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Abstract: We propose a new summary statistic for inhomogeneous intensity-reweighted
moment stationary spatio-temporal point processes. The statistic is defined through the
n-point correlation functions of the point process and it generalises the J-function when
stationarity is assumed. We show that our statistic can be represented in terms of the
generating functional and that it is related to the inhomogeneous K-function. We further
discuss its explicit form under some specific model assumptions and derive a ratio-unbiased
estimator. We finally illustrate the use of our statistic on simulated data.
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1 Introduction

A spatio-temporal point pattern can be described as a collection of pairs {(xi, ti)}mi=1, m ≥ 0,
where xi ∈ WS ⊆ Rd, d ≥ 1, and ti ∈ WT ⊆ R describe, respectively, the spatial location and
the occurrence time associated with the ith event. Examples of such point patterns include
recordings of earthquakes, disease outbreaks and fires (see e.g. [12, 21, 26]).

When modelling spatio-temporal point patterns, the usual and natural approach is to
assume that {(xi, ti)}mi=1 constitutes a realisation of a spatio-temporal point process (STPP)
Y restricted to WS ×WT . Then, in order to deduce what type of model could describe the
observations {(xi, ti)}mi=1, one carries out an exploratory analysis of the data under some
minimal set of conditions on the underlying point process Y . At this stage, one is often
interested in detecting tendencies for points to cluster together, or to inhibit one another. In
order to do so, one usually employs spatial or temporal summary statistics, which are able
to capture and reflect such features.
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A simple and convenient working assumption for the underlying point process is sta-
tionarity. In the case of a purely spatial point pattern {xi}mi=1 ⊆ WS generated by a station-
ary spatial point process X, a variety of summary statistics have been developed, see e.g.
[7, 14, 16, 17]. One such statistic is the so-called J-function [20], given by

J(r) =
1−G(r)

1− F (r)
(1)

for r ≥ 0 such that F (r) 6= 1. Here, the empty space function F (r) is the probability
of having at least one point of X within distance r from the origin whereas the nearest
neighbour distance distribution function G(r) is the conditional probability of some further
point of X falling within distance r from a typical point of X. Hence, J(r) < 1 indicates
clustering, J(r) = 1 indicates spatial randomness and J(r) > 1 indicates regularity at inter-
point distance r.

In many applications, though, stationarity is not a reasonable assumption. This ob-
servation has led to the development of summary statistics being able to compensate for
inhomogeneity. For purely spatial point processes, [3] introduced the notion of second or-
der intensity-reweighted stationarity (SIRS) and defined a summary statistic Kinhom(r). It
can be interpreted as an analogue of the K-function, which is proportional to the expected
number of further points within distance r of a typical point of X, since it reduces to K(r)
when X is stationary.

The concept of SIRS was extended to the spatio-temporal case by [12] who also de-
fined an inhomogeneous spatio-temporal K-function Kinhom(r, t), r, t ≥ 0. These ideas were
further developed and studied in [22] with particular attention to the notion of space-time
separability.

To take into account interactions of order higher than two, [19] introduced the concept
of intensity-reweighted moment stationarity (IRMS) for purely spatial point processes and
generalised (1) to IRMS point processes.

In this paper we develop a proposal given in [19] to study the spatio-temporal gen-
eralisation Jinhom(r, t) of (1) under suitable intensity-reweighting. In Section 2 we give the
required preliminaries, which include definitions of product densities, Palm measures, gen-
erating functionals, n-point correlation functions and IRMS for spatio-temporal point pro-
cesses. Then, in Section 3, we give the definition of Jinhom(r, t) under the assumption of
IRMS and discuss its relation to the inhomogeneous spatio-temporal K-function of [12]. In
Section 4 we write Jinhom(r, t) as a ratio of 1−Finhom(r, t) and 1−Ginhom(r, t) in analogy with
(1). As a by-product we obtain generalisations of the empty space function and the nearest
neighbour distance distribution. The section also includes a representation in terms of the
Papangelou conditional intensity. In Section 5 we consider three classes of spatio-temporal
point processes for which the IRMS assumption holds, namely Poisson processes, location
dependent thinning of stationary STPPs and log-Gaussian Cox processes. In Section 6 we

derive a non-parametric estimator Ĵinhom(r, t) for which we show ratio-unbiasedness and in
Section 7 we illustrate its use on simulated data.
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2 Definitions and preliminaries

2.1 Simple spatio-temporal point process

In order to set the stage, let ‖x‖ = (
∑d

i=1 x
2
i )

1/2 and dRd(x, y) = ‖x − y‖, x, y ∈ Rd denote
respectively the Euclidean norm and metric. Since space and time must be treated differently,
we endow Rd × R with the supremum norm ‖(x, t)‖∞ = max{‖x‖, |t|} and the supremum
metric

d((x, t), (y, s)) = ‖(x, t)− (y, s)‖∞ = max{dRd(x, y), dR(t, s)},

where (x, t), (y, s) ∈ Rd × R. Then (Rd × R, d(·, ·)) is a complete separable metric space,
which is topologically equivalent to the Euclidean space (Rd × R, dRd+1(·, ·)). Note that in
the supremum metric a closed ball of radius r ≥ 0 centred at the origin 0 ∈ Rd × R is given
by the cylinder set

B[0, r] = {(x, t) ∈ R
d × R : max{‖x‖, |t|} ≤ r}.

Write B(Rd × R) = B(Rd) ⊗ B(R) for the d-induced Borel σ-algebra and let ℓ denote
Lebesgue measure on Rd × R. Furthermore, given some Borel set A ⊆ Rd × R and some
measurable function f , we interchangeably let

∫
A
f(y)dy and

∫
A
f(y)ℓ(dy) represent the

integral of f over A with respect to ℓ.
In this paper, a spatio-temporal point process is a simple point process on the product

space Rd × R. More formally, let N be the collection of all locally finite counting measures
ϕ on B(Rd × R), i.e. ϕ(A) < ∞ for bounded A ∈ B(Rd × R), and let N be the smallest
σ-algebra on N to make the mappings ϕ 7→ ϕ(A) measurable for all A ∈ B(Rd×R). Consider
in addition the sub-collection N∗ = {ϕ ∈ N : ϕ({(x, t)}) ∈ {0, 1} for any (x, t) ∈ Rd ×R} of
simple elements of N .

Definition 1. A simple spatio-temporal point process (STPP) Y on Rd ×R is a measurable
mapping from some probability space (Ω,F ,P) into the measurable space (N,N ) such that
Y almost surely (a.s.) takes values in N∗.

Throughout we will denote the Y -induced probability measure on N by P . To empha-
sise the counting measure nature of Y , we will sometimes write Y =

∑∞
i=1 δ(Xi,Ti) as a sum

of Dirac measures, where the Xi ∈ Rd are the spatial components and the Ti ∈ R are the
temporal components of the points of Y . Hence, both Y ({(x, t)}) = 1 and (x, t) ∈ Y will
have the same meaning and both Y (A) and |Y ∩ A| may be used as notation for the the
number of points of Y in some set A, where | · | denotes cardinality.

2.2 Product densities and n-point correlation functions

Our definition of the inhomogeneous J-function relies on the so-called n-point correlation
functions, which are closely related to the better known product densities. Here we recall
their definition.

