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Small and medium sized reactors, SMRs (according to IAEA, ‘small’ are reactors with power less than
300 MWe, and ‘medium’ with power less than 700 MWe) are considered as an attractive option for
investment in nuclear power plants. SMRs may benefit from flexibility of investment, reduced upfront
expenditure, and easy integration with small sized grids. Large reactors on the other hand have been an

attractive option due to economy of scale. In this paper we focus on the advantages of flexibility due to
modular construction of SMRs. Using real option analysis (ROA) we help a utility determine the value
of sequential modular SMRs. Numerical results under different considerations, like possibility of rare
events, learning, uncertain lifetimes are reported for a single large unit and modular SMRs.
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1. Introduction

Deregulation of the electricity market has been driven by the
belief in increased cost-efficiency of competitive markets, but also
leads to increased uncertainties in the market. There is a need for
valuation methods to make economic decisions for investment in
power plants in these uncertain environments. Kessides (2010)
emphasizes the use of real options analysis (ROA) to estimate the
option value that arises from the flexibility to wait and choose
between further investment in a power plant and other generat-
ing technologies as new information emerges about energy market
conditions.

The real options approach for making investment decisions in
projects withuncertainties, pioneered by Arrow and Fischer(1974),
Henry (1974), Brennan and Schwartz (1985) and McDonald and
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Siegel(1986)became accepted inthe pastdecade. Dixit and Pindyck
(1994) and Trigeorgis (1996) comprehensively describe the real
options approach for investment in projects with uncertain future
cash flows. Using real options enables us to value the option to
delay, expand or abandon a project with uncertainties, when such
decisions are made following an optimal policy.

ROA has been applied to value real assets like mines (Brennan
and Schwartz, 1985), oil leases (Paddock et al., 1988), patents and
R&D (Schwartz, 2003). Pindyck (1993) uses real options to ana-
lyse the decisions to start, continue or abandon the construction of
nuclear power plants in the 1980s. He considers uncertain costs of
a reactor rather than expected cash flows for making the optimal
decisions. Rothwell (2006) uses ROA to compute the critical elec-
tricity price at which a new advanced boiling water reactor should
be ordered in Texas.

In this paper we focus on the inherent value of flexibility that
arises in construction scenarios of nuclear power plants (NPPs).
We use the Stochastic Grid Bundling Method (SGBM) (Jain and
Oosterlee, 2013) for the valuation of the real option of investing
in NPPs for different construction scenarios. The method has been
validated for valuing flexibility that arises during the modular con-
struction of nuclear reactors in Jain et al. (2013). In Section2 we
state the context of different construction strategies for nuclear
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power plants and its corresponding mathematical forumaltion.
Section 3 deals in detail with the real option analysis of projects
under different construction strategies, while Section4 describes
the effect of a stochastic life time of operation for nuclear plants.
Finally, Section 5 gives some concluding remarks.

2. Context

We consider a competitive electricity market where the price
of electricity follows a stochastic process. A utility needs to make
a choice between different projects to meet the same generation
capacity expansion. The following construction scenarios are con-
sidered:

e The utility is planning a capacity expansion of 1200 MWe and
needs to make the choice between a single large reactor of
1200 MWe that benefits from the economy of scale or four mod-
ules of 300 MWe each, that benefit from flexibility, learning, and
site sharing costs.

® The utility has a choice between two twin units at the same site or
four individual reactors at different sites. Twin units, in order to
benefit from site sharing costs, are constrained to be constructed
one after the other. The latter project, although it does not bene-
fit from site sharing costs, has the flexibility to order reactors at
favourable times.

In addition to the above two scenarios, we also study how
sensitive the utilities decisions would be to changes in underly-
ing parameters like decision horizon and uncertainty in electricity
prices. For this we take a case from Collier et al. (2005), where
the utility makes a choice between a single large reactor or four
small-sized reactors to meet its generation capacity expansion.

