Minimizing maximum lateness on one machine:
computational experience and some applications

by B. J. LAGEWEG,* J. K. LENSTRA* and A. H. G. RINNOOY KAN **

Summary We consider the problem of scheduling jobs on a single machine subject to given

release dates and precedence constraints, in order to minimize maximum lateness. The
algorithms of BAKeR and Su (Naval Res. Logist. Quart. 21 (1974) 171-176) and of McMaHoN and
FroriaN (Operations Res. 23 (1975) 475-482) for the problem without precedence constraints are
extended to the general case. An extensive computational comparison establishes the superiority of
the latter algorithm. We describe applications to the theory of job-shop scheduling and to a practical
scheduling situation.

1 Introduction

We consider the following problem. Suppose we have n jobs J,, ..., J,, to be processed
on a single machine which can handle only one job at a time. Job J; (i=1,...,n) is
available for processing at its release date r;, requires an uninterrupted processing time
of p; time units and should ideally be completed by its due date d,. Certain precedence
constraints define a partial ordering < between the jobs; “J; <J;”” means that J;
cannot start before the completion of J;. The index sets B; = {j|J; <J;} and 4;=
{jlJ; < J;} indicate the jobs which are constrained to come before and after J; res-
pectively. Given a feasible processing order of the jobs, we can compute for J;
(i=1,...,n) a starting time S; = r;, a completion time C;=S;+p, with C; < S; for
all jeA;, and a lateness L; = C;,—d;. We want to find a schedule that minimizes the
maximum lateness L., = max;{L,}.

A number of special cases of this problem in which all r,, p; or d; are equal is studied
in section 2. In sections 3 and 4, two branch-and-bound algorithms developed for the
problem without precedence constraints are described and extended to the general
case. Extensive computational experience is reported in section 5. In section 6 and 7
we discuss two applications of the problem; one arises in the theoretical context of
job-shop scheduling, the other occurred in a practical scheduling situation. Concluding
remarks are contained in section 8.

We will present an ALGOL-like description of several algorithms; the operatior.
‘:€” in the statement *‘s:€.S5” is defined to mean that s becomes an arbitrary element
of S.

3

2 Special cases

The problem to be considered is defined by n integer triples (r;, p;, d;) and precedence
constraints <.

* Mathematisch Centrum, Amsterdam.
** Graduate School of Management, Delft.

25



To stress the symmetry inherent to the problem, it is useful to describe it in an

alternative way. Let M, and M be non-bottleneck machines of infinite capacity and

M, a bottleneck machine of capacity one. Job J,(i=1, ..., n) has to visit M|, M,, M,

in that order and has to spend

— a head r;on M, from O to r;;

~ a body p, on M, from S; = r;to C; =S;+p; with C; < §; for all je 4;;

— atail ;= K—d; (for some constant K = max;{d;}) on M from C;to L;=C,;+¢q;=
L;+K.

We want to minimize the maximum completion time L, = max;{L;} = L.+ K.

The problem, now defined by n triples (r;, p;, g;) and <, is clearly equivalent to its
inverse problem defined by (g;, p;, ry) and <’ with J;<'J; if J;<J;; an optimal
schedule for one problem can be reversed to obtain an optimal schedule for the other
problem, with the same solution value.

Let us first assume that A4, = B; = ¢ for all i.

If all r; are equal, an optimal schedule is provided by Jackson's rule (cf. JACKSON
[11]): Ly is minimized by ordering the jobs according to nondecreasing 4.

If all d; are equal, the problem is similarly solved by ordering the jobs according to
nondecreasing r;. This result can be interpreted as a consequence of the symmetry
discussed above.

If all p; are equal, such a simple solution method is usually not available, unless
p; =1 for all i. In the latter situation, algorithm J below involving repeated applica-
tion of Jackson’s rule produces an optimal schedule (cf. BAKER and Su [I]).

procedure algorithm J(n, r, g, S, C);
begin local N, N’ ¢, i;
N:={l,..,n};1:=0;
while N # ¢ do
begin ¢: = max {t, min {r;|je N}};
N':={jljeN,r;<t};
ire{jljeN',q; = max {q,lkeN'}};
N:=N-{i};S;:=t;Cii=t:=1t+1
end
end.

