
University of Amsterdam

Master Thesis

A Specialized Approach for
Document-Type Fragment Classi�cation in

Digital Forensics

Author:

Ioannis Tzanellis

Supervisors:

Jeroen van den Bos

Tijs van der Storm

A thesis submitted in ful�lment of the requirements

for the degree of MSc in Software Engineering

July 25, 2013

http://www.uva.nl

This page intentionally left blank.

Acknowledgements

I would like to express my gratitude to my supervisor Jeroen van den Bos for the initial

subject of this thesis and his constant support and engagement. Our cooperation was

excellent.

Furthermore, I would like to thank all the academic sta� of the Software Engineering

Master Programme who were always eager to listen and to provide their insight. Also, I

like to thank all of my colleagues in CWI from the SWAT group and in particular Ashim

Shahi and Davy Landman who were always available to help me with everyday little

issues. Last but not least, I would like to thank my family. Without their support this

Master thesis would not have been possible.

i

| Contents

Acknowledgements i

| Tables iv

| Figures v

1 Introduction 1
1.1 Background . 1
1.2 Problem Formulation . 2
1.3 File Fragment Classi�cation . 3
1.4 Objectives . 3
1.5 Algorithm Requirements . 4
1.6 Methodology . 4

2 Related Work 6

3 Experimental Setup 8
3.1 Byte Frequency Analysis(BFA) Algorithm 8
3.2 Data Set . 9

4 Algorithm Development 11
4.1 Approach Description . 11
4.2 BFA Variations . 12

4.2.1 Variation 1 - Plain Text ASCII Subset 12
4.2.2 Variation 2 - Plain Text Concentration Categories 12
4.2.3 Variation 3 - Dominant Plain Text Concentration Categories . . . 14
4.2.4 Variation 4 - Fragments above 75% Plain Text Concentration clas-

si�ed as text . 15
4.2.5 Optimal Variation for Text Fragment Classi�cation 16
4.2.6 BFA Training - Entire ASCII Set VS. Plain Text 16

4.3 BFA Text Output Analysis . 18
4.3.1 BFA Variation 1 Output . 18
4.3.2 Plain Text Concentration Categories 19
4.3.3 Shannon Entropy . 19
4.3.4 Individual Null Byte Frequency . 20

4.4 Longest Common Subsequence . 22

5 Algorithm Description 24

ii

Contents iii

6 Results 29
6.1 BFA Scan - Text Fragment Classi�cation 30
6.2 BFA Extension Algorithm Accuracy . 30
6.3 Complete Algorithm Accuracy . 31

7 Analysis 32
7.1 BFA performance . 32
7.2 Overall Algorithm Performance . 33
7.3 Algorithm Comparison . 34

7.3.1 Accuracy Comparison . 35
7.3.2 Execution Time Comparison . 35

8 Discussion 37

9 Conclusions and Future Work 39
9.1 Conclusions . 39
9.2 Future Work . 40

A BFA Variation 2 - Results 42

B BFA Output - Histogram Analysis 44

Bibliography 47

Bibliography 47

| Tables

3.1 Experimental Data Set . 9

3.2 Final Testing Data Set . 10

4.1 BFA Results - Fingerprints trained with plain text ASCII subset 12

4.2 Training Set - Plain Text Concentration Analysis 13

4.3 BFA Results - Dominant Fingerprints . 14

4.4 BFA - Fingerprints Trained in 0-75% and tested in 0-75% 15

4.5 BFA Variation Comparison . 16

4.6 BFA Results - Entire ASCII Byte Set Training 17

4.7 BFA Output Plain Text Concentration Analysis 18

4.8 Longest Common Subsequence comparison - doc VS. xls 23

6.1 BFA Text Fragments Classi�cation . 30

6.2 BFA Extension Algorithm Accuracy . 30

6.3 Algorithm Accuracy Results . 31

7.1 Algorithm Prediction Rates . 34

7.2 Classi�cation Algorithm Accuracy Comparison 35

7.3 Classi�cation Algorithm Average Execution Time 36

A.1 BFA - Fingerprints Trained in 0-25% and tested in 0-25% 42

A.2 BFA - Fingerprints Trained in 25-50% and tested in 25-50% 42

A.3 BFA - Fingerprints Trained in 50-75% and tested in 50-75% 43

A.4 BFA - Fingerprints Trained in 75-100% and tested in 75-100% 43

iv

| Figures

1.1 Hard Drive Fragment Representation . 3

4.1 Entropy Distribution . 20

4.2 Individual Null Byte Distribution . 21

5.1 Algorithm as Decision Tree . 28

6.1 Algorithm Overview . 29

B.1 Individual Null Byte Distribution . 45

B.2 Entropy Distribution . 46

v

1 | Introduction

File recovery from digital data storage devices has been a hot topic among the Digital

Forensics �eld. Traditional data storage devices make use of �le systems, in order to

manage contained data, their available space and to maintain location of �les. When the

storage device and its �le system are intact, it is quite simple to recover data from them.

This is mainly because �le systems make use of metadata in order to track the location

of their �les. Metadata can contain information such as creation date, data structure

(e.g directory or regular �le), �le type, �le owner, size, last modi�ed date and more. In

practice, most data can be recovered using the regular �le system, but often investigators

are speci�cally interested in the data that appears to be missing. In a real life forensic

case, it is likely that a part of �le system metadata might be corrupted or deleted.

1.1 | Background

File carving is a forensic technique that recovers �les based on their content, without

relying on their metadata. The �le carving process involves two steps. File format vali-

dation and �le reconstruction [1]. During the recovery procedure, forensic investigators

must �rst validate the type of the �le and then apply the appropriate reconstruction

technique. At this point we should note that in this thesis, only the �le format valida-

tion techniques are of our interest. By examining the complete byte content and/or some

characteristic byte sequencies of an unclassi�ed �le, �le format validation techniques are

used to classify its type. The Magic Number Matching technique [16] looks for magic

numbers, speci�c byte sequencies that signal the beginning and/or the end of a �le (head-

ers,footers) and try to classify them to a �le type according to that information. For

example jpeg �les begin with the hexadecimal sequence 0xFFD8 and end with 0xFFD9

[15]. Similarly, the Data Dependency Resolving technique is used to identify �elds that

specify �le attributes like color or size [1].

Furthermore, other �le carving techniques use statistical learning algorithms, which pro-

cess the complete byte set of a �le, creating a representative �ngerprint for every �le

1

Chapter 1. Introduction 2

type. A classi�er compares these �ngerprints with an unidenti�ed byte sequence and

produce an accuracy level for each �ngerprint. Then, it classi�es the unidenti�ed byte

sequence to to the �le type of the �ngerprint that yielded the highest accuracy level.

Some common statistical learning techniques are the n-Gram Analysis [12] and the Byte

Frequency Analysis (BFA) and the Byte frequency cross-correlation(BFC) algorithms

[14].

1.2 | Problem Formulation

The aforementioned techniques have some profound weaknesses. The Magic Number

Matching and the Data Dependency Resolving approaches make general type classi�ca-

tion infeasible. This is due to the fact that not every �le-type contain such characteristic

structures [14]. Furthermore, n-Gram Analysis and both BFA and BFC were designed

to be applied in a complete �le or a pre-de�ned part of it, which retains all of its content.

Hence, they depend on �les overall internal structure and characteristics.

So why is this a problem? The answer lies in �le systems behaviour and �le fragmentation.

When we delete a �le from a data storage device, the data are not actually removed.

The sectors in which the �le was stored still contain the same data, although the �le

system marks them as unallocated [15]. That means the next time a new �le is created,

the �le system is free to use these unallocated sectors to store a new one. But if the

new �le is bigger than the old one, and the �le system tries to store it starting from

the same sector entry as the deleted one, it won't have enough space to store it. So the

�le system will allocate-overwrite all the sectors of the previous deleted �le, while the

remaining data which do not �t, will be stored in other unallocated sectors. This results

to �le fragmentation.

Although fragmentation in current �le systems is small [9], the classi�cation of the miss-

ing fragmented parts of a �le are essential for its recovery. In that case, validation

techniques which use the complete �le content are unable to provide aid to forensic

examiners.

Chapter 1. Introduction 3

1.3 | File Fragment Classi�cation

File fragment classi�cation is a technique that uses only a small fragment of a �le, in

order to determine its type. This approach is independent from �les overall structure.

In Table 1.1 we can see a hard drive representation as a sequence of byte-blocks. Each

block in our �gure is a �le fragment of a certain �le format that is de�ned by a capital

letter.

Figure 1.1: Hard Drive Fragment Representation

Although in theory, �le fragment classi�cation looks like an ideal approach, in practice

it proved to be di�cult to create a technique of high precision [19]. In the last Digital

Forensic Research Workshop (DFRWS 2012) challenge, the winning classi�cation tool

achieved an overall classi�cation accuracy of 36% [13], in a corpus of 38 di�erent �le

types.

1.4 | Objectives

The main objectives in this project are:

1. Create a classi�cation algorithm for identifying document-type fragments of higher

precision than the existing similar algorithms. In particular, we focus on the classi-

�cation of text, xls, doc and pdf �le fragments and try to improve their classi�cation

rates.

2. Test the hypothesis that by analysing only a special ASCII byte-set of �le fragments

which corresponds to the printable ASCII characters, accuracy of classi�cation

algorithms can be enhanced for document-type fragments. This ASCII subset is

comprised of byte values of the range 32 ≤ b ≤ 126 along with the tab (9), new line

(10) and carriage return (13) bytes. From this point, we will refer to this special

ASCII subset as "plain text".

Chapter 1. Introduction 4

1.5 | Algorithm Requirements

The design requirements of our classi�cation algorithm are as follows:

1. Speed - Comparable in runtime performance to the current light-weight algorithms

such as the N-Gram Analysis [12] [19] and the BFA algorithm [14] [19].

2. Accuracy - Improve upon the overall accuracy of the algorithms in the same runtime

performance class.

3. Operate in common fragment sizes, preferably of 512-bytes size, the smallest rele-

vant size equivalent to a hard drives sector size.

1.6 | Methodology

Most of the current �le and fragment classi�cation techniques use the whole byte content

of a �le/fragment for both the training and classi�cation procedures. Since we intend to

create an algorithm that would be able to yield better accuracy results for fragments that

originate from a document �le type, we want to test the hypothesis that by using only

the plain text ASCII subset of a fragment, we could achieve better results regarding text

fragment classi�cation. The plain text characters are a behavioural trait of a document,

so we expect that their analysis might reveal their �le type.

To test our hypothesis we have to use one of the current classi�cation algorithms in

order to compare their accuracy results. Additionally, since our main goal is to de-

sign a classi�cation algorithm which will satisfy the already mentioned requirements, we

should carefully choose a currently available algorithm that has the potential to be eas-

ily modi�ed without adding signi�cant complexity and to create a custom more e�ective

version of it. Our algorithm of choice is the Byte Frequency Analysis [14]. The main

reason of that choice is that it's been observed that BFA falsely classi�es a big amount

of document-type fragments as text. We will elaborate more about the reasons of this

choice in Chapter 3.

