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Abstract

Szegedy [8] showed that the partition function of any vertex coloring model is equal
to the partition function of a complex edge coloring model. Using some results in
geometric invariant theory, we characterize for which vertex coloring model the edge
coloring model can be taken to be real valued that is, we characterize which partition
functions of vertex coloring models are edge reflection positive. This answers a question
posed by Szegedy [8].

1 Introduction

Partition functions of vertex and edge coloring models are graph invariants introduced
by de la Harpe and Jones [4]. In fact, in [4] they are called spin and vertex models
respectively. Both models give a rich class of graph invariants. But they do not coincide.
For example the number of matchings in a graph is the partition function of a real edge
coloring model but not the partition function of any real vertex coloring model. This
can be deduced from the characterization of partition functions of real vertex coloring
models by Freedman, Lovász and Schrijver [3]. (It is neither the partition function
of any complex vertex coloring model, but we will not prove this here.) Conversely,
the number of independent sets is not the partition function of any real edge coloring
model, as follows from Szegedy’s characterization of partition functions of real edge
coloring models [8], but it is the partition function of a (real) vertex coloring model.

However, Szegedy [8] showed that the partition function of any vertex coloring
model can be obtained as the partition function of a complex edge coloring model.
Moreover, he gave examples when the edge coloring model can be taken to be real val-
ued. This made him ask the question which partition functions of real vertex coloring
models are partition functions of real edge coloring models (cf. [8, Question 3.2]). In
fact, he phrased his question in terms of edge reflection positivity. We will get back to
that in Section 3.

In this note we completely characterize for which vertex coloring models there ex-
ists a real edge coloring model such that their partition functions coincide, answering
Szegedy’s question.

The organization of this paper is as follows. In the next section we give definitions
of partition functions of edge and vertex coloring models and state our main result (cf.
Theorem 2). In Section 3 we say something about edge reflection positivity and give
some applications of our result. Section 4 is devoted to proving Theorem 2.
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2 Partition functions of edge and vertex coloring models

We give the definitions of edge and vertex coloring models and their partition functions.
After that we describe Szegedy’s result how to obtain a complex edge coloring model
from a vertex coloring model such that their partition functions are the same. (The
existence also follows from the characterization of partition functions of complex edge
coloring models given in [1], but Szegedy gives a direct way to construct the edge
coloring model from the vertex coloring model.) And finally we will state our main
result saying which partition functions of vertex coloring models are partition function
of real edge coloring models.

Let G be the set of all graphs, allowing multiple edges and loops. Let C denote the
set of complex numbers and let R denote the set of real numbers. If V is a vector space
we write V∗ for its dual space, but by C∗ we mean C \ {0}. For a matrix U we denote
by U∗ its conjugate transpose and by UT its transpose.

Let F be a field. An F-valued graph invariant is a map p : G → F which takes the
same values on isomorphic graphs.

Throughout this paper we set N = {1, 2 . . .} and for n ∈ N, [n] denotes the set
{1, . . . , n}. We will now introduce partition functions of vertex and edge coloring mod-
els.

Let a ∈ (C∗)n and let B ∈ Cn×n be a symmetric matrix. Following de la Harpe and
Jones [4] we call the pair (a, B) an n-color vertex coloring model. If moreover, a is positive
and B is real, then we call (a, B) a real n-color vertex coloring model. When talking about
a vertex coloring model, we will sometimes omit the number of colors. The partition
function of an n-color vertex coloring model (a, B) is the graph invariant pa,B : G → C

defined by
pa,B(H) := ∑

φ:V(H)→[n]
∏

v∈V(H)

aφ(v) · ∏
uv∈E(H)

Bφ(u),φ(v), (1)

for H ∈ G.
We can view pa,B in terms of weighted homomorphisms. Let G(a, B) be the complete

graph on n vertices (including loops) with vertex weights given by a and edge weights
given by B. Then pa,B(H) can be viewed as counting the number of weighted homomor-
phisms of H into G(a, B). In this context pa,B is often denoted by hom(·, G(a, B)). The
vertex coloring model can also be seen as a statistical mechanics model where vertices
serve as particles, edges as interactions between particles, and colors as states or energy
levels.

