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Abstract: A dynamical system may be called discontinuous if it is 
subject to abrupt changes in its dynamic characteristics. Such changes 
may be induced either externally ("time events") or internally ("state 
events"). Here we discuss so-called linear complementarity systems. These 
are piecewise linear systems in which state events occur due to transitions 
from one branch of an ideal-diode-type characteristic to the other. We 
present a precise definition of the dynamics of such systems and give 
sufficient conditions for well-posedness. 

1 Introduction 
Recent years have seen a growing interest in systems that are subject to abrupt 
changes in their dynamic characteristics. There are actually several different moti
vations for this interest, coming from various domains of science. A discontinuous 
dynamical system arises for instance when a continuous system is coupled to a 
controller that switches between a finite number of operating modes (for instance 
on and off'); the switching may be induced by external inputs or by measurements 
taken from the system itself. A second source of discontinuous dynamics lies in 
processes that are subject to unilateral constraints; think for instance of a robot 
arm that comes into contact with a rigid surface, or a tank in a chemical plant 
that at some point becomes completely filled. Sudden changes are sometimes in
herent in the physics of a situation; examples could be a fluid that starts to boil, 
or a crane that overreaches. In quite another context, one may be interested in 
computing or communication devices whose main purpose is to switch between 
discrete states but which are nevertheless subject to disturbances of a continuous 
nature, such as clock drift. Impetus for the study of discontinuous dynamical sys
tems therefore comes both from control theory and from computer science, as well 
as from the modeling and simulation of mechanical and electrical systems and of 
chemical processes. 
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Of course the different backgrounds of researchers in discontinuous dynamical 

systems give rise to different angles from which the field is studied. For those 

whose background is in differential equations, the main modeling alternative is to 

use a traditional smooth dynamical model. An important reason not to choose 

alternative can for instance lie in speed of simulation; certain phenomena tha.t 

happen on a timescale much faster than the timescale of interest are then described 

as instantaneous transitions in an attempt to avoid time-consuming calculations. 

Fast (real-time) simulation of complicated physical systems is crucial for instance 

in the training of pilots but also for testing of software that interacts with a physical 

environment. If this is taken as a motivation to study discontinuous dynamical 

systems, then naturally aspects related to simulation are of prime interest. For 

those whose background is in computer science, the main modeling alternative 

is to use a traditional completely discrete model such as a transition graph, in 

which time does not appear at all. Such researchers will be motivated to introduce 

continuous time by applications in which time is for some reason critical; hence they 

will tend to be interested in verification aspects. It remains to be seen whether 

the field of discontinuous dynamical systems with its disparate approaches will 

evolve into a coherent area of study; for the moment however, the possibility of 

combining ideas from various directions certainly adds to the attractiveness of the 

subject. 
There should be no suggestion that the study of discontinuous dynamical sys

tems is new; in fact the history of the subject goes back at least several decades. 

One should mention the fundamental work of Filippov [5], the work that has been 

done on bang-bang control [3, 14] and on systems with relays or bistable elements 

[18, §22], and the classical treatments of mechanical systems with unilateral con

straints [17, 12]; all of this refers to the fifties and sixties. The term hybrid, which 

is currently often used for systems that incorporate both continuous dynamics and 

discrete switching, appears to have been employed in this way for the first time 

by Witsenhausen in 1966 [22]. The resurgence of interest in hybrid systems, as 

indicated for instance in [2], can be attributed to several factors. Among those are 

the fact that computer scientists are extending their interest from the computer 

itself to its environment, and the fact that control theorists are more and more 

aware that in many industrial applications the continuous format that has long 

been standard in control theory is not quite appropriate. Actually it is somewhat 

embarrassing for control theorists to note the discrepancy between the high state 

of development of continuous control theory and the relatively small amount of 

theory that is available on switching control, despite the fact that programmable 

logic controllers dominate the market in many corners of industry. 

The above doesn't imply that the systematic study that has been made of 

continuous control systems in the past decades is irrelevant. On the contrary, it 

will be argued in this paper that, at least for some types of discontinuous dynamical 

systems, the availability of an extensive theory of continuous multi variable systems 

[11, 23, 6, 16, 13] will be of crucial importance in advancing the theory beyond the 



184 

stage that was reached in the fifties and sixties. The reasoning behind this may 
briefly be explained as follows. 

