Downloaded 11/04/13 to 130.161.210.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. Sc1. COMPUT. (© 2013 Society for Industrial and Applied Mathematics
Vol. 35, No. 5, pp. B1055-B1084

ROBUST PRICING OF EUROPEAN OPTIONS WITH WAVELETS
AND THE CHARACTERISTIC FUNCTION*

LUIS ORTIZ-GRACIAT AND CORNELIS W. OOSTERLEE?

Abstract. We present a novel method for pricing European options based on the wavelet ap-
proximation method and the characteristic function. We focus on the discounted expected payoff
pricing formula and compute it by means of wavelets. We approximate the density function associ-
ated to the underlying asset price process by a finite combination of jth order B-splines, and recover
the coefficients of the approximation from the characteristic function. Two variants for wavelet
approximation will be presented, where the second variant adaptively determines the range of in-
tegration. The compact support of a B-splines basis enables us to price options in a robust way,
even in cases where Fourier-based pricing methods may show weaknesses. The method appears to be
particularly robust for pricing long-maturity options, fat-tailed distributions, as well as staircase-like
density functions encountered in portfolio loss computations.
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1. Introduction. The robust and efficient valuation of financial products, like
options, by numerical techniques is an interesting recent field in applied mathematics
and scientific computing. The best known option pricing partial differential equation
(PDE) is without any doubt the Black—Scholes equation, pricing a European (plain
vanilla) option under geometric Brownian motion (GBM) asset price dynamics. When
considering more realistic asset dynamics, like stochastic volatility or Lévy jump asset
models, other option pricing PDEs, or even partial integro-differential equations, will
be encountered.

Option pricing is often done by the discounted expected payoff approach, which
is nothing but a Green’s function integral formulation for the PDEs mentioned above.
The connection between the solution of the option pricing PDEs and the discounted
expected payoff lies in the Feynman—Kac theorem. In many cases in option pricing, we
do not have the Green’s function (read, the conditional probability density function
for the asset prices) available, but we do have its Fourier transform. This Fourier
transform is the characteristic function, and the theory in [Duf00] shows that for
affine PDEs the characteristic function can easily be determined. This derivation
technique is related to classical theory regarding the use of the Laplace transform for
linear PDEs.

Highly efficient numerical pricing techniques in this context are found in the class
of Fourier-based numerical integration [Car99, Cho05, Lor07]. An exponent of this
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class is the COS method [Fan08], which is based on Fourier cosine expansions and on
the availability of the characteristic function of the asset price dynamics. However,
the COS method, although highly efficient, may lack robustness for a number of cases.
For call options, for example, it is often recommended to employ the put-call parity
relation, and price calls via puts. The integration interval must be defined a priori, and
the method also shows sensitivity in the choice of the interval for certain underlying
processes like Carr-Geman-Madan—Yor (CGMY) model [Car02]. Furthermore, with
the COS method it is nontrivial to handle accurately long maturity contracts as
roundoff errors are produced in some cases.

Other techniques that have been employed for pricing options in this context
include the Hilbert transform [Fen08] and the Gauss transform [Bro03].

In the present paper we will focus on the application of wavelet techniques in
the context of the discounted expected payoff approach. Wavelets have been used
before in option pricing [Mat04, Mat05], but then directly as part of the numerical
discretization for the option pricing PDEs. In the framework we consider here, the
wavelet approximation (WA) approach is novel.

We consider the use of Haar wavelets as well as low-order B-spline wavelets.
Compared to the use of cosines in the COS method, the computation of wavelet
coefficients may be somewhat more involved. However, we will see that the use of
wavelets is in particular robust. In terms of the sensitivity with respect to the size
of the integration interval, we propose an adaptive wavelet method, avoiding an a
priori choice of the interval. The fact that these wavelets are functions with compact
support enables us to deal properly with roundoff errors that we may encounter when
pricing long maturity options. In the context of portfolio loss computations, the use
of this wavelet-based method is also of benefit, since we deal with step-like density
functions and a Haar basis fits better to the shape of the probability density function
than a cosine basis.

Haar wavelets have been used before [Mas11, Ortl2a] in the context of portfolio
losses, but there the derivations were based on the Laplace transform while we focus on
the use of the Fourier transform and the characteristic function in the present paper.

The outline of the paper is as follows: In section 2 we present the option pricing
problem and discuss wavelets and their properties. In section 3 we explain two differ-
ent wavelet-based approximations for the option pricing problem. The first method is
related to a fixed integration range, whereas the second method adaptively determines
the suitable range of integration. It is in particular this second method which is free
of open parameters and highly robust. Error analysis is subsequently presented in
section 4, and numerical experiments focusing on the method’s robustness are found
in section 5. Finally, section 6 is devoted to conclusions.

2. Option pricing with wavelets. We consider the risk-neutral valuation for-
mula,

(1) v(x,t) = e " TIE? (y(y, T)|z) = e T / u(y, T)f (y|z)dy,
R

where v denotes the option value, 7' is the maturity, ¢ is the initial date, EC is the
expectation operator under the risk-neutral measure ), z and y are state variables at
time t and 7', respectively, f(y|z) is the probability density of y given x, and rj, is
the risk-neutral interest rate.

Whereas f is typically not known, the characteristic function of the log-asset
price is often known, that is, the Fourier transform of f. We represent the payoff as
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a function of the log-asset price and denote the log-asset prices by
z = log(So/K) and y = log(Sr/K)

with S; the underlying price at time t and K the strike price. The payoff v(y, T") for
European options in log-asset price then reads

1 f 11,
v(y,T)=[a- K (e¥ — 1)]+ with a = or a ca
—1 for a put.

We derive the WA method for pricing European options by replacing the density
function by an approximation with jth order B-splines at a fixed scale level m.

A natural and convenient way to introduce wavelets is following the notion of
multiresolution analysis (MRA). Here we provide the basic definitions and properties
regarding MRA and B-spline wavelets; for further information see [Chu92, Chu97].

2.1. Wavelets and dual wavelets. We start with the definition of a Riesz
basis, as follows.

Definition 1. A countable set {f,} of a Hilbert space is a Riesz basis if every
element f of the space can be uniquely written as f =) ¢, fn, and there exist positive
constants A and B such that

AlfI? < lenl* < Bl

Definition 2. A function v € L*(R) is called an R-function if {1;} defined
as ¥ k(x) = 2/2(27x — k), j, k € Z, is a Riesz basis of L*(R).

If we assume that 1 is an R-function, then there exists a unique Riesz basis
{"™} of L*(R), which is dual to {1;} in the sense that (v;x, ¥"™) = §;10%,m for
all j,k,I,m € Z, and 9, 4 is the Kronecker delta defined in the usual way as

11 pP=4q,
5p,q={

0 otherwise.

With the above definitions, we can give the definition of wavelets.
Definition 3. An R-function ¢ € L*(R) is called an R-wavelet, or simply a
wavelet, if there exists a function i € L2(R), such that {¢jx} and {i’;]k} defined as
ﬁjtk(z) = 2j/21;)’v(2jx —k),j,k € Z, are dual bases of L*(R). If 1’ is a wavelet, then l;
is called a dual wavelet corresponding to 1.
Some definitions relevant to our present work are given below.
Definition 4. Let ¢ be the wavelet function in Definition 3.
(i) A wavelet ¥ is said to have a vanishing moment of order s if f]R xPi(x)de =
0,p=0,...,s— 1. All wavelets must satisfy this condition for p = 0.

(ii) A wavelet v is an orthogonal wavelet if the family {1; r} forms an orthonor-
mal basis of L3(R), that is, (1s.t,Vu.v) = 0s,u0t.» for all s,u,t,v € Z.