Our design procedure is comprised of two main phases. In phase 1 we intent to use a

BFA that analyses only the plain text byte set for a fast scan of the corpus, in order to

isolate a big amount of document-type fragments. In phase 2 we analyse the complete

ASCII byte set of BFA output and try to classify the �le type of the document-type

fragments.

Chapter 1. Introduction 5

During phase 1, we use 4 variations of BFA that analyse only the plain text content of the

input fragments and test our hypothesis. We compare the results of these variations with

each other and we choose the one that yields the best results regarding document-type

fragment classi�cation. By document-type classi�cation, we mean the classi�cation of

fragments of the pdf, text, doc and xls �le formats. After that we compare the best BFA

variation with the BFA variation that Shahi used in [19] for fragment classi�cation, which

takes under account the entire ASCII byte set. Finally, we choose the variations that

yields the best results. This BFA variation will be the �rst part of our �nal classi�cation

algorithm. Thereafter, we isolate all fragments that were classi�ed as text, resulting in

a new data set and proceed in phase 2 of our design procedure.

During phase 2, we analyse the whole byte content of fragments that were classi�ed as

text, trying to �nd patterns that could aid our algorithms design. Initially we used simple

statistical metrics such as the mean, mode, median and standard deviation trying to �nd

characteristic patterns in speci�c �le types. This resulted to focus on some speci�c

byte values, where in conjunction with the histogram analysis we did, resulted in the

formulation of two new metrics. The Individual Null Byte Frequency (INBF) and the

Plain Text Concentration (PTC). We combine these two metrics along with the Shannon

entropy metric [20] and the accuracy levels that BFA produced in phase 1, to create a

new custom algorithm.

2 | Related Work

Karresand and Shahmehri [11] introduced a new algorithm that uses the Rate-of-Change

(ROC) metric. They de�ne the rate of change of a byte sequence as the di�erence of

the ASCII values of consecutive bytes. Although this technique yields good classi�cation

rates for jpeg �les (99% true positives), mainly because of their 0xFF00 metadata tags,

for other �les types the false positive rates are extremely high (e.g for zip and portable

executable (PE) �les near 70% false positives rates).

Veenman [22] used a combination of BFA [14] with Shannon entropy and Kolmogorov

complexity measures to classify fragments that were 4096 bytes in size. He used a corpus

of 450MB comprised of 11 di�erent �le types. He managed to achieve high detection

rates(99%) for jpeg and html �les. However, results for the other �le types weren't so

good, achieving an overall accuracy of 45%. Additionally, the big size of the fragments

that Veenman used is not convenient enough for a real forensic case.

Calhoun and Coles [4] used a set of techniques like byte frequency of ASCII codes and

Shannon entropy, linear discriminant analysis and prediction with longest common sub-

strings and subsequences along with many other common statistical metrics. Their cor-

pus was comprised of gif, pdf, jpeg and bmp �les. Although they achieved high precision

rates of 88.3%, their testing set was signi�cantly small, comprised only of 50 fragments

per �le type. The fragments size that were used in their experiment was of 512 and 896

bytes. Moreover, since they don't give information about the lengths of the �le type

representative strings that were used, we don't know how expensive the longest common

subsequence technique can be.

Axelsson [2] used a corpus of 28 di�erent �le types and applied the k-nearest-neighbour

classi�cation technique with Nearest Compression Distance (NCD) as the distance metric

between �le fragments. The results are unremarkable, achieving an average accuracy of

around 34%. It was observed that this approach achieved higher accuracy for fragments

with high entropy.

6

Chapter 2. Related Work 7

Li et al. [12] used the N-Gram Analysis to create representative �leprints for �le types.

The �leprints were based on a centroid which combined the mean and the standard

deviation of byte frequencies. More speci�cally, they focused on 1-Gram Analysis of the

ASCII byte values, representing a �le as a 256-element histogram. In order to compare

an unknown byte stream with a �leprint they used the Mahalanobis distance function.

When they applied this technique in full �les they achieved true positive rates of 60-

90%. Moreover, by using only the �rst 20 bytes of �les they managed to achieve an

accuracy of 99%. This was due to the fact that these 20 bytes mainly contained header

data (Magic Numbers). By using the same approach in entire �les the accuracy dropped

signi�cantly. It is quite paradoxical that by using more data they managed to get less

accurate results.

Fitzgerald, Mathews, Morris and Zhulyn [7] investigated whether techniques from natural

language processing could be applied successfully to �le fragment classi�cation. They

used the macro-averaged F1 metric in a set of 24 �le types. They achieved an average

prediction accuracy of 49.1% on 24 �le types outperforming Axelssons (34% for 28 �le

types) and Veenmans (45% for 11 �le types) results.

Roussev and Gar�nkel [18] claimed that specialized approaches must be used in �le frag-

ment classi�cation in order to produce practical tools. They studied how some popular

�le formats are structured by the use of several case studies and reached to the conclusion

that existing generic �le fragment classi�cation methods are unlikely to be successful.

Furthermore, they suggest that by manually analysing �les and studying their standards,

e�ective custom classi�ers can be created. Inspired by this conclusion, this thesis de-

scribes a �le fragment classi�cation approach that doesn't attempt to classify all �le

formats using a single algorithm. However, we do attempt to �nd a single approach to

classify multiple formats.

Lastly, Shahi [19] tested 4 di�erent classi�cation algorithms in the same corpus, in order

to compare their performance. His corpus was comprised of 10 di�erent �le types. The

algorithms used were the BFA [14], the N-Gram Analysis [12], the Rate of Change [11]

and the algorithm of Conti et al. [5]. The results show that the average overall accuracy

of the aforementioned techniques is around 30%. Moreover, Shahi benchmarked their

performance in terms of execution time and found out that the N-Gram Analysis is the

fastest among them, with BFA coming second, Rate of Change third and fourth the

algorithm of Conti et al.

3 | Experimental Setup

3.1 | Byte Frequency Analysis(BFA) Algorithm

BFA [14] is a statistical learning algorithm that was initially developed to analyse and

classify whole �les. It was not meant to be used for �le fragment classi�cation. By

counting the number of instances of each byte in a �le of a certain type, BFA creates a

representative average value for each byte instance, along with its respective correlation

strength. This results in a �ngerprint for a particular �le-type. Thereafter, during

classi�cation procedure, the input �le is compared with every �ngerprint and an accuracy

level is created for each of them. BFA classi�es the �le to the �le type of the �ngerpint

that corresponds to the highest accuracy level.

Shahi [19] trained and tested a BFA with �le fragments of 512-byte size. His results show

that although the algorithm is pretty bad for broad fragment classi�cation, it is quite

good in classifying fragments of document-type �les, as text. Additionally, he tested

the performance of BFA along with the Rate of Change, n-Gram Analysis and Conti

et al. algorithm. The results show that BFA has the highest precision in classifying

document-type fragments as text.

In contrast to the default technique, we use a BFA that trains the �ngerprints with byte

values that correspond only to the plain text ASCII characters, instead of the complete

byte-set of the fragments. Moreover, we also use fragments of 512-bytes size. This BFA

will be the �rst half of our �nal classi�cation algorithm and after this point we intend to

use additional metrics to create a custom classi�er. Taking under account speed require-

ments, BFA seems as a good candidate since it is a light-weight technique, compared to

similar statistical learning algorithms [19] or heavier machine learning techniques.

8

Chapter 3. Experimental Setup 9

3.2 | Data Set

The data set we use for our training, experimentation, analysis and testing procedures

is derived from Gar�nkels [9][24] corpus, Wikipedia and Academic Earth [23] and is a

subset of the coprus that Shahi used in [19]. Our corpus is comprised of 10 di�erent �le

types with a total size of about 20GB. We divided the corpus in half, resulting in two

subsets of 10GB each. The experimental and the �nal testing set.

We use the experimental set to do all of our experimentations, analysis and training and

the �nal testing set for testing the performance of our �nal algorithm. At this point we

should note that the 10GB that corresponds to the �nal testing set won't undergone any

type of analysis that will a�ect the design of our algorithm, since we only want to use it

for testing its performance. We fully designed our algorithm based on the experimental

set.

pdf zip text doc mp4 xls ppt jpg ogg png

Training Set

Num.of �les 1,642 1 954 1,697 1 373 193 1,781 464 4,395

Size in megabytes 869.3 860.6 831.2 867.6 813.6 869.5 866.9 870.5 863.4 868.9

Expected fragments 1,780,326 1,762,508 1,702,297 1,776,844 1,666,252 1,780,736 1,775,411 1,782,784 1,768,243 1,779,507

Output fragments 1,694,034 1,680,771 1,622,534 1,467,314 1,588,908 1,684,374 1,683,444 1,698,877 1,685,954 1,692,813

Fragments with no plain text(%) 4.8 4.6 4.7 17.4 4.6 5.4 5.2 4.7 4.7 4.9

Testing Set

Num.of �les 217 1 367 257 1 81 35 214 101 555

Size in megabytes 100 104.9 97.4 100.2 104.9 100.2 100.6 100.2 100.2 101.5

Expected fragments 204,800 214,835 199,475 205,209 214,835 205,209 206,028 205,209 205,209 207,872

Output fragments 189,732 204,795 190,055 177,887 204,728 193,352 195,289 195,608 195,656 195,653

Fragments with no plain text(%) 7.4 4.7 4.7 13.3 4.7 5.8 5.2 4.7 4.7 5.9

Table 3.1: Experimental Data Set

In the experimental set, we split these 10GB in two subsets of 9-1 ratio. 90% of the

experimental set is used as our training set and the other 10% as our experimental testing

set. Additionally, we transformed all of our �le contents, in both the experimental and

the �nal testing set, into 512-byte blocks, which we refer to them as fragments. Since our

algorithm would be able to classify only fragments that contain at least one plain text

character, fragments with no plain text were discarded. The percentage of discarded

fragments per �le type can be found in Table 3.1. As we can see, the percentage of

fragments with no plain text for most of the �le types is around 5%. I is quite interesting

that this percentage is signi�cantly higher (10-17%) for the doc �le type.