The proof of this result is straightforward and depends on the fact that no job can
become available during the processing of another one, so that it is never advanta-
geous to postpone processing the selected job J;. This argument does not apply if
p;=p for all i and p does not divide all r;; e.g., if n=p=2,r =¢q,=0,r,=1,
g, =2, postponing J, is clearly advantageous. However, algorithm J does solve the
general problem if we allow job splitting (i.e., interruptions in the processing of a job);
in this case we can interpret job J; as p; jobs with heads r;, bodies 1 and tails g;
(cf. Horn [10]).
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Let us now examine the introduction of precedence constraints in the problems
discussed so far. As a general principle, note that we may set

ri: = max {r;,, max{r; +p,lje B;}},

q;: = max {g;, max {p;+q;lje 4;}},

because in every feasible schedule S; > C; > r;+p; for all je B; and L; > C;+p;+gq;
for all je 4;. Hence, if J; < J;, we may assume that r; <r;+p;<r;and q; 2 q;+p; >q;.

1t follows that the case in which all d; are equal is again solved by ordering the jobs
according to nondecreasing r;. Such an ordering will respect all precedence constraints
in view of the preceding argument.

If we apply this method to the inverse problem to solve the case in which all r; are
equal, the resulting algorithm can be interpreted as a special case of LAWLER’s more
general algorithm to minimize max;{c;,(C;)} for arbitrary nondecreasing cost functions
¢; (cf. LAWLER [I3]).

A similar observation can be made with respect to the case that p;=1 for all i.
Algorithm J will produce a schedule respecting the precedence constraints.

In the general case, however, the precedence constraints are not respected auto-
matically. Consider the example specified by the data in Table I and the precedence
constraint J, < J, (cf. LENSTRA and RINNOOY KAN [15]); note that ry+p, <7, and
g = p2+q,. If the constraint J; < J, is ignored, the unique optimal schedule is given
by (Jy, J2, I3, J4, J5) with value L, = 11 (cf. Figure 1). Explicit inclusion of this
constraint leads to L, = 12.

So far all the methods presented have been good or efficient algorithms in the by
now conventional sense that their number of steps is bounded by a polynomial in n
(cf. EDMONDS [7]). Such a method is unlikely to exist for the case in which r;, p;

Table 1. Data for the example

i 1 2 3 4 5
r, 0 2 3 0 7
P 2 1 2 2 2
q; 5 2 6 3 2
7 ; [ l
| Ba—
J2
a, DR 1
Ja E—1 l
g P 1
0 1 2 3 4 5 6 7 8 910 11 12

Fig. [. Schedule for the example.
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and g, may assume arbitrary values and A4; = B; = ¢ for all /; in LENSTRA et al. [14],
this problem was proved to be NP-complete, which implies that an efficient method
for its solution would yield good algorithms for all other NP-complete problems as
well. Because many notorious combinatorial problems such as the travelling salesman
problem, job-shop scheduling and graph coloring are NP-complete, the NP-com-
pleteness of the problem without precedence constraints serves as a formal justifica-
tion to use enumerative solution methods such as branch-and-bound. Algorithms of
this type have been proposed by DESSOUKY and MARGENTHALER [6], BRATLEY,
FLORIAN and ROBILLARD [2], BAKER and Su [1] and McMAHON and FLORIAN [17].
The first of these algorithms is not stated very clearly; the second one is surpassed by
the fourth one both in elegance and efficiency [17]. In the following two sections, the
algorithms from BAKER and Su [1] and McMAHON and FLORIAN [17] will be described
and extended to the general case.

3 The algorithm of Baker and Su

The branch-and-bound algorithm to be discussed now has been developed by BAKER
and Su [1] for the problem without precedence constraints. It will be referred to as
algorithm BS.