Let for a field F,
R(F) := F[x1, . . . , xk] (2)

denote the polynomial ring in k variables. We will only consider F = R and F = C.
Note that there is a one-to-one correspondence between linear functions h : R(F) → F

and maps h : N
k → F; α ∈ N

k corresponds to the monomial xα := x
α1
1 · · · x

αk
k ∈ R(F)

and the monomials form a basis for R(F). Following de la Harpe and Jones [4] we call
any h ∈ R(C)∗ a k-color edge coloring model. Any h ∈ R(R)∗ is called a real k-color edge
coloring model. When talking about an edge coloring model, we will sometimes omit the
number of colors. The partition function of a k-color edge coloring model h is the graph
invariant ph : G → C defined by

ph(G) = ∑
φ:E(G)→[k]

∏
v∈V(G)

h
(

∏
e∈δ(v)

xφ(e)

)

, (3)

for G ∈ G. Here δ(v) is the multiset of edges incident with v. Note that, by convention,
a loop is counted twice.

The edge coloring model can be considered as a statistical mechanics model, where
edges serve as particles, vertices as interactions between particles, and colors as states
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or energy levels. Moreover, partition functions of edge coloring models generalize the
number of proper line graph colorings.

We will now describe a result of Szegedy [8] (see also [9]) showing that partition
functions of vertex coloring models are partition functions of edge coloring models.

Let (a, B) be an n-color vertex coloring model. As B is symmetric we can write
B = UTU for some k × n (complex) matrix U, for some k. Let u1, . . . , un ∈ C

k be the
columns of U. Define the edge coloring model h by h := ∑

n
i=1 aievui

, where for u ∈ Ck,
evu ∈ R(C)∗ is the linear map defined by p 7→ p(u) for p ∈ R(C).

Lemma 1 (Szegedy [8]). Let (a, B) and h be as above. Then pa,B = ph.

Although the proof is not difficult we will give it for completeness.

Proof. Let G = (V, E) ∈ G. Then ph(G) is equal to

∑
φ:E→[k]

∏
v∈V

h
(

∏
e∈δ(v)

xφ(e)

)

= ∑
φ:E→[k]

∏
v∈V

( n

∑
i=1

ai ∏
e∈δ(v)

ui(φ(e))

)

(4)

= ∑
φ:E→[k]

∑
ψ:V→[n]

∏
v∈V

(

aψ(v) ∏
e∈δ(v)

uψ(v)(φ(e))
)

= ∑
ψ:V→[n]

∏
v∈V

aψ(v) · ∑
φ:E→[k]

∏
v∈V

∏
e∈δ(v)

uψ(v)(φ(e))

= ∑
ψ:V→[n]

∏
v∈V

aψ(v) · ∑
φ:E→[k]

∏
vw∈E

uψ(v)(φ(vw))uψ(w)(φ(vw))

= ∑
ψ:V→[n]

∏
v∈V

aψ(v) · ∏
vw∈E

k

∑
i=1

uψ(v)(i)uψ(w)(i) = ∑
ψ:V→[n]

∏
v∈V

aψ(v) · ∏
vw∈E

Bψ(v),ψ(w).

By definition, the last line of (4) is equal to pa,B(G). This completes the proof.

Note that the proof of Lemma 1 also shows that if h ∈ R(C)∗ is given by h =

∑
n
i=1 aievui

for certain a ∈ (C∗)n and u1, . . . , un ∈ Ck, then ph can be realized as the
partition function of an n-color vertex coloring model. Namely take a = (a1, . . . , an)
and B = UTU where U is the matrix with columns the ui.

Let (a, B) be an n-color vertex coloring model. We say that i, j ∈ [n] are twins of (a, B)
if i 6= j and the ith row of B is equal to the jth row of B. If (a, B) has no twins we call
the model twin free. Suppose now i, j ∈ [n] are twins of (a, B). If ai + aj 6= 0, let B′

be the matrix obtained from B by removing row and column i and let a′ be the vector
obtained from a by setting a′j := ai + aj and then removing the ith entry from it. In case

ai + aj = 0, we remove the ith and the jth row and column from B to obtain B′ and we
remove the ith and the jth entry from a to obtain a′. Then pa′,B′ = pa,B. So for every
vertex coloring model with twins, we can construct a vertex coloring model with fewer
colors which is twin free and which has the same partition function.