Suppose that the factorial moment measures of Y exist as locally finite measures and
that they are absolutely continuous with respect to the n-fold product of ℓ with itself. The
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Radon–Nikodym derivatives ρ(n), n ≥ 1, referred to as product densities, are permutation
invariant and defined by the integral equations

E




6=∑

(x1,t1),...,(xn,tn)∈Y

h((x1, t1), . . . , (xn, tn))


 = (2)

=

∫
· · ·

∫
h((x1, t1), . . . , (xn, tn))ρ

(n)((x1, t1), . . . , (xn, tn))dx1dt1 · · · dxndtn

for non-negative measurable functions h : (Rd×R)n → R under the proviso that the left hand
side is infinite if and only if the right hand side is. Equation (2) is sometimes referred to as the
Campbell theorem. The heuristic interpretation of ρ(n)((x1, t1), . . . , (xn, tn))dx1dt1 · · · dxndtn
is that it represents the infinitesimal probability of observing the points x1, . . . , xn ∈ Rd of
Y at the respective event times t1, . . . , tn ∈ R.

For n = 1, we obtain the intensity measure Λ of Y as

Λ(A) =

∫

B×C

ρ(1)(x, t)dxdt

for any A = B ×C ∈ B(Rd ×R). We shall also use the common notation λ(x, t) = ρ(1)(x, t)
and assume henceforth that λ̄ = inf(x,t) λ(x, t) > 0.

The n-point correlation functions [32] are defined in terms of the ρ(n) by setting ξ1 ≡ 1
and recursively defining

ρ(n)((x1, t1), . . . , (xn, tn))∏n
k=1 λ(xk, tk)

=
n∑

k=1

∑

D1,...,Dk

k∏

j=1

ξ|Dj |({(xi, ti) : i ∈ Dj}), (3)

where
∑

D1,...,Dk
is a sum over all possible k-sized partitions {D1, . . . , Dk}, Dj 6= ∅, of the

set {1, . . . , n} and |Dj| denotes the cardinality of Dj .
For a Poisson process on Rd×R with intensity function λ(x, t), due to e.g. [17, Theorem

1.3], we have that ρ(n)((x1, t1), . . . , (xn, tn)) =
∏n

k=1 λ(xk, tk), whereby ξn ≡ 0 for all n ≥ 2.
Hence, the sum on the right hand side in expression (3) is a finite series expansion of the
dependence correction factor by which we multiply the product density

∏n
k=1 λ(xk, tk) of the

Poisson process to obtain the product density ρ(n)((x1, t1), . . . , (xn, tn)) of Y .
A further interpretation is obtained by realising that the right hand side of the above

expression is a series expansion of a higher order version of the pair correlation function

g((x1, t1), (x2, t2)) =
ρ(2)((x1, t1), (x2, t2))

λ(x1, t1)λ(x2, t2)
= 1 + ξ2((x1, t1), (x2, t2)).

The main definition of this section gives the class of STPPs to which we shall restrict
ourselves in the sequel of this paper.

Definition 2. Let Y be a spatio-temporal point process for which product densities of all
orders exist. If λ̄ = inf(x,t) λ(x, t) > 0 and for all n ≥ 1, ξn is translation invariant in the
sense that

ξn((x1, t1) + (a, b), . . . , (xn, tn) + (a, b)) = ξn((x1, t1), . . . , (xn, tn))
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for almost all (x1, t1), . . . , (xn, tn) ∈ Rd × R and all (a, b) ∈ Rd × R, we say that Y is
intensity-reweighted moment stationary (IRMS).

By equation (3), translation invariance of all ξn is equivalent to translation invariance
of the intensity-reweighted product densities. The property is weaker than stationarity
(barring the degenerate case where Y is a.s. empty), which requires the distribution of Y
to be invariant under translation, but stronger than the second order intensity-reweighted
stationary (SIRS) of [3]. The latter property, in addition to satisfying λ̄ > 0, requires the
random measure

Ξ =
∑

(x,t)∈Y

δ(x,t)
λ(x, t)

to be second order stationary [11, p. 236].

2.3 Palm measures and conditional intensities

In order to define a nearest neighbour distance distribution function, we need the concept
of reduced Palm measures. Recall that by assumption the intensity measure is locally finite.
In integral terms, they can be defined by the reduced Campbell-Mecke formula

E


 ∑

(x,t)∈Y

g(x, t, Y \ {(x, t)})


 =

∫

Rd×R

∫

N

g(x, t, ϕ)P !(x,t)(dϕ)λ(x, t)dxdt

=

∫

Rd×R

E
!(x,t) [g(x, t, Y )]λ(x, t)dxdt (4)

for any non-negative measurable function g : Rd × R × N , with the left hand side being
infinite if and only if the right hand side is infinite, see e.g. [17, Chapter 1.8]. By standard
measure theoretic arguments [15], it is possible to find a regular version such that P !(x,t)(R)
is measurable as a function of (x, t) and a probability measure as a function of R. Thus,
P !(x,t)(R) may be interpreted as the conditional probability of Y \ {(x, t)} falling in R ∈ N
given Y ({(x, t)}) > 0.

At times we make the further assumption that Y admits a Papangelou conditional
intensity λ(·, ·;ϕ). In effect, we may then replace expectations under the reduced Palm
distribution by expectations under P . More precisely, (4) may be rewritten as

E


 ∑

(x,t)∈Y

g(x, t, Y \ {(x, t)})


 =

∫

Rd×R

E [g(x, t, Y )λ(x, t; Y )] dxdt (5)

for any non-negative measurable function g ≥ 0 on Rd × R × N . Equation (5) is referred
to as the Georgii-Nguyen-Zessin formula. We interpret λ(x, t; Y )dxdt as the conditional
probability of finding a space-time point of Y in the infinitesimal region d(x, t) ⊆ Rd × R,
given that the configuration elsewhere coincides with Y . For further details, see e.g. [17,
Chapter 1.8].
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2.4 The generating functional

For the representation of Jinhom in the form (1), we will need the generating functional G(·)
of Y , which is defined as

G(v) = E


 ∏

(x,t)∈Y

v(x, t)


 =

∫

N

∏

(x,t)∈ϕ

v(x, t)P (dϕ)

for all functions v = 1−u such that u : Rd×R → [0, 1] is measurable with bounded support
on Rd × R. By convention, an empty product equals 1. The generating functional uniquely
determines the distribution of Y [11, Theorem 9.4.V.].

Since we assume that the product densities of all orders exist, we have that

G(v) = G(1− u) = (6)

= 1 +
∞∑

n=1

(−1)n

n!

∫
· · ·

∫
u(x1, t1) · · ·u(xn, tn)ρ

(n)((x1, t1), . . . , (xn, tn))
n∏

i=1

dxidti,

provided that the right hand side converges (see [7, p. 126]). The generating functional of
the reduced Palm distribution P !y is denoted by G!y(v).

3 Spatio-temporal J-functions

We now turn to the definition of the inhomogeneous J-function Jinhom(r, t). Before giving the
definition in our general context, we define a spatio-temporal J-function J(r, t) for stationary
STPPs.