The branching rule generates all active schedules (cf. CONWAY et al. [5]) according
to algorithm AS below.

procedure algorithm AS (n,r,p, S, C);
begin local /;
procedure node (N, 1);
if N = ¢ then comment an active schedule has been generated else
begin local N';
N':={jljeN,r; <min{max {t,r,} +plkeN}};
while N’ # ¢ do
begin i:eN';
N':=N'—{i}; S;: =max{t,r;}; C;: = S;+p;;
node (N—{i}, C)
end
end;
node ({1,...,n},0)
end,

At the /-th level of the recursion, jobs are scheduled in the /-th position. If the first
assignment to N’ is replaced by N': = N, all n! schedules are generated. By means of
the current assignment, only active schedules are generated; if r; > max {t, r,} +p;
for some j, ke N, J; is no candidate for the next position in the partial schedule since
it can be preceded by J, without being postponed.
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The bounding rule is based on the observation that the value of an optimal schedule
will not increase if we allow job splitting. A lower bound on all possible completions
of a partial schedule (J,(1), ..., /) is produced by the use of algorithm J to schedule
the remaining jobs from C,,, onwards while allowing job splitting. If no job splitting
occurs, this particular completion is an optimal one, and the value of the complete
solution is an upper bound on the value of an optimal solution. A partial schedule can
be eliminated if its lower bound is not smaller than the global upper bound.

The branch-and-bound algorithm is now completely described if we specify a
search strategy indicating which partial schedule will be chosen for further examina-
tion (cf. LENSTRA and RINNOOY KAN [16]). In BAKER and Su [1], a jumptrack scheme
was used, selecting a partial schedule with minimum lower bound. We implemented
the recursive backtrack scheme of algorithm AS, selecting the unscheduled jobs in
the order in which they appear in the solution, produced by algorithm J. Experiments
in which these descendant nodes were chosen in order of nondecreasing lower bounds
showed a 50-60%, increase in solution time.

The above algorithm can easily be adjusted to take precedence constraints < into
account. As noted previously, they are automatically respected during the lower
bound calculation and the only necessary change is a replacement of the first assign-
ment to N’ by

N':={jljeN,B;AN = ¢,r; <min{max{t,r,} +plkeN,B,n N = ¢}}.

Algorithm BS is fairly straightforward and its general principles can be extended to
other NP-complete sequencing problems with non-equal release dates.

4 The algorithm of McMahon and Florian

A more sophisticated branch-and-bound algorithm for the problem without prece-
dence constraints is due to MCMAHON and FLORIAN [17]. Algorithm MF is based on
algorithm S below, a heuristic method suggested by SCHRAGE [20] for generating a
good solution.

procedure algorithm S (n, r, p, g, S, C);
begin local N, N’ ¢, i;
N:={l1,..,n};t: =0;
while N # ¢ do
begin ¢: = max {r,min {r;|jeN}};
N':={jljeN,r;<t};
ire{jljeN',p; = max{p,lkeN’,q, = max{q|le N'}}};
N:=N-{i};Si:=t;Cis=t: =t+p;
end
end.
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The schedule (Jy(y, ..., Jx) produced by algorithm S can be decomposed into

blocks. J,q, is the last job in a block if Cpyy < 1oy fori=h+1,...,n,ie., ifrojobis

delayed when J,,, is completed. A set of jobs {Jy(,, ..., Jo ) forms a block if

a. g=1orJy,_, is the last job in a block;

b. J, is not the last job in a block, fori=g, ..., h—1;

c. Jyu is the last job in a block.

It follows that J,,, is the first job in a block if Sy =y <rpp fori=g+l1,...n
With respect to J; in block {J, (), ... Jxmy ), We define

Py = UlSugy < S; < 83 4; = min la;lie P}, Qi=1jliePi.q;= ‘1:}-
We claim that lower bounds on the value of an optimal schedule are given by

LB; =ri+p;i+q;
., C;+q; if ie@,
B'=4< ' ) !
N ! {C,+q,+l lf i¢Q,-.

