Insurance: Mathematics and Economics 52 (2013) 286-299

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Pricing inflation products with stochastic volatility and stochastic interest rates

Stefan N. Singor*%*, Lech A. Grzelak”9, David D.B. van Bragt¢, Cornelis W. Oosterlee %¢

 Ortec Finance, Ortec Finance Research Center and Insurance Risk Management, Boompjes 40, 3011 XB Rotterdam, The Netherlands
b Rabobank, Derivatives Research and Validation Group. Jaarbeursplein 22, 3521 AP, Utrecht, The Netherlands

© Aegon Asset Management, AEGONplein 50, 2591 TV, Den Haag, The Netherlands
9 Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

¢ CWI - National Research Institute for Mathematics and Computer Science. Science Park 123, 1098 XG Amsterdam, The Netherlands

ARTICLE INFO ABSTRACT

Article history: We consider a Heston type inflation model in combination with a Hull-White model for nominal and

Received June 2011 real interest rates, in which all the correlations can be non-zero. Due to the presence of the Heston

Received in revised form dynamics our derived inflation model is able to capture the implied volatility skew/smile, which is present

Zi'i;;':’eze; jzfnljary 2013 in the inflation option market data. We derive an efficient approximate semi-closed pricing formula for
two types of inflation dependent options: index and year-on-year inflation options. The derived pricing

JEL classification: formulas allow for an efficient calibration of the inflation model. We also illustrate our approach using

€02 ' a real-life pension fund example, where the Heston Hull-White model is used to determine the value of

c13 conditional future indexations.

c58 © 2013 Elsevier B.V. All rights reserved.

c63

G12

G13

G22

G23

Keywords:

Heston Hull-White model

Inflation

Affine diffusion processes
Monte Carlo simulation
Indexation provision
Pension fund

1. Introduction

Inflation-dependent derivatives are increasingly important in
financial engineering. As a consequence, inflation' markets are
becoming more active, liquid and transparent. Broker volumes
increased substantially from late-2002, driven by a rise in the need
to hedge, for example, retail products. Inflation derivatives have
been traded for over a decade starting in the UK in the early 1990s.
Since 2000, the market for inflation derivatives has seen a rapid

* Corresponding author at: Ortec Finance, Ortec Finance Research Center and

Insurance Risk Management, Boompjes 40, 3011 XB Rotterdam, The Netherlands.
E-mail address: stefan.singor@ortec-finance.com (S.N. Singor).

1 Inflation is defined as a rise in the general level of prices of goods and services
in an economy over a certain period of time (usually one year). The price level is
usually measured by a so-called Consumer Price Index (CPI), which reflects the
actual price level of a basket of typical consumer goods. The inflation rate is then
defined as the percentage change of the CPL

0167-6687($ - see front matter © 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2013.01.003

growth in volumes and in types of products across various markets
and linked to various domestic and regional inflation indices, such
as, French CPI, Eurozone HICP, US CPI, etc. (see Fig. 1.1).

Many pension funds, (life) insurance companies® and banks
trade these inflation-dependent derivatives. Pension funds are, for
example, interested in the conditional future indexation of pension
rights, which can be viewed as an exotic derivative depending on
the CPL

Modeling derivative products in finance often starts with the
specification of a system of stochastic differential equations (SDEs).
Such a SDE system consists of economic state variables like stock

2 For (life) insurance companies it is important, due to (among others) regulation
and new accounting standards, to value their liabilities, which contain so-
called (inflation dependent) ‘embedded options', as market consistent as possible.
Embedded options are rights in insurance policies or pension contracts that can
provide a profit to policy holders but never a loss (see for more information, for
example, van Bragt and Steehouwer, 2007).
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Fig. 1.1. Historical overview of CPIs and inflation rates.
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Fig. 1.2. Market implied volatilities of (Euro) inflation indexed options as of
September 30, 2010.

prices, inflation, nominal and real interest rates and volatility. By
imposing a correlation structure (between the Brownian motions)
on this system of SDEs one can define so-called hybrid models,
and use them for pricing exotic derivatives, see, for example,
Grzelak and Oosterlee (2011), Grzelak and Oosterlee (2010) or van
Haastrecht and Pelsser (2011).

The well-known Fisher (1930) equation defines a relation
between the nominal and real interest rates on the market and
the break-even inflation rate.* Therefore, the use of stochastic
nominal and real interest rates is crucial for an accurate inflation
pricing model. Furthermore, as it turns out, according to Kruse
(2007), there is a significant skew/smile present in the inflation
option market data in the sense that the implied Black-Scholes
(BS) volatilities are not constant for different strike levels and
maturities (like in the stock or currency option markets). In Fig. 1.2
the market implied volatility smile is clearly visible.

Because of this smile/skew effect in the inflation option market
data, the Heston (1993) model is often used in practice, as this
model is capable of capturing this effect.* The variance process of
the CPI is then modeled by a so-called Cox-Ingersoll-Ross (CIR)
process (see Cox et al., 1985). Recently, much attention has also

3 The break-eveninflation rateis the yield spread between nominal and inflation-
linked bonds and is a fundamental indicator of inflation expectations.

4 The Heston modelis for example well established for pricing stock and currency
derivatives, however, not yet for pricing inflation derivatives.

been devoted in the literature to stochastic volatility driven by a
Schébel-Zhu process (see for example van Haastrecht and Pelsser,
2011) in combination with stochastic interest rates to model the
CPL. In van Haastrecht and Pelsser (2011) also a special case of the
Heston model in combination with stochastic interest rates was
investigated, where some correlations were assumed to be zero.
However, the case of a full correlation structure is of particular
interest in this article.®

In this article we model the CPI by the Heston model, coupled
with stochastic nominal and real interest rate processes that are
driven by the one-factor Hull-White model.® Our focus is on the
fastvaluation of inflation index cap/floor options and year-on-year
(YoY) inflation cap/floor options,” because for these products the
speed of valuation is crucial for calibration. We derive an efficient
pricing engine for these options, so that calibration of our inflation
model can be done relatively fast. The key to obtaining the pricing
formulas is the derivation of the discounted log-CPI characteristic
function (ChF) under the T-forward measure. Since the ChF to
be derived contains expressions which have to be evaluated
numerically, efficient numerical techniques are developed as well.

This paper is organized as follows. In Section 2 we discuss the
coupled inflation-interest rate model and derive the model under
the T-forward measure. In Section 3 we discuss the valuation
of two inflation-dependent options: inflation index caps/floors
and YoY inflation caps/floors. In Section 4 we present numerical
results, which include calibration results. We also devote attention
to the comparison between the Heston and the Schobel-Zhu
model. In Section 5 we illustrate our approach using a real-life
pension fund example, where the Heston Hull-White model is
used to determine the value of conditional future indexations. We
conclude in Section 6.

