
498 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997

Supervisory Control Using Failure Semantics
and Partial Specifications

Ard Overkamp

Abstract-A framework is presented for the supervisory con
trol of nondeterministic discrete-event systems based on failure
semantics. It guarantees deadlock-free behavior under all circum
stances, it allows for powerful specifications, it forms a sound
basis for modular control, and it can handle nondeterminism
without extra effort. A synthesis method to generate the least
restrictive supervisor is presented.

Secondly, the control problem with partial specification is
formulated, and it is shown that this control problem can be
rewritten to a control problem with full specification. Special
care has to be taken for traces with an unbounded internal
extension (divergence). A condition, denoted bounded recurrence,
is introduced to handle these traces. It is shown that the exter
nal behavior of the controlled system is not restricted by this
condition.

Index Terms- Failure semantics, nondeterministic discrete
event systems, partial specifications, supervisory control.

I. INTRODUCTION

NONDETERMlNISM reflects the lack, or the deliberate
hiding, of information. Reality may be considered deter

ministic, but models are an abstraction of reality. Models stress
some aspects of reality by hiding irrelevant details. The hiding
of details causes systems to exhibit nondeterministic behavior.
Therefore, we wish to use nondeterrninistic processes to model
discrete-event systems. Of course, models can be made deter
ministic by also including the unimportant details and stating
which details are important and which are not. However, this
will lead to unnecessarily complex models.

Supervisory control of deterministic discrete-event systems
was first introduced by Ramadge and Wonham [I]. In [2]
the basic supervisory control problem for nondeterministic
systems was introduced and solved. The approach is based
on failure semantics. Failure semantics provides a theoretical
foundation to reason about the behavior of nondeterministic
discrete-event systems. It is introduced by Hoare [3]. In [4]
the supervisory control problem for nondetenninistic systems
with partial specification was formulated, and it was stated,
without proofs, that it can be reduced to the basic control
problem. In this paper a proof of this result is presented.
Partial specifications allow for implementation-independent
specifications, which are highly desired if specifications are
used by different manufacturers or if new implementations
are expected in the future. Partial specifications are also well
suited for control problems in layered architectures such as

Manuscript received July 21, 1995; revised April 23, 1996 and October 8,
1996. Recommended by Associate Editor, S. Lafortune.

The research was performed while the author was with CW!, 1009 GB,
Amsterdam, the Netherlands.

Publisher Item Identifier S 0018-9286(97)02805-5.

the ISO-OSI network model [5]. Protocol design problems in
layered architectures can be treated as control problems by
considering the lower level service as the uncontrolled system,
the protocol as the supervisor, and the higher-level service as
the specification. Usually the lower level uses implementation
events that are not used in the higher level. This leads very
naturally to a control problem with partial specification.

A discussion on the motivation for the use of failure
semantics will be given in Section IV. The approach based
on failure semantics will be compared with frameworks based
on deterministic systems with marking. It will be shown that
the supervisory control framework based on failure semantics
is a flexible and elegant method. It guarantees deadlock
free behavior under all circumstances, it allows for powerful
specifications, it forms a sound basis for modular control, and
it can handle nondeterminism without extra effort.

The control problem discussed in this paper is to find a
supervisor such that the controlled system can replace a given
specification in any environment. The precise meaning of this
statement and the motivation for it are given in Section IV.

The main difference between the approach presented in this
paper and the approach presented by Kumar and Shayman
[6] is that the latter uses the prioritized synchronization op
erator. This more complex synchronization operator requires
a stronger semantics than failure semantics. Therefore, they
use trajectory semantics for their models. Future experience
will provide information whether this enhanced complexity
is required, or useful, to handle supervisory control prob
lems. Kumar and Shayman use a language as specification,
whereas in this paper a process is used. A process can
specify nondeterministic properties, therefore the class of legal
implementations can be more accurately specified by a process
than by a language.

Another control framework, which can handle nondeter
ministic systems, is presented by DiBenedetto et al. [7]. This
approach is based on input/output (I/0) automata.

In [8] Inan presents the projected specification problem
which is similar to the control problem with partial specifica
tion discussed in this paper. Although Inan uses a nondetermin
istic supervisor as a finite representation of the possibly infinite
set of solutions, the approach is based on languages. He does
not consider unbounded internal continuations (divergence, see
Section III).

II. PROCESSES

Let L: denote the set of all possible events. A trace s is
a finite sequence of events s == o-1 o-2 ... o-,,, with for all

1 :::; i :S n, ai E L:. The length of a trace is the number of

0018-9286/97$10.00 © 1997 IEEE

OVERKAMP: SUPERVISORY CONTROL USING FAILURE SEMANTICS

choc

6
cookie

(a)

Fig. I. Models of a vending machine.

events in the trace. Let€ be the empty trace, i.e., the sequence
of events with length zero. Let L;n denote the set of traces

with length n:L:;" = {0'10'2 .. ·0",,:\il::; ·i '.S n,O'; EI;}. Let
L;* denote the set of all traces:).;* = U~=o ~,,. Let I;+ denote

the set of all nonempty traces: ~+ = U~1 I;" = :B* - { c: }.
A language is a subset of)_.:;*.

A string v E)~* is a pre.fix of a string s E ~· if s = 1Jt

for some I. E)~*. The set of all prefixes of string s will be

denoted by :zi = { v E L:*: :Jt E ~· s.t. s = vt}. The prefix
closure of a language K ~).:; is the set of all its prefixes:
K :::: {v E 2.:*: :ls E K s.t. ·v E s}. A language is called
prefix closed if it is equal to its prefix closure: K = K. The
next event function ,\ gives all events that are possible after
a string: ,\(K 8) = { O' E 2.:;: BO' E K}. The p-function is the

complement of the next event function. It gives all events that
cannot be executed after a string: p(IC s) = ~ - ,\(K, s).

Deterministic processes can be uniquely described by the
language they generate. For nondeterministic processes this is
not enough [9 j.

l\ampl e I: Consider a vending machine that hands out a
cookie or a chocolate bar in exchange for a coin. In Fig. I
the representations of three vending machines are given by

finite-state automata. All three machines can generate the
same language but will behave differently. Therefore, it is not
sufficient to describe their behavior by the language that they
can generate. How the machines behave is best illustrated by
letting a user operate the machines. After a client inserts a coin,
the first machine will always hand out what the user requests.
It will never refuse to give a cookie or a chocolate bar. If the
user wants to have a chocolate bar from the second machine, he
might get disappointed because the machine can reach a state
in which it cannot give a chocolate bar. It will, however, never
refuse to hand out a cookie. The third machine can sometimes
refuse to give a cookie and sometimes refuse to give a

chocolate har, but it cannot refuse both at the same time. If a
user requests either of the sweets, no matter if it is a cookie or
chocolate bar, then the machine cannot refuse and it must hand
out one of them. To describe the behavior of the machines it is
necessary to not only describe the events that can be executed,
i.e., the language, but also the event sets that can be refused.
This is the basis of failure semantics [3]. A machine can refuse
event set 1l ~)~ after string s if it can reach a state by execut
ing string 8, and it cannot execute any event of event set Hin
this state. Note, however, that because of nondeterminism, the
machine might also be able to reach another state after string

s, and in this state it might be able to execute an event of event
set R. So, it is possible that an event can be executed after a
trace, although it can also be refused after the same trace.

(b)

499

(c)

The event sets that can be refused are called refusals. A set
of refusals is called a refusal set. For instance, the refusal set
of the third machine after a coin is inserted is the following:

{ 0, {coin}, {cookie}, { choc}, {coin, cookie}, {coin, choc}}.

As explained in Example I, the machine cannot refuse both
the cookie and choc-event, so the event set {cookie, choc} is
not an element of the refusal set.

In the sequel the terms "process" and "system" are used
interchangeably.

Definition l: A process is defined as a triple A =
(I:(A), L(A), ref (A)), where

I;(A) ~I: is the set of event labels

L(A) ~ I:(A)* is the language generated by A

for s E L(A), ref (A, s) ~ 2E(A)

is the refusal set after s

and which satisfies the following five conditions [3].

I) c: E L(A).
2) L(A) = L(A).
3) s E L(A) => 0 E ref (A, s).
4) RE ref (A, s) and R' ~ R => R' E ref (A, s).
5) RE ref(A,s) => RUp(L(A),s) E ref(A,s).

These conditions state, respectively, that the language has to
be nonempty and prefix closed, the refusal sets have to be
nonempty and closed under the operation of taking the subset,
and events that cannot be refused must be in the language.

