') \7PER2

Here we have suggestively written

{R <: R'} for the w-set {i EI I~~ Ra, with Eason I .

Notice that the assignment

(
{R<:R'})

(I,R,R') ~ (lE!i•R')
yields a full and faithful fibred functor in a situation

PER i w-Sets-

~ fa
w-Sets

(It may be described as a 'full comprehension category with unit', in the

terminology of [Jac91] . This functor i actually restricts to a functor

PER<: i RegSub(w-Sets)

~fa
w-Sets

which tells that subtypings form a "sublogic" of the (classical) logic of regular

subobjects over w-Sets. Indeed, the fibration Fst on the left captures a logic

of subtypings for indexed PERs.)

We write { - }:PER<: ---+ w-Sets for the functor (J, R, R') i--t {R <: R'}.

Definition 3.2 Write Top = N x N for the maximal PER, with respect to ~ ,

and Topr = Topcr,E) = (Top)iEI for the I-indexed Top. Put T r = Tcr,E) =

(I, Topr, Topr) E PER<: over I.
For PERs R, S let RU S be the PER

RU S = {((n,O), (m,O)) I nRm} U {((n, 1), (m, 1)) I nSm}

6

JACOBS

where (-, -) is a recursive coding N x N ..::'.t N. We use U to define a meet /\

in the fibres of PER<: by

(1,R,R') /\ (1,s,s') = (1,(~ u si)iE1,(R~ u sI)iEI).

Lemma 3.3 The operations T, /\ yield fibred finite products (meets) in the
PER<:

fibration l : one has meets (T, /\) in every fibre, and these are preserved
W-Sets

by substitution functors u•.

With these we can express reflexivity and transitivity of subtypings {in con

text l E w-Sets) as morphisms over l:

T 1 :::; (I, R, R) and (I, R, R') /\(I, R', R") :::; (I, R, R").

Proof. One has (R, R') :::; T over 1, since Top ~ Top always holds. Further

one has over l,

(Q,Q1):::; (R,R') and (Q,Q'):::; (S,S')

iff Vi E J. Qi ~ Q~ =? (Ri ~ R~ and Si ~ SD

iff Vi E J. Qi ~ Q~ =? ~ U Si ~ R~ U SI

iff (Q, Q') :::; (R, R') /\ (S, S').

By the pointwise definition of T and /\, substitution functors preserve these

meets. 0

PER<:

There is one further aspect of l that we wish to axiomatize. Recall
W-Sets

E

that a split fibration ~p has a split generic object if there is an object

S1 E JIB with an isomorphism

JIB(1, n)-'P-;--obj IE.1

which is natural in J: for u:J --t I one has cp1(v o u) = u*cp1(v). Note

that the object \7PER x \7PER E w-Sets is a split generic object for the
PER<:

fibration l of PER-inclusions: the required isomorphisms cp 1 are simply
W-Sets

identities. And the object \7PER E w-Sets is split generic object for the

UFam(PER)

fibration l of PERs over w-sets.
W-Sets

Each fibre category of this latter fibration is cartesian closed, via definitions

of Top, x, =? which are pointwise as on PER. This cartesian closed structure

is related to the finite meets (T, /\) between PER inclusions via the following

7

three inequalities.

JACOBS

T ~ (R, Top)

(R, R') /\ (S, S') ~ (Rx S, R' x S')

(R', R) /\ (S, S') ~ (R =? S, R' =? S').

They correspond to the familiar axioms in the logic of subtyping:

i: I I 0 f- R <: Top

i : I 1 R <: si,R~ <: s: f- (Rx s), <: (R' x S')i

i: I I R~ <: R, Si <: s: f- (R =? S)i <: (R' =? S')i.

We summarize the structure that we have found in the following definition.

For convenience we restrict ourselves to split fibrations with split structure,

without always saying so explicitly. What we call a A---+-fibration is a fibra
IE

tion lP which is a fibred CCC, has finite products in its base category JIB,
lR •

.. . . UFam(PER)

and has a generic object. As we have seen, l is such a A---+-fibration.
W-Sets

Definition 3.4 A subtyping fibration for a A---+-fibration
IC

another fibration lq on JIB which
lR

• is a preorder fibration, i. e. has preorder fibre categories;

• has fibred finite meets (T, /\);

lE

lP consists of
lR

• has a generic object 0 x n E JIB-where 0 is the generic object of p;

• satisfies for objects X, X', X", Y, Y' E IE in the same fibre

T ~ (X,X)

(X, X') /\ (X', X") ~ (X, X")

T ~ (X, Top)

(X,X') /\ (Y, Y') ~ (X x Y,X' x Y')

(X', X) /\ (Y, Y') ~ (X =? Y, X' =? Y'),

where we have identified a pair of objects (X, X') in IE over I with an object

of C over I. This can be done by the previous requirement.