2. Specification of the inflation model

We consider the Heston model in which interest rates are
modeled by the one-factor Hull-White interest rate model
(see Brigo and Mercurio, 2006, pp. 71-80) to model the CPl. We
call this inflation model the Heston Hull-White inflation (HHWi)
model.

5 It turns out that these correlation parameters can be influential when pricing
exotic derivatives.

6 A Hull-White model is a special case of a (multi-factor) Gaussian model
(see Brigo and Mercurio, 2006, Chap. 3 and 4).

7 yoy cap/floor options are defined as a series of forward starting call/put options.
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2.1. The Hull-White interest rate model

Term structure models, such as the Hull-White (HW) model,
describe the evolution of the interest rate curve through time.
Modeling the stochasticbehaviorof the interest rate term structure
is particularly important when pricing interest rate-dependent
derivatives. The HW model is an example of a ‘no-arbitrage’ model,
because it is designed to exactly fit today’'s term structure by
producing an interest rate behavior which is consistent with this
term structure at all times.

Although the HW model allows for the occurrence of negative
rates, it has many attractive features as well. For one, because of the
underlying Gaussian distributions it is possible to derive explicit
formulas for a number of financial instruments, like interest rate
derivatives and bond prices. The different model parameters also
provide flexibility and give insight into the dynamic behavior of the
term structure.

The nominal and real interest rates, r, and r;, under the
risk-neutral nominal and real economy measures Q, and Q,,
respectively, are modeled by one-factor HW models:

dri(t) = (8(t) — ar(t))dt + ndw"(t),

where q; is a mean-reversion parameter and I a volatility param-
eter with | € {n, r}. The time-dependent function §(t) is deter-
mined by the nominal/real initial term structure as observed in the
market via:

n(0) = 0, (2.1)

afi(0,
a() = f’gt 9 4 a0, 1)
+ i ‘ll - e_z‘”", le{n,r}. (2.2)
20{

The time-dependent function fi(t, T) (0 < t < T) denotes the in-
stantaneous forward curve at time t for maturity T. See Brigo and
Mercurio (2006, p. 73) for details.

Nowadays, the quadratic Gaussian and Libor Market Models
(among others) are becoming increasingly important to model
interest rates (see for example Bloch and Assefa, 2009; Bloch,
2009; Andersen and Andreasen, 2002; Grzelak and Oosterlee,
2010), because they can model an interest rate smile. However, the
application of these models is left for our future work.

2.2. The Heston Hull-White inflation model

We model the evolution of the CPI, denoted by I, and the
coupled stochastic variance factor v by the Heston model under
the nominal economy spot measure,® Q, (where the nominal and
real interest rates follow a Hull-White model, see Eq. (2.1)). The
dynamics are given by:

>« I
P di(t) = (ra(t) — re(e))I(t)dt + . v()I(t)aw!(t),
1(0) = 0, 0 (2.3)
dv(t) = K(V — v(t))dt + o, v(t)dw"(t), v(0) =0,
where K is a mean-reversion parameter, 0, a volatility parameter
and ¥ denotes the long-term variance level. The inflation rate is
defined as the percentage change of the CPI, i.e. :—8 —1for0 <

el ¢

Remark. e An analogy exists between our inflation model and
the modeling of currencies, which is also remarked by Jarrow

8 In the nominal economy this measure is generated by the nominal money-
savings account, M, (t), which evolves according to Eq. (2.4).

and Yildirim (2003). It turns out that the inflation model can
be used to model currencies by replacing the real interest
rate by the foreign interest rate. The CPI then denotes the
exchange rate. See for example Grzelak and Oosterlee (2010)
which employs a very similar model as our inflation model to
model the exchange rate.

e We note that the instantaneous inflation, (r,(t) — r.(t)) dt, in
Eq. (4.4) is equal to the instantaneous break-even inflation,
which is an important feature in our model.

e Seasonality in inflation rates can become important when
modeling quarterly or monthly inflation rates. One way to
model seasonality is to assume that we have already modeled
the seasonally adjusted CPI, I(t), using our inflation model. We
can then add a seasonal component, say &(t), to obtain the CPI
value with seasonality.“). Different approaches can be used to
estimate the &(t) function, but this is outside the scope of the
present article.

We now need to determine the process for the real interest
rate in the nominal economy. Therefore, we apply a change of
measure (i.e. change of numéraire) from the risk-neutral real
economy measure, Q,, to the nominal economy measure, Q,. Brigo
and Mercurio (2006, p. 46) show that this change of measure
is equivalent to a change of measure of the numéraire M, (t) to
M, (t)/1(t), where My(t) and M, (t) are money-savings accounts
in the nominal and real economy, respectively, which evolve
according to:

dm(t) = my(t)r(t)dt, withle {n,r}. (2.4)
By applying the two-dimensional version of It6’s lemma we derive
the following SDE of the numéraire M, (t)/I(t) under Q,:
0 | 0 n
Ma(t) " My(t)
ey 1(t) -
M, (t)" O
I(t)
Using Brigo and Mercurio (2006, Prop. 2.3.1), we then obtain the
following real interest rate dynamics under Q;:
[ —
dr(t) = (8.(t) — ;0 V(¢)
—a,r(t))dt + ndwW™(t),

r.(t)dt

v(t)dw'(t), 1(0) = 0.

r-(0) = 0.

The correlation structurg between the Brownian motions dW, =
dw!, dwy?,dw,", dw;" " is defined by the following symmetric
instantaneous correlation matrix:

= )
1 pl.v pl,n pl,r
aw, (aw,)" =& 1 P g::) d. (2.5)
: 1

2.3. Inflation dynamics under the T-forward measure

To value inflation-dependent derivatives it is convenient to
use the inflation model under the T-forward nominal economy
measure (instead of the spot measure), which we denote by Q,TI (see
for example van Haastrecht et al., 2009). This measure is generated
by the nominal zero-coupon bond, P, (t, T). In other words, under
the T-forward measure the forward CPI, I, is a martingale, i.e.

Pu(t, T)E" [Ir(T)|F ] = Py(t, T)Ir(t) = P (¢, T)I(t), (26

where P,(t, T) and P,(t, T) are nominal and real zero-coupon
bonds, respectively. The inflation model under this T-forward
measure is given in Proposition 2.1.
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Proposition 2.1. The inflation model under the T-forward nominal
economy measure Q: , with a full matrix of correlations, is given by:
r< O

Ld!r(t) =Ir(t) . V(£)dWj (t) + By (t, T)dW] (t)
|

D—.
dv(t) = K(V —v(t)) — OuMupPv,aBa(t, T) v(t) dt

+0, V(t)dw(t),

where Iy denotes the forward CPI under the T-forward measure. The
interest rate processes are given by:

l‘drnm — f0- ) - aura() de + W o),
dr,(t) = &(t) —pn V(b
n

—nB.(t, T)dwy(t) ,
v

— M} Pn,rBalt, T) — a,r(t) dt + n.dwy'(t),

where the timerdependent function §(t) is given by Eq. (2.2) and
By(t, T) = al, 1—e a0 forle(n,r).