For .'i rt, L(A) the refusal set ref (A, s) is defined to be
2I:(Al. Let 11(~) be the set of all processes A with I:(A) ==I;,

The ref-function associates to each string a set of subsets of
~- If a subset R is an element of ref (A, s), then the process
has the possibility after trace s to block all events in R. That
is, if a user offers (via the synchronous composition defined
below) to the system a set of events which is in the refusal
set, then the system has the possibility of blocking all these
events. No event can be executed. This is called a deadlock.

Definition 2: System A can deadlock after traces E L(A)
if I:(A) E ref(A, .s). System A is deadlockfree after s if
)~(A) if. ref (A, s).

It will be assumed that if A is deadlock-free after trace .s,
then eventually it will execute an event from .\(L(A), s). So
·a system will continue unless it deadlocks. Note, however,
that if a process can deadlock after a trace, then this does not
mean that it actually will deadlock. If a process can deadlock
after trace s, then it can reach a state q1 in which it cannot
execute any further event. But, it could also be, because of

500

nondeterminism, that it reaches another state, say q2, in which
it can execute an event.

Deterministic Processes

A discrete-event system A is considered deterministic if
from each state there is at most one transition corresponding
with each event a E 2.:(A). After observing a trace s E L(A)
it is uniquely determined in which state the system is. So
it is also uniquely determined which events can be executed
after .'.! and which events are refused after s. We will consider
a process deterministic if and only if any event that can be
executed after a trace cannot be refused after the same trace.

The class of nondeterministic processes strictly contains the
class of deterministic processes.

Definition 3: Process A is called deterministic if for all
s E L(A)

RE ref (A., s) {::} R ~ p(L(A), s).

A prefix-closed language K ~ I:* uniquely defines the
deterministic process Det (K), with

L:(Det (K)) =I:

L(Det (K)) = K

ref (Det (K), s) = 2r(K,s).

It is not difficult to prove that Det (K) satisfies the condi
tions I)-5) of Definition I. It will be left without proof that
all processes constructed in the rest of the paper satisfy these
conditions.

The class of deterministic processes does not correspond
exactly with the class of deterministic automata. Consider
an automaton that can make a nondeterministic choice, but
in each option it behaves exactly the same as in the other
1ptions. Thus, the nondeterministic choice cannot be detected
rom the behavior of the automaton. This system is considered
iondeterministic from an automaton point of view because it

can make a nondeterministic choice. But, it is deterministic
from a process point of view because it satisfies Definition 3. A
system will be called deterministic if its process representation
is deterministic.

Synchronous Composition

Control will be enforced by synchronization on common
events. The controlled system (i.e., the synchronous composi
tion of the plant and the supervisor) can only execute those
events that both the supervisor and the plant can execute.

Definition 4: Let A, B E II(L:). The synchronous composi
tion of A and B is the process AllB E II(:E), with

:E(AllB) =I:

L(AllB) = L(A) n L(B)

ref(AllB,s) ={RaURb:Ra E ref(A,s) and

Rb E ref (B, s)}.

Behavior State Representation

For processes there is no canonical automaton representation
such as the minimal state deterministic automaton represen
tation used for languages. In this section we will define a
representation that will be used in the rest of the paper as

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL l997

choc

'\\,.,~ {{coin, choc},
~ {coin, cookie}}

cookie

Fig. 2. Behavior state representation of a vending machine.

the automaton representation of processes. It will be used to
describe processes and to perform computations on processes.
The representation is based on an equivalence relation similar
to the Nerode equivalence relation used for languages [10].

Let A/ s be the process that behaves as process A after it
has executed trace s, Two traces s and s' can be considered
equivalent if A/ s = A/s', that is, if the traces that A can
execute and the event sets that A can refuse after s and s',
and the event sets that A can refuse after any continuation of s
and s' are the same. One can regard A/ s as the state reached
after trace s. To differentiate this notion of state from the
states used in regular nondeterministic automata, we will call
A/ s the behavior state reached after trace s. These behavior
states can be used to make a behavior state transition structure,
where the set {A/s: s E L(A)} is the state space and the
transition function is defined by A/ s !!.+A/ sa. The initial state
is A = A/ s. Associated with each state is a set of refusals
defined by

ref(A/s) =ref(A./s,s) =ref(A,.s).

This transition structure will be denoted the behavior state
representation of process A. Note that this representation
forms a deterministic transition structure because each pair
(A/s, c7) uniquely defines the next state A/w. It can be seen
as if the nondeterministic properties are encoded inside the
refusal sets of the behavior states, instead of modeled by the
transition function.

In Fig. 2 the behavior state representation of the process
defined by Fig. l(c) is given. For compactness reasons, only
the maximal refusals, i.e., the refusals not strictly contained in
another refusal, are shown. As refusal sets are closed under
the operation of taking subsets, the whole refusal set can
be derived from the maximal refusals. Also, the refusal sets
of behavior states A/ s with ref (A/ s) = 2r(L(A),s) are not
shown. These refusals can be derived from the outgoing edges
of the state.

The refusal set of behavior state A/ s is

ref (A.Jc-)= 2r(L(A),e)

= {0, { choc }, {cookie}, { choc, cookie}}.

The refusal set of behavior state A/ s is the set of all subsets of
{coin, cookie} and {coin, choc}. It is shown after Example 1.

Converting a nondeterministic finite-state machine to a be
havior state representation is basically the same as converting
a nondeterministic state machine to a deterministic version.
This conversion has a known complexity that is worst case
exponential in the size of the state space of the original state
machine. But in practice, systems have sufficient structure such
that this conversion may not be a problem.

OVERKAMP: SUPERVISORY CONTROL USING FAILURE SEMANTICS

choc

~
cook~/i

(a)

Fig. 3. Internal events and divergence.

IIL PROJECTION

cookie

candy

(b)

Very often events occur that are not visible from the outside
of a system. Inside the system an error can happen, the
effect of which can only be detected later. Also, low-level
implementation events usually do not show up on a higher
level. In order to be able to investigate the external or higher
level description of a system, we need a method to project
these internal events out of a description.

Definition 5: Let E, <;;; E denote the set of external events
and E; == E - El' the set of internal events. The projection of
a trace onto event set Ee is the trace from which all events
not in E,. are removed [1]. The projection of a language
is the set of all its projected traces. In the sequel a small
"p" will denote projections of traces, languages, and refusal
sets. A large "P" will denote projections of processes (see
Definition 7). A subscript indicates the event set on which
the projection is done. Consider a vending machine as shown
in Fig. 3(a). After inserting a coin, a chocolate bar can be
obtained, provided the machine does not execute internal event
i, after which only a cookie can be obtained. The question is
what the projected system can refuse after a coin is inserted.
Suppose a customer insists on having a cookie. He refuses to
accept a chocolate bar. The machine must now execute the
internal event because that is the only possible event that is
not blocked. The system ends up in a state in which it must
hand out a cookie. So, it is clear that the machine cannot
refuse to engage in a cookie-event. The machine can refuse to
hand out a chocolate bar because the customer cannot prevent
the internal event from occurring. After the internal event the
vending machine cannot engage in the choc-event.

If a system refuses external event set H" <;;; 2;,,, but it can
still execute an internal event, then it may end up in a state in
which it does not refuse this external event set. On the other
hand, if the system does not refuse R,., but it can still execute
an internal event, then it may end up in a state in which it
can refuse H, .. It turns out that the refusals of the projected
system are defined by those states in which the machine cannot
execute internal events. These states correspond with refusals
that contain the set of internal events. The projection of the
refusal set rnf (A, s) on events set 2-:,. is defined by

p"(ref(A,s)) == {H ~ 2;,.:RUE; E ref(A,s)}.

Divergence

But there is another problem. It may happen that a machine
can execute internal events forever. See for example Fig. 3(b).
After a coin is inserted, the machine can always choose to
execute an internal event because it cannot be blocked from the

501

outside. To the customer it appears as if the machine refuses
all external events. This phenomenon is called divergence [3].

A trace s is called divergent with respect to a system and
an external event set if the system can execute an unbounded

number of internal events after s. We cannot write "an infinite
number of events," because only finite traces are considered.

Definition 6: The set of divergent traces with respect to a
language K <;;; I:* and external event set Ee is denoted by
div (K, Ee) and defined by

div (K, I:e) = {s EK: Vn EN, 3si E Ei s.t. ls.;I > n and

SS;, EK}.

Let A E II(E) be a process. For notational convenience we

will use div (A, I:e) to denote div (L(A), be)·
As div (A, Ee) is a set of traces, i.e., a language, the

projection Pe (div (A, E,,,)) is well defined.
Definition 7: The projection of process A E II(I:) on

alphabet I:e is the process Pe(A) E II(Ee), where

E(Pe(A)) =Ee

L(Pe(A)) = Pe(L(A))

{ 2~e, ifse EPe(div(A,Ee))

ref(Pe(A),se)= LJ Pe(ref(A,s))
sEp~- l (s,)

otherwise.