Chapter 3. Experimental Setup 10

Furthermore, we use our training set to train our �ngerprints and the experimental

testing set to test the 4 BFA variations. Both of the aforementioned sets undergone

statistical analysis in order to discover useful patterns. More detailed information about

our experimental data set can be found in Table 3.1. Moreoever, information regarding

the �nal testing set that we use to test the performance of our �nal algorithm can be

found in Table 3.2.

pdf zip text doc mp4 xls ppt jpg ogg png

Size in megabytes 966.2 967.4 968.8 968.4 969.5 968.6 968.1 967.4 969.4 969,6

Num.of �les 1,800 19 1,496 1,865 18 624 816 3,352 1,833 4,948

Expected fragments 1,978,777 1,981,235 1,984,102 1,983,283 1,985,536 1,983,692 1,982,668 1,981,235 1,985,331 1,985,740

Output fragments 1,874,910 1,889,477 1,891,472 1,775,747 1,888,605 1,870,376 1,864,145 1,886,853 1,891,754 1,880,742

Fragments with no plain text(%) 5.2 4.6 4.7 10.5 4.9 5.7 6 4.8 4.7 5.3

Table 3.2: Final Testing Data Set

4 | Algorithm Development

4.1 | Approach Description

Our algorithms development procedure is comprised of two main phases. In the �rst

phase, we use 4 di�erent variations of BFA using only the plain text ASCII byte set of

the fragments. We compare these 4 BFA variations and we choose the one that yields

the best results regarding text fragment classi�cation. Additionally, we compare the

performance of our best BFA variation with Shahis [19] BFA variation. In the end of

phase 1 we choose the best technique regarding text fragment classi�cation and proceed

to phase 2.

In phase 2, we isolate all fragments that were classi�ed as text from the optimal BFA

variation, in order to analyse them. This analysis resulted in the formulation of 2 new

light-weight classi�cation metrics, where in conjunction with the Shannon entropy [20]

metric and the �le type accuracy levels of BFA, aid the design of our classi�cation

algorithm.

Finally, in subsection 4.4 we test the Longest Common Subsequence technique in order

to �nd out what is the runtime cost that we have to "pay" in order to aquire similar

results as Calhoun did in [4] and decide if it could aid our algorithms design.

11

Chapter 4. Algorithm Development 12

4.2 | BFA Variations

4.2.1 | Variation 1 - Plain Text ASCII Subset

In this variation we created 10 �ngerprints, one for each �le type, which were trained

with fragments from the training set. We only the printable ASCII characters byte-set

for the �ngerprint training. The results can be found in Table 4.1.

This BFA variation classi�es 589,758 fragments as text which corresponds to the 30.4%

of the initial corpus. 501,012 of them are fragments that originate from pdf, xls, doc and

text �les and 88,746 fragments originate from the other 6 �le types. This means that

in the set that is classi�ed as text, we have an 85% of true positive rates in identifying

document-type fragments as text with 15% false positives. This 85% of true positive

rates corresponds to the 66.7% of the total pdf, xls, doc and text �les of our corpus.

pdf zip text doc mp4 xls ppt jpg ogg png

num.of fragments 189,732 204,795 190,055 177,887 204,728 193,352 195,608 195,608 195,656 195,653

pdf 27.9 52.3 0 20.3 48.1 0.2 35.3 40.7 46.5 44.1

zip 20.2 26.6 0 13.3 28.0 0.1 24.9 29.2 24.7 28.2

text 21.3 4.9 98.0 50.4 4.4 95.5 14.1 6.0 7.1 7.2

doc 14.4 4.2 0.5 7.1 5.2 0.2 9.7 7.9 8.7 5.8

mp4 1.7 0.6 0 0.2 0.8 0 0.4 0.5 0.4 0.5

xls 1.2 0 1.4 0.8 0.1 3.9 1.0 0.2 0 0.1

ppt 3.2 2.2 0 1.8 2.7 0 3.3 3.3 2.7 2.9

jpg 0.5 0.1 0 0.1 0.0 0 0.1 0.1 0 0.1

ogg 2.8 2.2 0 1.4 3.0 0 2.8 3.0 2.7 2.7

png 6.8 6.9 0 4.6 7.7 0 8.3 9.1 7.2 8.5

Unclassi�ed 0 0 0 0 0 0 0 0 0 0

Table 4.1: BFA Results - Fingerprints trained with plain text ASCII subset

4.2.2 | Variation 2 - Plain Text Concentration Categories

During our research we thought that it would be interesting to analyse the distribution of

the plain text ASCII byte values. Depending on its plain text concentration, a fragment

is assigned to one of 4 plain text concentration categories. 0-25%, 25-50%, 50-75% and

75-100%. The results of this analysis can be found in Table 4.2. We should note that

fragments which do not contain plain text are excluded from this analysis.

As it seems, fragments from certain �le types are more likely to belong to certain concen-

tration categories. For example, almost all text fragments (99.95%) contain more than

75% of plain text byte values and almost all xls fragments less than 50%. Undoubtedly

Chapter 4. Algorithm Development 13

this is completely reasonable. Text �les are mostly comprised of plain text while Excel

sheets, due to the space that their cell structure occupies, contain less printable charac-

ters. That �nding can be used as a metric to improve current classi�cation techniques.

We will further elaborate on this later in this chapter.

Based on the analysis results, we thought that it would be interesting to divide the

fragments of our training set in 4 plain text concentration categories. Then for each

category and for each �le type we created their respective �ngerprints. So we ended

up with 40 �ngerprints, 4 for each �le type. The algorithm �rst checks the plain text

concentration of the input fragment and according to its value, it compares the fragment

with the corresponding �ngerprint. For readability purposes, we placed the result tables

in Appendix A.

The accuracy for both the actual classi�cation and the text classi�cation are really bad.

This variation classi�ed 366,969 fragments as text which corresponds to the 18.9% of

the initial corpus. 87,837 of them are fragments that originate from pdf, xls, doc and

text �les and 279,132 fragments originate from the other 6 �le types. This means that

in the set that is classi�ed as text we have an 31.5% of true positive rates in identifying

document-type fragments as text with 68.5% false positives. This percentage of true

positive rates corresponds to the 11.7% of the total pdf, xls, doc and text �les of our

corpus.

The bad results are probably due to the fact that some of the �ngerprints were trained

with a tiny amount of fragments. Therefore, they are not representative at all for the

category they were build for. For example it is obvious that in the 0-25% category the xls

�ngerprint was trained with the 62.83% of the total xls fragments and the ogg �ngerprint,

for this particular category, was trained only with the 0.02% of the total ogg fragments.

Probably this is the reason why in the 0-25% category most of the fragments were

classi�ed as xls since most of the other �ngerprints, with the only exception of xls, were

under-trained. This observation led as to the formulation of the next variation.

plain text concentration (%) pdf zip text doc mp4 xls ppt jpg ogg png

0 < c ≤ 25 0.55 0.02 0.01 36.03 0.20 62.61 6.83 0.46 0.05 0.70

25 < c ≤ 50 78.68 99.96 0.03 52.39 99.80 34.24 91.93 99.20 99.94 98.91

50 < c ≤ 75 5.11 0.02 0.01 0.60 0 1.88 0.60 0.08 0.02 0.11

75 < c ≤ 100 15.66 0 99.95 10.98 0 1.28 0.64 0.26 0 0.29

Table 4.2: Training Set - Plain Text Concentration Analysis

Chapter 4. Algorithm Development 14

4.2.3 | Variation 3 - Dominant Plain Text Concentration Cate-

gories

If we look at Table 4.2 it is obvious that most fragments of a certain �le type are expected

to belong to one of the 4 plain text concentration categories that we discussed in the

previous variation. We hypothesized that for every �le type the category in which the

majority of of fragments of this particular �le type belong is more representative for

the respective �le type than the other categories. So from the 4 �ngerprints that we

created for each of the 4 plain text concentration categories, we chose the one that was

trained with the biggest amount of fragments for its particular �le type. We call this

category the dominant plain text concentration category of the �le type. For example

the dominant plain text category of the text �le type is the 75-100% category, for the

pdf is the 25-50%, for the xls is the 0-25% etc.

Consequently, we ended up with 10 �ngerprints witch correspond to the dominant plain

text categories of every �le type. This variation is identical with the �rst one, with the

only di�erence that we use the fragments of the dominant categories of every �le type to

train our �ngerprints instead of the whole fragment set. The results of this BFA variation

can be found in Table 4.3.

pdf zip text doc mp4 xls ppt jpg ogg png

num.of fragments 189,732 204,795 190,055 177,887 204,728 193,352 195,289 195,608 195,656 195,653

pdf 5.0 3.9 0 2.9 4.9 0 5.3 5.4 4.8 5.1

zip 20.4 26.8 0 13.4 28.2 0.1 25.1 29.5 24.9 28.4

text 27.9 6.8 98.4 51.9 6.4 81.7 17.3 8.6 10.6 9.0

doc 31.4 51.8 0.1 22.1 47.4 0.2 37.5 42.0 47.8 44.6

mp4 3.0 1.9 0 0.9 2.8 0 1.6 1.7 1.4 1.9

xls 1.8 0.3 1.5 2.6 0.4 17.8 1.8 0.4 0.4 0.3

ppt 6.7 6.5 0 4.7 7.2 0 8.5 9.2 7.5 8.1

jpg 1 0.3 0 0.3 0.3 0 0.5 0.6 0.3 0.4

ogg 2.2 1.5 0 1 2.1 0 1.9 2.1 1.9 1.9

png 0.7 0.3 0 0.2 0.4 0 0.5 0.5 0.4 0.4

Unclassi�ed 0 0 0 0 0 0 0 0 0 0

Table 4.3: BFA Results - Dominant Fingerprints

This BFA variation classi�ed 589,402 fragments as text which correspond to the 30.3%

of the initial corpus. 490,267 of them are fragments that originate from pdf, xls, doc and

text �les and 99,135 fragments originate from the other 6 �le types. This means that

in the set that is classi�ed as text we have an 83.2% of true positive rates in identifying

document-type fragments as text, with 16.8% false positives. This percentage of true

positive rates corresponds to the 65.3% of the total pdf, xls, doc and text �les of our

corpus.