LB; requires no comment, but the justification of LB;" is actually rather subtle.
Defining C;; as the minimum completion time of J; if this job is scheduled as the
last one of {J,|keP;}, we note that C;; > C;; = C; for all jeP;. A valid lower bound
is now given by

min {C;;+q,jeP;}.
In the case that ieQ,, it is obvious that for all jeP;
Cj;+11j>C,-i+c1,~=C,-+¢1;. (n

Suppose next that i¢ Q;. If j¢Q,, we have

Cii+q;>Ci+q;+1. (2)

Consider finally the case that i¢ Q; and je @;. If we move J; to the last position of
{JilkeP;}, a gap of at least one unit idle time is unavoidable, unless a J, with
r, < §; < S, can be moved forward to start at S;. From algorithm S we know that,
if such a job exists, then keQ; and p, <p;. Thus, a gap now threatens to occur be-
tween S, and S, +1. Repeating this argument as often as necessary, we conclude
that C;; = C;+1, and therefore

Cj,'+¢Ij>C,'+(1;+l. (3)

Inequalities (1), (2) and (3) establish the validity of LB;".
At every node of the search tree, application of algorithm S yields a complete
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solution (Ju(1), ---» Jumy) With value Ly, and a lower bound LB = max;{max{LB],
LB|'}}. We may decrease the upper bound UB on the value of an optimal solution by
setting UB: =min{UB, L, }. If LB > UB, the node is eliminated; else, we apply the
branching rule described below.

Let the critical job J; be defined as the first job in the schedule with C;+g¢;=L,,.
The schedule can only be improved if C; can somehow be reduced. The set of solu-
tions corresponding to the current node can now be partitioned into disjoint subsets,
each characterized by the job J; which is to be scheduled last of {J|k €P;}. However,
jobs J; with jeP;, ;> q,—Li.«+ UB need not to be considered, since in that case
Cji+4q;=> Ci+q;— L+ UB = UB. Therefore, only for each J; with jeP;, q; <q;—
L, ..+ UB a descendant node is actually created.

We can effectively implement the precedence constraints {J, < J;jlkeP;—{;j}} by
adjusting r; and g (ke P;—{j}) as described in section 2. During the next application
of algorithm S, J; will then be scheduled last of {JilkeP;}. To maintain disjointness
at deeper levels of the tree, we would have to update r; and g, for k¢P; as well in
view of previous choices. This would lead to the time consuming administration of
a continually changing precedence graph. Dropping the requirement of disjoint
descendants, we will force J; to follow the critical job J; rather than the whole set
{JilkeP;—{j}}. This can be done by putting r; equal to any lower bound on C;;—p;
not less than r;, such as max{r,+p.lkeP;—{;j}}, C;—p; or simply [17] r;. Computa-
tional experiments have shown that the choice of a specific new r; has only a minor
influence on the performance of the algorithm; in our implementation, we put
rii=max{r;+p; C;—p;}.

The search strategy used in MCMAHON and FLORIAN [17] is of the jumptrack type,
selecting a node with minimum lower bound. Again, our implementation is of the
recursive backtrack type, choosing the descendant nodes in the reverse of the order
in which the corresponding jobs J; appear in the solution produced by algorithm S.

Algorithm MF is easily adapted to deal with given precedence constraints <.
Since we may assume that r; < r;and q; > q; if J; < J;, they are respected by algorithm
S. Obviously, the lower bound remains a valid one. With respect to the branching
rule, descendant nodes have to be created only for jobs J; with jeP;, q; < q;— Ly +
UB, A;nP;=¢. We could branch by adding the precedence constraints {Je < Jjl
keP;—{j}}; many heads and tails would then have to be adjusted. If, however, we
drop the requirement of disjoint descendants and aim to preserve only the original
precedence constraints, we may just as well restrict ourselves to adjust r; in the
way described above and update r; for all ke 4;. Since the tails still refiect the original
precendence constraints, new solutions produced by algorithm S will respect those.
Again, more extensive adjustments turn out to result in additional computing time.