In the definition above it is assumed that if a system can
diverge, then it has the ability to refuse all external events.
In some situations this is a rather pessimistic assumption.
Sometimes a more optimistic approach is justified. Consider,
for instance, a network in which a lost message automatically
causes the retransmission of the message. The internal events
"message-lost" and "retransmit" together form a loop of in
ternal events. After retransmission the retransmitted message
may also get Jost, which causes the next retransmission. With
a pessimistic point of view one can argue that the system can
execute internal events indefinitely and can therefore refuse
all external events. But usually it is assumed that eventually,
after sufficient retransmissions, the network will be able to
deliver the message. This can be interpreted as if the system
cannot refuse the external "message-received" event. It would
go beyond the scope of this paper to further investigate
the consequences of this more optimistic interpretation of
divergence [11]. In the sequel the pessimistic approach toward
divergence will be used.

IV. SPECIFICATION, IMPLEMENTATION, AND CONTROL

In general, a design problem can be defined as: given a spec
ification, find an implementation that satisfies the specification.
A design problem can be considered a supervisory control
problem if the implementation consists of an already existing
uncontrolled process G and a still-to-be-designed supervisor
process S. In this paper, the control problem of finding a
supervisor S such that GI IS can replace a given specifica
tion process E is analyzed. The use of failure semantics
for this control problem is described and motivated in this
section. The following example will illustrate in what sense
an implementation must be able to replace a specification.

Example 2: A system usually does not work on its own.
It is embedded in a larger system. For instance, a hard-

502

disk unit is used inside a computer system. The computer

is usually designed at a different location than the hard

disk unit. During the design phase a standard is negotiated

between the computer manufacturer and the disk manufacturer.

This standard is the specification of the hard-disk. After

this standard is established, the computer designer models a

computer system in which it expects a hard-disk unit that

behaves according to this specification. It is the hard-disk

developer's task to build a hard-disk unit that satisfies this

specification. Without him knowing how the computer system

will look, he has to design a unit that works together with this

system. He has to build an implementation of the hard disk

that can replace the specification used for the design of the

computer system.
Consider the following implementation relation (12], [3].

Definition 8: Let A, B E Il(I:). A reduces B, denoted by

A [:;:; B, if

1) L(A) ~ L(B);
2) Vs E L(A),ref(A,s) ~ ref(B,s).

Here, point I) states that system A may only do what system

B allows, and point 2) states that A. may only refuse what

B can also refuse. We will say that process G 11 S implements

specification E if GIJS i;;:; E.
The next two results are well known in computer science

(13]. The first one states that two processes are considered

equal if they both implement each other. The second one

states that the reduction relation forms a congruence with the
synchronous composition.

Proposition 1: Let A, B E H(I:). Then A = B 9 A i;;:;
B /\ B i;;:; A.

Proposition 2: Let A. 1 , A.2, B1, B2 E H(2=) such that A. 1 i;;:;

A" and B1 [:;:; B2. Then A1llB1 i;;:; A.2llB2.
In Example 2 the implementation of the hard-disk has to

such that it can replace its specification in any computer

:em. This is guaranteed by the reduction relation. Let G 11 S

1d for the implementation of the hard-disk, E for the

-cification, and C for the rest of the computer system. Then

.11e following implication, which is a direct consequence of

Proposition 2, states that GI IS can replace E in any computer
system:

GJJS i;;:; E =? VC, (GJJS)llC i;;:; EllC. (I)

The basic supervisory control problem is to find a supervisor
S such that GllS i;;:; E.

Implication 1 shows that the reduction relation is strong

enough to be used as an implementation relation. The follow

ing result shows that it also forms a necessary condition to

guarantee deadlock-free behavior. This result forms the main

motivation for the use of failure semantics and the reduction
relation.

Theorem 1: Let A, E E 11(1:)

Ai;;;;E

{::}

VC L(AllC) ',:;; L(EJIC), and

El IC deadlock-free =?Al IC deadlock-free.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL !997

Proof: The =?-part follows from Proposition 2. For the

proof of the <=-part assume that A does not reduce E. Then

either L(A) ~ L(E) or there exists an s E L(A) such that

ref (A, s) Sf: ref (E, s). Assume there exists an s E L(A) such

that s ~ L(E). Let C be a process such that s E L(C). Then

s E L(AllC) buts~ L(EllC), so L(AllC) Sf: L(EllC). For
the other alternative let s E L(A) such that there exists an

RE ref(A,s) and R ~ ref(E,s). Let C be a process such

thatref(C,s) = 2E-R. ThenE = RU("i>R) E ref(AllC,s),

but E ~ ref(EllC,s). So EllC is deadlock-free, but AllC is

~ .
A Comparison of Frameworks

In the rest of this section we will compare the approach

based on failure semantics and the reduction relation with other

approaches. The comparison is not intended to be complete.

It just illustrates some differences between the approaches.

The original framework introduced by Ramadge and Won

ham [l] was intended to handle only deterministic systems.

The framework presented in this thesis is also capable of

handling nondeterministic systems. But even if we restrict our

attention to deterministic systems, there are some important
differences.

It can be shown in the framework presented by Ramadge

and Wonham that the corresponding implication of (I) is

not satisfied. In that framework a discrete-event system A is

modeled by the triple (:B(A), L(A), Lm(A)), where L(A) i;:

E(A)* is the prefix-closed language that A can generate and

Lm(A) ~ L(A) is the language that A accepts or marks.

Definition 9: Let A and B be discrete-event systems. A ~m
B if

I) L(A) ~ L(B);
2) Lm(A) ~ Lm(B);
3) L(A) = Lm(A).

A system is called M-nonblocking if it satisfies point 3).

System GI IS is considered an implementation of E in the

Ramadge-Wonham framework if GJIS i;;:;m E. Note that if

L(E) = Lm(E), then points 2) and 3) together imply point

I). Usually the specification is not given as a process but

as a language K ~ Lm (G). In this case the specification

process E can be defined by L(E) = K and Lm(E) =
K. Sometimes a nonmarking supervisor is required, that is

Lm(S) = L(S). In this case it is usually assumed that

L,,, (E) = L(E) n Lrn (G). These differences are not important

for the following discussion which mainly concerns point 3).

We wish that an implementation could replace the specifi

cation in any environment. This is, however, not guaranteed

by the i;;:;m relation. The next example illustrates that in

general it cannot be guaranteed that the implementation is

M-nonblocking in any environment, i.e.,

GIJS i;;:;m E /\ EllC is M-nonblocking

'::fo
(GllS)llC is M-nonblocking.

Example 3: Let Ebe the specification with Lm (E) = a(b+
c) and L(E) = a(b + c); let A= GllS be the implementation

with Lm(A) = ab and L(A) = ab; and let C represent the rest

OVERKAMP: SUPERVISORY CONTROL USING FAILURE SEMANTICS

of the computer system with Lm (0) = ac and L(C) = ac.
Observe that A l;m E, but L(AllC) =a and Lm(AllO) = e,
thus L(AllO) I- Lm(AllC). Thus, AllG ~m EllC.

It can be derived from results obtained by Wonham and
Ramadge [14] on modular control that (GllS)llO is only M
nonblocking if Lm(GllS) and Lm(C) are noncon.flicting. That
is, processes A and B are nonconflicting if common prefixes
in both processes can be extended to a common marked trace

L.,,(A) n Lm(B) = Lm(A) n Lm(B).

This constraint also limits the use of modular control in
the Ramadge-Wonham framework. If a specification E can
be decomposed as E1!IE2 = E, then it has computational
advantages to first synthesize both 81 and 8 2 such that
G!IS1 implements E1 and G!IS2 implements E2. In the
framework based on failure semantics it can be deduced from
Proposition 2 and the fact that G i; GllG, that

G!IS1 I; E1 /\ Gl!S2 I; E2
::}

GllS1llB2 I; E1llE2.

In the Ramadge-Wonham framework, however, it is necessary
that Lm(GllS1) and Lm(GI IS2) are nonconflicting in order to
guarantee that G!IS1 l!S2 is M-nonblocking. This constraint is
often difficult to satisfy.