We use the following notation: the total number of series units
is denoted by n. Unit number i is characterized by discounted aver-
aged cost per kWh equal to 6;, its construction time is denoted by
G; and the lifetime of its operation by L;. Construction and lifetime
are expressed in years. It is assumed that different modules are
constructed in sequence, and the construction of unit i+ 1 can be
decided from any time subsequent to the start of the construction
of unit i.

We assume a constant risk free interest rate, denoted by r here.

The utility needs to take the decision to start construction of the
modules within a finite time horizon, denoted by T; for the ith mod-
ule. In terms of financial options, T; represents the expiration time
for the ‘option to start the construction of the ith module’. Unlike
financial options, it is difficult to quantify the expiration time for real
options, and it is usually taken as the expected time of arrival of a
competitor in the market, or the time before which the underlying
technology becomes obsolete. In case of an electricity utility, it also
represents the time before which the utility needs to set up a plant
to meet the electricity demand with certain reliability.

The value of different construction strategies can be affected
by the uncertain life time of operation of nuclear power plants. In
Section4 we discuss the effect of stochastic life time of operation
on the value of NPP.

2.1. Electricity price and revenue model

The uncertainty in our pricing model is the electricity price.
Modelling electricity spot prices is difficult primarily due to factors
like:

2 Reliability is measured as the probability of the number of unplanned outages
in a year when excess demand of electricity cannot be met by the utility.

e Lack of effective storage, which implies electricity needs to be
continuously generated and consumed.

* The consumption of electricity is often localized due to con-
straints in grid connectivity.

® The prices show other features like daily, weekly and seasonal
effects, that vary from place to place.

Models for electricity spot prices have been proposed by
Pilipovic (1998) and Lucia and Schwartz (2002). Barlow (2002)
develops a stochastic model for electricity prices starting from a
basic supply/demand model for electricity. These models focus on
short term fluctuations of electricity prices which is beneficial for
accurate pricing of electricity derivatives.

As decisions for setting up power plants look at a long term
evolution of electricity prices, we, like Gollier et al. (2005), use the
basic Geometric Brownian Motion (GBM) model as the driving elec-
tricity price process. However, it should be noted that within our
modelling approach we can easily include other price processes.

Fig. 1illustrates the profit from the sale of electricity for one such
realized electricity price path. The cost of operation, 6, in the illus-
tration is 3.5 cents/kWh and the area between the electricity path
and 6 gives the profit from the sale of electricity. We are interested
in the expected profit, i.e. the mean profit from all possible elec-
tricity paths in the future. This expected profit (or net cash flow) is
the payoff, h;(X;), or the amount the utility receives when the real
option is exercised.

The revenue, R;, for the ith module, for every unit power of elec-
tricity sold through its lifetime L;, starting construction at time t,
when the electricity price is X; =, can be written as

t4+Ci+Lj
Ri(X; =x)=E [/ e "X, dulX; = x| . (1)
t+G

R; is the discounted expected gross revenue over all possible
electricity price paths. The revenue starts coming in once the con-
struction is finalized, and therefore the range for the integral starts
from t+C;, and lasts as long as the plant is operational, i.e. until
t+C; +L;. Similarly, the cost of operating the ith module, K;, through
its lifetime for every unit power of electricity generated, is given
by:

t+Ci+Ly
Ki = / e "‘(9,»du. (2)
t4+Cy

Here 6;, the cost of operating the reactor per kWh, is assumed to be
constant. Therefore, the net discounted cash flow, for module i, is
given by:

hi(Xe = x) = Ri( Xt = x) - K;. (3)

Eqgs. (1)-(3) give the expected profit from the sale of electricity
through the life of the nuclear reactor. Eq. (3) is the mean profit
from all possible electricity paths in the future.