The dynamics of the forward CPI are simplified by changing to
logarithmic transformed coordinates, where we define x;(t) =
log Ip(t)°:

®]

dxr(t) = —; v(t) + ngBA(t, T) + n?B2(t, T)

0—— [ —
+2py,aMBa(t, T) v(t)—?iou,rr}Br(t,T) v(t)
— 2P0, MM Ba(t, T)B:(t, T) dt + Dmdw;(t)
+ MBa(t, T)dWy (t) — nyB,(t, T)dWr(t).

Proof. The general outline of the proofis as follows. From Eq. (2.6)
it follows that
P.(t, T)

I (t) '(t)p,,(t, 0’
where the dynamics of I(t) are given in Section 2.1. The dynamics
of Ir(t) are obtained by applying Itd’s lemma to Eq. (2.7) in
combination with the dynamics of I(t) and the dynamics of the
real and nominal zero-coupon bonds, P.(t, T) and P,(t, T), under
the nominal economy measure (Q,). Expressing the full model in
terms of independent Brownian motions simplifies the derivation
of the Radon-Nikodym derivative (see Brigo and Mercurio (2006,
pp. 45 and 911)). By computing the It6 derivative of this
Radon-Nikodym derivative the Girsanov kernel for the transition
from Q, to Q! is derived and finishes the proof. For the full proof
we refer to Grzelak and Oosterlee (2010, Appendix A). |

(2.7)

Remark. From Proposition 2.1 we note that under the T-forward
nominal economy measure Q! the forward CPI does not
depend'? directly on the real and nominal interest rate processes,
r.(t) and r,(t), but only depends on the Brownian motions dW™ (t)
and dW™ (t).

3. Pricing formulas

In this section we discuss the pricing of two inflation dependent
options. The pricing of inflation index options is discussed in

9 Note that this transformation is well defined since 1(0) > 0and, thus, I+(0) > 0.

10 Note that actually the forward CPI depends on all the Brownian motions since
the correlations can be non-zero. The key is the independence of the state variables.

Section 3.1 and the pricing of YoY inflation options is discussed in
Section 3.2. In Section 3.3 we show numerical results of the derived
pricing formulas of forward starting options.

3.1. Inflation indexed options

In this section we briefly discuss the pricing of inflation indexed
cap and floor options. The inflation model, which we use for option
pricing, is given in Section 2.1 under the measure Q, and by
Proposition 2.1 under the measure Q!.

The price of an inflation indexed cap/floor option maturing at
time T with strike level'' K := (1 + k)" (the expression (1 + k)T
means 1 + k to the power T) written on the inflation index (the
CPI) (with W= 1 for a cap option and W= —1 for a floor option) is
given by

0 *
max (W(I(T) — K), 0) %
Mn(T) t o (3])

where M, (t) indicates the nominal money-savings account, which
evolves according to Eq. (2.4). Since the stochastic expressions
M,(T) and max (W (I(T) — K), 0) are not independent, the compu-
tation of the expectation under the Q, measure is rather involved.

It turns out that the complexity of the problem is greatly
reduced under the T-forward measure. We then get the following
pay-off structure:

m(t, T,k w) = M,(t)E®

Mt T, k, W) = P, (t, T) E% [max (W((T) —K),0)|F]. (32)

From the two pay-off structures in Egs. (3.1) and (3.2) we note that
the pay-off structure under the T-forward measure has a simpler
form since the price of the pure discount bond at time t = 0 is
directly observable in the market.

M (t, T, k, w) in Eq. (3.2) can also be formulated in integral form:

— - | LI
M(t, T, k,w) =P, (£, T)  max WK &1 ,0 b x)dy, (33)
R

wheye WX) denotes the, projgability density function of y =

log '19 given x := log b% .

Fourier-based methods'> can be used to compute these
integrals in the case that the density function is not known
in advance. These methods rely on the existence of the ChF.
The derivation of the ChF for this particular option is discussed
in Grzelak and Oosterlee (2010). We denote the corresponding
approximation of the full-scale HHWi model by HHWi-i. For this
model we can employ Fourier-based methods for efficient pricing
of inflation index options.

3.2. Year-on-year inflation options

In this section we discuss the pricing of YoY inflation cap/floor
options by describing the ﬁeneral pricing methodology.” In
general, a cap/floor option, B is defined by a series of so-called
caplet/floorlet options, FH i.e:

0o ;
er t,T, Tv k) = ﬁtw! t, Tk—ll Tk! k)r
k=1
where W = 1 for a cap/caplet option and W = -1 for a
floor/floorlet option. Furthermore, T := Ty — Ty—1 defines the tenor

n The strike level k is (market data)input. More information can be found in Oman
(2005, p.5).

2 See for example Carr and Madan (1999) and Fang and Oosterlee (2008).
13 More information can be found in Oman (2005, p. 5).
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parameter with Ty = 0 and T, = T. The integer n denotes the
number of caplets/floorlets in the cap/floor option. This integer is
dependent on the tenor parameter, which is in practice often a
fixed interval. The strike level is given by k. So, the pricing of a YoY
inflation cap/floor option reduces to the pricing of a series of YoY
inflation caplet/floorlet options.

The price of a YoY inflation caplet/floorlet option starting at
time Ty, (0 <t < T,_,) and maturing at time Ty (T,_; < T),
written on the inflation index, is given by

Elw, t, Tk_|,Tg '-()

max W

.
J(I;Tk) (k+1) , ]
t

_ Qi M
Mn(t)E Mn(Tk)

where M, (t) indicates the nominal money-savings account, which
evolves according to Eq. (2.4).
By changing the measure from Q, to the Ty-forward measure,

Q:". with k = 1,...,n,and by using K* := 1 + k, we arrive at the
following pricing problem:

W t, Tee1, T k

m k—1 kD) o ¢ - -
=P,(t, ,)E™ max w ﬂ—K* 0
— P\, 1) ’(Tk_l) ’ t

Since the Ty-forward CPI, Iy, (t) = PeltTi) 1(¢), under the T, -forward

Pp(t, Ty)
measure is a martingale with numéraire P,(t, Ty) and I, (Ty) =
Elw £, Ty, Tii k) = Pa(t, TE™
0
P(Ti—1, Ty)) I (Ti)
The dynamics for Iy, (t) under the T,-forward measure are given by
Proposition 2.1.