(i) A wavelet v is called a semiorthogonal (SO) wavelet if the family {1}
satisfies, (Vg.t,Pu) = 0,8 # u, for all s,u,t,v € Z.

A dual wavelet 1) is unique and is itself a wavelet. The pair (1, 1;) is symmetric
in the sense that v is also the dual wavelet of 1:; If ) is an orthogonal wavelet, then
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it is self-dual in the sense of z;; = 10. Moreover, it is important to emphasize that if
f € L*(R), then

+oo . +00 .
f= Y G die= Y (fik) ik
Jk=—00 Jik=—n0

For each j € Z, let W; denote the closure of the linear span of {¢;; : k € Z},
namely, W := clospzg) (¢¥j : k € Z). Then, L?(R) can be decomposed as a direct
sum of the spaces W;,

(2) LAR)=> W= uW_ uWouWyu-

JEL
in the sense that every function f € L?(R) has a unique decomposition,

fle)=--+g_1(x)+go(x) + n(x)+ -,

where g; € W;,j € Z.
If ¢ is an orthogonal wavelet, then the subspaces W; of L%(R) are mutually
orthogonal, and consequently the direct sum in (2) becomes an orthogonal sum,

(3) LR =PW,:=--oW. oW,oW,®--.
JEZ

Obviously, every SO wavelet generates an orthogonal decomposition (3) of L%(R),
and every orthogonal wavelet is also an SO wavelet.

2.2. MRA, scaling functions, and B-splines. Any wavelet, SO or not, gen-
erates a direct sum decomposition (2) of L?(R). For each j € Z, let us consider the
closed subspaces,

Vi=-uW,_ouW,,, jez,

of L?(R). These subspaces have the following properties:
(i -cvVvacVycWic:--,
(ii) dospz (Ujez Vi) = L(R),
(i) NezV; = 0},
(iv) Vimi=V,u W, jeZ,
(v) f(x) e V; & f(2z) € Vjs1,j € L.
Observe that every function f € L?(R) can be approximated as closely as desirable
by its projections P;f in V; as described by (ii).
If the reference subspace Vj, say, is generated by a single function ¢ € L%(R) in
the sense that

Vo 1= dospm) (o : k € Z)

where ¢; () 1= 27/2¢(27x — k), and then all subspaces V; are also generated by the
same ¢, namely,

4 Vj = clospm) (¢jk :kE€EZ), jEL
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Definition 5. A function ¢ € L*(R) is said to generate an MRA if it generates
a nested sequence of closed subspaces V; that satisfy (i), (ii), (iii), and (v) in the sense
of (4), such that {¢g r} forms a Riesz basis of V. If ¢ generates a MRA, then ¢ is
called a scaling function.

Typical examples of scaling functions ¢ are the jth order cardinal B-splines,
Nj(z), defined recursively by a convolution,

o0 1
N](.L‘) = / Nj_l(.’L' - t)N()(t)dt = / Nj_l(.’L’ - t)dt, _] Z 1,
J—no J0

where,
1 ifze(0,1),
Ny(z) = =
o(z) X[O’l)(x) {() otherwise.
Alternatively,
T j+1—x .
Nj(z) = }Nj—l(ff) + ]TNj—l(x -1), j=1L

We note that cardinal B-spline functions are compactly supported, since the support
of the j*" order B-spline function N; is [0, j+1], and they have as the Fourier transform

Ny (w) = (1‘—)+

rw

To describe the space Vf, that N; generates, we define m, as the collection of all
polynomials of degree at most n, and C™ denotes the collection of all functions f such
that f, f), ..., fI") are continuous everywhere.

The subspace Vj generated by N; consists of all functions f € C7~' N L*(R) such
that the restriction of each function f to any interval [k, k+ 1),k € Z, is in 7;. From
property (v) of an MRA, we can now identify all other subspaces V;, namely,

v, = {f €CINIAR) : flx o) €k € z}.

Since splines are only piecewise polynomial functions, they are very easy to implement
in a computer code.

From the nested sequence of splines subspaces V;, we have the orthogonal com-
plementary subspaces Wj, such that V; ., = V; @ W;,j € Z. Just as the B-spline
of order s is the minimally supported generator of {V;}, we can find the minimally
supported 1* € Wj that generates the mutually orthogonal subspaces W;. These
compactly supported functions will be called B-wavelets of order s. In Chapter 6 in
[Chu92], explicit formulas for all ¢»* and their duals are derived.

In this paper we consider ¢/ = N; as the scaling function which generates a MRA
(see Figure 1), and we restrict ourselves to the orders j = 0,1. Clearly, for j = 0
we have the scaling function of the Haar wavelet system. We also remark that from
the previous discussions, for every function f,, € V;,, there exists a unique sequence
{c] i }rez € 12(Z), such that

(5) fmj(@) = Z(g;n,kqu];n,k(z)'

keZ
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Fig. 1. Cardinal B-splines of orders j =0,1,2,3.

In this paper we present two different methods for approximating the density
function in (1). In the first method we restrict ourselves to a bounded interval [a, b],

G+2"-1 .
FCEEDY it (G+D2=2), 520,

while in the second method we carry out the approximation on the entire real line as
in (5). For this reason, it is convenient to give a short review about B-splines on a
bounded interval. We refer the reader to [Chu97] for a detailed description of scaling
functions on a bounded interval.

Let us assume that [0,n],n € N, is the working interval. We must distinguish
between interior B-splines and boundary B-splines. We have

N]’(I_k')| k:(),..-,n_j_l'

These are the interior B-splines for the bounded interval [0,n]. The remaining B-
splines,

Nj(z — k), k=—j,...,—1,and

Nij(x=k), k=n-j,...,n—1,

are the boundary B-splines for the interval [0,n]. Here, the first group is for the
boundary x = 0, while the second group is for the boundary = = n.

3. The WA method. We present two different methods to recover a probability
density function f from its characteristic function, i.e., from its Fourier transform.
The first method relies on fixing a priori the interval for the approximation and then
using B-splines wavelets on this bounded interval, while the second method performs
the approximation in an adaptive way, computing the domain of the approximation
such that a predefined tolerance error is met. Later on, we will apply both methods
to the option pricing problem and we will discuss the pros and cons of each of them.

3.1. Approximation in a fixed interval [a, b]: the WA[2:®) method. Let us
consider a probability density function f € L?(R) associated to a certain continuous
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random variable X and its Fourier transform,

+0o
(6) f) = [ e payd,
We can expect that f decays to zero at infinity, so it can be approximated in a finite
interval [a, b] by

otherwise.

o f(z) ifz € [a,b],
f(z)—{o

To determine the interval of integration [a, b], we can consider the approximation

(7) [a,b] := [cl—L\/(:2+\/a,c1+L‘/c2+\/a],

where ¢,, denotes the nth cumulant! of X, asin [Fan08], where the authors recommend
L > 7.5. This has been confirmed accurate for a variety of asset processes and options
with different maturities.

Following the theory of MRA in a bounded interval, we can approximate f(x) ~
fim,j(z) for all x € [a,b], where

(7+1)-(2™ -1)

Fas@ = > c’m.mfg,k((ﬂl)-i:;’), j=0,

k=0

with convergence in L?-norm. Note that we are not considering the left and right
boundary scaling functions. For the sake of simplicity, we set the coefficients corre-
sponding to the boundary basis functions equal to zero. Observe that in the case that
j = 0 (Haar wavelets) there are no boundary functions.