In order not to complicate the discussion unnecessarily, let us consider 'closed 1 

dynamical systems, i. e. systems with no inputs. (We will see that, despite appear
<Ulcf's. control theorv is of relevance to such systems.) In a closed hybrid system, 
switching will typically take place when the continuous variables in the system 
reach certain threshold values. In a number of cases, it is possible to describe 
the switching by a so-called complementarity characteristic. Such a characteristic 
involves two continuous variables, say u(t) and y(t), that a.re both required to 
be nonnegative; there a.re two associated operating modes, one in which u(t) is 
constantly zero, and one in which y(t) is constantly zero. If in the first mode the 
variable y(t) reaches zero and tends to become negative, then a switch to the sec
ond mode occurs; and if in the second mode u(t) tends to cross zero then the first 
mode becomes operative. If all the switching in the system can be described in this 
way, then we effectively have a continuous dynamical systems with a number of 
pairs of eontinuous variables (ui, Yi) that represent canonical switching elements. 
Because the switching elements are canonical, all properties of the closed system as 
a whole (existence and uniqueness of solutions, stability, etc.) must be expressible 
in terms of the continuous part with its associated variables Yi and 'U;, and this is 
where the input/output systems theory comes in. 

A simple example will be given below in which the complementarity structure 
described in general terms above does indeed arise naturally. Actually the reader 
may already have noted that what was described is essentially the ideal diode 
characteristic, with current through and voltage across the diode as the comple
mentary variables. The example below is mechanical and uses position and force 
as complementary variables. Another obvious application is in hydraulic systems 
with valves for which current and pressure may be taken as complementary. There 
are also less obvious applications. For instance, it has been shown that the mode 
switching brought about by any piecewise linear element can be described in com
plementarity terms [21]. The fact that such a canonical description is available 
may make piecewise iinear modeling an attractive alternative to fully nonlinear 
modeling; in turn this would open large new grounds for discontinuous dynamical 
systems. 

_In this paper, the following conventions will be in force. For a positive integer 
~, k denotes the set {l, 2, ... 1 k}. For I c k, le denotes the complementary set 
k \ I. Given Af E JRkxt and two subsets I c k and J c l, the (/, J)-submatrix of 
M is defined as MJJ := (miJ)iEI,jEJ· Following a convention in [4], we shall also 
write Mr. instead of Nl11 and M.J instead of MkJ· For a E JR:.k and I c k, we 
write a1 = (a;);u. A vector a E JRk is called nonnegative, and we write a ? 0, 
if a; ? 0 for all i E k. A (finite or infinite) sequence of real numbers is said 
to be lex'icograph.ically nonnegative if either it is a sequence of zeros or its first 
nonzero element is positive; we write (a1 , a2 , ... ) C:: 0. If ( a 1 , a 2 

1 ••• ) is a sequence 
of vectors, we write (a 1 ,a2 , ... ) C:: 0 when (a},a;, . .. ) C:: 0 for all i. 
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Figure 1: A discontinuous dynamical system. 

2 An example 

To motivate the development below, let us consider the following very simple 
example of a discontinuous dynamical system (see Fig. 1). Two carts are connected 
to each other and to a fixed wall by springs. The motion of the left cart is restricted 
by a purely non-elastic stop. For simplicity, we shall normalize all constants to 1 
and Jet the springs be linear, and we shall assume that the stop is placed at the 
equilibrium position of the left cart. An 'event' takes place when the left cart hits 
the stop or when it is pulled away from a position at the stop. When an event 
takes place, the system switches from 'constrained mode' to 'unconstrained mode' 
or vice versa; these two modes may also be viewed as the two discrete states of 
the system. 

Let us now discuss the dynamics of the system in the example. It is not difficult 
to write equations of motion for each of the two modes separately. Let x1 (t) and 
x2 ( t) represent the deviations of the left and the right cart respectively from their 
equilibrium positions, and let x3 (t) and x4 (t) denote the corresponding velocities. 
In the unconstrained mode the equations (in first-order form) are the ones that 
would hold if there were no block: 

±1 (t) 
i2(t) 
:i:3(t) = 
:i:4(t) = 

X3(t) 
:r4 ( t) 
-2x1(t) + X2(t) 
X1(t) - Xz(t). 