3.1 The stationary J-function

Assume for the moment that Y is stationary. Then we may set, in complete analogy to the
definition in [20],

J(r, t) =
1−G(r, t)

1− F (r, t)
=

P!(0,0)(Y ∩ St
r = ∅)

P(Y ∩ St
r = ∅)

(7)

for r, t ≥ 0 such that F (r, t) 6= 1, where

St
r = {(x, s) ∈ R

d × R : ‖x‖ ≤ r, |s| ≤ t}

and P!(0,0) is the P !(0,0)-reversely induced probability measure on F .
Note that the two equalities in (7) are defining ones and, clearly, G(r, t) is the spatio-

temporal nearest neighbour distance distribution function whereas F (r, t) is the spatio-
temporal empty space function.
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3.2 The inhomogeneous J-function

In this section, we extend the inhomogeneous J-function in [19] to the product space Rd×R

equipped with the supremum metric d(·, ·).

Definition 3. Let Y be an IRMS spatio-temporal point process (cf. Definition 2). For
r, t ≥ 0, let

Jn(r, t) =

∫

St
r

· · ·

∫

St
r

ξn+1((0, 0), (x1, t1), . . . , (xn, tn))

n∏

i=1

dxidti

and set

Jinhom(r, t) = 1 +

∞∑

n=1

(−λ̄)n

n!
Jn(r, t) (8)

for all spatial ranges r ≥ 0 and temporal ranges t ≥ 0 for which the series is absolutely
convergent.

Note that by Cauchy’s root test absolute convergence holds for those r, t ≥ 0 for which

lim supn→∞

(
λ̄n

n!
|Jn(r, t)|

)1/n
< 1.

Let us briefly mention a few special cases. For a Poisson process, since ξn+1 ≡ 0 for
n ≥ 1, Jinhom(r, t) ≡ 1. Moreover, if Y is stationary, (8) reduces to (7).

3.3 Relationship to K-functions

Spatio-temporal K-functions may be obtained as second order approximations of Jinhom(r, t).
To see this, recall that [12] defines SIRS (with isotropy) by replacing the second order
stationarity of Ξ by the stronger condition that the pair correlation function g((x, t), (y, s)) =
ḡ(u, v) depends only on the spatial distances u = ‖x − y‖ and the temporal distances v =
|t− s|. They then introduce a spatio-temporal inhomogeneous K-function by setting

Kinhom(r, t) =

∫

St
r

ḡ(‖x1‖, |t1|)d(x1, t1) = ωd

∫ t

−t

∫ r

0

ḡ(u, v)ud−1 du dv,

where ωd/d = πd/2/Γ(1 + d/2) = κd is the volume of the unit ball in Rd (see e.g. [7, p. 14]).
Note that the second equality follows from a change to hyperspherical coordinates. If in
addition Y is IRMS,

Jinhom(r, t)− 1 = −λ̄

(
ωd

∫ t

−t

∫ r

0

ḡ(u, v)ud−1 du dv − ℓ(St
r)

)
+

∞∑

n=2

(−λ̄)n

n!
Jn(r, t)

≈ −λ̄
(
Kinhom(r, t)− ℓ(St

r)
)
,

whereby Kinhom(r, t) may be viewed as a (scaled) second order approximation of Jinhom(r, t).
In relation hereto, it should be noted that even if the product densities exist only up to
some finite order m, we may still obtain an approximation of Jinhom by truncating its series
representation at n = m.
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Returning now to the original definition of SIRS, where λ̄ > 0 and Ξ is second order
stationary, we may extend the definition of the inhomogeneous K-function in [3] to the
spatio-temporal setting by defining

K∗
inhom(r, t) =

1

ℓ(A)
E




6=∑

(x1,t1),(x2,t2)∈Y

1{(x1, t1) ∈ A, ‖x1 − x2‖ ≤ r, |t1 − t2| ≤ t}

λ(x1, t1)λ(x2, t2)


 (9)

for r, t ≥ 0 and some set A = B × C ∈ B(Rd × R) with ℓ(A) > 0. By Lemma 1 below, the
definition does not depend on the choice of A.

Lemma 1. For any A = B × C ∈ B(Rd × R) for which ℓ(A) > 0, K∗
inhom(r, t) = KΞ(S

t
r \

{(0, 0)}), the reduced second factorial moment measure of Ξ evaluated at St
r (see e.g. [11,

Section 12.6]).

Proof. By the Campbell formula, the intensity measure of Ξ is given by

ΛΞ(A) = E


 ∑

(x,t)∈Y

1

λ(x, t)
1A(x, t)


 = ℓ(A),

so it is locally finite and has density 1. Hence, by [11, Proposition 13.1.IV.], there exist
reduced Palm measures P !y1

Ξ (R), y1 ∈ Rd × R, R ∈ N , such that

K∗
inhom(r, t) =

1

ℓ(A)
E

[∫

Rd×R

1A(y1)Ξ((y1 + St
r) \ {y1}) Ξ(dy1)

]

=
1

ℓ(A)

∫

Rd×R

E
!y
[
1A(y) Ξ(y + St

r)
]
dy = E

!(0,0)[Ξ(St
r)] = KΞ(S

t
r)

and this competes the proof.

It is not hard to see that under the stronger assumptions of [12], K∗
inhom(r, t) =

Kinhom(r, t).

4 Representation results

Being based on a series of integrals of n-point correlation functions, Definition 3 highlights
the fact that Jinhom involves interactions of all orders but it is not very convenient in practice.
The goal of this section is to give representations, which are easier to interpret.

4.1 Representation in terms of generating functionals

As for purely spatial point processes, we may express Jinhom in terms of the generating
functionals G and G!· by making appropriate choices for the functions v = 1 − u [19].
Indeed, we may set

uy
r,t(x, s) =

λ̄1{‖a− x‖ ≤ r, |b− s| ≤ t}

λ(x, s)
, y = (a, b) ∈ R

d × R,

8



and define the inhomogeneous spatio-temporal nearest neighbour distance distribution func-
tion as

Ginhom(r, t) = 1−G!y(1− uy
r,t) (10)

= 1− E
!(a,b)


 ∏

(x,s)∈Y

(
1−

λ̄1{‖a− x‖ ≤ r, |b− s| ≤ t}

λ(x, s)

)


and the inhomogeneous spatio-temporal empty space function as

Finhom(r, t) = 1−G(1− uy
r,t) = 1− E


 ∏

(x,s)∈Y

(
1−

λ̄1{‖a− x‖ ≤ r, |b− s| ≤ t}

λ(x, s)

)


for r, t ≥ 0, under the convention that empty products take the value one. Then, the
representation theorem below tells us that Ginhom(r, t) and Ginhom(r, t) do not depend on
the choice of y and, furthermore, that Jinhom(r, t) may be expressed through Ginhom(r, t) and
Finhom(r, t).

Theorem 1. Let Y be an IRMS spatio-temporal point process and assume that

lim sup
n→∞

(
λ̄n

n!

∫

St
r

· · ·

∫

St
r

ρ(n)((x1, t1), . . . , (xn, tn))

λ(x1, t1) · · ·λ(xn, tn)

n∏

i=1

dxidti.

)1/n

< 1.

Then Ginhom(r, t) and Ginhom(r, t) are ℓ-almost everywhere constant with respect to y =
(a, b) ∈ Rd × R and Jinhom(r, t) in expression (8) can be written as

Jinhom(r, t) =
1−Ginhom(r, t)

1− Finhom(r, t)

for all r, t ≥ 0 such that Finhom(r, t) 6= 1.

Proof. From expression (6) it follows that

G(1− uy
r,t) = 1 +

∞∑

n=1

(−λ̄)n

n!