The main idea behind the WA method is to approximate f by f"

m,; and then
to compute the coefficients ¢! , by inverting the Fourier transform. Proceeding this

way, we have

fuy = [ T e () / j e fe (2)de

—00

(3+1)-(2™ -1)

> s (/w e EG L ((j +1)- H) d:r) .

k=0 e

Introducing a change of variables, y = (j + 1) - ==, gives us

(7+1)-(2™ -1)

~ b—a —iaw . +oo _iwblay L
f(uj) == +1 "€ Z cjﬂ,k / € A (pm,k(y)dy
J k=0 J—oo

(G+1)-(2™ -1)

b—a . . b a
— —iaw ~i .
i+l ¢ Z kB (j_+ 1 w) .

k=0

'The cumulants are the power series coefficients of the cumulant generating function c(s) =
log E(e5X).
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m

Finally, taking into account that &mk(ﬁ) = 2_?&(%)6_i55‘_£ and performing a

_s_ba )
change of variables, z = e "™ 00" we find

G+1)-(2™-1)

© F(E D og)) =2 Bt G g Y et

b ] + 1 k=0
If we define
G+1)(2" 1)
P i(2) = Z ), x2" and
k=0

2%+ DT F (SR og(2))
m,j\%) ‘= ’

(b— )¢ (i - log(2))

then, according to the previous formula (8), we have

(9) Pm,j(z) = Qm,j(z)'

Since P, ;(z) is a polynomial, it is (in particular) analytic inside a disc of the complex
plane {z € C : |z| < r} for r > (0. We can obtain expressions for the coefficients (.Jm“k
by means of Cauchy’s integral formula. This is

e . "
C’mk—m/ 2 he k=0,..,G+1)-@"-1)

where v denotes a circle of radius r, » > 0, about the origin.
Considering now the change of variables z = re'*, r > 0, gives us

27 . iu
(10) ¢ ! / P (re™) o,
0

mk = 9rpk etku

where k=0,...,(j+ 1) (2™ - 1).
Then, we can further expand expression (10) by (see Appendix A for a detailed
proof)

(11) g =1 / R(Por s (re™))du
0= 7 ),
and
(12) c’,'n‘k = W_f"' R(Pp,j(re™)) cos(ku)du, k=1,...,(j+1) (2™ —1).
‘ 0

On the other side, since &(z -log(z)) = (Ijg_(i) Y1, we have

2%+ 1)z 3R T (ZEL log(2)) (log(2) P+
b~ a)(z - 177 |

Qm,j(z) =

and it has a pole at z = 1. Finally, making use of (9) and taking into account
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the former observation, we can exchange P, ; by Q. ; in (11) and (12) to obtain,
respectively,

(13) C],;le[) = = §R(Qm,j(reiu))du

and

™

(14) ({M_ﬂ% [ R(Qus(re) costhu)du, k=1, +1)-@" - 1),

where r # 1 is a positive real number.
In practice, both integrals in (13) and (14) are computed by means of the trape-
zoidal rule, and we can define

(15) I(k) = Uﬂ R(Qmm,;(re™)) cos(ku)du

and

s=1

M-1
(16) I(k;h) = '—; (Qm_j(r) + (1) Qmi(-r)+2 ) m(Q,,,,j(reihs))cos(khs)> :

where h = {7 and hy = sh for all s = 0,..., M. Proceeding this way we find

e o I(K) = — I(k: )
(17) 1 M-1 _
AI ATk (Qm,j (7‘) + (_l)ka,j(_r) +2 Z m(thj(Teths))COS(khs)) 5
s=1

where k=1,...,(j+1)- (2™ - 1).

3.2. Approximation in R: The WA® method. Let f be a probability density
function as in section 3.1. The main drawback of the WAI*#) method is that we do not
have an estimate about the density when truncating the interval. Here, we propose
an adaptive method that allows us to control the mass of the density recovered.

Following the theory of MRA in L?(R), we can approximate f(z) by f ;(z) in
(5) for all z € R, where

frmj(@) = e bl (@), 5 >0,

kel

with convergence in the L2norm. Note that the coefficients ¢ , are different from
those in section 3.1. For the sake of clarity, however, we keep the same notation as in
the previous section.

Let us consider the finite sum,

k2
(18) rtnrj(z) = Z C’,},,ké’,}l,k(z)v
k=ky

where ky < ko, ky, ky € Z.
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Substituting (18) into the Fourier transform expression (6), making the change
of variables z = e~ and following the steps as in the previous section gives us

k2
f(Qmi -log(z)) ~ 2— % &(, -log(2)) Z (r]r'n,kzk'
k=ky
If we define
ka .
* " . 2% 7 (2mi - log(2))
Ph(z)=Y ¢ 2% and @, (2):= "
J k; k J % (i - log(2))

then, according to the previous formula, we have

Pp, i(2) =~ Q7 ;(2).
Now, if we consider the polynomial of degree kz — k1,

ka—k1

Prruj(z) =zh 'Py::,j(z) = Z Crruk1+kzk~
k=0

we can approximate it by Q. j(z) as

P j(2) ~ Qm,j(2),

where Q, j(z) = 2% - i (2)-
We can derive the coefficients of the approximation following the same steps as
in the WA**) method to obtain
g ~L TR “))d
mky = T o (Qm,j(re™))du
and
. 2 [T .
(19) Ch by itk = ] R(Qm,j(re™)) cos(ku)du, k=1,... ks~ k.
Finally, we must choose the integers k; and ks to recover the density function
without loosing significant accuracy. For that purpose, let us assume first that the
density is unimodal. (This is observed in practice for the densities considered in the

numerical examples section.) In this case, k1 and k2 can be chosen such that
fm,j (%) < fm,j (;—;) < €01 forall k <k

and
Jm,j (%) < fm,j (;—i) < €0 for all k> ko,

where €, is a predefined tolerance error such that f,, j(z) < € for all z € R\[ky, k).

We can start the algorithm by considering an initial seed k; = [2™ - a|, where
a is defined in expression (7) and || denotes the greatest integer less than or equal
to x. Note that, although we rely on the cumulants to facilitate the work, we could
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choose a random value as the initial seed. We update the value k; until the condition
fm, 1(2"—,,‘,) < €t 18 satisfied. We compute the coefficients (.Jm. itk until the requirement

fm. J(zi,?.-) < €01 1s met. Furthermore, we immediately calculate the area below the
computed density (as a byproduct). In case we cannot assume unimodality, we may
finish the algorithm when that area equals (approximately) one, recomputing k; if
necessary.

3.3. Coefficients V,{q;;k' for plain vanilla options. Now, we return to the
option pricing problem and we consider option valuation formula (1). From now
on, we assume that the density functions are L?(R) functions. Since we can expect
that the density function f(y|x) rapidly decays to zero, we can apply the methods
explained in section 3.1 and section 3.2.

We must distinguish between the two methods presented previously:

e WA2:b] method. We first truncate the infinity integration range to [a, b] C
R as in section 3.1 and then approximate the density function,

b
o (1) = e Y / o(y, T)f (yl)dy,
(20) @

b
Ui, t) = e_r'“"(T_t)/ v(y, T) frm, i (ylx)dy,

where,

(3+1)-(2™ -1)

FasWle) =" Y @)l ((J +1)-5— ) :

k=0

We then expand the expression (20) to obtain

G+1-2"-1) ‘
(21) v t) 2o, () = e TN (@) VS,
k=0
where

b S—
: o o7 ] z -
Vril‘,k = / U(y! T)¢{n,k ((] + 1) ’ b— (l) dy

e WA®™ method. Here, we first approximate the density function by a series
of scaling functions in L?(R) and then truncate the series expansion as in
section 3.2, i.e.,

o t) = 0 [ o T o)y,

'tr

Ui (T, t) = e~ ne(T—t) /R‘U(y‘ T)frtrr,j(y|m)dy‘

where
ka2 ) )
i) = el (@), k().
k=k,
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Then,

v(x,t) =~ vl (x,t) = e M (T—1) Z cJ B i

m,k?
k=ky

where
Vi = [ o e Wiy

Remark 1. Once we have an expression for the scaling coefficients ¢/, ,(z) and

the payoff coeffcients V7% the Greeks can be easily derived by differentiation.

m.k?