Chapter 4. Algorithm Development 15

4.2.4 | Variation 4 - Fragments above 75% Plain Text Concentra-

tion classi�ed as text

According to the results of Table 4.2 almost all text fragments (99.5%) contain more

than 75% of plain text. In the same concentration category, fragments of pdf, doc

and xls correspond to 15.66%, 10.98% and 1.28%, of the total amount of fragments of

their particular �le type, respectively. For all the other �le types, in this concentration

category belong only a tiny amount of their total fragments. We thought that it would

be interesting to apply the BFA of variation 1 only to the fragments which contain less

than 75% plain text and every fragment above this percentage would be classi�ed as

text. We should note that we decided to use the �ngerprints of variation 1 instead of

the dominant �ngerprints of variation 2, because overall percentage of text fragment

classi�cation is better for variation 1. The results of this variation of BFA can be found

in Table 4.4. This BFA variation classi�ed 590,834 fragments as text which corresponds

to the 30.4% of the initial corpus. 512,855 of them are fragments that come from pdf,

xls, doc and text �les and 77,979 fragments originate from the other 6 �le types. This

means that in the set that is classi�ed as text we have an 86.8% of true positives in

identifying document-type fragments as text with 13.2% false positives. This percentage

of true positives corresponds to the 68.3% of the total pdf, xls, doc and text �les of our

corpus.

pdf zip text doc mp4 xls ppt jpg ogg png

num.of fragments 165,840 204,795 1,491 157,196 204,728 192,044 192,236 194,582 195,656 195,651

pdf 31.5 52.3 3.5 22.9 48.1 0.2 35.9 40.9 46.5 44.1

zip 21.6 26.6 2.7 15.0 28.0 0.1 25.2 29.4 24.7 28.2

text 15.2 4.9 26.4 44.1 4.4 95.5 13.1 5.5 7.1 7.2

doc 16.0 4.2 59.6 7.9 5.2 0.2 9.7 7.9 8.7 5.8

mp4 0.6 0.6 0.1 0.3 0.8 0 0.4 0.5 0.4 0.5

xls 1.2 0 5.0 0.8 0.1 3.9 0.8 0.2 0 0.1

ppt 3.5 2.2 1.1 2.1 2.7 0 3.4 3.3 2.7 2.9

jpg 0.1 0.1 0.1 0.1 0 0 0.1 0.1 0 0.1

ogg 2.8 2.2 0.7 1.6 3.0 0 2.8 3.0 2.7 2.7

png 7.5 6.9 0.8 5.2 7.7 0 8.5 9.2 7.2 8.5

Unclassi�ed 0 0 0 0 0 0 0 0 0 0

ptc* >75% 23,892 0 188,564 20,691 0 1,308 3,053 1,026 0 0

*plain text concentration

Table 4.4: BFA - Fingerprints Trained in 0-75% and tested in 0-75%

Chapter 4. Algorithm Development 16

4.2.5 | Optimal Variation for Text Fragment Classi�cation

In Table 4.5 we present the precision and document-type fragment retrieval percentages

of all the 4 BFA variations.

Profoundly enough, the second variation is by far the worst and cannot aid the design

process of our classi�cation algorithm. Among the other three variations, variation 4

yields the best results. Both coverage and precision of variation 4 is undoubtedly the

highest among the other two.

However, taking under account that these are results from a controlled corpus and not

from a real life scenario, the fact that variation 4 classi�es every fragment with more

than 75% plain text concentration as text is a major weakness.

In a real life scenario, the ratio between the amount of fragments of every �le type it's

highly unlikely to be 1:1, as it is in our corpus. Therefore in a scenario where the corpus

does not contain any text fragments, every fragment with a plain text concentration

higher than 75% would be falsely classi�ed as text. Furthermore, our corpus is comprised

only of 10 �le types. Considering the fact that the number of �le types that a forensic

practitioner is likely to encounter in real life cases is bigger, renders variation 4 unscalable.

We should �rst conduct similar research for all the existing �le types, in order to be able

to say if variation 4 can be used in actual forensic cases. Among the remaining variations,

variation 1 is slightly better in both coverage and accuracy than variation 3. We judge

that among the 4 BFA variations that we tested, variation 1 is the optimal regarding

text fragment classi�cation .

precision document-type fragment retrieval

Variation 1 85 66.7

Variation 2 31.5 11.7

Variation 3 83.2 65.3

Variation 4 86.8 68.3

Table 4.5: BFA Variation Comparison

4.2.6 | BFA Training - Entire ASCII Set VS. Plain Text

Although BFA variation 1 yielded the best results regarding text fragment classi�cation

among the other 3 variation, a comparison with the BFA that uses the entire ASCII

byte set is essential, in order to choose which approach is the best for the design of our

algorithm.

Chapter 4. Algorithm Development 17

pdf zip text doc mp4 xls ppt jpg ogg png

pdf 0 0 0 0 0 0 0 0 0 0

zip 33.6 86.0 1.9 17.9 22.0 0.0 48.1 33.5 6.7 62.8

text 15.7 0.1 96.2 47.7 4.7 43 5.5 1.1 10.4 2.3

doc 2.1 0 0 0.5 0.6 0 0.4 0.1 8.2 0.3

mp4 10.1 4.5 0.4 4.1 27.2 0 12.3 25.2 18.2 11.4

xls 11.4 0.3 0.3 17.9 0.2 56.8 10.9 4.4 6.4 1.8

ppt 0 0 0 0 0 0 0 0 0 0

jpg 2.6 1.3 0.2 2 0.2 0 4.6 9.7 3.4 1.9

ogg 20.6 3 0.2 6.5 39.7 0 10.9 16.3 40.2 6.4

png 4.1 4.5 0.4 2.8 5 0 6.8 9.4 6.2 12.8

Unclassi�ed 0 0 0 0 0 0 0 0 0 0

Table 4.6: BFA Results - Entire ASCII Byte Set Training

Shahi[19] tested a BFA for fragment classi�cation using the exact same �le types as we do.

The only exception is that he used the entire ASCII byte set for the �ngerprint training.

The corpus that he used is almost 10 times bigger than the one we used for training.

Conveniently enough, he trained his �ngerprints with 10%, 20%, 50% and 100% of his

training data set and provided the accuracy results. Our training set, around 800mb

of each �le type, is approximately the 10% of Shahis training set. In order to have a

more objective comparison, we are going to compare the results that Shahi got by using

�ngerprints that were trained with the 10% of his training set, with our variation 1 BFA.

That way, �ngerprints from both approaches have almost the same amount of training.

The results can be found in Table 4.6.

For broad fragment classi�cation, �ngerprints that use the entire byte-set seems to be

way more e�ective than variation 1. Only the accuracies for pdf and ppt fragments are

higher in variation 1, simply because Shahis BFA variation achieved 0% of true positive

rates for these �le types.

Regarding text fragment classi�cation the precision rates are pretty close. We took the

accuracy percentages that correspond to text fragment classi�cation from Table 4.6 and

calculated the amount of fragments that would have been classi�ed as text using the

default BFA. We should mention that since Shahis BFA variation is not limited in only

classifying fragments that contain plain text, the amount of fragments that this BFA

variation can process is bigger (Table 3.1).

According to this, that BFA would have classi�ed 462,345 fragments as text which corre-

spond to the 22.3% of the initial corpus. 410,173 of them are fragments that come from

pdf, xls, doc and text �les and 52,172 fragments originate from the other 6 �le types.

This means that in the set that is classi�ed as text we have an 88.7% of true positive

rates in identifying document-type fragments as text, with 11.3% false positives. This

percentage of true positive rates corresponds to the 50.3% of the total pdf, xls, doc and

text �les of our testing set (fragments with no plain text included).

Chapter 4. Algorithm Development 18

Although the precision of Shahis BFA variation is slightly higher (88.7%) from variation 1

(85%), the amount of document-type fragments that are classi�ed as text is signi�cantly

lower. Variation 1 classi�ed as text 501,012 of the total pdf, xls, doc and text fragments,

in comparison to Shahis BFA variation that would have classi�ed 410,173. By using BFA

in our algorithm, we aim to retrieve us much pdf, xls, doc and text fragments as possible

and minimize false positive rates. In that case, this is a trade-o� between precision

and the amount of document-type fragment retrieval. Precision levels are pretty close.

However, variation 1 classi�es signi�cantly more (22%) document-type fragments as text.

For that reason, although this estimation is approximate, we chose to use variation 1 over

a BFA that uses the complete ASCII byte set for its �ngerprints training. Therefore, our

�nal algorithm will make use of BFAs variation 1.

4.3 | BFA Text Output Analysis

4.3.1 | BFA Variation 1 Output

After the run of variation 1 BFA, we isolated all fragments which were classi�ed as text.

Initially, we expected that BFA falsely classi�es fragments from non-text �les as text,

due to their high plain text concentration. We conducted a plain text concentration

analysis on BFAs output and it seems that BFA classi�ed as text fragments with diverse

plain text concentration. This analysis can be found in Table 4.7.

plain text concentration pdf zip text doc mp4 xls ppt jpg ogg png

0 < c ≤ 25 13.9 0.8 0 57.4 29 78.6 36 10.1 1.4 55

25 < c ≤ 50 34.7 99.1 0.1 18.4 71 19.1 50.3 80.1 98.2 44.9

50 < c ≤ 75 14 0.1 0.1 1.6 0 1.6 5.1 0.9 0.4 0.1

75 < c ≤ 100 37.4 0 99.8 22.6 0 0.7 8.6 8.8 0 0

Table 4.7: BFA Output Plain Text Concentration Analysis

Although the 85% of BFAs output originates from document-type �les, our BFA exten-

sion algorithm considers all these fragments to be of document-type. By doing this, we

expect that the amount of fragments that were falsely classi�ed as text without belonging

to a document-type �le, will be evenly distributed among the false positive classi�cation

rates for xls, pdf, doc and text fragments. Our algorithms goal is to be able to correctly

identify and distinguish between xls, pdf, doc and text fragments. For that purpose we

conducted statistical analysis in BFAs output trying to �nd patterns that will help us

predict the �le type of the document-type fragments. We introduce two new metrics,

Chapter 4. Algorithm Development 19

the Individual Null Byte Frequency (INBF) and the Plain Text Concentration (PTC).

The INBF in conjunction with Shannon entropy[20] can be used to e�ectively distinguish

between pdf from xls and doc fragments. Additionally, the PTC metric can be used to

eliminate the chances of a fragment, that belongs to a certain plain text concentration

category, to be falsely classi�ed.

4.3.2 | Plain Text Concentration Categories

As we already mentioned, �le fragments of certain �le formats are expected to have a

characteristic plain text concentration. We use 4 concentration categories of equal size;

0-25%, 25-50%, 50-75% and 75-100%. Our metric assumes that fragments are of 512-

bytes size, but could also be used with any size multiple of 512. As we already have

seen in Table 4.2, 75% or more of text fragments is plain text and the majority of xls

fragments (97%) are less than 50% plain text. Moreover, more than 90% of the total

mp4, zip, ppt, jpg, png and ogg fragments belong in the 25-50% plain text concentration

category. This is quite reasonable taking under account that these fragments originate

from compressed �le formats of high entropy. Additionally, we run an extra analysis

speci�cally for the text fragments and we found that 98% of them are fully comprised of

plain text.

We reason that this light-weight metric can be combined with current techniques to

increase their accuracy. For example, if a fragment is classi�ed as text and it contains at

least one non-plain text byte, then probably it's not a text fragment. So, a classi�cation

algorithm could make this simple check and substitute its �rst classi�cation prediction

with the one that had the second highest accuracy level. Similarly, if a fragment is more

than 75% plain text then probably it's not an mp4, zip or ogg fragment etc.

4.3.3 | Shannon Entropy

There is a widespread use of the Shannon entropy[20] metric in �le fragment classi�cation

techniques. Entropy measures how much information a sequence of symbols contains.