We need a few more definitions to state our main result. For a k × n matrix U we
denote its columns by u1, . . . , un. Let, for any k, (·, ·) denote the standard bilinear form
on Ck. We call the matrix U nondegenerate if the span of u1, . . . , un is nondegenerate
with respect to (·, ·). In other words, if rk(UTU) = rk(U). For l ∈ N, let Ol(C) be the
complex orthogonal group, i.e. Ol(C) := {g ∈ Cl×l | (gv, gv) = (v, v) for all v ∈ Cl}.
We think of vectors in Ck as vectors in Cl for any l ≥ k. So in particular, Ol(C) acts on
Ck. We can now state our main result.

Theorem 2. Let (a, B) be a twin-free n-color vertex coloring model. Let U be a nondegenerate
k × n matrix such that UTU = B. Then the following are equivalent:

(i) pa,B = py for some real edge coloring model y,
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(ii) there exists l ≥ k, g ∈ Ol(C) such that the set {

(

gui

ai

)

| i = 1, . . . , n} is closed under

complex conjugation,

(iii) there exists l ≥ k, g ∈ Ol(C) such that ∑
n
i=1 aievgui

is real.

If moreover, UU∗ ∈ Rk×k, then we can take g equal to the identity in (ii) and (iii).

Note that for h := ∑
n
i=1 aievgui

in the theorem above, we have, by Lemma 1, ph =
pa,B. Moreover, observe that if the set of columns of gU are closed under complex
conjugation, then gU(gU)∗ is real. So the existence of a nondegenerate matrix U such
that UTU = B and UU∗ is real, is a necessary condition for pa,B to be the partition
function of a real edge coloring model.

In case B is real, there is an easy way to obtain a k × n rank k matrix U, where
k = rk(B), such that UU∗ ∈ R

k×k and UTU = B, using the spectral decomposition of
B. So by Theorem 2, we get the following characterization of partition functions of real
vertex colorings that are partition functions of real edge coloring models. We will state
it as a corollary.

Corollary 3. Let (a, B) be a twin-free real n-color vertex coloring model. Then pa,B = ph for
some real edge coloring model h if and only if for each i ∈ [n] there exists j ∈ [n] such that

(i) ai = aj,

(ii) for each eigenvector v of B with eigenvalue λ :

{

λ > 0 ⇒ vi = vj,

λ < 0 ⇒ vi = −vj.

3 Edge reflection positivity

Szegedy [8] characterized which graph invariants are partition functions of real edge
coloring models in terms of multiplicativity and edge reflection positivity. To describe
this characterization we need some definitions.

Let G ′ := G ∪ {O}, where O denotes the circle, the graph with one edge and no
vertices. Note that if h is a k-color edge coloring model, then ph(O) = k. For any
l ∈ N, an l-fragment is a graph which has l of its vertices labeled 1 up to l, each having
degree one. These labeled vertices are called the open ends of the fragment. An edge
connected to an open end is called a half edge. Let Fl be the collection of all l-fragments.
We can identify F0 with G ′, the collection of all graphs. Define a gluing operation
∗ : Fl ×Fl → G ′ as follows: for F, H ∈ Fl connect the neighbors of identically labeled
open ends with an edge and then delete the open ends; the resulting graph is denoted
by F ∗ H. Note that by gluing two half edges, of which both their endpoints are open
ends, one creates a circle.

For any graph invariant p, let Mp,l be the Fl ×Fl matrix defined by

Mp,l(F, H) = p(F ∗ H), (5)

for F, H ∈ Fl . This matrix is called the l-th edge connection matrix of p. Graph invari-
ants which satisfy p(F ∗ G) = p(F)p(G) for all F, G ∈ F0 and p(∅) = 1, are called
multiplicative and graph invariants for which the edge connection matrices are positive
semidefinite are called edge reflection positive. We can now state Szegedy’s characteriza-
tion of partition functions of real edge coloring models.

Theorem 4 (Szegedy [8]). Let p : G ′ → R be a graph invariant. Then there exists a real edge
coloring model h such that ph = p if and only if p is multiplicative and edge reflection positive.

In view of Theorem 4, one could consider Corollary 3 as a characterization of those
partition functions of real vertex coloring models that are edge reflection positive. It
would be interesting to see whether this has any physical interpretation.

We finish this section by giving a few applications of Theorem 2.
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Example 1. Let G be the graph on two nodes x1 and x2 with node weights equal to 1;
the loop at x1 has weight 1; the loop at x2 has weight 0 and the edge x1x2 has weight
1. Then hom(H, G) is equal to the number of independent sets of H. Using Theorem 2,
it is easy to see that the partition function of any real edge coloring model can not be
equal to hom(·, G). As mentioned in the introduction, this can also be easily seen using
Theorem 4.