5 Computational experience

Algorithms BS and MF were coded in ALGOL 60 and run on the Control Data Cyber
73-28 of the SARA Computing Centre in Amsterdam.
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For each test problem with # jobs, 3n integer data r,, p;, q; were generated from uniform
distributions between | and r,,, P and g, respectively. Here, r.., = R p.. and
Gmax = @ * P max- In the precedence graph, each arc (J/;, J;) with i < j was included with
probability P. Table 2 shows the values of (1, p..., R, @, P) during our experiments;
the values used in previously reported tests are also given. For each combination of
values with R = Q five problems were generated ; inversion of these problems provided
test problems with R < Q (cf. section 2). Significant and systematic differences between
the solution times of a problem and its inverse would indicate advantages to be
gained from problem inversion.

Tables 3 and 4 show the computational results for problems without precedence
constraints, i.e., with P =0. Algorithm BS solves 294 out of 300 problems with up
to 80 jobs within the time limit of tea seconds. The limit is never exceeded for prob-

Table 2. Values of parameters of test problems

parameter BakEr and Su [1] McMaHoN and FLoORIAN {17] this paper

n 10, 20, 30 20, 50 20, 40, 80
Pmax 2000){" 25 50

R S5n Sn, 2n .5, 2, .51, 2n
Q .75n, .875n, n* 4, 1,3 5,2, .51, 2n
P 0 0 0, .05, .15, .45

* In this case, the g; are not distributed uniformly.

Table 3. Computational results for P=0: a survey

median solution time maximum solution time
n 4 alg. BS alg. MF alg. FM alg. BS alg. MF alg. FM
20 0 .05 .02 .03 > 10:2 .99 L1
40 0 .09 .06 .06 1.09 - 10:1 17
80 0 .23 .16 15 > 10:4 >10:3 .57

Table 4. Computational results for P=0: the influence of R and Q

n=_80 maximum solution time
P=0 algorithm BS algorithm MF algorithm FM
R, QO .5 2 Sn 2n .5 2 Sn 2n .5 2 S 2n
5 .26 25 5.54 5.75 .19 21 1.64 >10:1 .19 .25 .15 14
.25 .19 .25
5 .25 -10:1 4.84 A8 -10:1 >10:1 22 .19 .16
.24 27 .19 A7 .20 .25
5 3.43 3.67 .33 47 57 A7
o 10:1 ~10:2 3.60 d0 a2 52 08 .1 49
2.54 11 17
2n .10 1 2.51 2.55 .09 .07 13 A3 .09 .08 A2 19
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Table 5. Computational results: the influence of P

median solution time maximum solution time

n P algorithm MF algorithm FM algorithm MF algorithm FM
20 O .02 .03 .99 11

.05 .06 .05 41 43

15 .07 .07 .14 A5

45 .07 .08 12 .11
80 0 .16 .15 >10:3 .57

.05 .36 33 >10:6 >10:4

.15 47 42 .85 .57

45 73 75 .81 .80

Each entry in Table 3 (Tables 4, 5) represents 100 (5, 100) test problems. In Table 4 the entries below
the staircases represent the results for problems with R_> Q; the remaining entries represent the
inverted problems with R< Q.
solution times: CPU seconds on a Control Data Cyber 73-28.
> {1k the time limit / is exceeded & times.
algorithm BS: see section 3.
algorithm MF: see section 4.
algorithm FM: algorithm MF with problem inversion if max,{r;}—min{r;} < max;{q,;} —mingq;}.
n: number of jobs.
R: relative range of r;.
Q: relative range of g;.
P: expected density of precedence graph.

lems of the type on which the method has been tested previously (cf. BAKER and Su
[1]). Inspection of the results revealed no obvious rule according to which problem
inversion might take place and hence this additional feature was not incorporated
into algorithm BS. Even better results were obtained with algorithm MF. It turns
out that this method has been tested in MCMAHON and FLORIAN [17] on the very
easiest types of problems. In general, algorithm MF performs especially well on
problems with R > Q. Accordingly, we also tested algorithm FM, which inverts a
problem if max;{r;} —min;{r;} < max,{q;} —min,{g;} before applying algorithm MF.
The remarkable quality of algorithm FM is clear from Tables 3 and 4.