(1) 

The equations of motion in the constrained mode are the ones that would hold if 
the first cart were nailed to the block: 

Xt (t) 
i2(t) 
X3(t) = 
:i:4(t) = 

0 
X4(t) 
0 
-x2(t). 

(2) 

To give a complete description of the hybrid system, one also needs to specify 
under what conditions events take place and what the effects of such events will 
be. Under the assumption of inelastic collision, one can argue that a transition 
from the unconstrained mode to the constrained mode will occur at times t0 when 
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the following Boolean expression in terms of equality and inequality conditions on 
the state variables evaluates to TRUE: 

(xi(t0) = 0) /\ ((x:i(to) < 0) V (((.-r3(to) = 0) A 
/\ ((:rdto) < 0) V ((x2(to) = 0) /\ (x4(to) < 0)))))). 

!\Ioreover, when this event takes place the variable x 3 is reset to zero, whereas 
the other continuous state variables keep the values that they had just before the 
Pvent. A transition from the constrained mode to the unconstrained mode will 
take place at times t0 when the following expression evaluates to TRUE: 

This event produces no jumps in the continuous state variables. Note that it is 
possible that the conditions for a transition from the constrained mode to the 
unconstrained mode are satisfied immediately after a transition from the uncon
strained mode to the constrained mode has taken place; in such cases there are 
two events in one time instant (in a well-defined order). 

The example shows that the specification of a hybrid system in the form of a 
"flat" differential automaton is not always very convenient. It is i~asier to speci(y 
the system in the form 

:i:1 ( t) = :r3(t) (3) 
i2 ( t) :J:4 ( t) (4) 
.i:i ( t) -2x1 (t) + x2(t) + u(t) (5) 
:i:.i ( t) = :r1 (t) - .T2(t) (6) 
y(t) :r1 ( t) (7) 

y(t) ) 0, u(t) :;::: 0, y(t)u(t) = 0 (8) 

in which a con8tra'int fon:e denoted by u(t) has been introduced. Note that the 
systems obtained by setting u(t) = 0 and y(t) = 0 in the above are indeed equiv
alent to (1) and (2) respectively; in the second case, note that imposing y = O 
forces the relation u = -:r2 so that u is an output even though the equations arc 
written as if it was an input. l\Iorcovcr, the transition condition from constrained 
to 11nccmstrai11ed mode is exactly the one that is needed to prevent u( t) from be
('oming negative. The above system is an example of a hnear cornplemcntarity 
s;ip;tem. A precise definition of this class of dynamical systems will be given in the 
next section. 
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3 Linear complementarity systems 

Consider the following system of linear differential and algebraic equations and 
inequalities: 

:i; ( t) 

y(t) 
y(t) ~ 0, 

= Ax(t) + Bu(t) 
= Cx(t) + Du(t) 
u(t) ~ 0, y T (t)u(t) = 0. 

(9a) 

(9b) 

(9c) 

The equations (9a) and (9b) constitute a linear system in state space form; we let 
the number of inputs be equal to the number of outputs. The relations (9c) are 
called complementarity conditions. Because of the nonnegativity constraints, the 
vanishing of the inner product yT(t)u(t) implies that actually for each index i at 
least one of the variables Yi(t) and ui(t) must be zero. The set of indices for which 
Yi(t) = 0 (we shall call this the active index set) need not be constant in time, 
so that the system may switch from one "operating mode" to another. To define 
the dynamics of (9) completely, we will have to specify when these mode switches 
occur, what their effect will be on the state variables, and how a new mode will 
be selected. A proposal for answering these questions (cf. [10]) will be explained 
below. By the specification of the complete dynamics of (9) we describe a class of 
dynamical systems called linear complementarity systems. 

Let n denote the length of the vector x(t) in the equations (9a-9b) and let k 
denote the number of inputs and outputs. There are then 2k possible choices for 
the active index set. The equations of motion when the active index set is I are 
given by 

:i; ( t) 
y(t) 
y;(t) 
Ui ( t) 

Ax(t) + Hu(t) 
= Cx(t) + Du(t) 
= 0, i EI 

0, i Ere. 

(10) 

We shall say that these equations represent the system in mode I. An equivalent 
and somewhat more explicit form is given by the (generalized) state equations 

:i:(t) = Ax(t) + B.1·u1(t) 
0 = C1.x(t) + D11u1(t) 

together with the output equations 

Y1c(t) = C[c 0 X(t) + D[c]'U1(t) 
'U1c(t) = 0. 