∫

y+St
r

· · ·

∫

y+St
r

ρ(n)((x1, t1), . . . , (xn, tn))

λ(x1, t1) · · ·λ(xn, tn)

n∏

i=1

dxidti,

since, by assumption, the series on the right hand side is absolutely convergent. Note that
G(1−uy

r,t) is a constant for almost all (a, b) ∈ Rd×R by the IRMS assumption. Furthermore,
by an inclusion-exclusion argument,

G!y(1− uy
r,t) = 1 +

∞∑

n=1

(−λ̄)n

n!
E
!(a,b)




6=∑

(x1,t1),...,(xn,tn)∈Y

n∏

i=1

1{‖a− xi‖ ≤ r, |b− ti| ≤ t}

λ(xi, ti)


 ,

which is well defined by the local finiteness of Y (the factor 1/n! removes the implicit ordering
of
∑ 6=). To show the independence of the choice of (a, b), for any bounded A = B × C ∈

B(Rd × R) and any n ≥ 1, consider now the non-negative measurable function

gAr,t((a, b), ϕ) =
1{(a, b) ∈ A}

λ(a, b)

6=∑

(x1,t1),...,(xn,tn)∈ϕ

n∏

i=1

1{‖a− xi‖ ≤ r, |b− ti| ≤ t}

λ(xi, ti)
.
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By rewriting the expression for gAr,t((a, b), Y \ {(a, b)}), recalling the Campbell formula (2)
and taking the translation invariance of ξn into consideration, we obtain

E


 ∑

(a,b)∈Y

gAr,t((a, b), Y \ {(a, b)})


 =

= E




6=∑

(a,b),(x1,t1),...,(xn,tn)∈Y

1{(a, b) ∈ A}

λ(a, b)

n∏

i=1

1{‖a− xi‖ ≤ r, |b− ti| ≤ t}

λ(xi, ti)




=

∫

B×C

(∫

St
r+y

· · ·

∫

St
r+y

ρ(n+1)((a, b), y1, . . . , yn)

λ(a, b)λ(y1) · · ·λ(yn)
dy1 · · · dyn

)
dadb

=

∫

A

(∫

St
r

· · ·

∫

St
r

ρ(n+1)((0, 0), (x1, t1), . . . , (xn, tn))

λ(0, 0)λ(x1, t1) · · ·λ(xn, tn)

n∏

i=1

dxidti

)
dadb.

On the other hand, by the reduced Campbell–Mecke formula (4),

E


 ∑

(a,b)∈Y

gAr,t((a, b), Y \ {(a, b)})


 =

=

∫

A

E
!(a,b)




6=∑

(x1,t1),...,(xn,tn)∈Y

n∏

i=1

1{‖a− xi‖ ≤ r, |b− ti| ≤ t}

λ(xi, ti)


 dxds.

Hereby the two expressions above equal each other for all A and consequently the integrands
are equal for ℓ-almost all y = (a, b) ∈ Rd × R. Hence, for almost all y = (a, b) ∈ Rd × R,

G!y(1− uy
r,t) = 1+

+

∞∑

n=1

(−λ̄)n

n!

∫

St
r

· · ·

∫

St
r

ρ(n+1)((0, 0), (x2, t2), . . . , (xn+1, tn+1))

λ(0, 0)λ(x2, t2) · · ·λ(xn+1, tn+1)
dx2dt2 · · · dxn+1dtn+1

= 1 +
∞∑

n=1

(−λ̄)n

n!

∫

St
r

· · ·

∫

St
r

n+1∑

k=1

∑

D1,...,Dk

k∏

j=1

ξ|Dj |({zi : i ∈ Dj})dz2 · · · dzn+1,

where z1 ≡ (0, 0) and zi = (xi, ti), i = 2, . . . , n + 1. Recall that
∑

D1,...,Dk
is a sum over all

possible k-sized partitions {D1, . . . , Dk}, ∅ 6= Dj ∈ Pn+1, where Pn+1 denotes the power set
of {1, . . . , n + 1}.

With the convention that
∑0

k=1 = 1, we may split the above expression into terms based
on whether the index sets Dj contain the index 1 (i.e. whether ξ|Dj | includes z1 ≡ (0, 0)) to
obtain

G!y(1− uy
r,t) = 1 +

∞∑

n=1

(−λ̄)n

n!

∑

D∈Pn

=J|D|(r,t)︷ ︸︸ ︷∫

St
r

· · ·

∫

St
r

ξ|D|+1(0, z1, . . . , z|D|)dz1 · · ·dz|D|

×

n−|D|∑

k=1

∑

D1,...,Dk 6=∅ disjoint

∪k
j=1Dj={1,...,n}\D

k∏

j=1

I|Dj |,
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where In =
∫
St
r
· · ·
∫
St
r
ξn(z2, . . . , zn+1)dz2 · · · dzn+1. The right hand side of the above expres-

sion may be written as

(
1 +

∞∑

n=1

(−λ̄)n

n!
Jn(r, t)

)(
1 +

∞∑

m=1

(−λ̄)m

m!

m∑

k=1

∑

D1,...,Dk 6=∅ disjoint

∪k
j=1Dj={1,...,m}

k∏

j=1

I|Dj |

)
,

which equals

Jinhom(r, t)

(
1 +

∞∑

m=1

(−λ̄)m

m!

∫

St
r

· · ·

∫

St
r

ρ(m)((x1, t1), . . . , (xm, tm))

λ(x1, t1) · · ·λ(xm, tm)

m∏

i=1

dxidti,

)

by Fubini’s theorem and the definition of the n-point correlation functions. The absolute
convergence of the individual sums in the above product imply the absolute convergence of
G!y(1− uy

r,t) = Jinhom(r, t)G(1− u0
r,t) and this in turn completes the proof.

The intuition behind Ginhom(r, t) and Finhom(r, t) is best seen when Y is stationary. In
this case u0

r,t(x, s) = 1{(x, s) ∈ St
r} and hence

Finhom(r, t) = 1− E


 ∏

(x,s)∈Y

1{(x, s) /∈ St
r}


 = 1− P(Y ∩ St

r = ∅) = F (r, t),

the empty space function in expression (7). Similarly, Ginhom(r, t) reduces to the distribution
function of the nearest neighbour distance when Y is stationary, and the J-function is indeed
a generalisation of (1).

4.2 Representation in terms of conditional intensities

Some families of point processes, notably Gibbsian ones [17], are defined in terms of their
Papangelou conditional intensity λ(·, ·; ·). Below we show that for such processes, Jinhom may
be represented in terms of λ(·, ·; ·).

Theorem 2. Let the assumptions of Theorem 1 hold and assume, in addition, that Y ad-

mits a conditional intensity λ(·, ·; ·). Write W(a,b)(Y ) =
∏

(x,s)∈Y

(
1− u

(a,b)
r,t (x, s)

)
. Then

E
[
λ(a, b; Y )W(a,b)(Y )/λ(a, b)

]
> 0 implies E[W(a,b)(Y )] > 0 and

Jinhom(r, t) = E

[
λ(a, b; Y )

λ(a, b)
W(a,b)(Y )

]
/E[W(a,b)(Y )]

for almost all (a, b) ∈ Rd × R.

Proof. We already know that E[W(a,b)(Y )] is a constant for almost all (a, b) ∈ Rd × R.