Remark 3.5 In the PER model we have been able to capture multiple inclu

sions R ~ R' and S ~ S' as a single inclusion R U S ~ R' U S'. If such

possibility does not exist, we have to modify the generic object requirement
IC

for ~q a bit: then we require that this fibration has a family of generic

8

JACOBS

objects

natural in I. If we write Gn = 'P(nxn)n((n,id}) E lE over (0 x nr, then

for each A E C there is a unique n E N and u: qA ---+ (0 x nr such that

A= u*(Gn)·
JE:

For a fibration ~p write the pullback of p against itself as

JE:2

The resulting fibration lP2 is then the cartesian product p x p in the
lll\

lE

2-category of split fibrations over JIB. For a split fibration lP we write
JIB

Split(IE) '------t lE for the category with the same objects as IE, but with only

the splittings as morphisms.

Lemma 3.6 Assume fibrations

with generic object isomorphisms

JE:

lP and
JIB

Then we can define a functor I in

IC

lq as in the previous definition,
lll\

Split(IE)2 I Split(C)

~/
by

for X,X' E IE1.

Proof. We get a functor since for a morphism (u*(X),u*(X'))---+ (X,X') in

SPlit(IE)2 over u: J---+ I we have I(u*(X), u*(X')) = u*I(X, X') by naturality

of 'P and 'l/J. D

9

JACOBS

lE c
Definition 3. 7 Let lP and lq be as in Definition 3.4. Form the fibration

JIB JIB
c
~ by change-of-base in

(:----+-• Split(IE)2

!_J l _J !
<C q lB\ (-)xn lB\

An object of C is thus a triple of objects A E <C, X E IE, X' E IE with

qA x n = pX = pX' in lB\. We can define a functor P in

by (X, X,,X') ~ (the composite 7r*(A) /\ I(X, X') ::::; 7r*(A) ---t A), where the

functor I comes from the previous lemma.

This functor P constitutes a "comprehension category", in the termi

nology of [Jac91]. It provides us with abstract projections P(A,X,X') =

(7r*(A) /\ I(X, X') ---t A) in <C, along which we can quantify. Intuitively, these

projections are maps between subtyping contexts

(r, a:: Type I e, a(a:) <: a'(a:)) -t (r I e)
see Section 5.

We close this section by describing the functor P for our running example

of PERs over w-Sets, It maps a subtyping A = (S, S': (I, E) :::::;: \lPER) in

PER<: and two (I, E) x \lPER-indexed PERs R, R' to the projection

7r*(A) /\ I(R, R') = ((S, U R.,x)iEI,XEPER, (SIU R~.x)iEI,XEPER)

!P(A, R , R')

A

in PER<:· It is given by the underlying projection ?r: (I, E) x \lPER ---t (I , E)
in w-Sets, since we have

Si U R.,x S: s: U R~ x =} Si S: s:.
'

4 Constrained quantification

llJ:

In [J ac91] one finds how a fibration bq may have quantification with respect

to a comprehension category P: IE ---t c-+ . This means that for each X E

IE, the "weakening functor" PX* between the fibres of D-induced by the

10

JACOBS

projection map PX in JB-has a left/right adjoint (plus a Beck-Chevalley

condition, which regulates the proper distrubution of substitution over the

quantifiers). We shall show that this abstract set-up gives the right level

of generality to describe constrained (and thus F-bounded) quantification in

terms of adjunctions, by applying it to the comprehension category P : C ---t

c- that we introduced in the previous section.

We need the fibration of PERs indexed by subtyping statements. It is

obtained by change-of-base:

UFam<:(PER)----'>-UFam(PER)

l _J !
PER<: { _} w-Sets

Recall from Section 3 that the functor {-}maps (I, R, R') = (R, R': I ::::t PER)

to the w-set {R <: R'} = {i E I I R s;;:: Ra, with existence E as on I .
An object of UFam<:(PER) over (I, E) E w-Sets thus consists of a 3-tuple

(R, R', U), where R, R': (I, E) ::::t \?PER are (I, E)-indexed PERs, and U is an

{R <: R'}-indexed PERU: {i E I I R; s;;:: Ra---* PER. It clearly depends on

an inclusion.