The discussion above considers how well the M
nonblocking property and the deadlock freeness property
behave within their own framework. It does not compare
the properties directly with each other. The M-nonblocking
property states that a process is always able to complete a task,
whereas the deadlock freeness property states that a process
is always able to continue. Note that it cannot be specified
by a marked language that the implementation should be
deadlock-free. Even if there are transitions leading out of each
marked state in the specification, then still an implementation
which deadlocks in a marked state satisfies the specification
according to Qefinition 9. Therefore, marking cannot be
used to guarantee deadlock-free behavior. It depends on the
particular application which approach is more suited. An
open question is whether the marking condition on st~tes

can be replaced by an event that indicates the completion
of a task. With this approach a process can be considered
nonblocking if it cannot refuse such a task completion event.
The nonblocking property can then be adequately handled
within the framework based on failure semantics.

Within the computer science area synthesis is investigated
based on infinite trace theory [I 5J-[I 7]. Also within the control
theory area, this approach has been followed [I 8]. Infinite trace
automata have an acceptance condition which is similar to the
marking condition for finite trace automata. Because of t~is
acceptance condition, the corresponding implication .of (I) Will
not be satisfied within this framework. Also, there Will be extra
constraints necessary for modular control synthesis.

It is logical, if one considers that the implication. sho~ld
be able to replace the specification and that the specification
is given as a process. It can be shown that with a p.rocess a
more accurate specification of all legal implementations can
be given than with a formulation that uses legal languages.

503

A specification process can be seen as the nondeterministic
choice between all legal implementations.

V. CONTROLLER SYNTHESIS

In Section VI the supervisory control problem with partial
specification will be discussed. In this section it will be shown
how the basic control problem with full specification can be
solved.

The basic supervisory control problem is formulated as
follows. Given an uncontrolled system G and a specification
E, find a supervisor S such that GllS !;;;; E.

In some applications the supervisor does not have the ability
to block all events. For instance, if an alarm event is executed
when some water level exceeds a threshold, then this event can
be observed by the supervisor but it cannot be blocked. Usually
the presence of uncontrollable events is modeled by splitting
up the event set into two subsets Ee and Eu, where Ee ~ E
represents the controllable events and Eu = E - Ee the
uncontrollable events. The basic supervisory control problem
is extended with the requirement that the supervisor has to be
complete, i.e., it does not block any uncontrollable events.

Definition JO: Let G E II(E) be an uncontrolled system.
Supervisor S E II(E) is complete if

VsEL(SllG), VR8 Eref(S,s), RsnEu~P(L(G),s).

Definition 11: Let the uncontrolled system G E II(E) and
a specification E E II(E) be given. The basic supervisory
control problem is to find a complete supervisor S E II(E'
such that GllS i; E.

Ramadge and Wonham showed that for the existence of
complete supervisor in a deterministic setting, the existence o
a controllable language is a necessary and sufficient conditio
[1]. In [2] it is shown that for nondeterministic systems, th
language also has to satisfy another condition which is called
reducibility. This reducibility condition guarantees that the
supervisor only blocks events where this is allowed according
to the refusal sets of the specification.

Definition 12: Let G, E E IT(E). Let K be a language
contained in L(G) and L(E). K is reducible (w.r.t. G, E) if

'Vs EK, 'VR9 E ref (G, s), p(K, s) U R9 E ref (E, s).

K is controllable (w.r.t. G) if

KE,, n L(G) = K.

An interpretation of the reducibility condition follows from the
definition of reduction and synchronous composition. Observe
that

ref(G\\S,s) ~ ref(E,s)
{:}

'V R9 E ref (G, s), 'V R. E ref (S, s), R9 U Rs E ref (E, s).

If S is deterministic, then R. E ref (S, s) if and only if
R. ~ p(L(S), s). As ref (E, s) is subset closed, it follows
that

VR9 E ref (G, s), 'VR, ~ p(L(S), s), R9 U Rs E ref (E, s)
{:}

VR9 E ref(G,s), p(L(S),s)UR9 E ref(E,s).

504

So, if S is deterministic then ref (G 11 S, s) <;;; ref (E, s) for all
s E L(G[[S) ~ L(E), if and only if L(S) is reducible.

Theorem 2 [2, Th. 13]: Let G, E E IT (L:). There exists a
complete supervisor S E IT(I:) such that G[[S ~ E if and only
if there exists a nonempty, prefix-closed language K which is
controllable w.r.t. L(G), reducible w.r.t. L(G) and L(E), and
contained in L(G) and L(E).

If K is a language satisfying the conditions in Theorem 13,
then the process Det (K) is a complete supervisor, such that
G[[Det (K) ~ E. If S is a complete supervisor satisfying
G[[S ~ E, then L(G[[S) satisfies the conditions in the
theorem. This also implies that Det (L(G[[S)) can be used
as a supervisor. So if there exists a possibly nondeterministic
supervisor S, then there also exists a deterministic super
visor Sdet = Det (L(G[[S)), such that G[[Sdet ~ E and
L(G[[Sdet) = L(G[[S).

It is not difficult to prove that the set of reducible languages
contained in L(G) n L(E) is closed under arbitrary unions,
so a unique supremal element exists and is contained in
the set. This supremal can be efficiently computed in the
case of finite-state systems [l], [2]. In [19] an algorithm is
presented to compute the supremal controllable language that
has linear complexity if the languages are prefix closed. This
algorithm can be adapted to compute the supremal controllable
and reducible sublanguage of a given language. It removes
states from the process G[[E that violate the controllability or
reducibility condition. Let [G[, [E[denote the size ofbehavior
state spaces of G and E, respectively. If G and E are
given by behavior state representations, then the algorithm
has complexity [G[x [E[.

VI. CONTROL OF PARTIALLY SPECIFIED SYSTEMS

One aspect of a specification is that it should be
implementation-independent. That is, a specification should
describe what a system should do, not how it should be done.
This has the advantage that two systems with a completely
different implementation, but with the same specification, are
interchangeable. Consider, for instance, a car. All cars have
a similar specification. They have a gas-pedal on the right, a
brake in the middle, and optionally a clutch on the left. It is
not necessary to know the implementation-dependent aspects
of the car, such as the number of pistons, or the way the fuel
is injected. Just a specification given in events relevant for
the user is sufficient to drive any car, from a family sedan to
a high-powered sportscar.

We will divide the event set into two subsets I:e and I:i. The
external events (I:e) are those events that are relevant for the
users of the system. The specification should be stated in terms
of these events. The internal or implementation events (I:;) are
not provided to the environment. They do not appear in the
specification. They are, however, observable by the supervisor
because the supervisor is part of the implementation. The
supervisory control problem with partial specification can be
defined as follows.

Definition 13: Let E E II(I:e) be the specification process,
and let G E IT(I:) be the uncontrolled system. Let L:e <;:; I:.
The supervisory control problem with partial specification is to
find a complete supervisor S E IT(I:) such that P.(G[[S) ~ E.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997

Bounded Recurrence

In a language semantics setting, the control problem with
partial specification can be easily rewritten into a control
problem with full specification because the following relation
holds:

Pe(L(G[[S)) ~ L(E) ~ L(G[[S) ~ supp; 1 (L(E))
<;:;

where supc denotes the supremal with respect to language
inclusion and p;; 1(L(E)) is defined as

p;1(L(E)) = {K ~ L:*:pe(K) = L(E)}.

Note that

supp; 1(L(E)) = {s E L:*:pe(s) E L(E)}
<;:;

=sup {K ~ L:*:pe(K) ~ L(E)}
<;:;

= LJ{K <;:;I:*: Pe(K) <;:; L(E)}.

Thus, supc p;; 1 (L(E)) is equal to the union of all legal
implementations, i.e., the union of all languages that are
allowed as language of the controlled system.

Let us also try to apply this idea to nondeterministic systems.
Define pe-1(E) as the set of all systems that project onto E

P; 1(E) ={A E IT(I:): Pe(A) = E}.

Let supi::: denote the supremal with respect to the reduction
relation.In [13, Th. l] it is proven that the set of processes
IT(I:), with the reduction relation as partial ordering, forms a
complete upper semilattice.1 This implies that any subset of
processes has a least upper bound, i.e., a supremal. It does not
imply that this supremal is an element of the subset. It only
implies that this supremal exists, i.e., that it is a process. The
following example shows that in general:

G[[S ~ supPe- 1 (E) =fo Pe(G[[S) ~E.
r;

So, in general, it is not guaranteed that supi::: pe- 1 (E) is an
element of pe- 1 (E). -

Example 4: Let E E IT(I:e) be a process such that the
refusal set after Pe (s) does not contain the complete external
event set I:e. If we compute the inverse projection of E, then
this will include systems that can execute sI:f, with n some
constant. Systems that allow sL:T can diverge after s. When
projected, they can refuse the whole external events set. This is
not allowed by E. Therefore, systems that allow s I:i are not an
element of pe- 1(E). The supremal element of {.sL:?:n EN}
is .sI:T. So, the supremal element of pe- 1 (E) will allow s~i
We have that the supremal element of pe- 1 (E) does not project
onto E. Therefore, G[[S ~ supi::: pe-1 (E) does not imply
Pe(G[[S) ~ E. -

In the example above we saw that if the number of loops
of internal events is bounded by a constant n, then the system
cannot diverge. The idea is now to limit the possible solutions

1 Note that the ordering used in [13] and [3] is the same as the ordering
induced by the reduction relation, except that the processes are ordered in the
opposite direction.