Since 0 ≤ W(a,b)(Y ) ≤ 1, if E[W(a,b)(Y )] = 0, then W(a,b)(Y )
a.s.
= 0 and this implies that

11



E[λ(a,b;Y )
λ(a,b)

W(a,b)(Y )] = 0. Note that by the Georgii–Nguyen–Zessin formula (5) in combination

with (4), for any bounded A = B × C ∈ B(Rd × R),

∫

A

E
!(a,b)


 1

λ(a, b)

∏

(x,s)∈Y

(
1−

λ̄1{‖a− x‖ ≤ r, |b− s| ≤ t}

λ(x, s)

)
λ(a, b)dadb

=

∫

A

E


λ(a, b; Y )

λ(a, b)

∏

(x,s)∈Y

(
1−

λ̄1{‖a− x‖ ≤ r, |b− s| ≤ t}

λ(x, s)

)
 dadb,

whereby the integrands are equal for almost all (a, b) ∈ Rd × R and the claim follows from
Theorem 1.

Since E[λ(a, b; Y )] = λ(a, b), we immediately see that

Jinhom(r, t) ≥ 1 ⇐⇒ Cov
(
λ(a, b; Y ),W(a,b)(Y )

)
≥ 0

and
Jinhom(r, t) ≤ 1 ⇐⇒ Cov

(
λ(a, b; Y ),W(a,b)(Y )

)
≤ 0.

In words, for clustered point processes, λ(a, b; Y ) tends to be large if (a, b) is near to points
of Y whereas W(a,b)(Y ) tends to be large when there are few points of Y close to (a, b). Thus,
in this case, the two random variables are negatively correlated and the J-function is smaller
than one. A dual reasoning applies for regular point processes, but [5] warns against drawing
too strong conclusions.

4.3 Scaling

In expression (8), we consider distances on the spaces Rd and R separately. Instead, we could
have used the supremum distance on Rd×R and the closed d-metric balls B[0, r] = Sr

r , r ≥ 0
to define Jn(r) = Jn(r, r) and

Jinhom(r) = 1 +

∞∑

n=1

(−λ̄)n

n!
Jn(r). (11)

When the pair correlation function only depends on the spatial and temporal distances, set
K∗

inhom(r) = K∗
inhom(r, r) and Kinhom(r) = Kinhom(r, r), whence K∗

inhom(r) = Kinhom(r) and
Jinhom(r)− 1 ≈ −λ̄(Kinhom(r)− ℓ(B[0, r])).

In the remainder of this subsection, we argue that (8) may be obtained from (11) by
scaling. Let c = (cS, cT ) ∈ (0,∞)2 and apply the bijective transformation (y, s) 7→ (cSy, cTs)
to each point of the IRMS spatio-temporal point process Y to obtain

cY =
∑

(y,s)∈Y

δ(cSy,cT s).

Through a change of variables and the Campbell formula, one obtains

ρ
(n)
cY ((x1, t1), . . . , (xn, tn)) = c−dn

S c−n
T ρ(n)((x1/cS, t1/cT ), . . . , (xn/cS, tn/cT )),
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so that λcY (x, t) = c−d
S c−1

T λ(x/cS, t/cT ) and λ̄cY = inf(x,t) λcY (x, t) = c−d
S c−1

T λ̄. Hence,

ξcYn ((x1, t1), . . . , (xn, tn)) = ξn((x1/cS, t1/cT ), . . . , (xn/cS, tn/cT ))

whence cY is IRMS if and only if Y is and, whenever well-defined,

JcY
inhom(r, t) = Jinhom

(
r

cS
,
t

cT

)
. (12)

In conclusion, by taking cS = 1, and cT = r/t, any Jinhom(r, t) may be obtained from Jinhom(r)
through scaling.

5 Examples of spatio-temporal point processes

Below we will consider three families of models, each representing a different type of inter-
action.

5.1 Poisson processes

The inhomogeneous Poisson processes may be considered the benchmark scenario for lack of
interaction between points. As we saw in Section 3.2, for a Poisson process Jinhom(r, t) ≡ 1.
Alternative proofs may be obtained from the representation Theorems 1 and 2, by noting
that the Palm distributions equal P by Slivnyak’s theorem [30], or that the intensity function
and the Papangelou conditional intensity coincide almost everywhere.

5.2 Location dependent thinning

Given a stationary STPP Y with product densities ρ(n), n ≥ 1, intensity λ > 0 and J-function
J(r, t), consider some measurable function p : Rd × R → (0, 1] with p̄ = inf(x,t) p(x, t) > 0.
Location dependent thinning of Y is the scenario in which a point (x, t) ∈ Y is retained with
probability p(x, t). Denote the resulting thinned process by Yth.

The product densities of Yth are

ρ
(n)
th ((x1, t1), . . . , (xn, tn)) = ρ(n)((x1, t1), . . . , (xn, tn))

n∏

i=1

p(xi, ti)

by [11, Section 11.3], whereby λth(x, t) = λp(x, t) > 0 and the n-point correlation functions
of Yth and Y coincide. Hence, Yth is IRMS with λ̄ = inf(x,t) λth(x, t) = λp̄ and

J th
inhom(r, t) = 1 +

∞∑

n=1

(−λp̄)n

n!
Jn(r, t)

for all r, t ≥ 0 for which the series converges. Here Jn(r, t) is the n-th coefficient in the series
expansion (8)) of the J-function of the original process Y .

A more informative expression for J th
inhom can be obtained by noting that, by [7,

Eq. (5.3)–(5.4)], the generating functional of Yth is given by Gth(v) = G(1− p + pv), where
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G(·) is the generating functional of Y . Hence, since applying thinning to the reduced Palm
distribution of Y is equivalent to Palm conditioning in the thinned process,

J th
inhom(r, t) =

G
!(0,0)
th (1− p̄1{· ∈ St

r}/p)

Gth(1− p̄1{· ∈ St
r}/p)

=
G!(0,0)(1− p̄1{· ∈ St

r})

G(1− p̄1{· ∈ St
r})

=
E!(0,0)[(1− p̄)Y (St

r)]

E[(1 − p̄)Y (St
r)]

when Theorem 1 applies.
When a Papangelou conditional intensity exists for Y , by recalling that λ = λ(x, t) =

E[λ(x, t; Y )] and applying the combination of (4) and (5) to the restriction of the func-
tion g(a, b, Y ) = (1 − p̄)Y ((a,b)+St

r) to arbitrary bounded space-time domains, the previous
expression becomes

J th
inhom(r, t) =

E[λ(0, 0; Y )(1− p̄)Y (St
r)]

λE[(1− p̄)Y (St
r)]

. (13)

5.2.1 Thinned hard core process

The spatio-temporal hard core process is a stationary STPP defined through its Papangelou
conditional intensity

λY (a, b; Y ) = β 1{Y ∩ ((a, b) + SRT

RS
) = ∅} = β

∏

(x,t)∈Y

1{(x, t)− (a, b) /∈ SRT

RS
}, (14)

where (a, b) ∈ Rd × R. Moreover, β > 0 is a model parameter and RS > 0 and RT > 0 are,
respectively, the spatial hard core distance and the temporal hard core distance. In words,
since realisations a.s. do not contain points that violate the spatial and temporal hard core
constraints, i.e. P!(0,0)(Y (SRT

RS
) > 0) = 0, there is inhibition.

By thinning Y with some suitable measurable retention function p : Rd × R → (0, 1],
p̄ = inf(x,t) p(x, t) > 0, we obtain an IRMS hard core STPP Yth.