(11) 

(12) 

At this point we need to digress in order to recall some facts concerning equations 
of the form (11), which can be derived from the geometric theory of linear systems 
(see [23, 1, 13] for the general background). Denote by Vi the consistent subspace 
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of mode I, i. e. the set of initial conditions x 0 for which there exist smooth functions 
:r(·) and u1(·), with x(O) = :r0 , such that (11) is satisfied. The space Vi can be 
computed as the limit of the sequence defined by 

V0 IR" 
i·•+ 1 = {r E V' I :Ju E JRl 11 s. t. A:r + B.1·u E Vi, G1.2: + Dn·u = O}. 

( 13) 

There exists a linear mapping F1 such that ( 11) will be satisfied for x·o E Vi by 
taking u1(t) = F1x(t). The mapping F1 is uniquely determined, and more generally 
the function u1 (·) that satisfies (11) for given x0 E Vi is uniquely determined, if 
the full-column-rank condition 

{O} ( 14) 

holds and moreover we have 

Vi nT1 = {O}, (LS) 

where T1 is the subspace that can be computed as the limit of the following se
quence: 

yo {O} 
T'+ 1 = {x E !Rn I :Ji· E Ti, u E JRIII s. t. x =Ai+ B.1u, Gr.i: +Duft= U}. 

( 16) 

In the present context, the subspace T1 is best thought of as the j'wnp space 
associated to mode I, that is, as the space along which fast motions will occur 
that take an inconsistent initial state instantaneously to a point iu the consistent 
space Vi; note that under the condition ( 15) this projection is uniquely determined. 
To make the interpretation of T1 as a jump space precise, introduce the class of 
impulsive-smooth distributions that was studied by Hautus [8] (see also [9, 7]). 
The general form of an impulsive-smooth distribution cf> is 

(17) 

where p( ·) is a polynomial, ft denotes the distributional derivative, o is the delta 
distribution with support at zero, and f is a distribution that can be identified with 
the restriction to (0, oo) of some function in C00 (IR). The class of such distributions 
will be denoted by Gimp· For an element of Gimp of the form ( 17), we write rp(O+) 
for the limit value lim1w f(t). Having introduced the dass Gimp, wr~ can replace 
the system of equations (11) by its distributional version 

d 1: 
dt.' 

0 
Ax + B.11t1 + Xo(5 
C1.:r + Dnu1 (18) 
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in which the initial condition Xo appears explicitly, and we can look for a solution 
of (18) in the class of vector-valued impulsive-smooth distributions. It was shown 
in [9] that if the conditions (14) and (15) are satisfied, then there exists a unique 
solution (x, ·u1) E C~+~II to (18) for each x0 E Vi + Tr; moreover, the solution is 
such that x(O+) is equal to P{{ xo, the projection of x0 onto Vr along T1 . The 
solution is most easily written down in terms of its Laplace transform: 

where 

i:(s) = (sf - A)-1xo + (sf - A)- 1 B.tilr(s) 

·il1(s) = -G"j}(s)C1.(sf - A)-1x0 , 

(19) 
(20) 

(21) 

Note that the notation is consistent in the sense that G II ( s) can also be viewed 
as the (f, 1)-submatrix of the transfer matrix G(s) := C(sf - A)-1 B +D. It 
is shown in [9] (see also [15]) that the transfer matrix Gu(s) associated to the 
system parameters in (11) is left invertible when (14) and (15) are satisfied. Since 
the transfer matrices G II ( s) that we consider are square, left invertibility is enough 
to imply invertibility, and so (by duality) we also have Vi+T1 = lR". Summarizing, 
we can list the following equivalent conditions. In the formulation of the theorem, 
we call a matrix M over a field IF totally invertible if none of its principal minors 
vanishes. 

Theorem 3.1 Consider a time-invariant linear system with k inputs and k out
puts, given by standard state space parameters (A, B, C, D). The following condi
tions are equivalent. 

1. For each index set f C k, the associated system {11) admits for each Xo E Vi 
a unique smooth solution (x, u) such that x(O) = xo. 

2. For each index set f C k, the associated distributional system {18) admits 
for each initial condition x 0 a unique impulsive-smooth solution (x, u). 