3.3.1. Coefficients with Haar wavelets. We first consider j = 0. Then, the
following proposition holds.

Proposition 1. Let us define A, = %%, B = a + kAp, vk = B + A, 0 =
max(0, Bx), and . = min(0,~x). Assuming that a < 0 < b, the coefficients computed
by the WAl ¥ method are as follows:

V() l . 2m/2K (C’Yk - 66k + (sk - ’)‘k) N Tk > 0.
(22) 0 otherwise,
22

0,—1
Vo=

22K (e — % + G — Br) . B <O,
0 otherwise

fork=0,...,2m 1.

Ifa <b <0, then Vo) = 0Vt = 2m2K(efc — €% + 4 — By), for k =
0,...,2™ — 1. And conversely, if 0 < a < b, then VU =, V“ r = 2M2K (e —
e’ + By — ), fork=0,...,2m —1.

Proof. We consider three cases separately:

e Case a < 0 < b. We first consider call options, i.e., the case that a = 1. By
definition,

f,li'—/[K ¢mk(b )dy—/K v_1)¢0, (_Z)dy,

Taking into account that

y—a 2m/2‘ k <y_<k2-r0!-‘1‘
qpmk b — =

a 0 otherw1se,
we have
(23)
v =/ 2m/2K (¥ — 1) dy = fn 2m/2K (e¥ — 1)dy, i >0,
" [0.6]N[Bk vk ] otherwise.
For put options, i.e., « = —1, we find

0 o
vert = [ ke - (=2 - | K (e 1) dy
o a b—a [,0]N (B me]

0

otherwise.
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e Case a < b < 0. In this case, supp (f)‘,’mk C (—00,0) and for call options
v(y.T) = 0,y < 0. Then, V) = 0,k = 0,...,2™ — 1. For put options
v(y,T) > 0,y <0, and therefore vazl = f[a,b]ﬂ[ﬁk,w] —2m/2K (e¥ — 1)dy =
o —2m2K (e¥ — 1)dy,k = 0,...,2™ — 1.
e Case 0 < a < b. In this case, supp ¢" , C (0,+0oc) and for call options
v(y,T) > 0,y > 0. Then, V,gi = f[a,b]ﬁ[ﬂk,'yk] 22K (e¥ — 1)dy = f;:‘ om/2
K(eY — 1)dy,k = 0,...,2™ — 1. For put options v(y,T) = 0,y > 0, and
therefore Vo, ' = 0,k =0,...,2™ — 1. O
Corollary 1. The prices for a put and for a call can be obtained simultaneously
with a WAI*? method at resolution level m, by computing 2™ coefficients c‘r’"’k and
2™ coefficients Vrg(i
Proof. For the cases a < b < 0 and 0 < a < b the statement holds immediately.
We consider the nontrivial case a < 0 < b. By Proposition 1 we just need to compute
the coefficients such that 75 > 0 and 3 < 0. Following the same notation as before,

7k>0©;5’k+Am>0®a+kAm+Am>0¢>k+1>—Ai
and
Bk<0®a+kAm<()ﬁk<—Ai.
Since—ﬁ>0,
a a
>0 |—— | <k<2™ -1 and G <0 0<k< |——H|,
Ap An

where | x| denotes the greatest integer less than or equal to x, and this completes the
proof. 0

Remark 2. Digital options are popular in the financial markets for hedging and
speculation. They are also important to financial engineers as building blocks for
constructing more complex option products. Here, we consider the payoff of a cash-
or-nothing call option as an example, which has value 0 if Sp < K and K if Sy > K.
For this contract, the V,gi coefficients, like (23), can also be obtained analytically

with the WA[**) method as follows (we assume that a < 0 < b):
22K (6 — ), Yk >0,
(24) pol _ (O, =), &> )'
0 otherwise.

Remark 3. If we define a := ;‘—,ﬁ, and A, := sz, then the formulae (22) and (24)

0. cx

also hold to compute the coefficients V% by the WA® method. Moreover, we can

price a put and a call simultaneously by computing ko — k; + 1 coefficients r‘r’n . and

ko — k1 + 1 coefficients Vrgi

3.3.2. Coefficients with linear B-splines. We consider j = 1. Then, the
following proposition holds. B B B B B
Proposition 2. Let us define A, = %,Bk =a+ kAn, 3k = Bk + 24,k =

B“J‘gl,u‘, = max(0, k), \x = min(0, k), 6 = max(0, 3), ¢ = min(0,7x), I1(a,b) =

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/04/13 to 130.161.210.88. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

B1068 LUIS ORTIZ-GARCIA AND CORNELIS W. OOSTERLEE

e? —e®, I(a,b) := be® —ae® —I(a,b), and I3(a,b) := L _“ . Assuming that a < 0 < b,
the coefficients computed with the WAl*b method are as follows:

' i -

(k+ Ai) (Il(Lk!:’k)_Il((sk‘Lk))+2Il(Lk‘,7k)
yhl _ ) om/2f | 4 A (L2 (O, 1) — (e, Ak) — T3(Oks k) + I3t 7)) |, A > 0,
mk m

+ L+Aa) L — 0k) — (+A—+2)(Ar-k_tk)

\0 otherwise,

( o — -

k+ A ) LAk, Ck) — Il(ﬁk,/\k)) + 20 (M, Ck)
=22 K |4 =— (L2(Bk, M) = T ( My Gie) = T3(Brs k) + I (M, Gi))|, B <0,

1,-1 _
Vm,k o

A
( ) (M = Br) — (+i+2)(c_k—/\k) |

0 otherwise

fork=0,...,2m+1 2.

Ifa<b<() then V2 = 0 and

(k‘- + %) (I (kk, &) — Il(gkafik)) + 26 (KK, k)
_ 1 = _ = _
Vn:’,kl = —2m2K | + . (I2(Br, kx) — LKk, i) — I3(Br, kx) + I3(Kk, 7i))
a
_+(k+A—m>(M—3k)—< +E+2)("fk—fik) |
fork=0,...,2m% — 2. And conversely, if 0 < a < b, then anlzl =0 and
<k+ AL) (I(kk, k) — (B, kk)) + 201 (Kk, A)
1 - _
Vo =2""PK | + - (I2(Br, k) — La(kr, ) — I (B, kk) + I3 (K, Vi)
@
_ (L+A—> (k. — Br) — ( Am+2) (Ve — Kk) |
fork=0,...,2m" 2,

Proof. See Appendix B for a detailed proof.

O

We can also price simultaneously calls and put% due to the compact support
of B-splines scaling functions. The coefficients Vm .. for digital options with linear
B-splines can easily be derived following a similar procedure as in the case of Haar
wavelets. Moreover, also the adaptive WA® method applies in the case of B-splines

basis functions, again due to the compact support property of these functions.

4. Error analysis. Let us distinguish four sources of error in our computation
of price v(z,t) in (1) by means of the WA[** method:
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(A) Truncation of the integration range,
E1(x) = vz, 1) — v°(a, 1) = ¢TI / o(y,t)f (yl2)dy.
R\ [ab]

(B) The approximation error at scale m,

b
Eﬂﬂ==v%$J)-U;J@J)=6_m“T4)/‘ﬂyJ)U%yﬂ)-fﬁﬂyﬂﬂdy

(C) The discretization error, which results when approximating the integral I (k)
in (15) by I(k;h) in (16) using the trapezoidal rule. We can apply here the
formula for the error of the composite trapezoidal rule, considering

‘1{71,);(“) = R(Qm,j(re™)) cos(ku), &z :=I(k)— I(k;h),

and assuming that q,]nk € C*([0,]). Then,
3

s
5 | = — ——
(25) &l = Toar

. e (0,m).