Entropy is de�ned as:

H(Xi..Xn) = −
n∑

i=0

p(xi) log2 p(xi)

In our case, X = Xi..Xn is the byte-content of a fragment, where n = 511 and p(xi) is

the frequency of xi in X. To calculate p(xi), we simply divide the number of occurrences

of xi in a fragment with the fragments size. It is known that usually compressed �les

Chapter 4. Algorithm Development 20

have high entropy in contrast with text �les that have low entropy[4][3]. In �gure B.2

we can see the entropy distribution among these �le fragments.

Figure 4.1.a: Pdf distribution Figure 4.1.b: Xls distribution

Figure 4.1.c: Doc distribution Figure 4.1.d: Text distribution

Figure 4.1: Entropy Distribution

As expected, by being a compressed �le format pdf have signi�cantly higher entropy

values than doc, xls and text fragments. A signi�cant amount of pdf fragments have an

entropy value of 6 or more, in contrast with the other �le types where the majority of

their fragments have an entropy of lesser value. Additionally, only pdf and doc fragments

have an entropy value higher than 6.

4.3.4 | Individual Null Byte Frequency

We applied several statistical measurements such as median, mean, mode, standard

deviation, minimum and maximum frequency byte values in BFAs output fragments.

However, we couldn't �nd strong distinguishable characteristics for these �le types that

could aid our algorithms design. Thereafter, we manually inspected several fragments of

all �le types, and noticed that the amount of null bytes in xls fragments was signi�cantly

high. However, although slightly less, the frequencies of null bytes were similar for

Chapter 4. Algorithm Development 21

doc and pdf fragments. We noticed that there were many long sequences of null bytes

in most of the pdf and doc fragments but for the xls fragments these sequences were

fewer. Additionally, the majority of the total null bytes in xls fragments were individual.

Therefore, we analysed the distribution of individual null bytes of all the document-type

fragments. As we can see in �gure 4.2 the number of individual null bytes in xls fragments

is obviously higher compared to the other �le types. For text fragments, the amount of

individual null bytes is 0 and for pdf and doc fragments the frequency mainly ranges

from 0 to 25. Since the majority of text fragments are fully comprised of plain text, it's

natural that they do not contain null values.

Figure 4.2.a: Pdf distribution Figure 4.2.b: Xls distribution

Figure 4.2.c: Doc distribution Figure 4.2.d: Text distribution

Figure 4.2: Individual Null Byte Distribution

Chapter 4. Algorithm Development 22

4.4 | Longest Common Subsequence

While trying to �nd a way to reduce false positives of the doc and xls fragment classi-

�cation, we thought to test the performance and accuracy of the longest common sub-

sequence technique. Calhoun [4] used this technique to distinguish between fragments

of two di�erent �le types. He achieved high accuracy results (90%) using the standard

dynamic programming version of the algorithm for two-group �le classi�cation. Even

though the dynamic version is faster than the naive approach of the algorithm, with

runtime complexity m× n, where m,n the length of the input strings, it still seems like

an "expensive" technique to be used for �le fragment classi�cation.

What Calhoun did was to extract every longest common subsequence of every �le frag-

ment of a certain �le format and concatenate them in a big string. This string was used

as a representative of the respective �le type. Due to the fact that the speed of this

technique depends on the length of the input strings, it is essential to know about how

long the �le type representative string should be in order to be e�ective. Since he does

not provide information about the length of the strings that he used as �le type represen-

tatives, we want to �nd out strings of what length can be used as �le type representatives

and yield similar results. If the lengths are not too long then the computation of the

longest common subsequence between two strings could be fast enough to be used in �le

carving techniques.

Instead of concatenating every longest common subsequence between fragments of the

same �le type, we tried a di�erent approach. We used 500 fragments of doc and

500 fragments of the xls type for our representative string creation. This resulted to

500×500−500 = 249, 500 comparisons for each �le type in order to extract their longest

common subsequences. We gathered all longest common subsequences from these com-

parisons and putted them in a map data structure. Then we sorted the map and took

the �rst 100, 500, 1000 and 1500 most frequent longest common subsequences. We con-

catenated these subsequences in 4 long representative strings for each of the doc and xls

�le type. Thereafter, we used a set of 10,000 fragments, 5000 of xls and 5000 of doc

type, to test their accuracy. At this point we should note that Calhoun used only 50

fragments per �le type to test this technique. This was an additional reason to want to

try its performance since we consider testing sets of this size extremely insu�cient [19].

However, we also consider our testing set signi�cantly small, but since our goal was to

�nd out what is the correlation between speed and accuracy of that technique, a testing

set of that size is su�cient. The results can be found in Table 4.8.

As someone would expect, by using longer strings as �le type representatives, the clas-

si�cation precision is enhanced. The precision gradually increases while using longer

Chapter 4. Algorithm Development 23

n most frequent lcs n = 100 n = 500 n = 1000 n = 1500

doc vs. xls precision 83 89.5 90.06 91.63

doc lcs representative string length 1,007 5,763 15,225 27,070

xls lcs representative string length 859 4,679 9,482 14,609

Table 4.8: Longest Common Subsequence comparison - doc VS. xls

strings. Although the precision of this metric proved to be on par with the results

Calhoun presented in [4], its speed is way to slow to be used in real life cases.

Even by using the shortest �le type representative strings, which corresponds to the

�rst 100 most frequent longest common subsequences of a �le type, the runtime com-

plexity remains extremely high. We compared the speed of this technique with our

under-construction algorithms speed, and with rough comparisons, the longest common

subsequent technique takes 15% longer to compute, than our complete algorithm (BFA

included). Taking under account that our algorithm was designed to be able to handle

10 di�erent �le types and that the LCS technique that we tested only 2, it is obvious

that the di�erence in speed is quite signi�cant. Moreover, since the use of PTC and

INBF yielded few false positive rates between the xls and doc �le-types (Chapter 6, the

use of LCS technique could not improve the overall performance of our algorithm. In

conclusion, we strongly believe that such an expensive technique is not appropriate for

broad fragment classi�cation and researchers should �rst invest time in searching for

light weight techniques before trying brute force approaches.

5 | Algorithm Description

In this chapter we describe the �nal form of our classi�cation algorithm. For simplicity,

we don't describe BFA part since all the information of this algorithm can be found in

[14].

We divide our �nal algorithm in three parts and present it in a pseudocode form. Addi-

tionally, we provide a decision tree �gure in order to make our algorithm more compre-

hensible for the reader.

The algorithm that we describe assumes that BFA has already read the byte stream of

a fragment, created an accuracy level for each �le type and classi�ed it as text.

24

Chapter 5. Algorithm Description 25

Algorithm - Part 1 Initial state and value declarations

Require:
�oat pdfConV alue, docConV alue . BFAs con�dence values
byte[] byteStream . Byte content of fragment

Ensure: XLS,PDF,DOC, TEXT . Classi�cation result

1: declare integer ninb . Number of Individual Null Bytes in fragment
2: declare �oat entropy . Entropy of the fragment
3: declare �oat ptc . Plain Text Concentration in fragment

4: declare const integer lowNinb := 9
5: declare const integer highNinb := 25
6: declare const �oat textMaxEntropy := 6
7: declare const �oat xlsMaxPtc := 50
8: declare const integer xlsMinNinb := 50
9: declare const �oat medianPdfEntropy := 5.8
10: declare const �oat lowEntropy := 3.9

In Part 1 we can see the initial state of our algorithm and all the constant variable

declarations. We reuse only the accuracy levels (con�dence values) that BFA produced,

which correspond to the doc and pdf �le types. We noticed that between pdf and doc

fragments, when the pdf accuracy level is higher than doc, most of the times the fragment

was of the pdf �le format.

In lines 1-3 we declare the variables that hold the values of our classi�cation metrics.

These metrics are the Individual Null Byte Frequency (INBF), the Shannon entropy and

the Plain Text Concentration (PTC). The only prerequisites to calculate these values is

the byte stream of the fragment. Furthermore, the values of the constant variables in

lines 4-10 are result of the analysis we conducted in Chapter 4.

The "Ensure" �eld contains the values that our classi�cation algorithm returns as output.

Since our algorithm was intended to be able to classify fragments of the doc, xls, pdf

and text �le types, the returned values are the names of these �le types. So for example

if the output is DOC then it means that our classi�er classi�ed the input fragment as

doc.

Apart from the textMaxEntropy and medianPdfEntropy values, all the other values were

initially formulated by the histogram analysis and further calibrated with multiple tests.

Chapter 5. Algorithm Description 26

Algorithm - Part 2 Auxiliary functions

11: function isXls()
12: return ninb > xlsMinNinb ∧ ptc < xlsMaxPtc
13: end function

14: function isPdf()
15: return pdfConV alue > docConV alue ∧ ninb ≤ lowNinb ∨
16: entropy ≥ medianPdfEntropy
17: end function

18: function isPlainText()
19: return ptc == 100
20: end function

21: function isProbablyNotPdf()
22: return entropy ≤ lowEntropy ∧ ninb ≥ highNinb
23: end function

In Part 2 we provide all the auxiliary functions that we use in our classi�er. All of them

evaluate a boolean expression and return a boolean value.

The "isPlainText" function checks if the fragment is fully comprised of byte values that

correspond to plain text characters. Moreover, the "isXls" function checks the amount

of individual null bytes in the fragment, in conjunction with its plain text concentration.

This is due to the fact that fragments of the xls type contain a high number of individual

null bytes in contrast with the other 3 �le types. Additionally, the majority of xls

fragments have less than 50% plain text concentration.

Similarly, the "isPdf" function returns true, either if the entropy of the fragment is higher

than the pdf median entropy value, either if the accuracy level that BFA gave is higher

than docs in conjuction with low number of individual null bytes. We chose to use the

pdf median entropy value instead of the mean, because the histogram analysis revealed

a skewed entropy distribution. Median is preferred from mean, as the best measure of

central tendency in non-normal distributions.

Finally, the "isProbablyNotPdf" function classi�es a fragment as possibly not being of

pdf format when the entropy of the fragment is pretty low and the number of individual

null bytes relatively high.

Chapter 5. Algorithm Description 27

Algorithm - Part 3 Classi�er

24: if isPlainText() then
25: if entropy < textMaxEntropy then
26: return TEXT
27: else if isPdf() then
28: return PDF
29: else
30: return DOC
31: end if
32: else
33: if isXls() then
34: return XLS
35: else if isProbablyNotPdf() then
36: return DOC
37: else if isPdf() then
38: return PDF
39: else
40: return DOC
41: end if
42: end if

In Part 3 of our classi�cation algorithm we make use of an if-statement decision tree,

combined with the aforementioned functions plus some additional checks.

In line 24 we check if the fragment is fully comprised of plain text characters. If it does,

then we eliminate the chance of being of the xls �le format. In line 25, we check the

entropy value of the plain text fragment. If that value is below the maximum entropy

value we found for text fragments in BFAs output, we classify that fragment as text.