Proposition 4.1 The PER-model has both constrained products TI and con
UFam<:(PER)

strained coproducts U. More precisely, the fibration l has products
PER<:

and coproducts with respect to the comprehension category

PER<: ----t PER:?,.

Proof. Assume A= (S, S': (I, E) ::::t \?PER) E PER<:, and R, R': I ::::t PER,

as at the end of the previous section. For a family U of PERs in UFam<:(PER)

over domP(A, R, R') = 7r*(A) /\ I(R, R') E PER<,, we have U as a map,

{(i,X) EI x PER I Sis;;:: s: and R,x ~ R~.x} _ _:::U~~PER

We have to define product Il(A,R,R')(U) and coproduct il(A,R,R')(U) objects in

UFam<:(PER) over codP(A, R, R') =A E PER<:· They thus must be maps

They are defined as

IT(A R R')(U)i = n {Ui,X I R;,x ~ R~.x}
' ' XEPER

Il(A R R')(U)i = V {Ui,X I R;,x ~ R~.x}
' ' X EPER

11

JACOBS

where n and V are the meet and join in the complete lattice (PER,~) . The

adjunctions P(A, R, R')* --l n(A,R,R') and il(A,R,R') --l P(A, R, R')* involve bi

jective correspondences

P(A, R, R')*(V) -----+ U over 7r*(A) /\ I(R, R')

v ~ n(A,R,R')(U) over A

U -----+ P(A, R, R')*(V) over 7r*(A) /\ I(R, R')

il(A,R,R')(U) -----+ V over A

where the weakening functor P(A, R, R')* moves V to a bigger context:

({i EI I Si~ S:}~PER)

f-t ({(i,X) EI x PER I Si~ s: and ~.x ~ R~.x} v 0 7r
PER)·

D

The constrained products of PERs are thus obtained by intersection. Not

over all PERs, like in Va.: Type. T(a.), but over PERs appropriately restricted.

Example 4.2 {i) {From {BL90}}. For a (closed) type C7 1 interpreted as R E

PER, consider the type

Va.< : (7. a. -ta. :::::: Va.[a. <: e7]. a. -ta..

It is interpreted as the intersection

S = (n X -t x) E PER,
XCR

where X -t X = {(m, m') I \lk, k' E N. kXk' ==? m · kXm' · k'}.

Assume e is an element of the domain ISI of S. For each n E IRI we have

a sub-PER,

Xn = {(n,n)} ~ R

so that

e E \Xn -t Xn\·

But then e · n = n. Hence e is a code for the identity map on RE PER. The

only term in Va.<: C7. a. -ta. is thus the identity on C7 .

(ii) In the PER-model one has that quantification over a "singleton" inter

val in Va.[Top <: a.]. T and :la.[Top <: a.] . T yields T[Top/a.], since one takes

the meet or join of the set

{Ui,X \Top~ X} = {Ui,Top}·

The abstract structure that we recognize in the PER-model is axiomatized

as follows.

12

JACOBS

Definition 4.3 A setting for constrained quantification is given by two fibra-
ID> <C

tions lr and lq where
<C JIB

(a) r is a fibred CCC;

(b) q has a fibred terminal object T: Ja -t <C such that q is a subtyping fibration

for the fibration p = T*(r) obtained the change-of-base situation

D------E

rl L lp = T*(r)
C T Ja

This p is the fibration of types which do not depend on subtypings.

The fibration r then has constrained products / coproducts if it has products

/ coproducts with respect to the induced comprehension category P : C -t C-+

from Definition 3. 7.

We note that this set-up indeed captures the PER models since there is a

change-of-base sitution

UFam<:(PER)---UFam(PER)

l L l
PER<: T w-Sets

because {-} o T ~id: w-Sets -t w-Sets.

A reader with experience in categorical type theory will (roughly) see how

to interpret a polymorphically typed calculus with subtyping and constrained

quantification in a structure as in the above definition. But actually carrying

out such an interpretation may be complicated, due to coherence problems

induced by the possibility of different derivations for a single term formation

statement, see [BCGS91] .