2.2. Dynamic programming formulation

In order to construct all modules at the optimal time we use
Bellman’s principle of optimality, where the optimal decisions are
made recursively moving backwards, starting from the final reac-
tor. At the expiration time for the last module the firm does not
have the option to delay an investment. Therefore, the decision to
start the construction is taken at those electricity prices for which
the expected NPV of the last module is greater than zero. The option
value of the last module at the expiration time is then given by:

Va(tm = Th, le) = max(0, h,,(X[m ). (4)

Attime ty, k=m—1, ..., 0, the option value for the last of the series
of reactors is the maximum between immediate pay-off h, and
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Fig. 1. The area between the electricity path (starting at 3.5 cents/kWh) and the cost of operation = 3.5 cents/kWh, gives the cash flow for the reactor.

its continuation value Q,. The continuation value is the expected
future cash flow if the decision to construct the reactor is delayed
until the next time step. The reactor is constructed if at the given
electricity price the net present value is greater than the expected
cash flowsif the reactor is constructed sometime in the future. This
can be written as:

Va(ty, X ) = max (hn(Xy,), Qulty, X)), k=0,...,m—1. (5)

Given the present state X, the continuation value, or, in other
words, the discounted cash flows if the decision to start the con-
struction is delayed for the last reactor is,

Qu(ti. Xe,) = €1 WE [V (e, 1, Xy, IXe, ] - (6)
Once the option value at each time step for the last module is
known, we move on to the modules n—1, ..., 1. At the expira-

tion time for the i-th module, the decision to start its construction
is taken when the combined NPV of the present reactor and the
expected future cash flow from the optimally constructed modules
i+1,...,nare greater than zero. Therefore, the option value for the
ith module at its expiration time T; is given by:

Vi(Ti, Xr;) = max (0, hy(Xr,) + Qiy1(Ti, X1,)) (7)

where h; gives the direct future cash flow from the ith module and
Q;i;1(T;, Xr,) gives the expected cash flow from the optimal con-
struction of modules i+1, ..., n, given the information Xr,. The
option value for the module at time step t;, where t, <T;, is given
by

Vi(ti, X, ) = max(h(Xe, ) + Qi1 (b, Xey ), Qil b, Xt ))s (8)

i.e. the decision to start the construction of module i is taken if the
cash flow from its immediate construction (given by h;(X;,)) and

the expected cash flow from the modules i+ 1, ..., n, constructed
optimally in the future (modeled by Q;1(ty, Xy, )), is greater than
the expected cash flows from the modules i, ..., n, if the decision

to start its construction is delayed to the next time step (given by
Qi ti. Xy, ))- The expected cash flow if the decision to start the con-
struction of modulesi, .. ., nis delayed to the next time step s given

by:
Qi(ti, Xy, ) = e 1 WE [Vi(tyy 1, Xy, )Xy, | - (9)

The option value, Vi(t, Xy, ), at time t;, for constructing the module
i does not only carry the information about the cash flows from

module i, but also about the cash flows from the optimal construc-
tion of the modulesi+1, ..., nin the future.

For sequential modular construction the payoff for module i is
given by h;(X;, ) 4+ Q;,1(ty, Xy, ). The payoff does not only contain h;,
thedirect discounted revenue from module i, but also Q;;;, the value
ofthe option to start or delay the construction of new modules, that
opens up with the construction of module i.

The problem of sequential modular construction stated above
can be solved using the Stochastic Grid Bundling Method (SGBM)
(Jain and Oosterlee, 2013), which is a Monte-Carlo based simula-
tion technique. It is chosen because:

e It can efficiently solve the multiple exercise option problem;

¢ SGBM can be used to compute the sensitivities of the real option
value;

e The method can be easily extended to higher dimensions;

¢ The method is flexible on the choice of the underlying stochastic
process;

* Improved confidence intervals are obtained with fewer paths
when compared to the so called Least Squares Method (LSM)
(Longstaff and Schwartz, 2001).

Appendix A describes the method details for solving the above
problem using SGBM.

3. Effects of construction strategies

In this section we perform the real option analysis for invest-
mentdecisions, which arise due to sequential construction of SMRs,
for the different scenarios discussed earlier.