X max W

I(Ty), we can simply write:
LI | % .
—K* ,0 .
PulTi1, To) I (Tis) ‘

Remark. For numerical experiments we make use of the put-

call parity to price options of call type, so in this case caplet

options. In other words, when for example a floorlet option,
—1,t,T1, Tz, k), with strike k and times 0 < t < T} <

T, is computed, the price of the corresponding caplet option
1,t, Ty, Ty, k) is computed by:

R, 67,12,k = B-1,6, T, 2, k) + Palt, TP (T, T2)

—Pu(t,T2) T+k ,
where P, and P, are nominal and real zero-coupon bonds,
respectively.

As already mentioned, to apply Fourier-based pricing methods we
have to derive the (forward) ChF belonging to this option, which is
the topic of the next subsection.

Derivation of the (forward) characteristic function
By setting'*

Pr(Ti—1, i) Ir(Ti)
Pr(Ti—1, Ti)) Ir(Ti—1)”
we perform the log-transformation:
X(Teer, Ty)) = logf((Tk 1 i)
Pr(Tie—1, T) ’Tk(Tk)
Py(Ti—y, Ti)) I, (Tir)
= logly (Ti) — log I, (Ti—1)
+ log Pi(Ti—1, Tic) — log Pu(Ti—1, T).

X(Ty—1, i) = fork=1,...,n

= log

14 We note that the same approach, in deriving the forward ChF, is used as in
van Haastrecht and Pelsser (2011). For convenience, the notation is analogue to the
notation in van Haastrecht and Pelsser (2011).

We derive the forward ChF for the process x(Ty_1, Ty):

¢ *
@vov (u, t,x(T—1,, Tie)) = E™ e'm(r""'n‘)$: . (3.4)
By substitution we have:

Pyoy (u, t X(Tk 1 Te)
_ET oM  logir, (T)—log1r,(Te_1)-1og P (Tx_1,T0)—log Pa(Ti_1,T¢) 3

Now, by iterated expectations we find:
Py (u, L, X(T l:Tk))
— T g gt logl;k(Tk) log Iy, (Te—1) +Hog Pr (Tk—1.Tk)—log Pu(Ti— lTk]‘% e 3

Since Ir(Ti—1), Pa(Ti—1, Ti) and P, (Ty_y, Ty) are I,_, measurable,'
we can write:

(pYoY(u; tbx(Tk—li Tk))
v

— Tk o™ log Iy (Ty—q)—log Pr (Ty 1, T )+log Pn(Ty—q,Tg)

@ 0>*
XET" eruloglrk(Tk)$k_] 3(

The last expectation equals the characteristic function for log Iy,
(Tk), ie.

0‘ $ 0
@ (u, log Ir(Ty), Ty, T) = E™ el g,

In Grzelak and Oosterlee (2010) an affine approximation is found
for this ChF, i.e.:

= A Te—Te1)tiulog Iy (T )+C(u, Te=Ti1)V{Ti1) (3.5)

with functions A(u, T) and C(u, T) given by Egs. (3.6) and (3.7).
By subscripts (like the 1 in Eq. (3.5)) we indicate subsequent
approximations.

Remark. In Grzelak and Oosterlee (2010, Chap. 2.3) it is noted
that the Kolmogorov backward partial differential equation, for
which @ in Eq. (3.4) is the solution, contains non-affine ,/v-terms,
so that finding the solution is nontrivial. Approximation of these
/V-terms by a linearization technique leads to an approximating
closed-form solution of the ChF.

The functions A(u, T) and C(u, T) in Eq. (3.5) are given by:

0,

Ay, T) = (KY = Py, G P(s)B, (s)(1 — iu)
0
- Q),r%ﬂ%)rBr(S))C(S)dS
4+ +iu)  W(s, §(s))ds, (36)
0
CwD=——""  _poiu—d (3.7)
' o~ Ov(] ge_d-‘-) p’,\) v '’ .
where ¢(t) :=E ,/\)M .'Gd :=D (K — pr,v0yiu)? — oZiu(iu — 1)
andg = %. Furthermore,
W(t, d(t)) := (o, -nB:(t, T) — Pr,aMuBa(t, T))(t)
+ Pn,r MM Ba(t, T)B,(t, T)

15 gee Brigo and Mercurio (2006, Appendix C). .

16 |n Grzelak and Oosterlee (2011) approximations are proposed for E \/ (),
which are also used in this article for the numerical experiments.
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The ChF, @, is then approximated by:
(p’YoY 1

—Elk ¢ —iulog by (Ty_q)+iulog Pr(Ty_y,Ty)—iulog Pn(Ty I,Tk)(p $

Due to Eq. (3% we have:
Qvov,1 = ETk @Al Tk =T 1) +Cu, T —Ti1)V(Ti—1) g i log P (Tie—1,Tie)

x eiu logPr(kaka)$l’_ (38)

As the underlying nominal interest-rate model is the Hull-White
model, the zero-coupon bond (ZCB) P,(Ty_1, Ty) is given by, see
Brigo and Mercurio (2006, pp. 75-78):

Po(Tiy, Ty) = e (T 1Tk =BT, Tidri (Tie—1) (3.9)

with analytically known functions A, (Ti—1, Tx) and Bn(Ti—1, Tk).
However, since we work under the nominal economy measure
Q,,, the dynamics of the real interest rate are not affine and,
as a consequence, the dynamics of P, are not affine. Hence, the
derivation of the dynamics of P; is nontrivial.

By approximating the variance process under Q, (see Sec-
tion 2.1) by its expectation, the process of the real interest rate,
conditional on F, is affine and normally distributed. Following the
approach as outlined in Brigo and Mercurio (2006, Chap. 3.3) we
derive:

P:(0, Ty)
P(0, Ti-1)

+ A (Tie1, Ti) — —rf (1—e
4a,
x B(Ty—1, Ti)?),

ATy, Ty) = log (B (Ty—1, Ti)f (0, Tey)

—2ar T )

1 | .
B(Ti_1, Ti) = — 1—e @TTn)

ar

where

@0,
AT, i) = E  V(T) p";—r}(Tk — Ty
- BT(Tk—]l Tk) - Bn(Tk—ll Tk)

+ (] _ e—(an‘fﬂr)(Tk—Tk,]))).

a, + a,
By substituting the nominal and real ZCB expressions into the
expression in Eq. (3.8) the approximating ChF in Eq. (3.8) is now
given by:
Broy.1 = et (ArTer T—An(Tie1, 7)) AW T Ti1)

x ETk eC(U-Tk—Tk—l)V(Tk—I)

% er(Bn(kaI.Tk)fn(kal)—Br(kal.Tk)rr(kal))$l ¢ (3.10)

The Laplace transform in Eq. (3.10) is of a very complicated form.
In order to find a closed-form solution for Eq. (3.10), additional
assumptions of independence between processes are required.