(@, ()"

(D) The roundoff error. If we can calculate the sum in expression (17) with a
precision of 1077, then the roundoff error after multiplying by a factor ﬁ
is approximately &4 1= ﬁ‘— - 107", This roundoff error increases when r in
(13), (14), (15) approaches 0.

Here, we focus on the study of the error of types (A) and (B), and we refer the

reader to [Ort12b] for a detailed analysis of the error of types (C) and (D).

If we define & := v(z,t) — vy, ;(z,t), then obviously [£] < [&1] + [&]. If we
consider an appropriate interval [a, b] for the approximation, then the overall error £
is dominated by &;.

Looking at

|&| = e Tm(T—t)

b
/v(y‘t) [fe(ylz) = fr i (ylz)] dy|,

Ja

by the Cauchy-Schwarz inequality, we have
(26) (E2| < e =0 [ (-, T) [l2 - || (1) = fri(-12) 12,

where | - ||2 indicates the norm in the L? ([a, b]) space.
Following the theory of MRA in section 2.2, we can write

(j+1)-(2™ -1)

o= 3 i (040157

(27) k=0
G+n-@'-1) P
e i (04058,
I>m k=0

where d{. . are the wavelet coefficients defined as

(28) ) = / ol - ((j+1)-%) dy
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with z,-)J the jth order dual wavelet. (Note that in the case of the Haar system, the
jth order wavelet is the same as the jth order dual wavelet, that is, P = z;’)j.)

The following proposition and theorem give us a bound for & in the case of
B-splines of order zero (j = 0), i.e., for the Haar system.

Proposition 3. Let us assume that f¢ € C?([a,b]), and let j = 0. If M is a
constant such that (f¢)' (y|x) < M for all y € [a,b], then

|d] )| < l(b— a)!M-273 4+ O (2_;2.,)‘

Proof. Let I} := [a+ k- —[—, a+ (k+1)- b2 =] C [a,b], yix be the midpoint of
the interval I i, I“ =la+k- ﬂ—,yl k) and If = [yix,a + (k+ 1)

We have that f€ is twice dlfferentlable with continuity in the lnterval I; )., and
then we can expand f about y; ;. by means of Taylor’'s formula. It follows that for
all y € I i,

Feyla) = foyrlz) + (F) (yul2) (v — yuw) + % (f)" E@r()l2)(y = yie)?,

where &k € I k.
If we substitute f¢in (28) by its Taylor expansion and we take into account that
1) has a vanishing moment of order 1, then

d i = (f) (yl,k|ﬂf)/ll.k( — k) g ( ) dy

1 ” o .
+ 5/1“‘ (f)" Ex@)|2) (¥ = vk) >0 (ZZ) dy.

Finally, we have

_ b (Y22 gy =2
/Il.k(y yz.k)w,,k(b_a) y

1 g
,Z(b —a)?.27 %

(=

/w (y — yx)dy — 22 / (¥ — yix)dy

" Iy

and

(£ @ @)y — mr)?dy (=) dy
‘/ <b a)

5k

< 2% max |(f9)" (y]2)| / (y — yix) dy
yell k Jh

_(b_a)ﬁ
T T2 gei

ax [(£9)" (ylz)] - 2

and this completes the proof. 0
Proposition 4. Under the same assumptions as Proposition 3, we have

|E2] <C\/(b—a)>- e~ mint(T—t) g—m

Proof. 1f we consider expression (27) and we take into account that || 1,), =1 F
= b — a, then
21
| £C12) = frg Cle) 3= (0= @) D2 > lduaf?,
IZm k=0
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since the Haar wavelets are orthogonal. By Proposition 3,

(29) 1 £7Cla) = foyClo) IBS 50— )P M2 30 272 = (b - a) M2,

I>m

Finally, by (26) and (29), we have

|£2| S Cm . e_"im(T—t) X 2_"11

and this completes the proof. 0
Let us consider the WA® method. Errors of type (C) and (D) also apply in this
case. Furthermore, we define

E(x) == v(z,t) — vy J(x,t) = e_r"“(T_”/RU(y‘ t) [fylz) — for ;(yl2)] dy.

Then, we have
(30)

ko+1
ka1

= e~ Time(T—1) 2 gtr
E=c / g VOO0 + /ﬁ o, T) [f(sl2) — £, (wle)] dy|

since supp fir . = [2%‘.*. %?;'i]
If we consider appropriate values k; and ko, the error in (30) is mainly dominated
by the second integral. Taking into account the Cauchy-Schwarz inequality, this

integral can be bounded by

v(y, T) [f(ylz) — fr;(ylx)] dy

i
%:_1 2 k—%—l 2
< (/%‘ar Iv(y,T)|2> (/E.Jr [f(ylz) — fnr,j(ylx)|2>

2

‘ ko+1

< ( [ |v(y.T)|2) 1 FCk) = £ 5C1) Dy
/g
where | - ||2 indicates the norm in the L? (R) space.

Finally, the Strang-Fix theory [Str73, Str89] states that for smooth functions,

(31) | fClz) — firClz) l2< D - 270D || (799 (a) |2, 5 >0,

where D is a constant.

Notice that in this case we obtain an estimation similar to Proposition 4, since
we can consider M =|| (f°)'(:|z) ||w in Proposition 3, where || (f)'(:|z) ||o:=
max, e o |(F%) (¥])].

Remark 4. B-splines of order 1 can achieve a higher rate of convergence than
B-splines of order 0. Following a similar procedure as in Proposition 3 and taking
into account that B-spline wavelets have a vanishing moment of order 2, it can be
shown that the wavelet coefficients |d] , | for WAI**) method are of order 273, Using
this estimate, it is straightforward to prove that |£5| is of order 272™. Finally, for the
WA method, we can also apply (31) with j = 1.
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5. Numerical examples. In this section, we carry out several numerical ex-
periments to evaluate the accuracy and robustness of the WA method. We put our
attention to plain vanilla European options with GBM, the Heston stochastic volatil-
ity model, and the CGMY model as the associated process for the underlying asset.
We will consider several maturity times, ranging from very short maturities to very
long maturities, to stress the robustness of the WA method. Apart from the pricing of
European options, we also perform a test to approximate a loss distribution function
in a credit portfolio. This problem was treated in [Masl1] by inverting the Laplace
transform of the distribution function. Here, we consider the characteristic function
instead of the Laplace transform.

The recovery process of the density function is carried out by means of the Fourier
inversion method presented in section 3. We will apply two different wavelet-based
approximation methods, the WA [@:8] method, and the WA® method, and we will
compare the results with the COS method [Fan08]. The WAI**| method, as in the
case of the COS method, relies in the a priori computation of the approximation
interval based on the cumulants for the underlying models. On the contrary, the
WA method computes adaptively the approximation interval to meet a predefined
tolerance error in the density approximation.

To determine the interval of integration [a,b] within the COS method and with
the WAI*#l method, we consider
(32)

[a,b] == [z+cl—L‘/c2+\/§,z+cl+L,/cz+\/a] with = = log(Sy/K).

Here, ¢, denotes the nth cumulant of log(Sy/K). The cumulants for the models
employed are presented for example in [Fan08].

We set the parameters to compute the coefficients for the WA[*?) method at the
scale of approximation m as follows:

r= 0.9995,M = 2™,

For a detailed description of this choice of parameters, we refer the reader to [Ort12b].
Proceeding this way, the number of coefficients used for the Haar basis is 2" and for
the B-spline basis is 2"+! — 1.