Lemma 2. For a hard core process Y , β/λ ≥ 1. If either (r, t) ∈ [0, RS]× [0, RT ] or (r, t) ∈
[RS,∞)× [RT ,∞), J(r, t) is increasing in r and t. Moreover, when (r, t) ∈ [0, RS]× [0, RT ]
we have that 1 ≤ J(r, t) ≤ β/λ and when (r, t) ∈ [RS,∞)× [RT ,∞), J(r, t) = β/λ. When
RT = RS = R > 0, so that SRT

RS
= B[0, R], J(r) = J(r, r) is increasing and satisfies

1 ≤ J(r) < β/λ for r ∈ [0, R) and J(r) = β/λ for r ≥ R.
For a thinned hard core process, J th

inhom(r, t) ≥ 1 for r ≤ RS and t ≤ RT .

Proof. Noting that λ = λ(0, 0) = E[λY (0, 0; Y )] = βP(Y ∩ SRT

RS
= ∅) ≤ β we find that

β/λ ≥ 1. Furthermore, through Theorem 2 and expression (14) we obtain

J(r, t) =
E [λY (0, 0; Y )1{Y ∩ St

r = ∅}]

λ(0, 0)E [1{Y ∩ St
r = ∅}]

=
β

λ

P
(
Y ∩ SRT

RS
= ∅, Y ∩ St

r = ∅
)

P (Y ∩ St
r = ∅)

.

Hence, when both r ≥ RS and t ≥ RT we have that SRT

RS
⊆ St

r and consequently J(r, t) =

β/λ. Moreover, when r ≤ RS and t ≤ RT , so that St
r ⊆ SRT

RS
, expression (7) gives us

J(r, t) = 1/(1− F (r, t)), which is increasing in both r ∈ [0, RS] and t ∈ [0, RT ] and satisfies
J(r, t) ≥ 1. By setting r = RS and t = RT we confirm that J(r, t) = β/λ ≥ 1.
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Specialising to J(r) = J(r, r), when r ≤ R we have that J(r) = 1/(1− F (r, r)), which
is increasing to β/λ, and when r > R, J(r) = β/λ.

When Y is thinned and r ≤ RS and t ≤ RT ,

J th
inhom(r, t) =

E!(0,0)[(1− p̄)Y (St
r)]

E[(1 − p̄)Y (St
r)]

≥
E!(0,0)[(1− p̄)

Y (S
RT
RS

)
]

E[(1− p̄)Y (St
r)]

=
1

E[(1− p̄)Y (St
r)]

≥ 1.

5.3 Log-Gaussian Cox processes

Our final example concerns spatio-temporal versions of log-Gaussian Cox processes (see e.g.
[8, 23, 28]). In words, these models are spatio-temporal Poisson processes for which the
intensity functions are given by realisations of log-Gaussian random fields [1, 2].

Recall that a Gaussian random field is completely determined by its mean function
µ(x, t) and its covariance function C((x, t), (y, s)), (x, t), (y, s) ∈ Rd × R, and that by
Bochner’s theorem C must be positive definite (see e.g. [14, Section 2.4]). Now, a spatio-
temporal log-Gaussian Cox process Y has random intensity function given by

exp {µ(x, t) + Z(x, t)} , (x, t) ∈ R
d × R,

where Z = {Z(x, t)}(x,t)∈Rd×R, is a zero-mean spatio-temporal Gaussian random field. Note
that the variance function of X is given by σ2(x, t) = C((x, t), (x, t)) and the correlation
function by r((x, t), (y, s)) = C((x, t), (y, s))/(σ(x, t)σ(y, s)). By [10, Section 6.2] or [7,
Section 5.2],

ρ(n)((x1, t1), . . . , (xn, tn))

λ(x1, t1) · · ·λ(xn, tn)
= exp

{
∑

i<j

C((xi, ti), (xj, tj))

}

and the intensity function of Y is

λ(x, t) = exp
{
µ(x, t) + σ2(x, t)/2

}
. (15)

Therefore, if inf(x,t) exp{µ(x, t)} > 0 so that λ(x, t) is bounded away from zero, under the
additional condition that C((x, t), (y, s)) = C(x−y, t−s), Y is IRMS. In this case, σ2(x, t) =
C(0, 0) = σ2 and Z is stationary. To exclude trivial cases, we shall assume that σ2 > 0.

Before we proceed, note that we must impose conditions on r to ensure that the function
exp{µ(x, t) + Z(x, t)} is integrable and defines a locally finite random measure. Further
details are given in the Appendix. Henceforth, we will assume that µ(x, t) is continuous and
bounded with µ̄ = inf(x,t) µ(x, t) > −∞, so that λ̄ = exp{µ̄+ σ2/2}, and that r is such that
Z a.s. has continuous sample paths. Combining [10, Proposition 6.2.II] with [7, (5.35)], we
obtain, under the assumptions of Theorem 1,

Jinhom(r, t) =
E

[
eZ(0,0) exp

{
−
∫
St
r
eµ̄+Z(x,s) dxds

}]

E[eZ(0,0)]E
[
exp

{
−
∫
St
r
eµ̄+Z(x,s) dxds

}]

upon noting that the Palm distribution of the driving random measure of our log-Gaussian
Cox process Y is exp{Z(x, t)}-weighted. Note here that the Papangelou conditional intensity
of Y exists and is given by λ(x, t; Y ) = E[exp{µ(x, t) + Z(x, t)}|Y ] (see e.g. [25]).
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Lemma 3. For a log-Gaussian Cox processes, when the above conditions are imposed on µ
and C, Jinhom(r, t) ≤ 1 for all r, t ≥ 0.

Proof. First, observe that Jinhom(r, t) ≤ 1 is equivalent to Cov(eZ(0,0), e
− eµ̄

∫
St
r
eZ(x,s) dxds

) ≤ 0.
Further, note that by the a.s. sample path continuity of Z,

e
− eµ̄

∫
St
r
eZ(x,s) dxds a.s.

= lim
n→∞

e− eµ̄
∑

(xi,si)∈S(n) ci,n eZ(xi,si)

,

where S(n) ⊆ St
r, n ≥ 1, are Riemann partitions. Since Z has positive correlation function,

Pitt’s theorem [27] tells us that Z is an associated family of random variables. Hereby
Cov(eZ(0,0), exp{− eµ̄

∑
(xi,si)∈S(n)

ci,n e
Z(xi,si)}) ≤ 0 for any n ≥ 1 and the result follows from

taking the limit in the last covariance and applying dominated convergence.

6 Estimation

Assume that we observe an IRMS STPP Y within some compact spatio-temporal region
WS ×WT ⊆ Rd × R and obtain the realisation {(xi, ti)}mi=1, m = Y (WS ×WT ). The goal of
this section is to derive estimators for Ginhom(r, t), Finhom(r, t) and Jinhom(r, t). In order to
deal with possible edge effects we will apply a minus sampling scheme [7, 9]. For clarity of
exposition, we assume that the intensity function is known.