3.1. Economy of scale vs modularity

One of the measures identified to reduce capital costs of nuclear
power by the NEA report (NEA, 2000) was increased plant size. The
savings arising from the economy of scale when the unit size of
power plants increases from 300 to 1300 MWe range have been
studied by experts around the world since the early 1960s. The
specific costs ($/kWe) of large nuclear power plants have been
quoted within such a broad range that the derivation of scaling fac-
tors becomes difficult. In addition to savings arising from increased
reactor unit size, cost reductions due to other factors such as con-
struction of several units at the same site, effects of replication and
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Fig. 2. Cost savings factor for different local learning rates.

series construction, and learning effects need to be incorporated
in the analysis as well. In this test case we consider two projects,
one with a single large reactor which benefits from the economy
of scale considerations, while the other project consists of a series
of four SMRs which benefit from learning and site sharing costs.
Moreover, the modular units benefit from the flexibility to order
the reactors at optimal times.

For many years, bigger has been better in the utility industry.
The economy of scale arguments have, for some time, and in many
cases, reduced the real cost of power production. The economy of
scale can be expressed by the following scaling function, which
relates the effect of changing the unit size to the cost of the unit,

TC, Si1\7

o= (5) (10
where TCp, TC; are the total cost for construction of two reactors
with size Sy, Sy, respectively, y is the scaling factor which is usually
in the range of 0.4-0.7. It is assumed that the two reactors differ
only in size, with other details being equal.

The effect of a learning curve and the associated cost reduction
for nuclear technology has been studied in detail by Zimmerman
(1982). Modular SMRs benefit from learning economies which
result from the replicated supply of SMR component by suppliers
and from the replicated construction and operation of SMR units by
the utilities and their contractors (see Carelli et al., 2010). Boarin
and Ricotti (2011) separate four effects of modular construction:

1. Learning factor.The number of similar plants constructed world-
wide will lead to increased experience in construction and
therefore in decreased costs;

2. Modularity factor. Modularization assumes capital cost reduc-
tion for modular plants, based on the reasonable assumption
that the lower the plant size, the higher is the degree of design
modularization;

3. Multiple Units factor. The multiple units saving factor shows pro-
gressive cost reduction due to fixed cost sharing among multiple
units on the same site;

4, Design factor. The design factor takes into account a cost reduc-
tion by assumed possible design simplifications for smaller
reactors.

We use the following equation to model the combined impact
of multiple units and learning effects on cost savings, as a function
of number of units on site.

P; = Po((1 - a) + ae ), (11)

where a is the cost-savings factor, which is asymptotically achieved
by anincreasing number of units, and b gives the rate of on-site cost
savings. Factor a would depend on the number of units constructed
world wide, the amount of R&D effort put in the technology, etc.
Factor b depends on the contractor, the skills of the labour involved,
etc. Fig. 2 shows the price of subsequent units constructed at the
same site for varying values of learning rate b. For increasing value

Table 1
Construction time and discounted averaged cost used for the modular units with
learning and a single large unit.

Construction time Discounted average Discounted average

(months) cost (cents/kWh) cost ($/kWe)

Modular units

Unit 1 36 4.7 4950

Unit 2 24 4.06 4250

Unit 3 24 3.77 3950

Unit 4 24 3.63 3800

Large reactor

Unit 1 60 29 3000

of b, the subsequent reactor converges faster to the final cost effi-
ciency gained by learning.

We now consider four modules, each with size 300 MWe, and
compare this project with a single unit of size 1200 MWe. The scal-
ing factor for the economy of scale is taken to be y =0.65 (Kessides,
2012). In order to benefit from local learning, we put a constraint
that the construction of a next module can begin only after one year
of the start of the construction of the previous module. We take
as the rate of local learning b=0.8 and assume that the cost sav-
ing for large numbers of modules would approach a value of 25%.
These parameter values correspond to those suggested by Mycoff
et al. (2010), based on various studies in the literature, posit that
the combined impact of multiple units and learning effects is a
22% reduction in specific capital costs for the SMR-based power
plant.The discounted average costs of a large reactor are taken from
Gollieretal.(2005) and the corresponding values for modular units
are computed based on the discussion above. With these parame-
ters, the construction costs of the modules can be summarized in
Table 1.