OVERKAMP: SUPERVISORY CONTROL USING FAILURE SEMANTICS

by fixing a priori a constant n and allowing only solutions that
make at most n internal loops if the specification cannot refuse
the whole external event set. We will prove that if n ;:::: 2, then

the external behavior of the final solution is not restricted by
this.

First, it will be shown how the control problem with partial
specification can be reduced to the basic control problem. After
that, an example will be given to illustrate the approach. It
will also be shown in this example why at least two internal
loops are needed to guarantee that the external language is not
restricted by the followed approach.

Because the external behavior is relevant to the user of the

system, we want to make it as least restrictive as possible. The
internal behavior is invisible to the user. It is only relevant
to the implementation. There is no reason why this behavior
should be least restrictive. In fact, it is even desirable to make

the internal behavior as small as possible in order to keep
the implementation costs as small as possible [4]. In this
paper only solutions will be considered that make at most
two loops of internal events when the specification cannot
refuse the whole external event set. This idea is formalized by
introducing the notion of bounded recurrence.

Definition 14: It will be said that the traces' E I;* is in the
last internal part of trace s E I;* if s' E s and Pe (s') = Pe (s).
Thus, ifs' is in the last internal part of s, then there exists an

Si E :Bi such that s' si = s. So s' and s are equal up to some
in.ternal events at the end of trace s.

Let the recurrence index of trace s E L(G) indicate how
often the behavior state G / s is visited by the last internal part

of trace s

ri(.g) = J{s' E s:p,(s) = p,,(s') /\ G/s = G/s'}I.

Consider the behavior state representation of system G given
in Fig. 4(a). The recurrence indexes of the traces a, aij, and

aiji.f are I, 2, and 3, respectively.
Definition I 5: Trace s E L(G) is called bounded recurrent

(w.r.t. G, E, and L:;e) if

I;,,~ rd (E,p,,(8)) :::::> r;(s) s; 2.

All traces s E 2=* that are not an element of L(G) are

defined to be bounded recurrent also. A language K ~ :B*
is called bounded recurrent if all traces s E K are bounded
recurrent. Process A E II(:B) is called bounded recurrent if

L(A) is bounded recurrent.
Note that if .s tf. div (G, E,,), then for alls; E :B.i such that

ssi E L(G) we have that G/s =f. G/.ss;. Note also that if

Ee E ref(E,p,,(s)), then sis bounded recurrent.

Reduction of the Control Problem

In this section it will be shown that if we restrict the
set of solutions to bounded recurrent processes, then the
control problem with partial specification can be reduced to

the basic supervisory control problem. It will also be shown
that this restriction does not limit the external language of the

controlled system.
Definition 16: ET = supi;;; pe- 1 (E) = supi;;; {A E II(:B):

P(A) i;;;; E}.

Proposition 3: The process ET satisfies

:B(ET) =:B

L(ET) = supP;1(L(E))
<;;

={s E :B*:pe(s) E L(E)}

505

ref (ET, s) = {R ~ :B: I;i i;;;; R :::::>Ee n RE ref (E,p.(.s))}.

This characterization can be used to construct ET.
Proof' Let Econ be the process defined by the expres

sions in the proposition. We have to prove that ET = Econ·
For all n E N let An be the process defined by

:B(An) = E

L(An) = {s E :B*:s E :Bi'a1Ei'a2 "'iTmE;',

iT1iT2 .. ·crm E L(E)}

ref (An, s) =ref (Econ, s).

First, it will be proven that for all n E N, Pe(Ari) I; E.
The language part of the reduction relation follows from

L(Pe(An)) = Pe(L(An)) = L(E). Note that after any trace in
L(An) only a bounded number of internal events are possible,
so div (An, :Be)= 0. The refusal part of P.(An) follows from

ref (Pe(An), Se)

= LJ Pe(ref (An, s))
sEp;;- 1 (s,)

= LJ {Ri;;;;:Be:RU:B;.Eref(Ari 1 s)}

sEp;;- 1 (s,)

= LJ {Ri;;;;:B.:(RuE;)nEeEref(E,pe(s))}

sEp;;- 1 (s,)

= ref (E, se)·

Hence, for all n E N, P.(A,.) I; E and as ET is the supremal
of {A E II(:B):P.(A) I; E}, it follows that An I; ET.

Second, it will be proven that L(Econ) = L(ET). As all
processes that reduce E have no trace not contained in L(E),
it follows that L(ET) i;;;; L(Econ)· As UnEN Ei = :BJ and
for all n E NL(An) i;;;; L(ET), it follows that L(Econ)
U,.EN L(An) i;;;; L(ET). Hence L(Econ) = L(ET).

Next it will be proven that for all s E L(Econ) =
L(ET),ref(Econ,s) ~ ref(ET,s). For alls E L(ET) there

exists an n EN such that s E An· As ref(An,s) =
ref(Econ,s) and An I; ET, it follows that ref(Ecou,s) <:;;;

ref(ET,s).
Finally, it will be proven that ref(ET,s) i;;;; ref(Econ,s).

Suppose the inclusion does not hold. Then there must exist a

process B and a refusal RE ref (B, s) such that Pe(B) I; E
and R ~ ref (Ecoiu s). That is, Ei i;;;; R and R n Ee 'it
ref (E,pe(s)). But then it follows from the definition of
projection that Pe (B) ~ E, which contradicts our assumption.

Hence ref(ET,s) i;;;; ref(Econ,s).
We have proven that L(Econ) = L(ET) and for all s E

L(ET),ref(Econ,s) = ref(ET,s), SO Econ =ET. •
Definition 17: E~r = supi;;; {A E. II(E): Pe(A) !;; E, ~

is bounded recurrent}. By analogy with [3], the process Ebr

can be seen as the nondeterministic choice between all legal

bounded recurrent implementations.

506 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997

Proposition 4: Process E~r satisfies

E(E~r) =I:

L(E~r) ={s E I:*:pe(s) E L(E) and s

is bounded recurrent}

ref(E~r,s) ={R<;; I::I:; <;::; RUp(L(E~r),s)
:::} I:e n RE ref (E,pe(s))}.

This characterization can be used to construct E~r·
Proof Let Econ be the process defined by the expres

sions in the proposition. We have to prove that E~r = Econ·
First it will be proven that Pe(Econ) t;;;; E. The language
part follows from L(Pe(Econ)) = Pe(L(Ecan)) = L(E).
For the refusal part note that Ee tf. ref (E, se) implies
Se t/. Pe(div (Econ 1 I:e)). So, if Se E Pe(div (Econ, I:e)),
then ref (Pe(Econ), Se) = 2~• = ref (E, Se)· If Se t/.
Pe(div (Econ, I:e)) then, by the same line of reasoning as
in the proof of Proposition 3, it follows that

ref (Pe(Econ), Se)

LJ Pe(ref(Econ,s))
sEp;- 1 (s,)

LJ {R<;::;I:e:RUE;Eref(Econ,s)}
sEp;- 1 (s,)

LJ {R <;::; I:e: (RU I:;) n Ee E ref (E,pe(s))}

sEp;- 1 (s,)

=ref (E, se)·

So, P,.(Kon) t;;;; E. The term p(L(E~r),s) is needed in
the construction of ref (Econ, s) to guarantee that Econ is
a process. The formal proof that it is a process is left to
the reader. As Econ is a bounded recurrent process and
Pe(Econ) t;;;; E, it follows that Econ t;;;; E~r·

It remains to prove that E~r t;;;; Econ· Suppose the relation
does not hold. Then there must exist a process A such that
Fe (A) t;;;; E, A is bounded recurrent, but A does not reduce
Econ. As Pe (L(A)) <;::; L(E) and A is bounded recurrent, it
follows that Vs E L(A),pe(s) E L(E) and s is bounded
recurrent. Therefore, L(A) <;::; L(Econl· As A !l Econ there
must exist an s E L(A) and a R E ref (A, s) such that
Rt/. ref(Kon.s), i.e., I:i <;::;Rand Rn Ee t/. ref(E,pe(s)).
But then Pe(A) !l E, which contradicts our assumptions.
~re~=E=. a

Theorem 3: Let G, S E II(E), E E II(Ee), and E~r be
constructed as above

GllS t;;;; E~r
{:}

Pe(GllS) t;;;; E and Sis bounded recurrent.