Denote the boundaries of WS and WT by ∂WS and ∂WT , respectively. Further, write
W⊖r

S = {x ∈ WS : dRd(x, ∂WS) ≥ r} = {x ∈ WS : x+BRd[0, r] ⊆ WS} for the eroded spatial
domain and, similarly, let W⊖t

T = {s ∈ WT : dR(s, ∂WT ) ≥ t}. For given r, t ≥ 0, we define
an estimator of 1−Ginhom(r, t) by

1

|Y ∩ (W⊖r
S ×W⊖t

T )|

∑

(x′,s′)∈Y ∩(W⊖r
S

×W⊖t
T

)


 ∏

(x,s)∈(Y \{(x′,s′)})∩((x′,s′)+St
r)

(
1−

λ̄

λ(x, s)

)
 (16)

and, given a finite point grid L ⊆ WS ×WT , we estimate 1− Finhom(r, t) by

1

|L ∩ (W⊖r
S ×W⊖t

T )|

∑

l∈L∩(W⊖r
S

×W⊖t
T

)


 ∏

(x,s)∈Y ∩(l+St
r)

(
1−

λ̄

λ(x, s)

)
 . (17)

The ratio of (16) and (17) is an estimator of Jinhom(r, t), cf. Theorem 1.

Theorem 3. Under the conditions of Theorem 1, the estimator (17) is unbiased and (16)
is ratio-unbiased.

Proof. We start with (16) and note that E[Y (W⊖r
S ×W⊖t

T )] = Λ(W⊖r
S ×W⊖t

T ). By the reduced
Campbell-Mecke formula (4),

E


 ∑

(x′,s′)∈Y ∩(W⊖r
S

×W⊖t
T

)

∏

(x,s)∈(Y \{(x′,s′)})∩((x′,s′)+St
r)

(
1−

λ̄

λ(x, s)

)
 =

=

∫

W⊖r
S

×W⊖t
T

E
!(x′,s′)


 ∏

(x,s)∈Y

(
1−

λ̄

λ(x, s)
1{(x− x′, s− s′) ∈ St

r}

)
λ(x′, s′)dx′ds′.
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By (10), the expectation is equal to G!0(1−u0
r,t), from which the claimed ratio-unbiasedness

follows.
Turning to (17), unbiasedness follows from the assumed translation invariance of the

ξns and equation (6) under the conditions of Theorem 1.

In practice, the intensity function λ(x, s) is not known. Therefore an estimator λ̂(x, s)
will have to be obtained and then used as a plug-in in the above estimators. E.g. [12]
considers kernel estimators for λ(x, s) but stresses, however, that care has to be taken when

λ̂(x, s) is close to 0, since a change of bandwidth may cause λ̂(x, s) = 0 for some (x, s), which
would be in violation of the assumption that λ̄ > 0.

7 Numerical evaluations

In this section, we use the inhomogeneous J-function to quantify the interactions in a reali-
sation of each of the three models discussed in Section 5. In order to do so, we work mostly
in R and exploit functions in the package spatstat [4], in which versions of all summary
statistics discussed in this paper have already been implemented for purely spatial point
processes, both in the general and the stationary case; the spatio-temporal K-function has
been implemented in stpp [12]. To simulate log Gaussian Cox processes we use the package
RandomFields [29]. Realisations of spatio-temporal hard core processes can be obtained
using the C++ library MPPLIB [31].

Throughout this section, realisations will be restricted to the observation window WS×
WT = [0, 1]2 × [0, 1]. The intensity function is either known, or known up to a constant (for
the thinned hard core process). Hence, since (16)–(17) are defined in terms of the ratio
λ̄/λ(x, s), there is no need to plug in intensity function estimators.

7.1 Poisson processes

Consider a Poisson process Y on R2 ×R with intensity function λ(x, y, t) = 750 e−1.5(y+t) as
in Section 5.1. Note that λ̄ = 750 e−3 ≈ 37.34 and that the expected number of observed
points of Y in WS ×WT is 750(1 − e−1.5)2/1.52, i.e. approximately 200. A realisation with
220 points is shown in the top-left panel of Figure 1. The temporal progress of the process is
illustrated in the top-right panel of Figure 1, which shows the cumulative number of points
as a function of time, i.e. N(t) = Y (WS × [0, t]), t ∈ [0, 1]. The lower row of Figure 1 shows
two spatial projections. In the left panel, we display Y ∩ (WS × [0, 0.5]), in the right panel
Y ∩ (WS × [0.5, 1]). Here the decline in intensity, with increasing y-coordinate, is clearly
visible. Furthermore, a comparison of the two spatial projections illustrates the exponential
decay in the intensity function.

In Figure 2, on the left, we show a collection of 2-d plots of the estimates of Ginhom(r, t0)
and Finhom(r, t0) for a fixed set of values t = t0. Similarly, in the rightmost plot, we display
a collection of 2-d plots of the estimates for a fixed set of values r = r0. In both cases the
dotted lines (-�-) represent the estimated empty space functions. We see that throughout
the two estimates are approximately equal and, in addition, there are instances where each
of the two is larger than the other.
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Figure 1: A realisation on WS × WT = [0, 1]2 × [0, 1] of a Poisson process with intensity
function λ((x, y), t) = 750 e−1.5(y+t), x, y, t ∈ R. Upper row: A 3-d plot (left) and a plot of
the associated cumulative count process (right). Lower row: Spatial projections for the time
intervals [0, 0.5] (left) and [0.5, 1] (right).
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Figure 2: Plots of the estimated nearest neighbour distance distribution function and empty
space function of the Poisson process sample in Figure 1. Left: As a function of spatial
distance for fixed temporal distances t0. Right: As a function of temporal distance for fixed
spatial distances r0. In both plots, the dotted lines (-�-) represent the empty space function.

7.2 Thinned hard core process

Let Y be the location dependent thinning of a stationary spatio-temporal hard core process
as described in Section 5.2 with retention probability p(x, y, t) = e−1.5(y+t), (x, y, t) ∈ R2×R,
β = 1300, RS = 0.05 and RT = 0.05. The associated realisations are shown in the top
panels of Figure 3. The underlying hard core process has 762 points, whereby λ̂ = 762, and
the thinned process has 204 points. Note that the expected number of observed points of
Y in WS ×WT is λ

∫
[0,1]3

p(x, y, t)d(x, y, t) ≈ λ̂(1− e−1.5)2/1.52, i.e. approximately 200. The
temporal progress of the process is illustrated in the top-right panel of Figure 3, which shows
the cumulative number of points as a function of time, i.e. N(t) = Y (WS × [0, t]), t ∈ [0, 1].
The lower row of Figure 3 shows two spatial projections. In the lower left panel we display
Y ∩ (WS × [0, 0.5]) and in the lower right panel Y ∩ (WS × [0.5, 1]). Just as in the Poisson
case, the two spatial projections illustrate the decay in the intensity function, both in the y-
and t-dimensions.