Fig. 3 compares the option value obtained for different volatil-
ities in the electricity price model. It is clear that with increasing
uncertainties in the electricity prices the flexible modular project
becomes more attractive. However, in a more certain environment
a single large reactor seems to be profitable. Table 2 reports the
option values for the two projects for different decision horizons
for ordering the first unit. The gain due to the learning curve and
the flexibility of construction, although it improves the option value
for the modular units, does not seem to be sufficient to compensate
for the economy of scale factor in the case of moderate uncertainty
in electricity prices.

Fig. 4 illustrates the sensitivity of the real option value of the
modular project with respect to parameter a, which represents
the asymptotic cost reduction that will be achieved from learning,
when the rate of learning (given by parameter b) is kept constant
and equal to 0.8. We see that the option value of the project grows
proportionally to the asymptotic cost saving due to learning.
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Fig. 3. The real option value for the two projects for different uncertainties in the
electricity prices when the decision horizon for ordering the first unit and the large
reactor is equal to 7 years.
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Table 2

Option value (Euro/kW) for the modular case (4 x 300 MWe) and for the large reactor
(1200 MWe). The volatility for the electricity price is 20% and the initial price of
electricity equals 3 cents/kWh.

Table 3
Construction times and discounted average costs used for the two twin units at same
site and for four units at different sites.

Construction time Discounted average

Decison time (years) Real option value (Euro/kW) (months) cost (cents/kWh)
Modular case Two twin units
7 196.17 Unit 1 60 35
10 229.72 Unit 2 48 1.67
13 250.15 Unit 3 48 1.81
Unit 4 48 1.60
Large reactor
7 341.48 Four independent units
10 364.04 Unit 1 60 35
13 376.98 Unit 2-4 48 225

Fig. 5 illustrates the sensitivity of the real option value of the
modular project for different rates of learning, given by parameter
b, when a is kept constant and equal to 0.25. We see that for a faster
rate of learning the option value of the projectis higher as for large
b values the cost savings are reflected rapidly in the subsequent
units, while for a smaller b value the benefit is reflected only after
few units have been constructed.

It can be seen from Figs. 4 and 5 that a higher final cost sav-
ing factor which is reflected by the value of parameter a increases
the option value of the project more significantly than a higher
on site learning rate as given by the parameter value b. Under our
model assumptions a higher final cost saving could be achieved
by long term cost reductions resulting from plant upgrades and/or
increased R&D efforts to increase the real option value of the
nuclear power plants.

3.2. Two twin units vs four single units

We look at the case describing the sharing of facilities by con-
structing multiple units at a single site. The parameter values are
taken from a real case observed at EdF as described in the NEA

NN
5 &
:
|

Option Value (Euros kW)
N N
o v

215 -
0.2 0.225 0.25 0.275 03

a

Fig.4. The real option value for the modular project when b= 0.8, the decision hori-
zon is 10 years and the volatility in the electricity prices is 20%, for different values
of parameter a.
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Fig. 5. The real option value for the modular project when a=0.25, the decision
horizon is 10 years and the volatility in the electricity prices is 20%, for different
values of parameter b.

report (NEA, 2000). The averaged costs of a unit reduce with an
increasing number of units per site. We consider the case where two
pairs of units per site are constructed with a case where four indi-
vidual units are constructed. All units considered are of the same
size, so the economy of scale does not play any role in this case.

The aim of the test case is to compare a project with two twin
units on a single site with four individual units constructed at dif-
ferent sites. We assume that the reactors involved are of the same
size (1200 MWe each), and hence the only cost difference comes
from the sharing of costs if constructed at a single site. The first
reactor, in both cases, is considered to be first-of-a-kind (FOAK),
and we assume the cost of generating electricity for this reactor
to be 3.5 cents/kWh. The costs of the other units are summarized
in Table 3. In order to achieve a cost benefit for the reactors con-
structed at the same site, the reactor units are constrained to be
constructed in a phased manner. Therefore, the two twin reactors
are constructed immediately one after the other, with the con-
struction of the first unit starting when the electricity price crosses
the corresponding critical price. The benefits of cheaper subse-
quent units come at the loss of flexibility to order the subsequent
units at optimal electricity prices. The reasons for phased construc-
tion include considerable efficiencies and associated savings to be
gained from the phased construction and rolling the various crafts-
men teams from one unit to the next. In addition, by repetition of
construction, there is the craft labour learning effect that reduces the
time to perform a given task and correspondingly reduces labour
cost and schedule. We take the decision horizon for ordering the
first reactor to be 7 years, and assume that once a unit becomes
operational it operates at its maximum capacity factor.