Proof (GI IS t;;;; E~r :::} S is Bounded Recurrent): As E~r
is bounded recurrent and L(GllS) <;::; L(EL), it follows that
GllS is bounded recurrent. Lets E L(S) n L(C) = L(GllS),
then s is bounded recurrent. If s E L(S) - L(G), then s is
bounded recurrent by definition. Hence S is bounded recurrent.

(GllS t;;;; E~r::::} Pe(GllS) [;;; E): The language part
of the reduction relation follows from L(Pe (GI IS)) =
Pe(L(GllS)) i:;;; Pe(L(E~r)) = L(E). For the refusal
part note that div (GI IS, Ee) <;::; div (E~r' Ee) because
L(GllS) C L(E~r). Let se E Pe(L(GllS)). If
Se E Pe(div(GllS,I:e)), then Se E Pe(div(E~r,Ee)),
so

ref(Pe(GllS),se) =2E•

=ref (Pe(E~r), Se)

=ref (E, se)·

If Set/. Pe(div(GllS,I:e)), then

ref(Pe(GllS),se) = LJ Pe(ref(GllS,s))
sEp;;- 1 (s,)

C LJ Pe(ref(E~r 1 s))
sEp;- 1 (s,)

= ref (E, s e) .

The last step follows from the same line of reasoning as is
used in the proofs of Propositions 3 and 4. The language part
and the refusal part together prove that Pe(GllS) t;;;; E.

(Pe(GllS) [;;; E and S is bounded recurrent :::} GllS G
E~r.) If S is bounded recurrent then so is G 11 S because
L(GI IS) <;::; L(S). As E~r is the supremal element of the set
{A E II(I:): Pe(A) [;;; E, A is bounded recurrent, it must hold

that GllS [;;; E~r· •
The following two results are proven in the Appendix.

Theorem 4 states that the control problem with partial speci
fication can be converted to a basic control problem with full
specification as defined and solved in Section V.

Theorem 4: Let G E II(E) and E E II(I:e)· There exists
a complete supervisor S E II(E), such that P,,(GllS) [;;; E
if and only if there exists a complete supervisor Sbr E II(I:)
such that GllBbr !;;; E~r·

A condition for the existence of a complete supervisor Sbr
that solves GllBbr t;;;; E~r is given in Theorem 12. Corollary I
states that the external language of the implementation is not
restricted by the use of bounded recurrent supervisors.

Corollary 1: Let S E II(I:) be a complete supervisor such
that Pe(GllS) i;;; E. Then there exists a complete and bounded
recurrent supervisor Sbr E II(I:) such that Pe(GllSbr) [;;; E
and L(Pe(GllS)) = L(Pe(GllSbr)).

The next example will illustrate the followed approach.
Example 5: Let G and E be defined by the behavior state

representations given in Fig. 4(a) and 4(b), respectively. Let
I: = {a,b,c,i,j},I:e = {a,b,c},E,; = {i,j},I:c = E,
and I:u = 0. As E can refuse the whole external event
set after the empty trace and after traces that end with a b
event or c-event, it is not necessary to bound the number of
internal recurrences after these traces. After traces that end on
an a-event the process E cannot refuse I:e, so the number
of internal recurrences needs to be bounded. In Fig. 4(c)
the behavior state representation of E~r is given. After the
traces a, ai, aij, and aiji, the event set {b, i,j} cannot be
refused. Suppose this event set had been included in the
refusal set of Et. Then { b} would have been in the refusal

OVERKAMP: SUPERVISORY CONTROL USING FAILURE SEMANTICS

G
(a)

507

a

--<=> {{a,b,c}} b {{a,c}}
,c

E

(b)

a

{ a,c,i,j},{ a,b,c,i},{ a,b,c,j}}

{ {a,c,i,j},{ a,b,c,i},{ a,b,cj}}

j

{ { a,c,iJ},{a,b,c,i},{ a,b,cj}}

(c) (d)

i,j
rw~ ..

a

/' i {{a,c,i,j},{a,b,c,i},{a,b,cj}} {{a,b,c,i,j}~~ '-c- ~ J

be
' {{a,c,i,j},{a,b,cj}}

i

E~r(l) GllS~r(1)
(e) (f)

Fig. 4. Supervisor synthesis for the control problem with partial specification.

set ref (Pe(E~r), a) and process Pe(E~r) would not have

reduced E.
If event set {a, b, c, ·i} had been an element of the re

fusal set ref (EL., aij'i), then by condition v of Definition 1

also {a,b,c,i,j} = {a,b,c,'i} U p(L(E~r),aiji) would have

been an element of ref (E1;r, a·ifi). But then Pe(E~r) could

have refused {a, b, c} which is not allowed by E. See also

Proposition 4.

Event j in the states reached after traces a and aij, and

event i in the states reached after traces ai and aiji, make

self loops-because the traces aj*, aii*, aijj*, and aijii* are

not contained in L(G) and are therefore, by Definition 15,

bounded recurrent. Trace aijij is not an element of L(E~r)
because ri(aiji.i) = 3.

The synthesis procedure results in the least restrictive deter

ministic supervisor st,1. In Fig. 4(d) only those traces of S let
are shown that are an element of L(G). Observe that event i is

disabled after trace aij. The reason for this can be explained

as follows. Event set {b} is an element of ref(G,aiji) and

therefore, by Definition 4, also of ref (GI IS, aiji) for all

S E Il(:E). As EL does not allow any internal events to be

executed after aifi, it follows that {b,·i,j} E ref(GllS,aifi)

for all S such that L(GllS) ~ L(E~r). However, this refusal

is not allowed by E~r· Therefore, event ·i needs to be disabled

after trace aij.
Note that trace ac is an element of L(Pc(GllSL)).

In Fig. 4(e) the system EL,(l) is given, which contains only

traces that make at most one loop of internal events in G.

In Fig. 4(f) the least restrictive solution corresponding to the

specification E 1;r(l) is given. Note that in this case ac rf.

L(Pe(GllS~r(l)). So one loop is not sufficient to guarantee

that all external behavior is obtainable.

Complexity

If E and G are given by behavior state representations,

then computing E~r requires that each behavior state of E is

replaced by either a behavior state with 2=; self-loops if I:c E

ref (E, s), or by a tree of behavior states, where on each path

from root to leaf each behavior state of G occurs at most two

times. The computation requires administration of the set of

508

states that are visited once and the set of states that are visited

twice. In the worst case, all possible combinations of states

can occur. This will result in complexity that is exponential

in the size of the behavior state space of G and linear in the

size of the behavior state space of E. Combining this with the

supervisor synthesis algorithm from Section V will result in an

algorithm which is exponential in IGI and linear in IEI. When

unwinding a loop of internal events in G, the algorithm has

to administrate only those states that are reachable by internal

events. So the algorithm will be exponential in the sizes of the

sets of states reachable by internal events. In most practical

systems these sets will be much smaller than the whole state

space. Therefore, it is expected that the algorithm will behave
better on practical systems than can be expected from the worst

case analysis. Further research is needed to test the complexity

of the algorithm in real life situations.

VII. CONCLUDING REMARKS

This paper extends the results of [2] as part of our inves

tigation to set up a supervisory theory for nondeterministic
systems.

The control problem that is discussed in this paper is to

find a supervisor such that the controlled system can replace

the specification. In particular, it is required that the controlled

system cannot deadlock in situations in which the specification
cannot deadlock either. It is shown that the reduction relation

provides a necessary and sufficient condition to satisfy this
requirement. This result indicates that a framework based on

failures semantics is the most suitable for the given control
problem.

It is imaginable that for some control problems a stronger

relation between implementation and specification is required.
For these control problems a stronger semantics, such as

bisimulation semantics [20], will be necessary.
Unlike methods based on languages, failure semantics has

the ability to deal with phenomena, such as divergence, that

occur when processes are partially observed. Correct handling
of divergence requires that solutions are restricted to bounded

recurrent supervisors. Note that the restriction to bounded

recurrent processes is not due to the use of failure semantics,

but due to the nondeterministic properties of projected systems.

APPENDIX

PROOF OF THEOREM 4 AND COROLLARY l

According to Theorem 3, a supervisor Sb,. solves the control

problem GJ IS ~ E~r if and only if Sbr is bounded recurrent

and Pe(GllSbr) ~ E. So, in order to prove Theorem 4 it is
necessary and sufficient to show that there exists a solution

to the control problem with partial specification if and only if

there exists a bounded recurrent solution. The if-part is trivial

because a bounded recurrent solution is a solution by itself. For

the only-if part it will be shown that if there exists a solution

then the language of the controlled system, denoted K, satisfies

a number of conditions. From this language another language,

denoted Kb,., will be constructed that is bounded recurrent. It

will be shown that Kbr defines a bounded recurrent supervisor
that solves the control problem. The core of the proof is formed

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997

by showing that K br satisfies all the necessary conditions.