Table 5 shows the effect of precedence constraints, which was investigated only
with respect to algorithms MF and FM. For problems with P> .15, most of the
solution time is spent on adjusting the r; and ¢; in accordance with the precedence
constraints, as described in section 2; this takes .06 seconds for n =20, P = .15 and
.70 for n =80, P = .45, For each positive value of P which we tested, the median
number of generated nodes is equal to one; for P =.45 branching never occurs.
Inversion according to the rule given above leads to some improvement, albsit not
so spectacular as in the case without precedence constraints.

Summing up our computational experience we conclude that, NP-complete though
the problem may be, algorithms BS, MF and FM (especially the latter onc) are able
to solve problems of reasonable size fairly quickly. In view of the applications which
are to be discussed in the following sections, this is a hopeful result.
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6 A theoretical application

The one-machine problem can find application in the theoretical context of the
general job-shop scheduling problem. This classical combinatorial problem can be
formulated as follows (cf. CONWAY et al. [5] and RINNOOY KAN [18]).

Suppose we have n jobs J,, ..., J, and m machines M, ..., M,, which can handle
at most one job at a time. Job J; (i =1, ..., n) consists of a sequence of n; operations
O, (r=YI} n;+1,..., Y=, n)) each of which corresponds to the processing of
job J; on machine pu(0,) during an uninterrupted processing time of p, time units.
We seek to find a processing order on each machine such that the maximum com-
pletion time is minimized.

The above problem is conveniently represented by means of a disjunctive graph
G=(¥,€u2) (cf. Roy and SUSSMANN [19]) where
— ¥ is the set of vertices, representing the operations, including fictitious initial and

final operations:

‘/f={0,1,..., i nj,*}-;

i=1

— % is the set of directed conjunctive arcs, representing the given machine orders of
the jobs:

R At
f
L

(r, i+l)|r—2n+1 erj—l,t':l,...,n}u
e

(golrer

— 9 is the set of directed disjunctive arcs, representing the possible processing orders
on the machines:

2 = {(r,9)|u(0,) = u(0,)}:
— a weight p, is attached to each vertex r, with p, = p, =0.

The disjunctive graph for a problem with n=m =3 is drawn in Figure 2.
Processing orders on the machines can be defined by a subset D <=2 such that
(r, $)eD if and only if (s, r)e2—D. D contains the chosen or settled arcs: if (r,s)
€D, then O, precedes O, on their common machine. The resulting schedale is
feasible if the graph G(D)=(¥", % U D) contains no directed cycles. The value of
such a schedule is given by the weight of the maximum-weight path (also called
“longest™ or *‘critical”” path) in G(D). As to our example, the graph G(D) corres-
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3 1 6
1 2 3
0 3 7 0
0 4 5 *
4 4
2(6 7 8

Fig. 2. Example of a disjunctive graph G = (¥~, ¥UZ).

ponding to processing orders (O, O,4, O;) on M, (O, O,, Os) on M, and (05, Og)
on M, is drawn in Figure 3; the value of the schedule is equal to 14.

The general job-shop scheduling problem has been proved to be NP-complete
(LENSTRA et al. [14]) and several branch-and-bound algorithms have been developed
in the past. In these algorithms, any node of the search tree corresponds to a partial
solution which is characterized by a subset D = 2 of chosen arcs such that G(D) is
acyclic.

Let us select an arbitrary M,. For each O, with u(0,) = M, we can determine

— a head, i.e. the maximum weight of a path in G(D) from 0 to r;
— a body, i.e. the processing time p,;
- u tail, i.e. the maximum weight of a path in G(D) from r to » minus p,.

Furthermore, for O, and O, with u(0,) = 1(O;) = M, we have a precedence constraint
0, < O, if G(D) contains a path from r to s.

It follows that on each machine we can define a one-machine problem of the type
discussed in this paper and, since the arcs in 2 — D are neglected, that the maximum
of the m optimal solution values yields a lower bound on all extensions of D.

We conclude with some remarks on the combination of this lower bound and the

Fig. 3. Example of an acyclic graph G(D)=(¥", €UD).
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two branching schemes that have been applied to the job-shop scheduling problem.
A future paper will contain a more extensive discussion.