Example 2. For any n ∈ N with n ≥ 2 consider Kn, the complete graph on n vertices.
Then hom(H, Kn) is equal to the number of proper n-colorings of H. The corresponding
vertex coloring model is (1, J − I), where 1 denotes the all-ones vector, J the all-ones
matrix and I the identity matrix. The eigenvalue −1 of J − I has multiplicity n − 1.
Using that the eigenspace corresponding to −1 is equal to 1⊥, it is easy to see, using
Corollary 3, that hom(·, Kn) is equal to the partition function of a real edge coloring
model if and only if n = 2. We do not know whether it is easy to deduce this from
Theorem 4. The fact that for n = 2, hom(·, Kn) is edge reflection positive was observed
by Szegedy [8].

In view of Theorem 4, Example 2 shows that for each n ≥ 3 there exists k, t ∈ N,
k-fragments F1, . . . , Ft and λ ∈ Rt such that ∑

t
i,j=1 λiλj hom(Fi ∗ Fj, Kn) < 0. It would

be interesting to characterize for which (twin-free) graphs G the invariant hom(·, G) is
edge reflection positive. By Corollary 3, this depends on spectral properties of G.

4 A proof of Theorem 2

Our proof of Theorem 2 is based some on fundamental results in geometric invariant
theory.

First we need some definitions and conventions. For any l and a ∈ Cl we denote by
a the complex conjugate of a. For a square matrix U, tr(U) denotes the trace of U; the
sum of the diagonal elements of U. Recall that Ol(C) denotes the complex orthogonal
group. The real orthogonal group is the subgroup of Ol(C) given by all real matrices
and is denoted by Ol(R). Let k < l ∈ N. We can consider any k-color edge coloring
model h as an l-color edge coloring model without changing its partition function on
G, by setting h(α) = 0 if αi > 0 for some i > k.

Next, we develop some framework and ideas from [1] (see also [2]). For any l, define

S := C[yα | α ∈ N
l ], (6)

the polynomial ring in the infinitely many variables yα. These variables are in bijective
correspondence with the monomials of R(C) via yα ↔ x

α1
1 · · · x

αl
l . Let Nl

d = {α ∈ Nl |
|α| ≤ d} and let Sd ⊂ S be the ring of polynomials in the (finitely many) variables yα

with α ∈ Nl
d. Furthermore, let Gd be the set of all graphs of maximum degree at most d.

Let CG be the vector space consisting of (finite) formal C-linear combinations of graphs
and let π : CG → S be the linear map defined by

G 7→ ∑
φ:EG→[l]

∏
v∈VG

yφ(δ(v)), (7)

for any G ∈ G, where we consider the multiset φ(δ(v)) as an element of Nl . Note that
π(G)(h) = ph(G) for all G ∈ G and h ∈ R(C)∗.

The orthogonal group acts on S via the bijection between the variables of S and the
monomials of R(C). Then, as was shown by Szegedy [8] (see also [1]), for any d,

π(CGd) = S
Ol(C)
d , (8)
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where S
Ol(C)
d denotes the subspace of Sd of polynomials that are Ol(C)-invariant. Note

that the action of Ol(C) on R(C) induces an action on R(C)∗, i.e. Ol(C) acts on edge
coloring models. Then (8) in particular implies that pgh = ph for all g ∈ Ol(C) and all
h ∈ R(C)∗.

Now fix an l-color edge coloring model h. Let, for any d,

Yd := {y ∈ C
Nl

d | π(G)(y) = ph(G) for all G ∈ Gd}. (9)

Then Yd is a fiber of the quotient map C
N

l
d → C

N
l
d //Ol(C). In particular, Yd contains a

unique closed orbit Cd (cf. [5, Section 8.3] or [7, Satz 3, page 101]).

Let prd : CN
l
→ C

Nl
d be the projection sending y to yd := y|

C
Nl

d
. We also write prd

for the restriction of prd to C
Nd′ , for any d′ ≥ d. Note that prd(Yd′) ⊆ Yd for d′ ≥ d, as

Gd ⊆ Gd′ .
The following lemma is based on results from [2].