A basic approximation to Eq. (3.10) is given by:
Qvoy2 = ef"(Ar(Tk 1T An(Te 1,Ti) )+A(W =T 1)

BT @€l Tk=Tie1)V(Tk-1)

&

x ETk eiu(Bn(Tk—l-Tk)fn(Tk—l)—Br(Tk—’l'Tk)rr(Tk—l))$l . (3.11)
The approximation above consists of two expectations under
the T,-forward measure. Since the nominal and real interest
rates, rn(Ti—1) and r(Tx—1), are normally distributed, the sum of
these two normally distributed random variables is also normally
distributed and the ChF of this sum can be found analytically.
Furthermore, since V(T,_;) is noncentral chi-square distributed
the corresponding ChF can also be found analytically. Result 3.1
and Lemma 3.1 provide these solutions.

Result 3.1. For given times 0 < s < t < T, nominal and real
interest rate processes r, and r;, as defined in Proposition 2.1, and
Y(t, T) := Ba(t, T)ra(t) — B:(t, T)r:(t), the following holds:

g7 eiuY(l,T)IFS‘
0 1 n
~exp uE[Y(t,T)|F]— iuZVarT (Y(t, T)|Fs)

where r, evolves under Q! according to Proposition 2.1. To ensure
that the real interest rate process is normally distributed under Q”,
we assume that it evolves according to
0 ql D
dr.(t) = 6(t)—p,nE V()
n

— MNP, Ba(t, T) — aro(t) dt + n.dwWy' ().

The random variable Y(t,T) is then normally distributed with
expectation and variance given by:
E'[Y(t, T)|Fs] = Bu(t, T)E" [r,(t)|Fs] — B.(t, T)E" [r.(t)|F],
Var' [Y(t,T)|Fs] = B(t, T)Var' [r,(t)|F]

+B(t, T)Var' [r,(t)|F,]

— 2B,(t, T)B,(t, T)CoV' [ry(t), ro(t)IF ],

with
Cov’ [ra(t), r(t)|Fs] =

p,,,,D Var® [ra(t)|Fe]Var® [r(t)|F].

Proof. By approximating the variance process under Q, (see
Section 2.1) by its expectation the process of the real interest rate,
conditional on F, is normally distributed.

Next, since the random variable Y(t,T) is defined as a
(weighted) sum of normally distributed random variables,"
Y (t, T) is also normally distributed. The characteristic function for
any normally distributed random variable X, X ~ N(J, 0) with
expectation W and variance 0 is given by

0
Ox(u) = E[exp(iuX)] = exp iup — ! ou?
The proofis finished by the appropriate substitutions.

ngma 3.1. Fo$00< s < t < T the Laplace transform of
ET ef(“ T-Ov() P s given by:

KV

¢ 2
er Yectwr-owe, %y 5,6, 1)
| .
cexp @lu,s, t, T)e M=)C(u, T —t)v(t) ,

(3.12)
provided that
1
Y(u,s,t,T):= o . > 0.
1-2L 1—e =) C(u,T—t)

The function C(u, T — t) is given in Eq. (3.7).

Proof. Since the variance procgss v(t), gonditional on Fy, is dis-
) qf —K(r—s)
tributed as a constant ¢ =

square distribution with d =

1—e
ym times a noncentral chi-

4KV
) degrees of freedom and

. —K(t—s) . .
non-centrality parameter A := o—ﬁ%;. the proof is straight-

forward, see Cox et al. (1985). |

7 rn(t) and r;(t), conditional on F, are normally distributed Brigo and Mercurio
(2006, Chap. 3.3.1).
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We denote the approximation in Eq. (3.11) of the full-scale HHWi
model by HHWi-YoY. For this model we can employ Fourier-based
methods for efficient pricing of YoY inflation options.

3.3. Numerical experiment: valuation of year-on-year inflation
options

To analyze the performance of the approximations introduced
for the YoY inflation options we compute the initial (t = 0) implied
Black-Scholes volatilities for different strike levels using the full-
scale HHWi model and the HHWi-YoY model. This is done by
inverting the characteristic function using Fourier-based methods.
We consider two test cases:

e Case I: the forward starting option starts at T; = 4 and matures
atT, = 5.

e Case II: the forward starting option starts at T; = 29 and
matures at T, = 30.

For the generation of risk-neutral (RN) scenarios we make
use of an advanced simulation scheme including exact simulation
(also called unbiased simulation) for the interest rate and variance
processes (see, for example, Andersen (2007) and Broadie and
Kaya (2006)). To reduce the variance of the MC estimator we use
100.000 scenarios in combination with two variance reduction
techniques (i) antithetic sampling and (ii) Empirical Martingale
Simulation (EMS) (see respectively Glasserman (2004) and Duan
and Simonato (1995)).

As the base parameter setting we use the parameters as
specified in Eq. (3.13):

K =0.3,
o, =0.6,

v(0) = 0.04,
Prv = -0.7,

D =0.04,
(3.13)

with interest rate volatilities , = 0.0089,n. = 0.0084 and
correlations O,, = Pi,r = Pvn = Pv,r = 0and P, = 0 (unless
stated otherwise). To test the pricing accuracy we use an extreme
test case, i.e. the Feller condition, 2KV > @7, is not satisfied, so
that inflation volatilities can attain zero. These parameters are not
calibrated to market data; this topic will be discussed in Section 4.

First we investigate the sensitivity of the pricing of YoY
inflation options to the correlation parameters by performing a
MC simulation. We therefore vary the correlations p;,, and Py .
The results for cases I and Il are presented in Fig. 3.1(a) and (b),
respectively. Observing Fig. 3.1(a) and (b) we conclude that for
this parameter setting the correlation parameters p;,, and Py, are
influential regarding the change in implied volatility.

Next, we perform the same experiment using the HHWi-YoY
model. The results for cases I and Il are presented in Fig. 3.2(a) and
(b), respectively.

Fig. 3.3(a) and (b) show the difference in implied volatility
between the full-scale HHWi and HHWi-YoY model.

From Fig. 3.3(a) and (b) we can conclude that the maximum
error for cases I and Il is equal to 0.6% point and 0.4% point in terms
of implied volatilities, respectively. In both cases we considered
T = 1, which is common when YoY forward starting options are
considered.

4. Calibration results

Calibration is an optimization procedure to estimate the model
parameters in such a way that (relevant) market prices are
replicated by the model as good as possible. Hgnce, a calipration
procedure consists of the computation of ming ||C — a , where
C denotes the market price, Bthe model price, Q the set of
parameters (including constraints) and || - | some norm. In our
case market data are available for pairs T, K , with T denoting the

option maturity and K the strike level. For the norm we take the
Eucligean one, se)that calibration inour case consists of computing:

min | C - &,

>y o
f @0 > —
= n})inQ %(T,'. k) —@r;, k) Py (4.1)

j=1 k=1

where we use p = 2. We also note that the p-norm of the difference
of market and model implied volatilities could be minimized.
However, since then in every iteration step of the optimization
procedure an extra numerical inversion has to be performed, which
may lead to numerical difficulties, this is not the method of choice.
Market prices of plain vanilla options are often used for calibration,
because this data is available.