First, it will be defined how the bounded recurrent language

Kbr can be constructed from a given language K.
Definition 18: Let K E L:* be a language, let G E II(L;)

and E E Il(L:e) be processes. The 6.; function gives all

behavior states of process G that can be reached by internal

events after trace s. All extensions have to be an element of

the language K

6.;(K,s) = {Ci/ssi E Il(L:):::lsi E z::t s.t. ssi EK}.

The function Q2"d gives all states of process G that have been

visited at least twice by the last internal part of trace s

Q 2nd(s) ={A E Il(L:): :ls', s" Es, s' f. s" s.t.

Pe(s") = Pe(s') = Pe(s) /\A= G/s'

= G/ s"}.

The language K br can be constructed inductively. Informally

Kbr behaves after one internal loop as K does in the last

loop of internal events. Let E E Kbr· Let 8br E Kbr· Then

Sbra E Kbr if

:lsEKs.tsaEK, G/sbr=G/s, Pe(Bbr)=pe(s), and

L:e 'f. ref (E,pe(Sbr)) =:;. t.i(K, s) n Q 2u<l(sbr) = 0.

The condition t.i (K, s) n Q 2nd (.Sbr) = 0 ensures that if

Kbr contains only internal continuations after Sbr that are

also internal continuations after .s in K, then no state that

has been visited twice by sbr will be visited again by these

continuations. So no state will be visited more than two times

by any internal part of any trace in K br. Hence K br will be
bounded recurrent.

The following lemma states that if K satisfies certain

conditions, then Kbr satisfies the same conditions and is
bounded recurrent.

Lemma 1: Let K ~ L:* be a language which satisfies:

1) K is not empty;
2) K is prefix closed;
3) K ~ L(G);
4) Pe(K) ~ L(E);
5) K is controllable;
6) K is reducible w.r.t. ET;

7) 8 E div(K,L:e) =} l:e E ref(E,pe(s)).

Then the language Kb,., constructed as in Definition 18, sat-

isfies the conditions 1)-7) and also the following conditions:

8) K br is bounded recurrent;

9) Pe(K) = Pe(Kbr)·

The proof, which is given below, uses the following three

lemmas. The first lemma redefines the controllability condition
in failure semantics terminology

Lemma 2: Let K be a prefix-closed language contained in
L(G). Then K is controllable if and only if

Vs EK, p(K, s) n L:" ~ p(L(G), s).

OVERKAMP: SUPERVISORY CONTROL USING FAILURE SEMANTICS

Proof

KL,u n L(G) ~ K
(s E K /\ a E Eu /\ sa E L(G)) ::::} sa E K
-i(s EK/\ a E L,u /\ sa E L(G)) V sa EK
-is E K V -ia E Eu V -.sa E L(G) V S<7 E K
-is E KV -.a E Eu V -.sa 'f. KV sa tf. L(G)
(s E K /\ a E Eu /\ sa t/:. K) ::::} SO" 'f. L(G)
Vs EK, p(K, s) n I:u ~ p(L(G), s).

•
The following lemma states that K br does not block more

events after trace Sbr than K blocks after a corresponding
trace s.

Lemma 3: Assume language K s:;; I:* satisfies conditions

1)-7) of Lemma 1, and K br is constructed according to

Definition 18. Let Sbr E K br. There exists an s E K such that

G/ s = G/sbriPe(s) = Pe(sbr), and p(Kbr, Sbr) s:;; p(K, s).
Proof Let Bbr E Kbr· If Sbr = €, then let s = e. It

follows that s E K,G/sbr = G/e = G/s, and Pe(Sbr) =
Pe(c) = Pe(s). As Q2nd(sbr) = i/J, it follows that sa E K
implies that Sbra E Kbr· So >..(K,s) ~ .A(KbriBbr) and
p(Kbri Sbr) s:;; p(K, s)

If Bbr is not the empty trace, then Sbr can be written as Vbra,
with Vbr E Kbr and a E E. According to the definition of

K br, and because sbr E K br, there must exist an v E K such

that va EK, G/v = G/vbr, and Pe(v) = Pe(Vbr)· Then also

G/ Bbr = G/vbrO" = G/va and Pe(Sbr) = Pe(va) = Pe(Vbra).
Hence for all Sbr E K br there exists an s E K such that

G/s = G/sbr and Pe(s) = Pe(sbr)·
If L,e E ref (E,pe(Sbr)) or ,6.i(K, s) n Q2nd(sbr) = i/J, then

SIJ' E K implies Sbra E Kbr· So .A(K, s) s:;; .A(K bri Sbr) and

hence p(KbriSbr) s:;; p(K,s).
We will prove by contradiction that there always exists an

s E K such that G/s = G/sbriPe(s) = Pe(Sbr) and either
Ee E ref (E,pe(sbr)) or ,6.i(K, s) n Q2nd(sbr) = i/J.

Assume (a) L:e !/:. ref (E,pe(Sbr)) and (b) for all s E K
such that G/s = G/sbr and Pe(s) = Pe(Sbr); it holds that

6..i (K, s) n Q2nd (Sbr) #- i/J. Let Vbr be such that Vbrai = Sbr·

Nate that a; E E; because from Q2nd (Sbr) #- i/J it follows

that the last internal part of sbr is not empty. From the

definition of K br it follows that there exists a v E K such that

vai E K, G /v = G /vbr, Pe(v) = Pe(Vbr), and ,6.;(K, v) n
Q 2 nd(vbr) = i/J. Let s = va,;. Then G/s = G/vai =
G/vbrCJ'i = G/sbr and Pe(s) = Pe(vai) = Pe(vbrai) =
Pehn), so by assumption (b) ,6.i(K, s) n Q2nd(sbr) =f i/J. As

6..i(K,s) s:;; ,6.,;(K,v) and Q2nd(sbr) s:;; Q2nd(Vbr)U{G/sbr},

it follows that t,.i (K, s) n Q 2nd(Sbr) = { G I Sbr }. Next it will

be shown that s E div (K, L:e)

6..;(K, s) n Q2nd(sbr) = { G/sbr} ::::}

G/sbrE,6.i(K,s) ::::}
3si E L:t s.t. ssi EK and G/ssi = G/sbr ::::}

(By assumption (b))

t,.i(K, SSi) n Q2nd(Sbr) =f i/J ::::}

(Note: ,6.i(K, ssi) s:;; ,6.,;(K, s))

G/sbr E ,6.i(K, ss;)
:ls~ E L:T s.t. ss;s'; E K and G / ss;s'; = G / Sbr

509

It follows that an unbounded number of internal events can be

executed. So s E div (K, L:e), which, by point 7) of Lemma 1,

contradicts assumption (a) that Ee !/:. ref (E,pe(sbr)).

Hence there always exists an s E K such that either

L:e E ref (E,pe(sbr)) or ,6.i(K, s) n Q2nd(sbr) = 0. So

.A(K,s) s:;; .A(KbriBbr) and p(Kbr,Sbr) s:;; p(K,s). •
Lemma 4: Let language K s:;; I:* satisfy conditions 1)-7) of

Lemma 1, and let K br be constructed according to Definition

18. Then Pe(K) ~ Pe(Kbr)·
Proof We will prove by induction on the length of the

traces that for all s E K there exists an Sbr E K br such

that Pe(s) = Pe(Sbr),G/s = G/sbri and Q2nd(sbr) = 0.
The initial step is trivial because e E K, c E K bri and
Q2nd(e) = 0.

For the inductive step assume s E K and Sbr E K br

such that Pe(s) = Pe(Sbr),G/s = G/sbr, and Q2n<l(Sbr) =
0. Let sa E K. We have to prove that there exists a

Vbr E 2~br such that Pe(sCJ') = Pe(Vbr),G/sa = G/vbri
and Q n (Vbr) = i/J. As Q2nd (Sbr) = 0, it follows that

t,.i(K, s) n Q2nd(Sbr) = 0, so scr EK implies Sbra E Kbr·
From the definition of Q2nd it follows that Q2nd(sb er) C

2 d r -
Q n (sbr) U {G/sbra} = {G/sbrcr}. So Q2nd(sbra) contains

at most one element. If Q2nd(sbrcr) = 0, then Vbr = Sbra
satisfies the necessary conditions for the inductive step because

Pe(Vbr) = Pe(Sbrcr) = Pe(sa), G/vbr = G/sbra = G/scr, and
Q2nd(Vbr) = Q2nd(sbra) = 0.