Otherwise, if it has higher entropy then its either pdf or doc. The remaining part of the

pseudocode is pretty simple so we won't elaborate further.

Since the multiple nested if-statements hinder readability, we additionally provide �gure

5.1 that presents our classi�cation algorithm as a decision tree .

Chapter 5. Algorithm Description 28

Figure 5.1: Algorithm as Decision Tree

6 | Results

In this chapter we present the accuracy results of our classi�cation algorithm. Analysis

of the results will be presented in the next chapter. Since our algorithms design is based

on the analysis we conducted on the experimental data set (Table 3.1), the algorithm is

biased towards this set. For that reason we used the �nal testing data set (Table 3.2) to

test our algorithms performance.

Although our �nal algorithm was implemented in one piece, we divide the results in

three parts. In section 6.1 we provide the performance of the BFA part of our algo-

rithm regarding document-type fragment classi�cation. In section 6.2 we provide the

classi�cation results of the algorithm we described in Chapter 5. We should note that

the classi�cation results of that part correspond to the data set of fragments that were

initially classi�ed as text from BFA. Finally, in section 6.3 we provide the overall classi-

�cation results of our classi�er. We also provide an overview of the complete algorithm

in Figure 6.1. The numbers on the �gure correspond to the respective sections of this

chapter.

Figure 6.1: Algorithm Overview

29

Chapter 6. results 30

6.1 | BFA Scan - Text Fragment Classi�cation

In Table 6.1 we present the performance of BFA part of our algorithm regarding text

fragment classi�cation. The �rst row corresponds to the initial number of fragments our

algorithm processed for each �le type. The other rows provide information regarding

BFAs document-type fragment classi�cation rates.

pdf text doc xls ppt mp4 ogg zip png jpg

num. of fragments 1,874,910 1,891,472 1,775,747 1,870,376 1,864,145 1,888,605 1,891,754 1,889,477 1,880,742 1,886,853

fragments classi�ed as text 385,616 1,889,662 950,308 1,756,200 404,198 67,107 111,738 94,815 86,017 98,960

% 20.6 99.9 53.5 93.9 21.7 3.6 5.9 5 4.6 5.2

fragments classi�ed as other 1,489,294 1,810 825,439 114,176 1,459,947 1,821,498 1,780,016 1,794,662 1,794,725 1,787,893

% 79.4 0.1 46.5 6.1 78.3 96.4 94.1 95 95.4 94.8

Table 6.1: BFA Text Fragments Classi�cation

6.2 | BFA Extension Algorithm Accuracy

In Table 6.2 we provide the accuracy results of our custom algorithm as a percentage

confusion matrix. The columns represent the actual type of the fragments while the

rows represent the �le type that the fragments was classi�ed as. Since our algorithm was

designed to classify fragments of the doc, pdf, xls and text �le formats, we only have

true positive rates for these 4 �le types. We present the true positive rates as shaded

cells.

pdf text doc xls ppt mp4 ogg zip png jpg

fragments classi�ed as text from BFA 385,616 1,889,662 950,308 1,756,200 404,198 67,107 111,738 94,815 86,017 98,960

pdf 46.3 0.5 16.2 2.3 31.2 87.6 95.5 90.6 84.9 83.0

text 38.9 98.8 11.7 3.9 1.2 0 0.1 0 2.2 6.4

doc 13.6 0.7 60.7 17.9 43.4 12.4 4.4 9.3 8.8 8.7

xls 1.3 0 11.4 75.9 24.2 0.1 0 0.2 4.1 2

Table 6.2: BFA Extension Algorithm Accuracy

Chapter 6. results 31

6.3 | Complete Algorithm Accuracy

In Table 6.2 we provide the accuracy results of our complete algorithm as a percentage

confusion matrix. The columns represent the actual type of the fragments while the rows

represent the �le type that the fragments was classi�ed as. Our algorithms can make

5 classi�cation decisions. These decisions can be doc, pdf, xls, text and other. In the

"other" broad classi�cation category belong every fragment that was classi�ed was as

ppt, ogg, mp4, zip, png or jpg. We present the true positive rates as shaded cells.

pdf text doc xls ppt mp4 ogg zip png jpg

num. of fragments 1,874,910 1,891,472 1,775,747 1,870,376 1,864,145 1,888,605 1,891,754 1,889,477 1,880,742 1,886,853

pdf 9.5 0.5 8.7 2.2 6.8 3.1 5.6 4.5 3.9 4.4

text 8.0 98.8 6.3 3.7 0.2 0 0 0 0.1 0.3

doc 2.8 0.7 32.5 16.8 9.4 0.4 0.3 0.5 0.4 0.5

xls 0.3 0 6.1 71.3 5.3 0 0 0 0.2 0.1

other 79.4 0.1 46.5 6.1 78.3 96.4 94.1 95.0 95.4 94.8

Table 6.3: Algorithm Accuracy Results

7 | Analysis

In this chapter we analyse the results of Chapter 6. We divide this chapter in three

sections. In section 7.1 we analyse the performance of BFA and the amount of frag-

ments that were classi�ed as text. In section 7.2 we analyse the performance of our

complete algorithm. Finally in section 7.3 we compare our algorithm performance with

the classi�cation algorithms that Shahi tested in [19].

7.1 | BFA performance

Judging from the results of Table 6.1, the BFA part of our algorithm performed as

expected. It yielded almost identical results with the results that we got during the

algorithms development procedure (Chapter 4).

In a corpus of 18,714,081 fragments BFA classi�ed 5,844,621 fragments as text. From that

amount, 4,981,786 fragments do originate from document-type �le formats and 862,835

from the other 6 �le types. This means that we have a percentage of 85.2% true positive

rates and a 14.8% of false positives, regarding document-type fragment classi�cation.

These results are on par with the ones we got when we used this variation of BFA in a

ten-times smaller corpus (Table 4.1).

Moreover, this 85.2% of true positive rates correspond to the 67.2% of the total doc, pdf,

xls and text fragments of our initial corpus. However, this percentage is not representative

for a real life case, since our �nal testing set was comprised only of fragments that had

at least one plain text character. Considering that we know the percentage of fragments

with no plain text (Tables 3.1, 3.2) for each of the 10 �le types, we can calculate the

approximate overall document-type fragment retrieval in a corpus of 10GB size. Thus,

taking under account the amount of fragments that correspond to fragments with 0%

plain text concentration, BFA would have approximately retrieved the 63% of the total

doc, pdf, xls and text fragments from a 10GB corpus.

32

Chapter 7. Analysis 33

7.2 | Overall Algorithm Performance

The accuracies of the 4 document-type �le formats of our interest are quite encouraging.

We got 9.5% for pdf, 98.8% for text, 32.5% for doc, 71.3% for xls fragments and 92.4%

for classifying a fragments as of another �le type. It seems that due to the high entropy

of the non-document type fragments, most of the fragments that were initially falsely

classi�ed as text from BFA, thereafter were falsely classi�ed as pdf. This is not necessarily

a bad thing, since it kept false positives rates for the doc, xls and text �le types at low

levels. Especially for the text and xls �le types the false positive rates are extremely

small.

However, the information that we can get from this results are insu�cient to evaluate

our algorithms performance. In addition, this is the main weakness of the scienti�c

publications in the �le type validation algorithm �eld. We observed that most of the

papers upon �le type validation techniques provide only the true positive rates and do

not give additional information regarding the classi�cation capacity of their algorithms.

Surprisingly enough, this is in general a common phenomenon in algorithm comparison

studies [6][21].

We consider that by calculating the F − score along with the overall accuracy of our

algorithm we can acquire better insight for our algorithms performance. The F − score

is a statistical measure that tests accuracy and it considers both the precision and recall

measures of the test to compute the score. A higher F − score implies higher accuracy.

The F − score measurement is described in formula 7.3 . Note that tp stands for "true

positive", fp for "false positive", tn for "true negative" and fn for "false negative".

precision =
tp

tp+ fp
(7.1) recall =

tp

tp+ fn
(7.2)

F − score = 2 ∗ precision ∗ recall
precision+ recall

(7.3)

Additionally, the equation that we use to calculate the overall accuracy of our classi�er

can be found in formula 7.4.

overall accuracy =
correct predictions

total predictions
(7.4)

Chapter 7. Analysis 34

The results of the aforementioned measurements can be found in Table 7.1. Our classi�er

performed extremely well for the text and xls �le types as well as for the broad non-

document-type classi�cation class with an F − score of 0.91, 0.78 and 0.86 respectively.

The prediction rates for the doc �le type are quite satisfying with an F1 − score of 0.39.

We say quite satisfying considering that the doc �le type was the most "tricky" among the

document-�le types we analysed, due to the fact that we couldn't �nd strong distinctive

characteristics. Furthermore, the worst rates are for the pdf �le type, mainly because

BFA classi�ed as text only the 20% of the initial pdf fragments. Additionally, during

the second phase of our classi�cation algorithm most of non-document type fragments

were falsely classi�ed as pdf due to their high entropy. Finally, the overall accuracy of

our classi�er is 0.77, a very high number for a �le carving technique. This means that

in 100 predictions, 77 of them will be correct. Even if we exclude the classi�cation rates

of BFA that classi�es fragments in a broad class of non-document fragments, the overall

accuracy of our classi�er for the pdf, doc, xls and text �le types remains high with an

accuracy of 67%.

pdf text doc xls other

Precision 0.1 0.85 0.49 0.86 0.81

F − score 0.1 0.91 0.39 0.78 0.86

Overall accuracy: 0.77

Table 7.1: Algorithm Prediction Rates

7.3 | Algorithm Comparison

In this section we try to compare the performance of our classi�er with similar classi�-

cation techniques. In subsection 7.3.1 we compare the accuracies of the algorithms and

in subsection 7.3.2 we compare their performance in terms of execution time.

Among the algorithms we compare are the Byte Frequency Analysis algorithm [14], the

n-Gram Analysis [12], the Rate of Change [11] and the algorithm of Conti et al. [5].

We use the results that Shahi acquired from his experiment [19]. Moreover, we chose to

compare our algorithms performance with Shahis results, because he used the same 10

�le types for his experiment. Additionally, his testing set was of the exact same size as

the one we used for our �nal testing set. One of the major problems in the �le carving

�eld is that there is no proper comparison between classi�cation algorithms, since every

Chapter 7. Analysis 35

technique was tested in di�erent data sets that were comprised of di�erent �le types.

Furthermore, at this point we should note that for the comparison of the algorithms, we

use the results that Shahi got by using �ngerprints that were trained with the 10% of

his total training set. This 10% corresponds to the size of the training set that we used

to train our �ngerprints.