In order to obtain a picture of the interaction structure, in Figure 4 we have plotted
the estimates of Ginhom(r, t) and Finhom(r, t) for large r, t ranges. Again, the dotted lines
(-�-) represent the estimated empty space functions. As expected we see that the estimate
of Ginhom(r, t) is the smaller of the two. For small values of r0 and t0, the hardcore distances
RS and RT are clearly identified in the lower row of Figure 4. For large values of r0 and
t0 this is no longer the case due to accumulation points; see the top row of Figure 4. For
instance, there are many points violating the spatial hard core constraint, which still respect
the temporal temporal hard core constraint.
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Figure 3: A realisation on WS ×WT = [0, 1]2 × [0, 1] of a location dependent thinning, with
retention probability p(x, y, t) = e−1.5(y+t), (x, y, t) ∈ R2 ×R, of a spatio-temporal hard core
process with β = 1300, RS = 0.05 and RT = 0.05. Upper row: A 3-d plot (left) and a plot
of the associated cumulative count process (right). Lower row: Spatial projections for the
time intervals [0, 0.5] (left) and [0.5, 1] (right).
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Figure 4: Plots of the estimated nearest neighbour distance distribution function and the
empty space function of the thinned hard core process in Figure 3. Left: As a function of
spatial distance for fixed temporal distances t0. Right: As a function of temporal distance
for fixed spatial distances r0. In both cases the dotted lines (-�-) represent the empty space
function estimates.
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7.3 Log-Gaussian Cox process

Recall the log-Gaussian Cox processes discussed in Section 5.3. We consider the separable
covariance function (see Appendix)

C((x1, y1, t1), (x2, y2, t2)) = CS((x1, y1)− (x2, y2))CT (t1 − t2)

for the driving Gaussian random field of the STPP Y . Specifically, we let the component
covariance functions be CS(x, y) = σ2

S exp{−‖(x, y)‖2} (Gaussian) and CT (t) = σ2
T exp{−|t|}

(exponential), x, y, t ∈ R, where σ2
S = σ2

T = 1/4, so that σ2 = CS(0)CT (0) = 1/16 and we
let the mean function be given by µ(x, y, t) = log(750)− 1.5(y + t)− σ2/2. Figure 5 shows
projections of a realisation of the driving random intensity function at time t = 0.5 (left)
and spatial coordinate x = 0.5 (right). Note the gradient in the vertical direction in the left
plot and the diagonal trend in the right one.
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Figure 5: Projections of a realisation of the driving random intensity field at time t = 0.5
(left) and at spatial coordinate x = 0.5 (right).

By expression (15) we obtain λ(x, y, t) = 750 e−1.5(y+t) and consequently λ̄ = 750 e−3 ≈
37.34. Hereby the expected number of observed points of Y in WS×WT is 750(1−e−1.5)2/1.52,
i.e. approximately 200. A realisation of Y with 219 points is shown in the top-left panel of
Figure 6 and the cumulative number of points as a function of time, i.e. N(t) = Y (WS ×
[0, t]), t ∈ [0, 1], is illustrated in the top-right panel. The lower row of Figure 6 shows two
spatial projections. In the left panel, we display Y ∩ (WS × [0, 0.5]) and in the right panel
Y ∩ (WS × [0.5, 1]). Also here the decay in the intensity function in the y- and t-dimensions
is visible. In addition, by comparing the lower rows of Figures 1 and 6, the present clustering
effects become evident.

In Figure 7 we have plotted the estimates of Ginhom(r, t) and Finhom(r, t). As before,
the dotted lines (-�-) represent the estimates of Finhom(r, t). Due to the structure of C, when
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Spatio−temporal Log−Gaussian Cox process
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Figure 6: A realisation on WS × WT = [0, 1]2 × [0, 1] of a log-Gaussian Cox process with

µ(x, y, t) = log(750)− 1.5(y + t)− (1/4)2

2
and separable covariance function CS(x, y)CT (t) =

1
4
e−‖(x,y)‖2 1

4
e−|t|, (x, y, t) ∈ R2×R. Upper row: A 3-d plot (left) and a plot of the associated

cumulative count process (right). Lower row: Spatial projections for the time intervals [0, 0.5]
(left) and [0.5, 1] (right).
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e.g. t is small we find clear signs of clustering whereas for larger t, where C(x, y, t) ≈ 0, as
expected we have Poisson like behaviour.
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Figure 7: Plots of the estimated nearest neighbour distance distribution function and empty
space function of the log-Gaussian Cox process in Figure 6. Left: As a function of spatial
distance for fixed temporal distances t0. Right: As a function of temporal distance for fixed
spatial distances r0. In both plots, the dotted lines (-�-) represent the empty space function.
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Appendix

Sample path continuity of Gaussian random fields

Let Z be a stationary Gaussian random field with mean zero. We wish to impose conditions,
which ensure that Z a.s. has continuous sample paths. If Z would be defined on the Euclidean
space (Rd×R, ‖ ·‖Rd+1, dRd+1(·, ·)), with C(x, y) = σ2r(x−y), σ2 > 0, then [24, Section 5.6.1]
lists sufficient conditions on the correlation function r(·) as follows. There exist ǫ, δ > 0 such
that either,

1. 1− r(x, t) < δ/(− log(‖(x, t)‖Rd+1))1+ǫ, or

2. 1− r(x, t) < δ‖(x, t)‖ǫ
Rd+1,

for all lag pairs (x, t) ∈ Rd×R in an open Euclidean ball centred at 0. Note that the former
condition, which in fact is the condition given in [1, Theorem 3.4.1], is less restrictive than
the latter one but often harder to check. However, the underlying space here is (Rd × R, ‖ ·
‖∞, d(·, ·)). Hence, one explicit way of obtaining equivalent conditions for r(·) would be to
consider the log-entropy related results of [2, Section 1] for Gaussian random fields on general
compact spaces and exploit that Rd ×R is σ-compact. A more direct and natural approach
is to note that, through the topological equivalence of dRd+1(·, ·) and d(·, ·), we have the
necessary condition that, for any (x, t) ∈ Rd × R, there exist constants α1, α2 > 0 such that
α1d((x, t), (y, s)) ≤ dRd+1((x, t), (y, s)) ≤ α2d((x, t), (y, s)) for all (y, s) ∈ Rd × R. Hereby, in
particular, there are α1, α2 > 0 such that α1‖(x, t)‖∞ ≤ ‖(x, t)‖Rd+1 ≤ α2‖(x, t)‖∞ for all
(x, t) ∈ Rd × R and we see that the conditions above are retained in (Rd × R, ‖ · ‖∞, d(·, ·)),
with adjusted constants δ, ǫ > 0. Note that the a.s. sample path continuity implies a.s.
sample path boundedness on compact sets [2, Section 1].

Covariance models

One particular family of correlation functions r(·) for which the a.s. continuity conditions
above are satisfied is the power exponential family (see [24, Section 5.6.1]),

r(x, t) = exp(−‖(x, t)‖δ∞), 0 ≤ δ ≤ 2, (x, t) ∈ R
d × R.

The special case δ = 1 generates the exponential correlation, δ = 2 gives rise to the Gaussian
correlation function. Note that the isotropy of r(·) implies isotropy of the LGCP Y since its
distribution is completely specified by C(·).

A common practical assumption when modelling spatio-temporal Gaussian random
fields is to assume separability (see e.g. [14, Chapter 23]). Consider the covariance functions
CS(x, y) = σ2

SrS(x − y) and CT (t, s) = σ2
T rT (t − s), x, y ∈ Rd, t, s ∈ R, where σ2

S, σ
2
T > 0.

We may now consider two types of separability:

1. Multiplicative separability:

C((x, t), (y, s)) = CS(x, y)CT (t, s) = σ2
Sσ

2
T rS(x− y)rT (t− s).
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2. Additive separability:

C((x, t), (y, s)) = CS(x, y) + CT (t, s) = σ2
SrS(x− y) + σ2

T rT (t− s).

The latter is a consequence of assuming that Z(x, t) = ZS(x) + ZT (t), (x, t) ∈ Rd × R,
where ZS(x) and ZT (t) are independent mean zero Gaussian random fields with covariance
functions CS and CT , respectively. In both cases a separable power exponential model can
be obtained by letting rS(x) = exp(−‖x‖δS ) and rT (t) = exp(−|t|δT ) for δS, δT ∈ [0, 2].
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