3. The conditions (14) and (15) are satisfied for all I C k. 

4. The transfer matrix G(s) = C(sf - At1B +Dis totally invertible (as a 
matrix over the field of rational functions). 

In this paper we shall be interested in conditions for existence and uniqueness 
of solutions, and so we shall usually consider systems (A, B, C, D) for which the 
above conditions hold. 

After this digression, we can continue to define a notion of solution for the 
system (9). The following preliminary definitions will be needed. 
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Definition 3.2 An impulsive-smooth distribution <P = p(ft)o +fas in (17) will 
be called initially nonnegative if the leading coefficient of the polynomial p(-) is 
positive, or, in case p = 0, the smooth function f is nonnegative on an interval of 
the form (0, E) with E > 0. A vector-valued impulsive-smooth distribution will be 
called initially nonnegative if each of its components is initially nonnegative in the 
above sense. 

Definition 3.3 A triple of vector-valued impulsive-smooth distributions (u, x, y) 
will be called an initial solution to (9) with initial state Xo and solution mode I if 

1. the triple ( u, x, y) satisfies the distributional equations 

-fftx Ax + Bu + xoo 
y Cx +Du 

2. both u and y are initially nonnegative 

3. Yi = 0 for all i E I and u; = 0 for all i (j. I. 

Given a vector x0 , we can consider the collection of all index sets I such that 
there exists an initial solution to (9) with initial state x0 and solution mode I. This 
collection will be denoted by S(A, B, C, D; x0 ), or simply by S(xo) if the context 
is clear. 

We are now ready to define the concept of a solution to ( 9). We shall first 
define what might be called a "full" solution to these equations, involving all of 
the ingredients that play a role. Depending on which aspects of the behavior one 
is interested in (for instance the continuous part or the switching part), one may 
then define related solution concepts which emphasize the aspects of interest. 

Definition 3.4 Consider seven-tuples (L, r, Xe, I, u0 , Xc, Ye) of the following form: 

• L is either {O, ... , N} for some N > 0 or Z+ and is called the event label set 

• T is a monotonous function from L to Rt U { oo} whose values are called event 
times 

• Xe is a function from L to R_n whose values are called event states 

• I is a function from L to 2Tc whose values are called operating modes 

• Uc, Xc, and Ye are smooth functions defined on [O, T) \ r(L), with values in 
R_k, lRn, and R_k respectively. 

Such a seven-tuple is called a (full) solution to (9) on an interval [O, T) if the 
following conditions hold: 

1. r(O) = 0 and supiEL r(i) = T 
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2. I(i) E S(xe(i)) for all i E L 

3. for all i such that i E L, i + 1 E L, and T(i + 1) = T(i), we have Xe(i + 1) = 
pTI(i)X (i) 

V1(i) e 

4. for all i such that i E L, i + 1 E L, and T('i + 1) > T(i), we have xe(i) = 
limq.r(i) :rAt) and Xe(i + 1) = limttr(i+l) Xc(t) 

5. for all i such that i E L and i + 1 E L, the triple (Uc, Xc, Ye) satisfies (10) with 
I= I(i) fort E (T(i),T(i + 1)) 

6. for all t E [O, T) we have uc(t) ~ 0 and Yc(t) ~ 0. 

The initial state corresponding to a given solution is the vector Xe(O). The multi
plicity of an event time t E T(L) is the number of labels ·i E L such that T(i) = t. 

The above definition is more involved than would be necessary for the systems 
that we shall consider in this paper. Under conditions that will be formulated 
below, we have dominance of the continuo·us state in the sense that the evolution 
of the continuous state vector is completely determined by its initial value, and 
in particular does not depend on the choice of an initial mode. The definition as 
given is in a form that can be relatively easily modified to accommodate externally 
induced switching by redefining the set of continuation modes S(x). 

Suppose now that we are mainly interested in the behavior of the continuous 
states of the system. To avoid trivial distinctions between solutions, we shall 
identify two piecewise continuous functions that are defined almost everywhere if 
they agree on their common domain of definition. A notion of solution that places 
emphasis on the continuous states can then be given as follows. 

Definition 3.5 The continuous trace of a solution ( L, T, .Te, I, Uc, Xc, Ye) to (9) on 
an interval [O, T) is the triple ( itc, :re, Ye) of vector-valued functions defined almost 
everywhere on [O, T). 

Definition 3.6 A triple (u,,, Xc, ye:) of almost everywhere defined piecewise smooth 
vector-valued functions will be called a continuo·us-state solution to (9) if it is the 
continuous trace of a full solution. 