Remark. In the calibration procedure it is possible to incorporate
both types of inflation options in the calibration procedure. This
is easily done when we specify the market option price C (and,
thus, also the corresponding model value ¥4 as an inflation indexed
cap/floor or a YoY inflation caplet/floorlet with corresponding
strike level and maturity. It is also possible to assign different
weights to different calibration points.

The minimization problem in Eq. (4.1) is solved iteratively using
a numerical minimization algorithm. We first sample random
starting points and then we refine this solution using the well-
known Levenberg-Marquardt least-squares algorithm, which is a
local minimization method. This procedure is repeated and the
best solution is kept.

In this section we show calibration results for the full-scale
HHWi model (see Section 2.1). The calibration procedure used is
the following:

1. We calibrate the one-factor Hull-White interest rate model
to interest rate options, like swaptions and/or interest rate
cap/floor options, see Brigo and Mercurio (2006, Chap. 2 and 3),
to determine the interest rate model parameters a,, a,, N, and
N (see Section 2.1).

2. Conditional on the parameters of the interest rate model, we
calibrate the inflation model to inflation indexed cap/floor
options andfor YoY inflation caplet/floorlet options with
Fourier-based methods.

Remark. For the correlation parameters we perform the following
calibration:

1. The correlation parameters between ‘observable’ variables,
ie.p,n = 0.36, o, = —0.29 and P,,, = 0.78 are determined
using historical information'® in the sample period 1985-2009.

2. The correlation parameter P, is determined in the calibration
process. Appropriate bounds for this parameter are used in
the calibration process so that the correlation matrix remains
positive definite.

3. The correlation parameters, P, and p,,, are derived from a
conditional sampling method.

Because of the procedure mentioned above, we start the calibration
with the following correlation matrix, which is defined in Eq.(2.5):

Q ) 0
1 Py P P 1 py 036 —0.29

¢ 1 n . ¢ 1 n T
SO S RL ) BRE)

1 . . . 1

where the correlation parameters v, Py, and Py, are to be
determined.

18 This is industrial practice.
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Fig.3.3. Difference between the HHWi and HHWi-YoY model.
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Fig.4.1. Calibration results of interest rates.

The inflation option market data, as of September 30, 2010,
which are used in this section for calibration consists of two
inflation option products, namely inflation index caps/floors and
YoY inflation caps/floors. For both options market data is available
for a whole range of strikes and maturities and prices are quoted
in terms of base points (bp.). To compare calibration results
option prices are expressed here in terms of implied Black-Scholes
volatilities.

Since YoY inflation caps/floors are essentially a series of YoY
caplets/floorlets we perform a so-called stripping method, which
is explained in Brigo and Mercurio (2006, p. 682), to obtain
the market data for YoY inflation caplets/floorlets. Obviously,
performing a calibration to YoY caplets/floorlets instead of to YoY
caps/floors reduces the computation time significantly.

4.1. Calibrating the interest rate model

For the calibration of the Euro nominal interest rate model we
use the zero-coupon interest rate curve of September 30, 2010.
The zero-coupon real interest rate curve as of September 30,
2010 is constructed usingavailable information about zero-coupon
break-even inflation as derived from index-linked swaps'? (as of
September 30, 2010).

Wethen obtain an estimate of the initial real zero-coupon curve
by applying the Fisher equation

14 r,(t)

0 = et

(4.3)
where bei denotes the break-even inflation, r; the real interest rate
and r, the nominal interest rate. The resulting interest rate curves
are shown in Fig. 4.1(a).

We calibrate the one-factor Hull-White model using market
prices as of September 30, 2010 of forward-at-the-money options
on Euro swap contracts (Euro swaptions). We calibrate the two
parameters of the model, the mean-reversion and the volatility
parameter, using a large set of swaptions, with option maturities
ranging from 1 to 15 years and swap maturities ranging from
1 to 10 years. Swaptions with long maturities, >15 years, and
swap lengths, >10 years, have deliberately been omitted from

19 The maturities of these swaps range from 1 to 50 years. We set the short
break-even inflation equal to the 1-year break-even inflation. Missing maturities
are approximated by linear interpolation.

the calibration set. Liquidity for such contracts is often limited,
which may result in not very representative market quotes.
The optimal mean-reversion parameter is 0.0300; the optimal
volatility parameter is 0.0089. A comparison between the model
and market prices is shown in Fig. 4.1(b), where prices are
expressed in terms of implied Black volatilities.

Fig.4.1(b) shows that the difference between model and market
prices is limited. The average absolute error is 1.5% point. The fit
is less good for short maturing options. This is due to the used
objective function ||C — EA: in our optimization procedure. Since
the values of long maturing options are higher than the values of
short maturing options the long maturing options automatically
have a ‘higher weight' in the optimization procedure. This can
be overcome by introducing weights in the calibration procedure,
however this refinement is outside the scope of this article.

Option markets for real interest rates are still very limited.
Therefore we set the mean-reversion parameter of the real interest
rate model equal to the mean-reversion parameter of the nominal
interest rate model.

Remark. The choice of equal mean reversion parameters is jus-
tified when we estimate a Vasicek model (see Brigo and Mercu-
rio (2006, Chap. 3.2.1)) using a maximum likelihood estimation
to historical nominal and real interest rates in the sample period
1985-2009. It turns out that the resulting mean reversion param-
eters are of the same order. The results are, however, left outside
the article.

The volatility parameter of the real interest rate model parameter
is determined by a scaling factor based on the volatility of historical
nominal and real interest rates. The correlation parameter Py,
is also based on historical data (see Eq. (4.2)). The resulting
parameters of the interest rate model are found to be:

a, = 0.0300, a, =0.0300, n, = 0.0089,
N = 0.0084 and p,, = 0.78.

4.2. Calibration to inflation market data

The calibration of the inflation model can be performed using
inflation market data. The specific inflation options were already
explained in Section 3. To derive a reliable set of parameters,
we use relevant liquid market data so that market conditions
are captured well. We perform a calibration to YoY inflation
caplets/floorlets. In the calibration routine the approximate model
HHWi-YoY is applied.
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Fig. 4.2. Quality of fit of the calibrated inflation model to YoY inflation options.

Remark. Note that a combined calibration to two different sets
of inflation market data, namely to inflation index caps/floors
and YoY inflation caplets/floorlets, can also be performed. In
such a calibration routine the approximate models HHWi-i and
HHWi-YoY would be applied. It depends, however, on the
‘problem at hand’, which calibration is preferable.?