Lemma 5. Let h := ∑
n
i=1 aievui

∈ R(C)∗, with a ∈ (C∗)n and distinct u1, . . . , un ∈ Ck.
Suppose the bilinear form restricted to the span of the ui is nondegenerate. If y is a real l-color
edge coloring model such that ph(G) = py(G) for all G ∈ G, then there exists g ∈ Ol(C) such
that gh = y.

Proof. We may assume that l ≥ k. Recall that in case l > k we add colors to h. This
is done by appending the ui’s with zero’s. Note that the bilinear form restricted to
the span of the ui remains nondegenerate. Then, by [2, Theorem 5], for each d ≥ 3n,
hd ∈ Cd. Now since y is real valued, a result of Kempf and Ness [6, Theorem 0.2] implies
that yd ∈ Cd, for every d. We now claim that this implies that there exists g ∈ Ol(C)
such that gh = y.

Indeed, define, for any d, the stabilizer of yd by

Stab(yd) := {g ∈ Ol(C) | gyd = yd}. (10)

Then Stab(yd) = ∩d′≤dStab(yd′). Since Ol(C) is Noetherian there exists d1 ≥ 3n
such that Stab(yd1

) = ∩d∈NStab(yd). Now since we have a canonical bijection from
Ol(C)/Stab(yd) to Cd, this implies that for any d ≥ d1, if g ∈ Ol(C) is such that gyd = hd,
then also gy = h. This proves the lemma.

Let W ∈ Cl×n be any matrix and consider the function fW : Ol(C) → R defined by

g 7→ tr(W∗g∗gW) = tr((gW)∗gW). (11)

This function was introduced by Kempf and Ness [6] in the context of connected re-
ductive linear algebraic groups acting on finite dimensional vector spaces. Note that
fW is left-invariant under Ol(R) and right-invariant under Stab(W) := {g ∈ Ol(C) |
gW = W}. Let e ∈ Ol(C) denote the identity. We are interested in the situation that the
infimum of fW over Ol(C) is equal to fW(e).

Lemma 6. The function fW has the following properties:

(i) infg∈Ol(C) fW(g) = fW(e) if and only if WW∗ ∈ R
l×l,

(ii) If WW∗ ∈ Rl×l, then fW(e) = fW(g) if and only if g ∈ Ol(R) · Stab(W).

Proof. We start by showing that

fW has a critical point at e if and only if WW∗ ∈ R
l×l. (12)

By definition, a critical point of fW is a point g such that (D fW)g(X) = 0 for all X ∈
Tg(Ol(C)), where Tg(Ol(C)) is the tangent space of Ol(C) at g and where (D fW)g is the
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derivative of fW at g. It is well known that the tangent space of Ol(C) at e is the space
of skew-symmetric matrices, i.e. Te(Ol(C)) = {X ∈ Cl×l | XT + X = 0}. It is easy to
see that the derivative of fW at e is the R-linear map (D fW)e ∈ HomR(C

l×l, R) defined
by Z 7→ tr(W∗(Z + Z∗)W). Now let Z be skew-symmetric and write Z = X + iY,
with X, Y ∈ Rl×l. Note that Z is skew-symmetric if and only if both X and Y are
skew-symmetric. Write W = V + iT with V, T ∈ R

l×l. Then (D fW)e(Z) is equal to

tr((VT − iTT)(X + iY + XT − iYT)(V + iT))

= 2tr((VT − iTT)iY(V + iT))

= 2tr(TTYV)− 2tr(VTYT) = 4tr(TTYV), (13)

where we use that X and Y are skew symmetric, and standard properties of the trace.
So D fe(Z) = 0 for all skew symmetric Y if and only if TTV = VT T. That is, if and only
if WW∗ ∈ Rl×l. This shows (12).

By a result of Kempf and Ness (cf. [6, Theorem 0.1]) we can now conclude that (i)
and (ii) hold. However, we will give an independent and elementary proof.