7.3.1 | Accuracy Comparison

Although the testing sets that were used for the experiments are similar, it is still quite

di�cult to compare these algorithms. Our algorithm was speci�cally designed to classify

only fragments of 4 �le types or to classify as "other" everything that was classi�ed as

non-text from its BFA part. Moreover, all algorithms do not give an F − score for every

�le type. The results can be found in Table 7.2.

pdf zip text doc mp4 xls ppt jpg ogg png other overall accuracy

Our algorithm 0.1 - 0.91 0.39 - 0.78 - - - - 0.86 0.77

Byte Frequency Analysis - 0.42 0.59 0.01 0.25 0.54 - 0.16 0.17 0.17 - 0.33

Rate of Change 0.37 - 0.73 0.5 - 0.8 0.22 - - - - 0.32

N-Gram Analysis 0.17 - 0.89 0.12 - 0.74 0.22 - - - - 0.30

Algorithm of Conti et al. 0.10 0.46 0.44 0.16 0.37 0.38 0.06 0.23 0.16 0.08 - 0.30

Table 7.2: Classi�cation Algorithm Accuracy Comparison

Our algorithm outperforms the other 4 in classifying fragments of the text �le format

with an F − score of 0.91. Furthermore, it comes second only after the Rate of Change

algorithm regarding xls and doc fragment classi�cation. Lastly, the F −score for the pdf

�le type is the worst along with the algorithm of Conti et al. Moreover, our algorithms

overall accuracy is approximately 2.5 times higher than the overall accuracies of the other

algorithms. However, we should not forget that our algorithm is limited in classifying

only fragments that contain at least one plain text character. In general, although our

algorithm takes less decisions and classi�es non-document fragments in a broad class, its

decisions are signi�cantly more reliable than the decisions of its competitors.

7.3.2 | Execution Time Comparison

In this subsection we provide the average execution time of our algorithm and we com-

pare it with the results that Shahi provides in [19]. We de�ne the average execution

time as the amount of time that it takes to classify a set of fragments divided by the

Chapter 7. Analysis 36

total amount of fragments. Although we used the Java programming language for all

our implementations while Shahi used C++, we could make an approximate comparison

of their performance. Additionally, the machine in which we benchmarked our algo-

rithm has similar speci�cation with the one that Shahi used but its not the same. We

benchmarked our algorithm in a 64-bit OS with an Intel Core i7-2600 @ 3.40 GHz×8
processor, 15.6 GB of RAM and a 1.1TB size hard drive (7200 RPM 32MB Cache SATA

3.0Gb/s).

algorithm avg. execution time(in seconds)

N-Gram Analysis 0.00041

Our algorithm 0.001651

Byte Frequency Analysis 0.004344

Rate of Change 0.049941

Algorithm of Conti et al. 0.085005

Table 7.3: Classi�cation Algorithm Average Execution Time

As we can see in Table 7.3, our algorithm is ranked second regarding runtime perfor-

mance. N-Gram analysis is the fastest technique among the 5 algorithms, outperforming

our algorithm by a magnitude of 4. Although our algorithm makes use of a BFA variation

in combination with some additional metrics, it is approximately 3-times faster than the

BFA variation that Shahi used for fragment classi�cation. This is probably due to the

fact that our algorithm uses only 98 byte values that correspond to plain text characters.

This means that when our algorithm calculates an accuracy level of a �le type using the

respective �ngerprint, it only has to calculate 98 values. A BFA that analyses the entire

ASCII byte set requires 256 calculation in order to produce an accuracy level. Moreover,

our algorithm outperforms Rate of Change and Conti et al. algorithms by a magnitude

of 30 and 50 respectively.

As we already mentioned, these comparisons are approximate. We can only say with

certainty that our algorithms runtime performance is slower than n-Gram analysis and

faster than the other three algorithms. Furthermore, with rough estimations, it will take

around 1 hour for our algorithm to analyse 1GB of fragments.

8 | Discussion

In our experiment, during the algorithm development procedure our analysis yielded two

new classi�cation metrics. The Individual Null Byte Frequency (INBF) and the Plain

Text Concentration (PTC). The representative INBF values that we used to classify

mainly document-type fragments were formed from BFAs output. The output was com-

prised only of fragments that were classi�ed as text. This resulted in a disproportionate

set of fragments for every �le type. For instance, the amount of pdf and doc fragments

we analysed were signi�cantly less than the amount of text and xls. The same holds

also for the non-document fragments. Although INBF seems to be quite e�ective as a

part of our classi�cation algorithm, we believe that a more extensive analysis must be

made in a bigger data set, in order to be able to say if this metric could be used in other

broad fragment classi�cation techniques. On the other hand, PTC analysis was made in

a corpus of 10GB in total and we believe that our analysis is consistent and can be a

great asset in �le carving techniques.

Although we did our best to eliminate possible biases in our experimental setup, we can

not guarantee the integrity of our corpus. Considering that our corpus was comprised of

tens of thousands of �les it wasn't feasible to manually check every �le. We can't say for

sure if the su�xes of every type correspond to the actual �le format. We did some manual

inspections in the experimental data set and we found and removed about 37MB of �les

that had a .txt su�x but weren't text �les. Additionally, we don't know if our corpus

was comprised of a single or of various �le format versions. For example, an Adobe PDF

1.7 document might be slightly di�erent from an Adobe PDF 1.3 document.

Moreover, we are aware that our results correspond only to our controlled corpus. Con-

sidering the big number of �le format that is available, there is a possibility that �les of

di�erent formats might have similar characteristics with the document-type fragments

we analysed. In addition, taking under account a realistic forensic scenario, where the

number of di�erent �le formats is most likely to be higher (e.g 100 �le types), the outcome

may signi�cantly vary.

37

Chapter 8. Discussion 38

Furthermore, in a corpus where the amount of fragments of di�erent �le types is not of

the same ratio, the performance of our algorithm is expected be di�erent. We strongly

believe that this would be the case especially for the predictions of pdf and doc �le

fragments, since we couldn't �nd very strong distinguishable characteristics. Conversely,

the prediction capabilities of our classi�er regarding text and xls �le fragments won't

vary too much even in a non 1:1 corpus. We found that fragments of the xls �le type

contain a high number of individual null bytes and their plain text concentration is below

50%. A possible explanation for this behaviour is that the high number of null bytes is

due to the cell structure of xls sheets. In addition, since this number is pretty high and in

conjunction with the fact that xls sheets are being used mainly as a calculation tool than

writing voluminous texts, the concentration of plain text remains at a low level.

Lastly we expected that text fragments would be fully comprised of plain text. This was

veri�ed from the analysis we did during the algorithm development procedure, but there

were a tiny percentage (2%) of fragments that contained less plain text concentration.

This con�rms our concerns regarding our corpus integrity and although its a negligible

percentage of the total text fragments, it is present, making us slightly sceptical towards

the other �les types of our corpus.

9 | Conclusions and FutureWork

In this chapter we will summarize the conclusions we reached and give directions for

future work.

9.1 | Conclusions

In this project we created a �le fragment classi�er for document-type fragments. We used

a large data set of about 20GB size which contained �les from 10 di�erent �le formats. We

made use of the a variation of Byte Frequency Analysis algorithm to classify document-

type fragments in a broader class. After this point we created a custom algorithm in

order to be able to distinguish between the �les that were classi�ed initially as text from

the BFA. Our results show that the BFA variation that we used is quite e�ective in

distinguishing between document-type fragments from other �le formats.

Additionally, we introduced two new classi�cation metrics. The Individual Null Byte

Frequency (INBF) and the Plain Text Concentration (PTC). The INBF metric can be

used to enhance xls fragments classi�cation due to the fact that fragments of that �le type

have a signi�cantly higher amount of null bytes compare to the fragments of the other 9

�le types that we used. Moreover, the PTC metric is a very interesting �nding. Although

out of hindsight it looks obvious that �les from speci�c �le types will have characteristic

plain text concentration, we couldn't �nd any reference in the existing bibliography. Only

Roussev and Gar�nkel [18] mention that text �les are expected to contain high amounts

of printable ASCII characters. We are con�dent that this extremely light-weight metric

can be combined with current techniques and improve their classi�cation accuracy.

In order to evaluate the performance of our classi�ers we compared it with 4 di�erent

classi�cation algorithms. As it seems our classi�er is signi�cantly more accurate with

the decisions that it takes achieving an overall accuracy of 77%. It did extremely well

in classifying fragments of the text and xls �le formats along with fragments of the

non-document types, achieving an F − score of 91%, 75% and 86% respectively.

39

Chapter 9. Conclusions and Future Work 40

Furthermore, we observed that most of the studies upon the �le type validation �eld

do research on techniques that are quite expensive. In addition, we experimented with

the Longest Common Subsequence technique which was �rstly introduced to the �eld

by Calhoun [4]. We concluded that although this technique is extremely accurate for

two-group classi�cation, it cannot be used for broad fragment classi�cation as Calhoun

suggests, due to its high runtime complexity.

Lastly, the availability of a multitude of di�erent �le types in combination with the

newly introduced �le formats along with the accuracy and speed requirements of the

forensic cases, renders �le fragment classi�cation a wicked problem [17]. We achieved

quite good performance, in both accuracy and runtime performance, compared to already

existing techniques. Our current algorithm can approximately classify 25GB of data per

day. However, our current implementation only uses 10 �ngerprints, one for each �le

type. This means that by adding more �ngerprints of di�erent �le formats the runtime

complexity of our algorithm will proportionally rise. Nevertheless, fragment classi�cation

has received little attention the past couple of years and we are con�dent that there is

plenty of room for improvements.

9.2 | Future Work

Although the results we got are promising, we consider the classi�cation algorithm we

developed a proof-of-concept rather than a practical technique. First of all, we want to

use more �le types in future experiments and train our �ngerprints with more data. More

speci�cally, we would like to analyse more document-type �le and analyse their Individual

Null Byte and the Plain Text Concentration values. Additionally, if our variation of BFA

performs the same regarding document-type classi�cation in a corpus of more �le types,

we can extend our classi�er to further classify the non-document type fragments, which

currently are being classi�ed in a broad �le class.

This page intentionally left blank.