In Fig. 4.2(a) and (b) the calibration results of the calibration to YoY
inflation options are presented.

The calibration errors are very low; the average absolute error
is 0.12% point and the maximum absolute error is 0.4% point, which
indicates that the inflation model can be well calibrated to YoY
inflation options.

The calibration results in the following model parameters:

K = 0.095, v(0) = 3.040- 1074,
0 =2401-10"3, @, =0.051,
Py =-0890, p,,=0261 and p,,=—0.323.

Observing this parameter setting, we note that the Feller condition,
2KV > 07, is not satisfied, hence,

P(v(t) = 0|t >0)>0.

This implies that the variance process has a fat tailed distribution.

To get an impression of the results, 50 percentiles’' for
the inflation rate’? and the volatility process are visualized in
Fig. 4.3(a) and (b); the red line represents the average value over
all scenarios and the blue line represents a randomly selected
scenario.

The average inflation rate is approximately equal to the
difference between the (average) nominal and real rates. The
volatility of changes in the price inflation is high (1.6% in year 1 and
3.8% in year 30). As a result, the probability of negative inflation
(deflation) is high (up to 20%). The fat tailed distribution of the
volatility process is clearly visible in the percentile graphs.

20 gor example, when one is interested in pricing an out-of-the-money (inflation
dependent) option, one should calibrate the inflation model to out-of-the-money
options.

21 We have used 10.000 scenarios, so that 200 scenarios are in between each lines
in the scenario graphs.

22 ps already mentioned, the inflation rate is defined as the percentage change of
the CPL

4.3. Model comparison: Heston vs. Schébel-Zhu

As already mentioned, much attention has been devoted in
the literature to stochastic volatility driven by a Schobel-Zhu
(SZ) process (see for example van Haastrecht and Pelsser, 2011)
in combination with stochastic interest rates to model the CPL
Therefore, we compare in this section the SZ Hull-White inflation
model (the SZHWi model) with our proposed model, the Heston
Hull-White inflation (HHWi) model.

A summary of the differences between the Heston and the SZ
model is listed below.

e Whereas in the Heston model the variance of the inflation
is simulated, in the SZ model the volatility is simulated. The
dynamics of the SZHWi model are given by:

BaI(e) = () = (D0} + v (OI(E)aW (o),
1(0) = 0,

©V (t) = Ksz(9sz — Vg (t))dt + 0y,52dW (¢),
v5z(0) = 0,

where Ksz; is a mean-reversion parameter, 0,5z a volatility
parameter, Us; denotes the long-term volatility level and vsz(0)
denotes the initial volatility level. The interest rate dynamics
are given in Section 2.1.

e Since the volatility is conditional normally distributed, there is
a positive probability of negative volatilities. Therefore, there
is a positive probability that the sign of the instantaneous
correlations with the Wiener process of the inflation process
collapses in the simulation. This possibly leads to mispricing of
(embedded) options.

e It turns out that there exists a direct relation between the
Heston model and the SZ model.>*> More specifically, the SZ
model is a specific Heston model, when the following parameter
settings hold:

(4.4)

K = 2Kgz, 0, =205z and
Sy @ (45)
T 2Kz 4K’

Remark. By using the Heston model to simulate the SZ model
using the parameter specification in Eq. (4.5), we note that the

23 See for more information van Haastrecht et al. (2009).
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Fig.4.4. Quality of fit of the HHWi and SZWHi model to YoY inflation options.

Feller condition is always not satisfied, i.e.
2k0 1
oz 2

Using this relation between the Heston and the SZ model we
calibrate the SZ model using the Heston model. In the Fig. 4.4(b)
and (c) calibration results are shown of the HHWi model and the
SZHWi model.

It turns out that by using the SZWHi model the average absolute
error is 0.16% point and the maximum absolute error is 0.40%
point, which indicates that (on average) the SZHWi model can
also be well calibrated to YoY inflation options. However, after
analyzing the Fig. 4.4(b) and (c) we observe that the HHWi model
is better able to model the skew/smile effect in the market implied
volatilities.

To gain more insight in the flexibility of modeling implied
volatility skews/smiles by the HHWi and the SZHWi models we
again use the parameter relation given in Eq. (4.5). It turns out
that the calibrated long term volatility of the SWHWi model is
equal to 3.8%. Whereas in the case of the SZHWi model this
parameter is fully determined by the mean reversion and volatility
of variance parameter, this long term volatility can attain different
values when using the HHWi model. By using different long
term volatility parameters for the HHWi model, different sorts
of implied volatility skews/smiles can be modeled. In this range
of implied volatility skews/smiles only one implied volatility
skew/smile is modeled by the SZHWi model, exactly when the
parameter setting in Eq. (4.5) holds.

Therefore, we perform a Monte Carlo experiment by using
the calibrated SZHWi model and vary the long term volatility
parameter in the HHWi model, i.e. this long term volatility is set
to 1%, 2%, 5% and 6%. Using these parameter settings we value
in Fig. 4.5(a) a range of ATM YoY inflation options with different
maturities and in Fig. 4.5(b) we value a range of YoY inflation
options with different strike levels all maturing after 5 years. All
option prices are quoted in terms of implied volatilities.

TheFig.4.5(a)and (b) clearly show that the HHWi model is more
flexible in modeling implied volatility skews/smiles.

5. Valuation of the indexation provision of a pension fund

Risk-neutral (RN) scenarios are mainly used for valuation
purposes. Such special purpose scenarios can, for example, be
used for a market-consistent valuation of premiums, benefits,
and indexations of a pension fund (PF), to support strategic
decision-making and provisioning. This valuation of premiums,
benefits, and indexations is becoming increasingly important for
risk management to assess the consequences of policy changes to
the different stakeholders of a PF.>* Furthermore, the valuation
of indexations is important for hedging strategies. See for similar
experiments, for example, van Bragt and Steehouwer (2007),
Possen and van Bragt (2009) and van Bragt et al. (2010).

24 stakeholders of a PF are for example: pensioners, the sponsor and employees.
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In this section we perform several MC simulations to obtain a
value for the conditional indexations provision?® of a PF. For this
numerical experiment we use a stylized PF. The liabilities of this
PF can be viewed as a general liability setting in the Netherlands.
The initial funded ratio (FR) is equal to 110%. The PF makes use of
a conditional indexation policy. Indexation is linear when the FR
is between 105% and 115%; when the FR is below 105% pension
rights are not indexed. We assume that the PF invests in three main
investment categories, 20% MSCI Europe stocks, 10% Euro direct
real estate (RE) and 70% Euro government bonds.