One branching scheme generates all active schedules (cf. GIFFLER and THOMPSON
[9]), just as algorithm AS generates all active schedules for the one-machine problem
(see section 3). The use of the above lower bound within such a scheme has led to the
best job-shop scheduling algorithms developed so far (cf. BRATLEY et al. [2] and
McMaHoN and FLORIAN [17]) - although also non-active schedules may be generated
by the branching scheme that is actually used (cf. FLORIAN et al. [8]) and some pre-
cedence constraints may be neglected in the one-machine problems.

In the second scheme branching takes place by adding cither (r, s) or (s, r) to D
(cf. CHARLTON and DEATH [3, 4]). The use of the above bound within this type of
scheme requires a one-machine algorithm that is able to handle precedence con-
straints. Since the latter branching scheme seems very flexible in the sense that early
branching decisions may settle essential conflicts within the problem, this approach
merits serious consideration (f. LENSTRA and RiNNooY KAN [15]), the more so since
the inclusion of precedence constraints turned out to influence the performance of
the one-machine algorithms only to a very moderate extent.

7 A practical application

A practical scheduling situation in which the one-machine problem occurs arose in
the context of the production of aluminium airplane parts. In a certain section of the
factory in question, the production is centered around a rubber press. The metal
pieces are first processed either by a cutting or by a milling machine. They next have
to pass a firting shop and subsequently have to spend a full working day in an annealing
furnace before being pressed into their proper shape by the rubber press. After passing
the fitting shop for a second time they are completely finished. The processing time
of each operation is known in advance.

There are nine operators available to process the jobs. One of them operates the
cutting and milling machines, six are working in the fitting shop and two handle the
rubber press; the annealing furnace requires no attention and can be assumed to
have an infinite capacity, i.e., it can handle any number of jobs at the same time.

Since the rubber press is a relatively costly machine, the objective was to choose
processing orders in such a way that the total completion time is minimized while
idle time on the rubber press is avoided as much as possible.

If we denote the operations of job J; by O;, with processing times p;, (r =1, ..., 5),
typical data for a week’s production look like those presented in the left-hand part of
Table 6. Note that some jobs, which are left over from last week, have completed
some of their initial operations.

We can model the above situation as a job-shop with four machines:
- M, represents the cutting and milling machines and has capacity 1;

- M, represents the fitting shop and has capacity 6;
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— M represents the annealing furnace and has capacity oo ;
— M, represents the rubber press and has capacity 1.

Each job has the same machine order (M, M,, M3, M,, M,).
Approaching the problem in a heuristic way, we note that

35

33 35 35
2 b =56, .Zl pi2 =170, ‘Zl Pia =48.5, _ZI pis = 202.

i=1

Clearly, all jobs cannot be processed on M; and M, within one week of 40 hours and
some overflow will result. It seems quite possible to schedule O;, and O,; directly
after the completion of O,;;, but some waiting time for the jobs before the processing
of O,, and O;5 seems unavoidable. It is expedient to schedule O;,; in such a way that
many jobs are quickly available for further processing, thereby taking p;, and p;s
into account.
These intuitive considerations led to the following heuristic method, in which C,,
stands for the completion time of O,,.
I. Schedule O;; on M, according to nondecreasing p;,/(p;s + p;s), thereby minimizing
the weighted completion time Y72, (pis+pis)Ciy (cf. SMiTH [21]).
2. Schedule O;, as early as possible on M, according to nondecreasing C;,.
3. Schedule O;; on M, according to C;;: = 8[C,,/8]+8([x] is the smallest integer
not less than x).
4. Schedule O;4, on M, by solving the one-machine problem as discussed in this
paper, defined by heads C;3, bodies p;, and tails p,s.
5. Schedule O;; as early as possible on M, according to nondecreasing C,,.

A schedule resulting from application of this heuristic to the problem data is given
by the completion times in Table 6; the corresponding Gantt-chart is shown in
Figure 4. The one-machine problem on M, was solved by algorithm MF (see section
4); the first application of algorithm S yielded an optimal solution.