Remark 4.4 (i) It is not hard to verify that in a situation as in the defini

tion, a projection ?r: Ix n -t I in Ja is mapped by the terminal object functor

T: Ja -t C to a projection P(T(I), Top1, Top1): 7r*(T(J)) /\ I(Top1, Top1) -t
E

T(J) of the comprehension category. This yields that the fibration ~p has

products and coproducts along the projections I x n -t I in Ja, and thus p

becomes a >..2-fibration. This is a categorical way of saying that with con

strained quantification Va[a<: a']. T one also has second order quantification

Va: Type. T as Va.[Top <:Top]. T.

(ii) The subsumption rule

r / e f- a < : a'

r I e I x: a f- c.,.,.,., (x): a'

where c.,.,.,., is a coercer map, does not play a role in the above exposition. The

subtyping fibration gives a logic with certain relations between types (namely

13

JACOBS

subtyping) which are used as restrictions in quantification. This is a distinctly

logical approach. In the PER-model the subsumption rule is valid (as shown

in [BL90, CL91}}: if we have a map in PER<: over I E w-Sets

(S, S') ~ (R, R')

then there is a coercer map R---> R' in UFam<:(PER) over {S <: S'}, namely

[n]R; 1-+ [n]R~ .
for i E I with Si ~ SI.

(iii} In our categorical analysis we have explicitly included the possibility

that type formation T: Type depends on subtyping u <: u'. For example, if we

have a dependent type n: N f- List(n): Type of lists of length n (of some fixed

type), then we can consider the type

o::Type I o: <:NI n:N,m: o: f- List(n+ca,N(m)):Type

depending on a subtyping. If this dependency of type formation is undesirable,

then in the categorical set-up of Definition 4.3 one should require that the

categories D and IE have the same objects.

5 A term model

In this final section we sketch how to obtain a term model which fits the cate

gorical setting described in the previous two sections. It is instructive in that

it shows the importance of separating contexts according to the dependencies

that one has.

We assume that we have some polymorphically typed calculus with sub

typing and constrained quantification. Details of this language will become

clear as we proceed. We form a base category lB with

objects kind contexts r = (o:1 : K1 , ... , o:n: Kn) · The kinds Ki: Kind

are built up from constants- including Type: Kind- with as

possible kind constructors 1, x, --->, + , 0, but powerkinds are

not assumed.
morphisms r ---> !::!,. where!::!,. = ({J1 :L1 , . . . ,f3m:Lm) are sequences

(M1 , .. . , Mm) of (equivalence classes of) terms r f- Mi: Li.

Our base category is thus the category of (kind) contexts and context mor

phisms, as in simply typed .A-calculus. It has finite products by concatena

tion of contexts where the empty context serves as terminal object. What

is special is that the types r f- u: Type of our calculus appear as morphisms

r ---> (o:: Type) in IB. Hence the singleton kind context (o:: Type) plays the role

of the generic object n.
Next there is a category C of type inclusions. It has

objects pairs (r I e) with r is a kind context and e is a sub

typing context of the form u1 <: u~, . .. , Un <: u~ where

r f- Ui, u:: Type. Thus e can be understood as an n-typle

Ui, u:: r =l n of parallel arrows in IB.

14

JACOBS

morphisms (r I 8) -+ (i6.. I 3) are context morphims M: r -+ i6.. in JIB

such that for each inclusion Tj <: rj in 3 one can derive

r I 8 f- Tj(M) <: rj(M) .

There is an obvious projection functor (r I 8) ~ r, which yields a fibration
c
~q . Each fibre, say over r E JIB, has finite products by concatenation of

subtyping contexts . Notice that we have a family of generic objects as in

Remark 3.5: the set of subtyping contexts over r E JIB is the disjoint union

UnE N JIB(r, (n x nr) of n-tuples of pairs of types in kind context r .
There is a third category ID of types, whose formation may depend on

subtypings. (If the calculus does not have this dependency, then these are

the ordinary types, i.e. the maps r -+ n in JIB. Certainly term formation will

involve subtypings.) This category ID has

objects types (r I 8 f- a: Type) which are well-formed in kind con

text r and subtyping context 8.
morphisms (r I 8 f- a: Type) - (i6.. I 3 f- r: Type) are pairs (M, N)

where M: (r I 8) -+ (i6.. I 3) is a morphism in C, and N is

a term r I 8 Ix: a f- N :r(M) .

Again there is a projection functor (r I 8 f- a: Type) ~ (r I 8) which forms a
][Jl

fibration br. This fibration is cartesian closed if we assume finite products

1, x and exponents -+of types .