Note that the inflation rate is the main driver of the initial
indexation provision of a PF. We assume that indexation follows
the price inflation for the inactive members of the PF and the
wage inflation for the active members. In order to obtain the initial
indexation provision we generate a consistent set of RN scenarios,
so that all future indexation cash flows can be discounted with the
nominal risk-free interest rate. The option price is then computed
by:

1070 () ,*( “

N k=1 t*= M""(t* '

wheret < t* < T, N denotes the number of scenarios, !!t*)
denotes the indexation cash flow in year t* and scenario k, and
M., denotes the nominal money-savings account (see Eq. (2.4)) in
scenario k. We note that for this experiment we assume yearly time
steps, i.e. t*, t, T € N.In order to obtain an accurate option value,
the number of scenarios N should be chosen as high as possible.

Since liquid inflation option market data only recently became
available we take as the benchmark the fact that the price inflation
model is calibrated to historical data. The historical volatility
of the inflation rate is equal to 0.81%, which results in the
following Heston parameters: K = 1,v(0) = U = 0.46
and 0, = 0, as benchmark parameter settings. The full matrix
of correlations is then also calibrated to historical data so that
numerical inconsistencies are avoided.

Wage inflation, which is used for the (conditional) indexation
of pension rights of active members, is modeled as price inflation
plus 1% point. Furthermore, direct RE is modeled using a special
purpose model, which is based on the Heston Hull-White model,

25 The indexation provision of a PF can be viewed as an ‘embedded option' on the
balance sheet of the PF.
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Implied volatilities produced by the SHHWi model and different HHWi models.

where we explicitly model auto-correlation in the returns (see for
more information van Bragt et al., 2009). The investment category
MSCI Europe stocks is also modeled by a Heston Hull-White
model and is, for simplicity, calibrated to the historical volatility.
Furthermore, an appropriate underlying bond portfolio is used for
the investment category government bonds.

We perform the following two numerical experiments:

Experiment | Since the indexation provision of the PF is based on
the price and wage inflation we apply several calibrations
of our price inflation model.?® Besides the inflation
market data as of Q3 2010 we use a shifted set of
market inflation option prices w.r.t. the market data of Q3
2010, using factors +10% and 30%. The calibrated models
are then used for a market consistent valuation of the
indexation provision. The results are shown in Fig. 5.1(a).

Experiment Il To show the effect of different correlation parame-
ters on the indexation provision, we perform a valuation
of the indexation provision using different correlation
values for py,»P1,r and Py, r. As a starting point we use the
calibrated inflation model (see Section 4.2). The results
are shown in Fig. 5.1(b).

For our numerical experiment we use N = 10.000 scenarios®’
so that sufficiently accurate results are obtained (other specifics of
the MC simulation can be found in Section 3.3). Since the horizon of
the liabilities is long we use as a simulation horizon T = 80 years
so thatall indexation cash flows are included in the MC simulation.

Observing Fig. 5.1(a) we can conclude that calibrating the in-
flation model to inflation option market data results in different
indexation provisions compared to the benchmark inflation mod-
els. The benchmark inflation models are insensitive to a change of
the inflation option market prices, which justifies the usefulness of
calibrating the inflation model to inflation option market data.

Observing Fig. 5.1(b) we can conclude that changing the
correlation parameters can have a significant effect on the
indexation provision; especially when p,, changes. When for
example the correlation, p,,,, changes from 0.78 to —0.7 then the
indexation provision changes from 22.4% to 26.3%. Therefore, we

26 In Section 4.2 we have shown that our inflation model can be well calibrated
to inflation option market data, so that market conditions are replicated well and,
therefore, a realistic (market consistent) value of the indexation provision can be
obtained.

27 gee Appendix for validation experiments.
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Fig.6.1. Comparison between the nominal/real interest rates as determined by the scenario set and the initial nominal/real interest rate curve.

can conclude that the indexation provision is influenced by the
correlations, which confirms that all correlations should indeed be
incorporated in a valuation model.

6. Conclusion

We derived an approximate closed-form solution of inflation
indexed cap/ floor options and year on year inflation caplet/floorlet
options, where the CPI follows a Heston model in which the
nominal and real interest rates are modeled by one-factor
Hull-White models. Using Fourier-based methods calibration can
be done highly efficiently.

Using the developed models we have performed a calibration
of the inflation model to year-on-year inflation options. Our
inflation model is able to model the market implied volatility skew
accurately, so that market conditions are replicated well. Although
the Schobel-ZhuHull-White inflation model canbe well calibrated
to inflation option market data, the proposed inflation model is
better able to model the smile/skew effect in the market implied
volatilities. Furthermore, the proposed inflation model is more
flexible in producing different sorts of implied volatility patterns.

Furthermore, using the calibrated inflation model we per-
formed a market consistent valuation of the conditional index-
ation provision of a stylized pension fund. It turns out that the

results change significantly when performing a calibration to mar-
ket inflation option data instead to historical data, so it is rec-
ommendable to use market data instead of historical data for
valuation purposes. By changing the correlation parameters, in-
dexation provisions change significantly, which justifies the use of
a full correlation matrix.
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Appendix. Validation of the Monte Carlo simulation

To illustrate the fact that the MC simulation (using 10.000
scenarios and a horizon of 100 years) of the HHWi model
performed in Section 5 fulfills the martingale condition we perform
two martingale tests. We first perform a (simple) MC experiment
in which we price a series of zero-coupon bonds with different
maturities. The payoff of this experiment is obviously equal to
the principal of each bond for all scenarios. This payoff is then
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discounted back along the path of the short nominal interest rate
for each scenario. The average discounted value (over all scenarios)
then yields the MC price of each bond. This price can be converted
into an equivalent interest rate for each maturity. If the generated
scenario set is indeed arbitrage free, these interest rates should
coincide with the initial nominal interest rate curve. The results
are shown in Fig. 6.1(a).

As a second test, we price a series of index-linked zero-coupon
bonds with different maturities. The principal of each bond is now
indexed at the end of each year with the price inflation. The final
payoff is then again discounted back along the path of the short
nominal interest rate for each scenario. The average discounted
value (over all scenarios) then yields the MC price of each index-
linked bond. This price can subsequently be converted into an real
interest rate for each maturity. If the generated scenario set is
indeed arbitrage free, these interest rates should coincide with the
initial real interest rate curve.

This comparison is made in Fig. 6.1(b). Note the perfect agree-
ment between the real interest rates as implied by the scenario set
and the initial real interest rate curve. This is due to the application
of the empirical martingale simulation technique, which detects
and corrects deviations from the desired martingale property.

Observing Fig. 6.1(a) a good agreement between the nominal
interest rates as implied by the scenario set and the initial nominal
curve is visible. This indicates that the interest rate scenarios are
arbitrage free with respect to the initial nominal interest rate curve.
The remaining differences will further diminish when a larger
scenario set is used.
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