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There exist well-known necessary and sufficient conditions for a
distribution function to belong to the domain of attraction of the double
exponential distribution A. For practical purposes a simple sufficient con-
dition due to von Mises is very useful. It is shown that each distribution
function F in the domain of attraction of A is tail equivalent to some
distribution function satisfying von Mises’ condition.

Suppose X, X,, X, - .- are independent real-valued random variables with
common distribution function F. We say that F is in the domain of attraction
of the double exponential distribution (notation Fe D(A); A(x) = exp(—e™7))
if there exist two sequences of real constants {b,} and {a,} (with @, > 0 for
n=1,2,...)such that for all real x

max (X, X,, ---, X,)— b <

(N limn_,mP{ : 4 L7 A x} = exp(—e7).

n

It is convenient to use the symbol x, for the upper bound of X, defined by
x(F) = sup{x| F(x) < 1}.

Necessary and sufficient conditions for Fe D(A) are well-known (Gnedenko
(1943), de Haan (1970)) but rather intricate. The following relatively simple
criterion is due to R. von Mises ((1936) page 285):

Suppose F{(x) is a distribution function with a density f(x) which is positive
and differentiable on a left neighborhood of x,. If

) tim, ., < (1 — j")) 0,

then Fe D(A).
A distribution function F satisfying (2) will be called a von Mises function.
We shall prove

THEOREM. A distribution function F lies in the domain of attraction of A if and
only if there exists a von Mises function F, such that x(F,) = x(F) = x, and

(3) limztzo Tl_—_FL(?Z)_

REMARK. Relation (3) implies (see Resnick (1971) Lemma 2.5) that for the

=1,
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convergence of the distribution functions F* and F," the same norming constants
a, > 0 and b, may be used.

Proor. The if statement is an immediate consequence of Gnedenko (1943),
Théoréme 7.
Now suppose F e D(A) with endpoint x,. We define the sequence U, U,, - - - by

Ux) = 1 — F(x)
Upi() = §20 U (D) dt n=20,1,2,...,
By de Haan ((1970) Lemma 2.5.1 or (1971) Lemma 6 and Theorem 8) the distri-
bution function F, defined by F,(x) = max(0, 1 — U, (x)) belongs to D(A) if F,_,

does. In particular, the integral above converges. Then F, ¢ D(A) for n = 0,
1,2, ... and by de Haan ((1970) Theorem 2.5.2 or (1971) Theorem 10) we have

4 ‘immoﬂ“g);%)ﬂﬁx) =1 n=1,2,...

We now define the function U, on (— oo, x,) by
Uy(%) = {U(0)P{U)} .
Then U, (x) is twice differentiable on a left neighborhood of x, and

d U, U. 3_4U,U,U
5 “logU, = —4>2 4 323 = 2 — "%l Yy
() dx B Ux u, U, U, U
Consider
A
3 _4U,U U, d .
dx

By (4) the denominator is asymptotic to — 1 as x 1 x, and both (d{dx)U, U, and
U, U, (dfdx)(3 — 4U,U;*U,) vanish as x 1 x,. Hence

(6) lim, . df&(?&?)) —0.

Observe that
Uo — yo_Uz N <£f17U3 )2 . (_Uz U4 >3 . U* .

U A U
Hence by (4) we obtain
. Uy(x)
7 lim_, 202 — |,
" T UL)

Then lim,,, U,(x) = 0, and since by (5) U, is decreasing on a left neighborhood
of x,, there exists a twice differentiable distribution function F,(x) which coin-
cides with 1 — U,(x) on a left neighborhood of x,. F, is a von Mises function
by (6) and satisfies (2) by (7). []

CoROLLARY. A distribution function F belongs to D(A) if and only if there exist
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a positive function ¢ satisfying lim_,, o(x) = 1 and a positive differentiable function
¢ satisfying lim,,, ¢'(x) =0 such that

dt
I—F(x)zc(x)-exp{—sf_m_ _.} for x < x,.
o) °
This improves the representation theorem (Theorem 2.5.3) in de Haan (1970).
Proor. Set
— Fu(x)
P(x) = ———* =2
F,/'(%)
in a left neighborhood of x,.
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