The approach described above seems to be more generally applicable. Basically, it
involves the determination of critical machines in the production process, i.e., the
machines that are important from a cost minimizing point of view and on which the
processing orders have a crucial influence on the quality of the schedule as a whole.
The problem is then decomposed into problems involving one or more of those
critical machines; these problems may be solved by methods inspired by sequencing
theory. The resulting schedules are concatenated by suitable processing orders on the
other machines leading to an overall schedule of reasonable quality.

Our experience with this heuristic approach has been limited to the small example
above and our only conclusion would be that it seems to merit furiher experimentation.
We feel that through this approach the models of machine scheduling theory, which
may well correspond to an oversimplified picture of reality, may find application in
varying situations that do not fit the standard models.
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Table 6. A practical scheduling problem: data and results

Piy

U Pir Pi2 Pis Pia Pis PiatPis & Cix Cis C; Cis

1 4 4 8 2 6 .50 32 36 48 50 56

2 2 2 8 1 4 .40 22 24 32 33 38

3 1 | 8 | 2 33 6 7 16 27.5 32

4 - 2 8 5 6 - 0 2 16 22 32

5 6 2 8 2 7 .67 50 52 64 66 73

6 1 1 8 1 3 25 4 5 16 24 33

7 1 1 8 S 4 22 2 3 16 22.5 31

8 - 5 8 .5 7 - 0 5 16 18.5 27

9 1 1 8 5 4 22 3 4 16 23 34
10 - - 8 2 6 - - 0 8 14 20
11 1 1 8 5 2 .40 23 24 32 335 36
12 1 | 8 S 2 .40 24 25 40 45 47
13 1 1 8 | 2 33 7 8 16 28.5 34
14 2 1 8 1 4 .40 26 27 40 43 47
15 - 5 8 1 9 - 0 5 16 17 26
16 7 10 8 2 16 .39 20 30 40 42 58
17 - - - 1.5 6 - - 0 6.5 12.5
18 1 | 8 1.5 6 13 1 2 16 20 30
19 - - 8 2 8 - 0 8 10 18
20 6 6 8 3 6 .67 56 62 72 75 81
21 - - - 2.5 i2 - - - 0 2.5 I5
22 - 8 2 7 - - 0 8 12 19.5
23 - - - 2.5 11 - - - 0 5 16
24 2 2 8 1.5 3 44 28 30 40 4.5 415
25 - - - - 4 - - - 0 6
26 6 3 8 2.5 7 .63 44 47 56 61.5 68.5
27 - 8 1 5 - - 0 8 15 20
28 1 1 8 | 3 25 5 6 16 26.5 34
29 - - - 1.5 6 - - 0 8 14
30 1 | 8 1 2 .33 8 9 24 29.5 35
31 | | 8 1 2 33 9 10 24 30.5 36
32 - 3 8 | 7 - 0 3 16 18 25
33 6 6 8 3 7 .60 38 44 56 59 66
4 - 6 8 I.5 6 - 0 6 16 21.5 31
35 4 2 8 1.5 10 35 13 15 24 255 41

8 Concluding remarks

The computational experience reported in section 5 leads us to conclude that the
problem of minimizing maximum lateness on one machine can be satisfactorily
solved by the algorithms described in sections 3 and 4. If solution by implicit enumera-
tion is indeed unavoidable, there seems to be little room for further improvement.

It might be worth investigating if the ideas behind algorithms BS and MF could be
applied to other machine scheduling problems. An interesting candidate is the problem
of minimizing maximum completion time in a two-machine flow-shop with release
dates. This problem can be interpreted as a variation on the three-machine model
introduction in section 2: # non-bottleneck machine M, deals with the release dates
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and two bottleneck machines M, and M, constitute the flow-shop. Again, the case
in which all r; are equal can be solved in O(n log n) steps (cf. JOHNSON [12]), whereas
the general problem is NP-complete (cf. LENSTRA et al. [14]). Similar remarks apply
to the inverse problem, i.e. minimizing maximum lateness in a two-machine flow-shop.

The problem discussed in this paper finds application in taeory and practice, as
has been demonstrated in sections 6 and 7. Especially the heuristic approach suggested
in section 7 deserves further examination. It might be a suitable response to the
frequent complaint about the lack of successful praciical applications of machine
scheduling theory.
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