Although the WA method is fast and accurate and it can be used for different
underlying processes, in general the COS method is capable of achieving a higher
rate of convergence using fewer terms in the expansion for “regular” options. In this
work, we wish to focus particularly on the robustness of both methods when dealing
with extreme cases and compare them from that point of view. We wish to show
here advantages of using a wavelet method instead of the COS method. When pricing
call options with the COS method, the accuracy of the solution exhibits sensitivity
regarding the size of the truncated domain (32). This holds specifically for call options
under fat-tailed distributions, like under certain Lévy jump processes (for instance,
the CGMY model), or for options with a very long time to maturity. A call payoff
grows exponentially in log-asset price which may introduce cancellation errors for large
domain sizes. The authors in [Fan08] use the put-call parity relation as a remedy for
this, since the payoff value of a put option is bounded by the strike price. Here,
we can avoid this roundoff error by means of a wavelet method without relying in
the put-call parity relation. Due to the compact support of the basis functions, we
can remove some of the largest payoff coefficients to achieve higher accuracy without
affecting the accuracy of the remaining part of the density. Furthermore, we can use
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the adaptively defined WA® method to compute the interval of the approximation,
avoiding this way a strategy of fixing an interval based on cumulants.

In the following sections, we show by examples these two important issues. We
use the WAI*# method to price call options under GBM and the Heston model with
long time to maturity and the WA® method to price a call option under the CGMY
process and fat-tailed density function. It is important to underline that both wavelet
methods can be applied to both situations.

5.1. GBM. A process following a GBM has a characteristic function given by
. . L, L 5 9
wepm(w) = exp | —iwz —iw [ ripy — q — 50 (T —t) - 50 w (T —1t) ).

Note that we provide a definition of the characteristic function consistent with the
definition of the Fourier transform (6).

Table 1 shows the results when pricing a European call option with the WAl
method using Haar and B-splines of order 1. B-splines behave much better than
Haar wavelets in terms of accuracy at higher scales of approximation. For shorter
maturities (like the very short maturity 7' = 0.0001, which is about one hour) the
density function becomes extremely peaked. In this case, Haar wavelets are better
than B-splines. The possible explanation is that the support for Haar basis function
is half the support for B-splines scaling functions. Moreover, the shorter the maturity
is, the better the accuracy for Haar wavelets. This follows from Proposition 4, since
when "= 0, b—a — 0.

From now on, we will consider the Haar basis instead of the B-splines basis for
the WA method, as the WA*?) method with the Haar basis also achieves engineering
accuracy and is much easier to implement than the method with B-splines. It is
worth mentioning that under GBM process, the COS method is extremely accurate
and highly efficient, due to its exponential convergence.

We consider the WA® method to price a European call option with the Haar
basis. We need an initial seed kg to start the algorithm. For this purpose we consider
the following set of parameters:

ko= [2" -a] €40 = l.e — 15,

where a is defined in (32) and L = 10. For the sake of simplicity, we have taken this
initial seed, although the WA® method does not rely on the a priori choice of the
interval [a,b], so we can take any (random) seed to start the algorithm. Accurate
results are shown in Table 2. We can observe that at scales 7 and 8, the computed

Table 1
Absolute errors comparing the WAl method using Haar and B-splines basis for a European
call option under GBM. Parameters: Sp = 100, ript = 0.1, = 0,0 = 0.25. The reference value is
computed with Black—Scholes closed formulae.

| K=120,T=0.1,L =10 | K=8),T=1L=175 |
Haar B-splines Haar B-splines
Scale Error Scale Error Scale Error Scale Error
5 3.50e 104 4 2.60e 104 5 5.2de 104 4 1.35e¢ 104
6 9.10e 105 5 1.48¢ 105 6 1.02¢ 104 5 6.72¢ 106
7 2.08 105 6 3.21e 107 7 2.0le 105 6 3.6le 107
8 1.41e 106 7 4.93e 108 8 4.22¢ 106 7 5.12¢ 109
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Table 2
Absolute errors using the WA® method for a European call option under GBM. Parameters:
Sp = 100, K = 120, 7rjpt = 0.1,q = 0,0 = 0.25,T = 0.1. The reference value s computed with
Black-Scholes closed formulae.

| Scale | ki |y=S5 [ Umj@| [ k2 [v=5 | Ifmj@)| | Error
5 b2 1.63 3.63e 116 21 0.66 2.49e 116 | 1.27e 104
6 103 1.61 2.23e 116 A7 0.73 2.96e 116 | 7.87e 106
7 138 1.08 7.90e 116 64 0.50 7.59e¢ 116 | 4.91e 107
8 271 [1.06 7.78 116 | 137 0.54 6.25¢ 116 | 3.07e 108
logllA_kj) —— toglV_k[} —— logl|P_kj} ——
15 p o
] W\/\/\/\/\/\/\
| ]
of
st
o} ]
st
20 . N . ) X
] 5 10 15 20 25 0
k
ogllk_md) ——  logIM_K} ——  logllP_K)) ——

a0k

as b

-20

] .5 ;0 15 2‘0 2.5 ;)
k
Fig. 2. Payoff coefficients (Vi) and density coefficients (Ax) for pricing a call with the COS

method (left) and coefficients Cg,k’ Vsrti(l for pricing a call with the wARbY method (right). Para-
menters: Sg = 100, K = 100,7rijnt = 0.1,¢ = 0,0 = 0.25, T = 100, L = 10.

intervals for approximating the density function are almost equal. Notice that in this
case the intervals are small and the density has thin tails, since it is bounded by 10~!°
outside these intervals.

We consider a European call option with a very long maturity 7' = 100. (Long
maturities may appear, for instance, in economics and real options problems.) First,
we price the option by means of the COS method using N = 32 terms. The left plot in
Figure 2 shows the payoff coefficients and the density coefficients. Due to the roundoft
errors, the absolute error in the option price when comparing with the Black—Scholes
closed formulae is almost 107°4. We also employ a WAI*?| method with the Haar
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basis at scale 5 (using 32 coefficients). In principle, the absolute error is, like the COS
method, about 1074, This is due to the very large payoff coefficients used in the final
part of the interval. (See the right plot in Figure 2.) However, we can remowve the
last coefficients in the approximation, considering a locally truncated expansion, to
achieve an accuracy of about 10~! in the absolute error.

We can do this because each coefficient ¢, ;. in the wavelet expansion only affects
the points of the density lying in an interval [2%, %1] Then, for each scale level m,
we can consider a truncated series, i.e,

k(m)
(33) v(z,t) ~ e—T(T—t) Z (,Z;Lk(z) . V#.(i

k=0

instead of (21). We compute k(m) so that e "(T—*) Ek(:(l)) ¢ (x)- VI < 8, (since
Sp is an upper bound for the value of a call) and ¢ , (z) > 0 whenever V', > 0 for
all k < k(m). (When the density values are close to zero, we may find some negative
coefficients ¢/ , () that may introduce inaccurate option values.)

Note that the same strategy can be followed for pricing call options with long
maturities by means of the WA® method.