The industrious reader may verify that, in the concrete case of the example of 
Section 2, the definitions above reproduce the rules that we formulated for that 
case. 

4 Well-posedness 

A basic: issue concerns the existence and uniqueness of solutions. We understand 
well-posedness in the following "local" sense. 
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Definition 4.1 The complementary-slackness system (9) is (locally) well-posed if 
for each initial state there exists an E > 0 such that (9) admits a unique continuous

state solution on [O, s). 

Th<' ddinition requires that for each initial vector in JR.11 there exists a unique 
solution OH an interval of positive length starting with at most a finite number of 

jumps followed b~' smooth continuation. Note also that the definition expresses 
dorninarH:P of the continuous state, since no information about an initial discrete 

state (''starting mode") is required. Due to the possible occurrence of phenomena 
such as deadlock, ill-posedness is more common in discontinuous dynamical sys
tems than it is in classical continuous systems. In particular, examples of linear 

cmnplementarity systems that are not well-posed in the above sense are easy to 
find, sec for instance [20]. 

To formulate sufficient conditions for well-posedness, we again need to intro
duce some linear systems terminology. The leading col'Umn indfr:es r7 1, ... , 'T]k of a 
linear system (A, B, C, D) with Markov parameters Gi are defined by 

l)j := inf{i EN I G~j f O}, 

where we take inf 0 = oo. The leading row indices p1, • .. , Pk of the system 
(A, B, C, D) are defined by 

p1 := inf{i EN I Gj. f O}. 

For systl'ms with totally invertible transfer matrices, the leading row aud column 
indices are clearly all finite; in fact, we even have p; ~ n and rJ; ~ n for all i. The 
leading row coefficient matrix M,. (A, B 1 C, D) and the leading column coefficient 

matri:i: J\1,(A, B, C, D) of a system (A, B, C, D) with k inputs and k outputs are 

defined as follows: 

( Gi'~) M,.(A, B, C', D) := : , 
QPk 

ko 

Mc(A. B, C, D) := (G~i ... c~u. (22) 

\V<' also need some terminology from mathematical programming [4]: a square 
matrix M E JRkxk is said to be a P-matrix if all its principal minors are positive. 
Now we can state the following well-posedness result; see [10] for a proof. 

Theorem 4.2 Let a linear complementarity system of the form {.9) be given. Sup
pose that the system satisfies the conditions of Thm. 3.1, and that both the leading 

colurnn mefficient matrix and the lead'ing row coefficient matrix of the associated 
hnear system (A, B, C, D) are ?-matrices. Under these ronditions, the comple
·m,entardy system i8 well-posed. Moreover, no solution requires a rrmltiplicdy of 
event tirnes higher than two. 
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The notion of well-posedness that is used here does not require continuous 
dependence on initial conditions. Actually, examples of linear complementarity 
systems in which the dependence on initial conditions is discontirl'Uou.s are not hard 
to find (see [10]). For similar reasons of easy failure we have not included a claim 
on uniqueness of full solutions. Finally we have not claimed global existence of 
solutions since we have not discussed the possibility of event times having a finite 
accumulation point. Examples of complementarity systems that show a "Zeno 
behavior" do not seem to be easily found, so it may be conjectured that solutions 
will exist for all time under conditions similar to those of Thm. 4.2. Finally let us 
note that complementarity systems that are not well-posed in the forward sense 
may still be useful in the analysis of two-point boundary value problems, such as 
occur in the maximum principle for optimal control problems subject to unilateral 
state constraints. 

5 Conclusions 

In this paper we have discussed a class of hybrid systems that allow a relatively 
compact specification. Indeed, we can describe a system with 2k discrete states 
essentially by giving the parameters of a linear system with k inputs and k outputs. 
Moreover, the analysis of the hybrid system can be carried out in terms of the 
associated linear system, which brings the results of linear multivariable systems 
theory to bear on a class of hybrid systems. The framework we presented is limited 
and needs to be extended in several directions, in particular to allow the inclusion 
of continuous and discrete inputs. In addition to the basic issues of well-pose<lness 
that have been discussed here, there is a need to explore for instance conditions 
for stability, efficient methods for simulation, compositional specification of large 
c;ystems, and verification of safety properties by systematic search for worst-case 
situations. 
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