First the proof of (i). Note that (12) immediately implies that fW does not attain a
minimum at e if WW∗ /∈ R

l×l. Conversely, suppose WW∗ ∈ R
l×l. Since WW∗ is real

and positive semidefinite there exists a real matrix V such that WW∗ = VVT . Now note
that, by the cyclic property of the trace, fW(g) = tr(g∗gWW∗). So we have fW = fV . Let
I denote the identity matrix. Take any g = X + iY ∈ Ol(C), where X, Y ∈ Rl×l. Using
that XTX − YTY = I, and the fact that fW is real valued, we find that

fW(g) = tr((XTX +YTY)VVT) = tr(VVT) + 2tr(YTYVVT) ≥ tr(VVT) = fW(e). (14)

This proves (i).
Next, suppose that fW(g) = fW(e) for some g ∈ Ol(C). Again, since WW∗ is real

and positive semidefinite there exists a real matrix V such that WW∗ = VVT . Moreover,
the span of the columns of V is equal to the span of the columns of W. This implies
that Stab(V) = Stab(W). Now write g = X + iY, with X, Y ∈ Rl×l. As, by (14),
fW(g) = fW(e) if and only if YV = 0, it follows that gV = XV + iYV = XV is a real
matrix. Let v1, . . . , vn be the columns of V. Then, since by definition of the orhogonal
group, (gvi, gvj) = (vi, vj) for all i, j, and since the gvi are real, there exists g1 ∈ Ol(R)
such that g1gV = V. This implies that g ∈ Ol(R) · Stab(V). This finishes the proof of
(ii).

The next lemma will be usefull to prove Theorem 2.

Lemma 7. Let u1, . . . , un ∈ Ck be distinct vectors, let a ∈ (C∗)n and let h := ∑
n
i=1 aievui

.

Then h is a real edge coloring model if and only if the set {

(

ui

ai

)

| i = 1, . . . , n} is closed

under complex conjugation.

Proof. Suppose first that the set {

(

ui

ai

)

| i = 1, . . . , n} is closed under complex con-

jugation. Then for p ∈ R(R), h(p) = ∑
n
i=1 ai p(ui) = ∑

n
i=1 ai p(ui) = h(p). Hence,

h(p) ∈ R. So h is real valued.
Now the ’only if’ part. By possibly adding some vectors to {u1, . . . , un} and ex-

tending the vector a with zero’s, we may assume that {u1, . . . , un} is closed under
complex conjugation. We must show that ui = uj implies ai = aj. We may assume
that u1 = u2. Using Lagrange interpolating polynomials we find p ∈ R(C) such that
p(uj) = 1 if j = 1, 2 and 0 else. Let p′ := 1/2(p+ p). Then p′ ∈ R(R) and consequently,
h(p′) = ∑

n
i=1 ai p(ui) = a1 + a2 ∈ R. Similarly, there exists q ∈ R(C) such that q(u1) = i,

q(u2) = −i and q(uj) = 0 if j > 2. Setting q′ := 1/2(q + q) and applying h to it, we
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find that i(a1 − a2) ∈ R. So we conclude that a1 = a2. Continuing this way proves the
lemma.

Now we can give a proof of Theorem 2.

Proof of Theorem 2. Observe that since (a, B) is twin free, the columns of U are distinct.
Lemma 7 implies the equivalence of (ii) and (iii) for the same g and l in (ii) and (iii).
Moreover, since (gU)TgU = UTgTgU = UTU = B, for any g ∈ Ol(C), Lemma 1 shows
that (iii) implies (i).

Let u1, . . . , un be the columns of U and let h := ∑
n
i=1 aievui

. We will now prove that
(i) implies (iii). Let y be a real l-color edge coloring model such that pa,B = py. Since U
is nondegenerate, we may assume, by Lemma 5, that y = gh for some g ∈ Ol(C). Now
note that gh = ∑

n
i=1 aievgui

. This shows that (i) implies (iii).

Now assume that UU∗ ∈ Rk×k. We will show that (i) implies (iii) with g = e. Let
y be a real l-color edge coloring model such that pa,B = py. Just as above, we may
assume that y = ∑

n
i=1 aievgui

, for some g ∈ Ol(C). Lemma 7 implies that the set {gui}

is closed under complex conjugation. This implies that gU(gU)∗ ∈ Rl×l. So by Lemma
6 (i) the infimum of fgU is attained at e. Equivalently, the infimum of fU is attained at

g. Since UU∗ ∈ Rk×k, this implies, by Lemma 6 (ii), that g ∈ Ol(R) · Stab(U). Hence
g = g1 · s for some g1 ∈ Ol(R) and s ∈ Stab(U). Now note that since sh = h we have
that h = g−1

1 y and hence h is real.

Acknowledgements. I thank Lex Schrijver for his comments on earlier versions of this
paper. In particular, for simplifying some of the proofs.
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