A | BFA Variation 2 - Results

pdf zip text doc mp4 xls ppt jpg ogg png

num.of fragments 5,714 90 3 52,264 2,854 147,873 11,027 1,332 222 7,874

pdf 0 0 0 0 0 0.3 0 0.1 0 0

zip 0 0 0 0 0 0 0 0 0.5 0

text 0 0 0 0.1 0 0.7 0 0 0 0

doc 0 0 0 0 0 0 0 0.1 0 0

mp4 0 0 0 0 0.1 0.1 0 0 0 0

xls 99.6 95.6 100 99.6 99.9 97.3 98.3 95.3 96.3 99.9

ppt 0 0 0 0 0 0 0 0 0 0

jpg 0.3 4.4 0 0.2 0 0.9 1.6 4.5 2.7 0.1

ogg 0 0 0 0 0 0.2 0 0.1 0 0

png 0 0 0 0 0 0.4 0 0.5 0

Unclassi�ed 0 0 0 0 0 0 0 0 0 0

Table A.1: BFA - Fingerprints Trained in 0-25% and tested in 0-25%

pdf zip text doc mp4 xls ppt jpg ogg png

num.of fragments 147,705 204,662 285 102,831 201,859 41,013 178,816 193,103 195,368 187,688

pdf 6.9 4 4.9 5.5 5.1 0.1 6 5.8 5.2 5.3

zip 25.2 26.7 14 23.7 28.4 0.6 27.6 30 25.3 29.5

text 32.6 40.1 14.7 30.9 38.8 0.8 33.4 34.7 36.5 37.3

doc 16.3 17.7 4.9 15.6 15.8 0.4 14.8 14.4 19.4 15.1

mp4 2 0.8 2.1 1.1 1.7 0 1.2 1.1 1.1 1.1

xls 3.9 1.7 49.1 11.5 0 97.9 4.2 0.8 1.3 0.4

ppt 9.2 6.7 7.7 8.8 7.4 0.2 9.5 9.8 8.1 8.6

jpg 0.7 0.3 0.7 0.5 0.2 0 0.6 0.6 0.4 0.4

ogg 2.6 1.5 1.8 2 2.2 0.1 2.2 2.2 2.2 2

png 0.6 0.3 0 0.5 0.4 0 0.6 0.5 0.5 0.5

Unclassi�ed 0 0 0 0 0 0 0 0 0 0

Table A.2: BFA - Fingerprints Trained in 25-50% and tested in 25-50%

42

Appendix A. BFA Variation 2 - Results 43

pdf zip text doc mp4 xls ppt jpg ogg png

num.of fragments 12,421 43 1,203 2,101 15 3,158 2,393 147 66 89

pdf 39.1 23.3 6.2 1.8 0 1.6 1.6 2 3 1.1

zip 4.8 16.3 6.7 10.4 0 0.4 3.1 5.4 1.5 14.6

text 0.6 2.3 1.6 5.9 0 0 2.3 2 0 9

doc 6.2 7 40.9 7.5 0 2.4 18.2 4.1 3 1.1

mp4 12.2 27.9 1.2 37.6 100 27.2 42.6 40.8 36.4 12.4

xls 13.5 0 1.4 19.6 0 65.5 18.7 35.4 15.2 1.1

ppt 16.0 0 17.5 1.4 0 1.5 0.6 0.7 1.5 0

jpg 5.3 0 15.1 1.2 0 1.2 7 1.4 3 3.4

ogg 0.6 0 8.8 3.7 0 0.2 4.9 0 36.4 0

png 1.5 23.3 0.5 10.9 0 0 0.9 8.2 0 57.3

Unclassi�ed 0 0 0 0 0 0 0 0 0 0

Table A.3: BFA - Fingerprints Trained in 50-75% and tested in 50-75%

pdf zip text doc mp4 xls ppt jpg ogg png

num.of fragments 23,892 0 188,564 20,691 0 1,308 3,053 1,026 0 2

pdf 7.6 0 0.3 0.3 0 0 0.5 0 0 0

zip 0.7 0 0.4 0.5 0 3.7 5.9 1.2 0 0

text 11.8 0 1.4 3.4 0 6.2 2.3 1.8 0 0

doc 2 0 8.2 43.2 0 17.7 5.3 1.4 0 0

mp4 49.3 0 86.5 48.6 0 68.3 78.0 74.4 0 0

xls 7.9 0 0.6 1.2 0 0.9 2.9 0.1 0 0

ppt 0.8 0 0.7 0.1 0 0 0.3 0 0 100

jpg 4.2 0 1.4 1.7 0 1.3 0.8 20.6 0 0

ogg 4.3 0 0.4 0.9 0 1.8 3.7 0.7 0 0

png 11.4 0 0 0 0 0 0.4 0 0 0

Unclassi�ed 0 0 0 0 0 0 0 0 0 0

Table A.4: BFA - Fingerprints Trained in 75-100% and tested in 75-100%

44

Appendix B. Histogram Analysis 45

B | BFA Output - Histogram Anal-

ysis

Figure B.1.a: Mp4 distribution Figure B.1.b: Zip distribution

Figure B.1.c: Ogg distribution Figure B.1.d: Ppt distribution

Figure B.1.e: Png distribution Figure B.1.f: Jpg distribution

Figure B.1: Individual Null Byte Distribution

Appendix B. Histogram Analysis 46

Figure B.2.a: Mp4 distribution Figure B.2.b: Zip distribution

Figure B.2.c: Ogg distribution Figure B.2.d: Ptt distribution

Figure B.2.e: Png distribution Figure B.2.f: Jpg distribution

Figure B.2: Entropy Distribution

Bibliography

[1] Aronson, L., & Bos, J. Van Den. (2011). Towards an Engineering Approach to File Carver

Construction. 2011 IEEE 35th Annual Computer Software and Applications Conference

Workshops, p. 368-373.

[2] Axelsson, S. (2010). The Normalised Compression Distance as a �le fragment classi�er.

Digital Investigation, 7, S24-S31. doi:10.1016/j.diin.2010.05.004

[3] J. van den Bos and T. van der Storm, "Bringing Domain- Speci�c Languages to Digital

Forensics", in Proceedings of the 33rd ACM/IEEE International Conference on Software

Engineering (ICSE'11), vol. 2. ACM, 2011.

[4] Calhoun, W. C., & Coles, D. (2008). Predicting the types of �le fragments. Digital Investi-

gation, 5, S14-S20.

[5] Conti G, Bratus S, Sangster B, Ragsdale R, Supan M, Lichtenberg A, et al. Automated

mapping of large binary objects using primitive fragment type classi�cation. In: Proceedings

of the 2010 Digital Forensics Research Conference (DFRWS); 2010.

[6] Demsar, J. 2006. Statistical comparisons of classi�ers over multiple data sets. Journal of

Machine Learning Research 7:1-30.

[7] Fitzgerald, S., Mathews, G., Morris, C., & Zhulyn, O. (2012). Using NLP techniques for �le

fragment classi�cation. Digital Investigation, 9, S44-S49.

[8] Gar�nkel, S. L. (2007). Carving contiguous and fragmented �les with fast object validation.

Digital Investigation, 4, pp. 2-12.

[9] S. Gar�nkel, P. Farrell, V. Roussev and G. Dinolt, "Bringing science to digital forensic with

standardized forensic corpora," in DFRWS, 2009.

[10] Gopal S, Yang Y, Salomatin K, Carbonell J. Statistical learning for �le-type identi�ca-

tion. In: 2011 10th International Conference on Machine Learning and Applications and

Workshops (ICMLA), Vol. 1; 2011. p. 68-73.

[11] M. Karresand and N. Shahmehri, "File Type Identi�cation of Data Fragments by their

Binary Structure," in Proceedings of the 7th Annual IEEE Information Assurance Workshop,

2006.

47

Bibliography 48

[12] Li W, Wang K, Stolfo S, Herzog B. Fileprints: identifying �le types by n-gram analysis. In:

IEEE information assurance workshop, 2005.

[13] Maddox, L., & Beebe, N. (2012). Systematic Classi�cation Engine and Data Analysis

Overview by Dr . Nicole Beebe.

[14] M. McDaniel and M. Heydari , "Content based �le type detection algorithms" , in Proc.

36th Annu. Hawaii Int. Conf. System Sciences (HICSS'3)-Track 9 , IEEE Computer Society

, Washington , D.C. , 2003 , p. 332.1

[15] Pal, A., & Memon, N. (2009). The evolution of �le carving. Signal Processing Magazine,

IEEE, (March), p. 59-71.

[16] G. G. Richard , III and V. Roussev , "Scalpel: A frugal, high performance �le carver" ,in

Proc. 2005 Digital Forensics Research Workshop (DFRWS) , New Orleans , LA , Aug. 2005.

[17] Rittel, Horst W. J.; Melvin M. Webber (1973). "Dilemmas in a General Theory of Planning".

Policy Sciences 4: 155-169. Retrieved 25 April 2013.

[18] V. Roussev and S. L. Gar�nkel, "File Fragment Classi�cation - The Case for Specialized

Approaches. In Proceedings of SADFE, p. 3-14, 2009.

[19] Shahi, A. Classifying the classi�ers for �le fragment classi�cation, August 2012.

[20] Shannon CE. The mathematical theory of communication. Bell System Tech J 1948;27:379-

423, 623-56.

[21] Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC:

a family of discriminant measures for performance evaluation. AI 2006: Advances in Arti�cial

Intelligence Lecture Notes in Computer Science Volume 4304, 2006, pp 1015-1021.

[22] C. Veenman, "Statistical Disk Cluster Classi�cation for File Carving," in Proceedings of

the First Internation Workshop on Computational Forensics, 2007.

[23] "Academic Earth," [Online]. Available: http://www.academicearth.org/.

[24] "Digital Corpora," [Online]. Available: http://digitalcorpora.org/.

	Acknowledgements
	 | Tables
	 | Figures
	1 Introduction
	1.1 Background
	1.2 Problem Formulation
	1.3 File Fragment Classification
	1.4 Objectives
	1.5 Algorithm Requirements
	1.6 Methodology

	2 Related Work
	3 Experimental Setup
	3.1 Byte Frequency Analysis(BFA) Algorithm
	3.2 Data Set

	4 Algorithm Development
	4.1 Approach Description
	4.2 BFA Variations
	4.2.1 Variation 1 - Plain Text ASCII Subset
	4.2.2 Variation 2 - Plain Text Concentration Categories
	4.2.3 Variation 3 - Dominant Plain Text Concentration Categories
	4.2.4 Variation 4 - Fragments above 75% Plain Text Concentration classified as text
	4.2.5 Optimal Variation for Text Fragment Classification
	4.2.6 BFA Training - Entire ASCII Set VS. Plain Text

	4.3 BFA Text Output Analysis
	4.3.1 BFA Variation 1 Output
	4.3.2 Plain Text Concentration Categories
	4.3.3 Shannon Entropy
	4.3.4 Individual Null Byte Frequency

	4.4 Longest Common Subsequence

	5 Algorithm Description
	6 Results
	6.1 BFA Scan - Text Fragment Classification
	6.2 BFA Extension Algorithm Accuracy
	6.3 Complete Algorithm Accuracy

	7 Analysis
	7.1 BFA performance
	7.2 Overall Algorithm Performance
	7.3 Algorithm Comparison
	7.3.1 Accuracy Comparison
	7.3.2 Execution Time Comparison

	8 Discussion
	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	A BFA Variation 2 - Results
	B BFA Output - Histogram Analysis
	Bibliography
	Bibliography