5.2. The Heston model. In this section, we focus on the Heston model [Hes93]
for the underlying process. Under the Heston model, the volatility, denoted by /iy,
is modeled by a stochastic differential equation,

dlEt = (/,L — %Ut)dt + ,/'U,tdlr"']”,

duy = A — wg)dt + ny/urdWa,
where z; denotes the log-asset price variable and u; the variance of the asset price
process. Parameters A > 0,u > 0, and n > 0 are called the speed of mean reversion,
the mean level of variance, and the volatility of volatility, respectively. Furthermore,
the Brownian motions Wy; and Wy are assumed to be correlated with correlation

coefficient p.
The characteristic function of the log-asset price reads

CHeston (W) = exp(—iwe)
ug ( 1 — e—D(T—t)

- exp (—iwu(T —t) + 7 W) (A + ipnw — D))

AD : S
- exp (0_2 ((A +ipmw — D)(T' — t) — 2log (7))) '

We present in Table 3 the results when pricing call options with long maturities
under the Heston model by means of the WA[*®? method with the truncated series
(33) and the COS method. We have selected maturities 7 = 30 and 7' = 45 which
may correspond to pension or mortgage contracts. For 7' = 30 the COS method has
very large errors. The WA[*? method produces more accurate and robust results in
the sense that when we range from scale 6 to scale 3, the absolute error increases up
to 10792, For the COS method, the absolute error with the same number of terms is
about 1079 For longer maturities like 7" = 45, the COS method with 32 terms has
an absolute error about 1074, while the WA|%?) method is about half the unit. The
recovered densities with the COS method are plotted in Figure 3.
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Table 3
Absolute errors comparing the wAlRP method and the COS method for a European call op-
tion under the Heston model. Parameters: Sy = 100, K = 100,rijpt = 0, = 0,A = 1.5768,n =
0.5751, 4 = 0.0398, uy = 0.0175,p = 0.5711,L = 12. The reference value is computed with the
COS method using 50000 terms.

[ T =30 ] T =45 |
Haar COS Haar COS
Scale Error N Error Scale Error N Error
3 2.58e + 02 8 1.72¢e + 06 3 3.92e+02 | 8 3.19e + 07
4 272400 | 16 2.75e+ 05 4 1.09¢ 4+ 01 | 16  5.45e + 06
5 794e 101 | 32  2.19e+ 03 5 5.99e¢ 101 | 32 3.10e+ 04
6 246e 103 | 64 3.37e 101 6 1.05¢ 102 | 64 9.68 101
T=30 = T=d§

04

Density of the Heston model

01F

-10 l5 :) ‘5 10
Fig. 3. Recovered density funtion of the Heston model with the COS method.

Remark 5. We can observe in Tables 1, 2, and 3 that the pricing errors decrease
when we increase the scale of the approximation. This fact is in accordance with
the theoretical error analysis from section 4, and also with the theory of MRA in
section 2.2. However, the observed errors are smaller than the theoretical errors,
which can be explained by the fact that the densities that we encounter are very
regular, while one of our main assumptions in the error analysis is that the density
function to be recovered is a C? function. We restrict ourselves to C? functions in
the error analysis to make a somewhat general analysis, since we may not know the
regularity of the density beforehand.

5.3. CGMY process. One problem with the GBM model is that it is not able
to reproduce the volatility skew or smile present in most financial markets. Over the
past few years it has been shown that several exponential Lévy models are, at least
to some extent, able to reproduce the skew or the smile. One particular model is the
CGMY model [Car02]. The characteristic function of the log-asset price reads

1 .
weemy (w) = exp(—iwz) - exp (—iw(r —q+s)(T —t)— sz‘az(T - t))
cexp (CT(=Y) (M + iw)" — MY + (G - iw)Y — GY) (T 1),
where I'() represents the Gamma function, and

s=-CI(-Y)((M-1)Y - MY +(G+1)Y -G").
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66.49 |

66.485 b

Call Option Value

66.48 |

66.475

8 85 9 a5 10
L

Fig. 4. Call prices for the COS method under the CGMY process. Parameters: Sp = 100, K =
110, rint = 0.1, =0.05,C =1,G=5,M =5,Y = 1.5,T = 5.

Table 4
Absolute errors using the WA® method for a European call option under the CGMY model.
Parameters: Sp = 100, K = 110, rint = 0.1, = 0.05,C =1,G =5,M = 5,Y = 1.5,T = 5. The
reference value 1s computed with the COS method using 50000 terms and L = 8.

[ Scale | k1 |y=%k [ Imj@| [ k2 | y=2% [ Ufm;@®)| | Ewor |
[2 [ M09 B7.25 [6.29¢ 116 | 75 | 18.75 | 5.23¢ 116 | 2.83¢ 105 |

Here, we illustrate the sensitivity in the accuracy of the option value depending on
the choice of the parameter L in (32), and hence, depending on the truncation range.
For this purpose, we price a call option under the CGMY process with a fat-tailed
density. Figure 4 shows the price of the call option for L ranging form 8 to 10 with
the COS method with N = 64 terms. We can see the fluctuation in the prices, due
to cancellation errors.?

If we consider the WA® method with €, = 1.e — 15 (for the approximation of the
density), we get accurate results without relying on the choice of the interval of the
approximation. The results are presented in Table 4.

5.4. Credit portfolio losses. Financial companies need to evaluate and to
manage risks originating from their business activities. In particular, credit risk un-
derlying a credit portfolio is often the largest risk in a bank and its measure is used
to assign capital to absorb potential losses from the credit portfolio.

Consider a portfolio consisting of N obligors. The portfolio loss is defined as
L= Zfﬂ L,, with L,, the individual credit loss, defined as

Ln - gn . ]-Xn<r:n .

Here X, represents an individual asset return value of an obligor. So, if a com-
panies’ asset return falls below default threshold ¢,,, a loss £,, occurs.

Capital calculations for credit portfolios are typically based on the so-called Va-
sicek framework [Bas(05]. The Vasicek model is called a one-factor model, because the

2By use of the put-call parity relation this may be avoided.
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random part of the individual asset value is driven by one common economic factor,
i.e.,

Xn=\/p_ny+ Vl_anna

where Y is a common factor and Z,, is the idiosyncratic factor for obligor n. The
correlation between Y and X, is p,. All random variables follow standard normal
distributions, and Y and Z,, are independent.

We define ¢, := ®~1(P,), where ®~!(x) denotes the inverse of the standard
normal cumulative distribution function, and P, is the default probability of obligor
n. The probability of default of obligor n, conditional to a realization ¥ = y, is then
given by

cn = \/PnY
) = BX < |V =) = @ (222

In the case of full granularity and for N — oo, the portfolio loss is governed by
common factor Y, because one then assumes that the idiosyncratic factors diversify
away.

When a portfolio is small or has name concentrations, e.g., when there are a few
big positions so that due to the obligor’'s default the portfolio loss will be significant,
the portfolio loss is governed by the idiosyncratic factors of these obligors. In this
situation, an analytic formula is not available, and the industrial standard is to employ
Monte Carlo simulations. The overall distribution function is typically a staircase-like
function.

Here, however, we show that a semianalytic formula based on the WA @b method

can be derived based on the characteristic function of the portfolio loss, which is
defined as

(34) vloss(u’) =E [C—iwL] .

The starting point for the derivation of the characteristic function is the tower
property to calculate the conditional expectation, conditional on variable Y,

N
E lexp (—in&, ~1x, <Cn) Y

n=1

Ploss(w) ;== E[E[e” ™| Y]] =E

We recall that in a one-factor model framework, if the systematic factor Y is fixed,
default occurs independently since the only remaining uncertainty is the idiosyncratic
risk. Then,

N
(ploss(uf’) =E [H E [e_iwen'lxn<cn |Y]

(35) n:vl N
=E [H ﬁn(uuy)l = / fr (@) - [ Pnlw; v)dy,
n=1 R n=1
where
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The conditional characteristic function for an individual obligor 1,, can be ob-
tained analytically, and we only need to evaluate (35), the integral over y, numerically
to find ©joss(w).

According to (34), the characteristic function g, is the Fourier transform of the
loss density fr, associated to the random variable L. Then,

(36) Ploss(Ww) = /IR el fr(dl = /R e "R ()dl,

where Fj is the derivative of distribution function F, associated to the random vari-
able L.