The terminal object functor T : JIB-+ C maps a kind context r to the pair
ID>

(r I 0) E C consisting of r and the empty typing context 0. Pulling ~r back
IE

along T yields the fibration ip of types (and terms) which do not depend

on subtypings. This fibration p has 0 = (a: Type) E JIB as split generic object.

Moreover, we have the subtyping axioms in our calculus,

r I 0 f- a < :Top, r I a < : a', T < : T1 f- a x T <: a' x T1,

r I a' <: a, T <: T1 f- a - T < :a' - T1

C IE

so that i is a subtyping fibration for i
The induced functor P : C -+ C from Definition 3. 7 maps a subtyping

context (r I 8) and a pair of types r, a : Type f- a, a': Type possibly containing

an extra free type variable, to the projection map between subtyping contexts

(r,a:Type I 8,a <: a')~ (r I 0).

The construction of the category C in Definition 3. 7 ensures that a may occur
ID>

in a, a' but not in 8 . The induced weakening functor 7r* in ~ maps

(r I 8 f- p: Type) ~ (r,a: Type I 8,a <: a' f- p:Type)

by adding the dummy assumption a<: a'.

15

JACOBS

We finish by showing that the constrained quantifiers Va:[e7 <: <71] . (-) and

:la:[u <: <71]. (-) are right and left adjoints to this 7r*. The ad junctions require

bijective correspondences

7r*(p) --t T over (r, a: Type I 0, O" <: u')

p --t Va:[u <:a']. T over (r I 0)

T --t 7r*(p) over (I', a:: Type I 0,a <:a')

:Ja:[a <:a']. T --t p over (r I 0)

i.e. correspondences between terms Mand Nin

r,a::Type I 0,0" <: <71 I x:p f- M :T

r I 0 I x: p f- N : Va [C7 <: a'] . T

r,a::Type I 0,0" <: <71 I y:T f- M : p

r I 0 I z: :Ja:[C7 < :a']. T f- N: p

These adjoint correspondences are precisely the introduction and elimination

rules for Va:[e7 <: <71] . T and :Ja[a <: a']. T, plus the associated (/3)- and (17)
conversions: for constrained products V: one takes

M t-t >.a[a <a']. M and N t-t Na.

And for constrained sums :3:

M t-t M where (a, y) := z and N t-t N[{a, y) / z].

References

[BCGS91] V. Breazu-Tannen, Th. Conquand, C. Gunter and A. Scedrov,
'Inheritance and explicit coercion', Inform. & Comp. 93 p. 172-221.

Also in: C.A. Gunter and J.C. Mitchell (eds.), Theoretical Aspects of

Object-Oriented Programming, The MIT Press, 1994, p. 197-245.

[BL90] K.B. Bruce and G. Longo, ' Modest models of records, inheritance and

bounded quantification', Inform. & Comp. 87 (1990), p. 196-240. Also

in: C.A. Gunter and J.C. Mitchell (eds.), Theoretical Aspects of Object

Oriented Programming, The MIT Press, 1994, p. 151- 195.

[CCHOM89] P. Canning, W. Cook, W . Hill, W. Olthoff and J. Mitchell, 'F-Bounded

Polymorphism for Object-Oriented Programming', Funct. Progr. &
Comp. Arch. 1989, ACM Press, p. 273-280.

[CL91] L. Cardelli and G. Longo, 'A Semantic basis for Quest', Journ. Funct.

Progr. 1 (1991) p. 417- 458.

[CW85] L. Cardelli and P. Wegner, 'On Understanding Types, Data

Abstraction and Polymorphism', ACM Computing Surveys 17 (1985)

p. 471- 522.

16

JACOBS

(Hyl88] J.M.E. Hyland, 'A small complete category', Ann. Pure & Appl. Logic

40 (1988) p. 135-165.

[Jac91] B. Jacobs, 'Categorical type theory', PhD. Thesis, Univ. of Nijmegen,

1991.

[MP88] J .C. Mitchell and G.D. Plotkin, 'Abstract types have existential type',

ACM Trans. on Progr. Lang. and Systems 10(3) (1988) p. 470-502.

(Ph92] W. Phoa, 'Using fibrations to understand subtypes', in: M.P. Fourman

and P.T. Johnstone and A.M. Pitts (eds.), Applications of Categories

in Computer Science, Cambridge Univ. Press, LMS 177, (1992),

p. 239-257.

17