If Q2nd (Sbra) = { G / Sbra}, then the behavior state G / BbrO
has been visited at least twice by the last internal part oJ

Bbra. Hence G / Sbra has been visited at least once by the

last internal part of Sbr· So, there exists a Vbr E Sbr (note:

Sbri not BbrCJ'), such that G/vbr = G/sbra = G/sa and

Pe (Vbr = Pe (Sbra) = Pe (sa). As Vbr is a prefix of s1,,, and
Q2nd(sbr) = 0, it has to hold that Q2nd(v) s:;; Q2nd(sbr) = 0.
Hence Vbr satisfies the necessary conditions for the inductive

step.
We have proven that for all s E K there exists a trace

in Sbr E K br such that Pe (s) = Pe (Sbr)' G Is = G I Sbr'
and Q 211d(Sbr) = 0. The first equality implies that Pe(K) ~

Pe(Kbr)· •
Proof (Lemma 1):

1), 2): These points follow directly from the definition of

Kbr·
3): We will prove this point by induction. The initial

step is satisfied because e E L(G). For the inductive

step let Sbr E Kbr n L(G). If Sbra E Kbri then
there exists an s E K such that scr E K and

G/s = G/sbr· Assa EK s:;; L(G) it follows that
G / Sbra = G / sa is well defined, so Sbra E L(G).

4): From Lemma 3 it follows that for all Sbr E K br

there exists an s E K such that Pe (Sbr) = Pe (s). So

Pe(Kbr) s:;; Pe(K) s:;; L(E).
5): Let sbr E Kbr· By Lemma 3 there exists ans E K

such that G / Sbr = G / s and p(Kbri Sbr) s:;; p(K, s).
So p(Kbn Sbr)nI:u ~ p(K, s)nI:u ~ p(L(G), s) =

6):
p(L(G), Sbr).
Let Sbr E Kbr· By Lemma 3 there exists an

s E K such that G I Sbr = G Is' Pe (Sbr) =
p,(s) and p(KbriSbr) s:;; p(K,s). As Pe(sbr) =

510

Pe(s), it follows that E/pe(Sbr) = E/Pe(s), so
ref(Ei,sbr) = ref(Ei,s). Let R9 E ref(G,sbr)·
It follows from G / Sbr = G / s that ref (G, Sbr) =
ref(G,s), so R9 E ref (G,s). By reducibility
of K,p(K,s) U R9 E ref(ET,s). So, because
refusal sets are closed under the operation of taking
subsets and p(Kbr,Sbr) i;; p(K,s), it follows that
p(Kbri Sbr) U R9 E ref (Ei, s) = ref (ET, Sbr)·

7): This follows directly from the fact that Kbr is
bounded recurrent.

8): Suppose Kbr is not bounded recurrent. Then there
exists an Sbr E Kbr such that :Ee r/. ref (E,pe(s)
and r i (Bbr) ~ 3. It follows that Bbr can be written as
VbrO"i, where Vbr E Kbr and O'i E :E;. The behavior
state G / Bbr is visited at least three times by the last
internal part of Sbr. One visit is by the trace Sbr
itself, so that the state G / Sbr is visited at least twice
by the last internal part of trace Vbr. That is

l{s' E Vbr:G/s' = G/sbr 1 Pe(s') =pe(Vbr)}I

= r;(Sbr) - 1

~ 2.

It follows that G / Sbr E Q20d (Vbr). According
to Lemma 3 there exists a v E K such that
G/v = G/vbr and Pe(v) = Pe(Vbr)· If VO'; E
K then G/vO"i E .6.;(K, v). So in addition,
G/sbr = G/vbrO"i = G/vui E tii(K,v). Hence
for all v E K such that VO'i E K, we have that
G/sbr E .6.i(K,v) n Q20d(vbr) -:/:- 0. So we have
to conclude that Sbr r/. K bri which contradicts our
assumptions.

9): The inclusion Pe(Kbr) i;; Pe(K) follows from
Lemma 3. The inclusion Pe(K) i;; Pe(Kbr) follows
from Lemma 4. •

Proof (Theorem 4 and Corollary I):
(Only-If Part): First we will show that L(GllS) satisfies

properties I)-7) of Lemma 1. Properties 1)-5) are easy to
see. It follows from Definition 16 that GllS ~ Ei, so
L(GllS) is reducible w.r.t. ET [point 6)]. For point 7)
let s E div (GllS, s). Then :Ee E ref (Pe(GllS),Pe(s)) i;;
ref (E, Pe(s)).

As L(GllS) satisfies points 1)-7), there must exist a lan
guage Kbr that satisfies points 1)-9). Let Sbr = Det (Kbr).
Then it follows from point 6) that GllSbr ~ ET. Combining
this with point 8) implies that GllSbr ~ E~r· Corollary I now
follows from point 9).

(If-Part): This follows directly from Theorem 3.

REFERENCES

[1] P. J. G. Ramadge and W. M. Wonham, "The control of discrete event
systems," Proc. IEEE, vol. 77, pp. 81-98, 1989.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997

[2] A. Overkamp, "Supervisory control for nondetenninistic systems," in
[21], pp. 59-65.

[3] C. A. R. Hoare, Communicating Sequential Processes. Englewood
Cliffs, NJ: Prentice-Hall, 1985.

[4] A. Overkamp, "Control ofnondetenninistic discrete event systems using
failure semantics," in Proc. 3rd European Contr. Conj., Rome, Italy,
1995, pp. 2778-2783.

[5] A. Tanenbaum, Computer Networks, 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1988.

[6] M. A. Shayman and R. Kumar, "Supervisory control of nondeterministic
systems with driven events via prioritized synchronization and trajectory
models," SIAM J. Contr. Optimiz., vol. 33, no. 2, pp. 469-497, 1995.

[7] M. D. DiBenedetto, A. Saldanha, and A. Sangiovanni-Vincentelli,
"Model matching for finite state machines," in Proc. 33th Conf. Decision
Contr., Orlando, FI.., 1994, pp. 3117-3124.

[8] K. Inan, "Nondetenninistic supervision under partial observation," in
[21], pp. 39-48.

[9] M. Heymann, "Concurrency and discrete event control," IEEE Contr.
Syst. Mag., vol. 10, no. 4, pp. 103-112, 1990.

[10] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation. New York: Addison-Wesley, 1979.

[11] E. Haghverdi and K. Inan, "Verification by consecutive projections," in
FORTE '92, Proc. IFIP, Perros-Guirec, M. Diaz, and R. Groz, Eds., pp.
465-478.

[12] R. De Nicola and M. Hennessy, "Testing equivalences for processes,"
Theoretical Computer Sci., vol. 34, pp. 83-133, 1984.

[13] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, "A theory of
communicating sequential processes," J. ACM, vol. 31, no. 3, pp.
560-599, 1984.

[14] W. M. Wonharn and P. J. Rarnadge, "Modular supervisory control of
discrete-event systems," Math. Contr., Signals Syst., vol. 1, no. 1, pp.
13-30, 1988.

[15] E. A. Emerson and E. M. Clarke, "Using branching time temporal logic
to synthesize synchronization skeletons," Sci. Computer Programming,
vol. 2, pp. 241-266, 1982.

[16] Z. Manna and P. Wolper, "Synthesis of communicating processes from
temporal logic specifications," ACM Trans. Programming Languages
Syst., vol. 6, no. 1, pp. 68-93, 1984.

[17] A. Pnueli and R. Rosner, "On the synthesis of a reactive module," in
Proc. 16th ACM Symp. Principles Programming Languages, 1989, pp.
179-190.

[18] J. G. Thistle, "Control of infinite behavior of discrete-event systems,"
Ph.D. dissertation, Univ. Toronto, 1991; also available as Systems
Control Group Rep. 9012.

[19] R. Kumar, V. Garg, and S. I. Marcus, "On controllability and normality
of discrete event dynamical systems," Syst. Contr. Lett., vol. 17, no. 3,
pp. 157-168, 1991.

[20] R. Milner, A Calculus of Communicating Systems. New York:
Springer, 1980.

[21] G. Cohen and J.-P. Quadrat, Eds., Proc. ! Ith lnt. Conf. Analysis
Optimization Syst., Discrete Event Syst., Sophia-Antipolis, 1994, Lecture
Notes in Control and Information Sciences 199. New York: Springer,
1994.

Ard Overkamp was at CWI, Amsterdam, The
Netherlands as a Ph.D. Student from 1992-1996.
During this period he worked on supervisory control
theory motivated by design problems for layered
network architectures. He is now working for a
consultancy company.