Without loss of generality, we can assume that EHN= 1 bn = 1, and, therefore, we
can consider

Fo(l) = Fr() if o<i1<1,
AR ] if 1>1

for certain F';, defined in [0,1].
If we integrate by parts the expression (36), we have

1
Ploss (W) = e + iw / e T (l)d,
JO

and then (Pioss(w) — ™) /(iw) is the Fourier transform of Fp. .
Since F'f, € L2([O, 1]), according to the theory of MRA we can approximate F'r,
in [0, 1] by a sum of Haar scaling functions,

27 -1
(37) Fr)~FL (1), Fr()= > cmibmr(z)
k=0

with convergence in the L?-norm. Finally, we can apply the WA[** method in a
bounded interval, as described in section 3.1, where [a,b] = [0,1] in this case, to
recover the coefficients of the approximation (37).

In summary, with the characteristic function of the portfolio loss determined, we
can apply the WAI*#| method to perform the inverse Fourier transformation to recover
the density or the cumulative probability function of the portfolio loss efficiently.
Value-at-risk values can then be easily extracted from the cumulative probability
function.

We consider here a very small credit portfolio with parameters N = 20,¢,, =
1,P, = 0.01, and p, = 0.5 for n = 1,...,N. Figure 5 shows the tail probability of
the loss random variable L, computed by the COS method with 1024 terms and the
WA method at scale 10. We use as a benchmark a Monte Carlo method with five
million scenarios for the systematic factor Y. We can observe the high accuracy of the
WA [** method at low and high loss levels. On the contrary, the COS method exhibits
oscillations without additional measures, and it is not capable to give reliable results
at high loss levels, being often the quantiles of interest to calculate the economic
capital to absorb future potential losses in the credit portfolio.
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Fig. 5. Tail probability of a small and diversified portfolio.

6. Conclusions. We have investigated option pricing problems by means of the
discounted expected payoff pricing formula and the wavelet theory.

We have presented two WA methods, the WA[*? and the WA® method, for recov-
ering the density function associated to the underlying asset price process, once the
characteristic function is available. Technically, we approximate the density function
by a finite combination of jth order B-splines basis functions and invert its Fourier
transform to recover the coefficients. With the WAl*? method, we first truncate the
integration range and then approximate the density function in a bounded interval.
With the WA® method, we adaptively compute the integration range in order to meet
a predefined tolerance error for the density approximation. The second method may
be more involved, but we avoid an a priori choice of the interval for the approxi-
mation. Regarding the selection of the basis, although in general B-splines may be
somewhat more accurate than Haar wavelets, a Haar basis is more efficient and easier
to implement than a B-splines basis.

We have compared the WA methods with the COS method which is based on
a cosine expansion. Although the COS method is highly efficient and accurate, it
may lack robustness in some cases. For long maturity contracts, the COS method
may be inaccurate due to roundoff errors. With the WA method, we can truncate
the series expansion conveniently to avoid roundoff errors. This is possible due to the
compact support properties of the wavelets basis employed. The COS method also
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shows certain sensitivity on the choice of the truncation interval when pricing call
options. As a remedy for this, we have proposed a solution by means of the WA®
approach, avoiding the a priori selection of the interval. It is worth mentioning that
for stepped functions, like the distribution functions arising in portfolio loss problems,
Haar wavelets fit much better than Fourier-based methods.

An error analysis has been presented. We underline the local convergence property
of the wavelets with compact support. Due to the local nature of theses wavelets, if
the approximated function is non smooth in a small interval, this does not affect
the convergence in the remaining part of the approximation domain, whereas the
convergence of Fourier-based approximations is affected on the whole domain.

A . . . oy G2 )

ppendix A. Proof of formula (12). We consider P, ;(z) = >,
c]m. lzl. If we make the change of variables z = re'*, then

G+1)-2" 1)
(38) P, j(ret™) = Z ), rle™.

=0
Taking the real part of (38) and multiplying by cos(ku) gives us

(G+1)-(2%-1)
R (P, j(re™)) cos(ku) = z c]m,lrl cos(lu) cos(ku)
=0
GG
=3 Z chJrl (cos((l + k)u) + cos((l — k)u)) .

1=0

We integrate between () and 7 and distinguish two cases:
e Case k=0:

(412" 1) .
Z a ot (/ cos(lu)du)
1=0 70
o Gapet-y 4
=T o+ Z chJrlT sin(lu)|; = mc), o

=1

./0"§R (P j(re™))

e Case k # 0:

/07T R (P (rei”)) cos(ku)

L GH-em oy ,, )
=5 2 O (/ cos((l + k)u)du + / cos((l—k)u)du.)
1=0 ' Jo 0
(j+1)-(2™ —1)
Tr .

; 1
_ k ! ~ V) [T
= Ec,’n:kr +3 ;z(, char (l s sin((1 + k)u)|

14k

1 . Ll T k
+ - sin((l — k)u)|0) = §Hm,kr .
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Appendix B. Proof of Proposition 2. We consider three cases separately:
e Case a < 0 < b. We consider first the case that a = 1. By definition,

—a
ml\ _/[K ¢mk( :Z_a>dy
y—a
g K( ~1) b (2 m)dy-

Taking into account that

(1 ! 2y—a
¢m,k( b—a

2m/2(1_‘2m+1,g:_2_k_1‘), <2t < M2
0 otherw1se,
we have
V,-,l,ilk= / 2m/2K(ey_1) (1_ 2m+l.u_k—1‘) dy
" Jjobin(A ) b-a
[ @ - (1= |2 s k- ])dy >,
0 otherwise.

Now, we can split the above integral into two parts yielding

T
/ 22K (e¥ — 1) (1
Ok

Lk —
- / 9m/2 K (e¥ — 1) (2'"“ N Aul. gl k) dy
Js b—a

k

8 y—a
_+_/ 2m/2K(ey_1)(1_2m+1_b_+k+1)dy‘
Lk

N ET—

After basic algebraic manipulation, we obtain the formulae for the coefficients

Vo
For o = —1,
— y—a
Vyrll;kl: / [~K (¥ —1)]" ¢mk(2 m)dy
_ [ 1 b .y—a
- Y K( )qjmtk <2 b—a)dy
Then,

b —

V’:‘II:/ *2m/2K(€y*1) (1 2m+1_uk1{) dy
[a,0]M[ Bk ;7] a

fJi ey (1=fer-gzz -kt Ai<o
0

otherwise.
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Now, we can split the above integral into two parts yielding

Ck
/ —2M/2K (e¥ — 1) (1 -
Bk

Ak .
_ / —om/2[¢ (e¥ — 1) (2'"“ : 3; . k) dy
B —

13

Ck y—a
+/ 72'"/2K(ey71) (12m+1-—+k+1)dy.
Ak b—a

After basic algebraic manipulation, we obtain the formulae for the coefficients
vt

m.k

e Case a < b < 0. In this case, supp (f)}n,k C (—00,0) and for call options

v(y,T) = 0,y < 0. Then, Vrilk =0,k =0,...,2m"! — 2. For put options
v(y,T) > 0,y <0, and, therefore,

vt :/ —2M2K (¥ — 1) (1 -
: [a,b])N [ Bk k]
Mk y—a
:/ —2™/2K (e¥ — 1) (1—‘2"‘“-m—k—1‘> dy
P -

for k =0,...,2m+F1 2,
e Case 0 < a < b. In this case, supp ¢1ln,k C (0,400) and for call options
v(y,T) > 0,y > 0. Then,

m y—a
2 +1-b——k—1Ddy

—a

Vyj;i:/ 2"‘/2K(e~"—1)(1—’2’"“-1/_—‘1—k—1‘> dy
* 7 S boa

Tk .
- / 92K (¢¥ — 1) (1 - ‘2’"“ : ‘Z—a k- 1‘) dy

Bk —-a

for k = 0,...,2m*! — 2. For put options v(y,T) = 0,y > 0, and, therefore,
Vol =0k=0,...2m+ 2
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