On the other hand, when the four units are constructed at sep-
arate sites, they do not have the cost benefits of sharing the site
specific costs, neither of the productivity effects. However, when
constructed individually they benefit from the flexibility to order
each unit at its corresponding optimal time.

The following assumptions are made when determining the
overnight costs:

e Unit 1 bears all of the extra first-of-a-kind (FOAK) costs.

e The cost of engineering specific to each site is assumed to be
identical for each site.

* The cost of facilities specific to each site is assumed to be identical
for each site.

e The standard cost (excluding the extra FOAK cost) of a unit
includes the specific engineering and specific facilities for each
unit.

If B is the standard cost (excluding the extra FOAK cost) of a
sole unit on a site, the:

e Cost of the first unitis 8=(1+x)0y;
¢ Cost of the following units is fy (for 1 unit per site);
e Cost of the 2nd unit at a site with one pairisy fp;
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Fig. 6. Relative cost of the four units when constructed as two twin units ona single
site.

e Cost of the 3rd unit at a site with two pairs is z g;

e Cost of the 4th unit at a site with two pairs is y 0 (it is assumed
that the cost of the 2nd unit of a pair is independent of the rank
of the pair on the site).

The productivity effect depends on the rate of commitment of
the units and on the owner’'s procurement policy. The optimum
commitment rate is the one which provides good operational feed-
back from one construction project to the other, while serving to
maintain the apprenticeship effect in the manufacturers’ facilities
and on the sites. The most favourable procurement policy to obtain
the best prices from the suppliers consists in ordering the equip-
ment of all the units under the same contracts NEA (2000).

A productivity effect is considered to only occur from the 3rd
unit on of a series. If n is the rank of the unit in the series, and #,, is
the cost which results from taking into account the individual unit,
it follows that:

f_ b
T k)2

where 6, represents the cost of a module if there is a productiv-
ity gain involved. Using the above formulation, for the case of EdF
(x=55%, y=74%, z=82%, k=2%) (NEA, 2000) in the case of the two
pairs of units per site the relative costs are illustrated in Fig. 6.

In the case of two twin units the cash flow due to the sales of
electricity once the units become operational is modified from Eq.
(1)into

t4+Cy +Ly t4+{Cy +Ca ) +Ly
R1(X; = x)=E [(/ e ”‘X,,du+/ e "X, du +---
. t

t4+Cy HG+C2)
tH{ G +C+C3+Cy ) +Lg
+ / e ”‘Xudu) X =x] . (12)
JtH{ G+ G+ C3+Cy)

Eq. (12) can be read as the revenue from unit 1, when ordered at
time t, starts coming in once its construction is finalized at t+Cy,
and continues till the end of its lifetime, i.e. untiltime t+ C; + L. The
construction of unit 2 starts at t + Cy, and its revenues start flowing
in from t+C; + G, till the end of its lifetime at t+C; + G +L,. Eq.
(2) can be modified accordingly. It can be seen that only the first
reactor can be ordered at an optimal time, and the construction of
the ith reactor is forced immediately after the completion of the
(i—1)th reactor to achieve the cost reductions shown in Fig. 6.
Forthe fourindependent reactors the revenueis given by Eq.(1).
As significant cost benefits can be achieved after the construction
of the FOAK unit, the decision for the construction of subsequent
units is made only when the construction of the first unit is done.
Also the usual constraint that subsequent modules can be ordered
only after the decision on starting the construction of all previous

37 —
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Fig. 7. Option values (Euro/kW) for the twin units, and the four independent units
for different decision horizons. The option values are computed when the initial
electricity price is 3cents/kWh and the volatility in the electricity prices is 20%.

modules has been taken into account. The decision horizon for unit
iis T;=T; 1+ Construction Time of Unit (i — 1), where T;_; is the deci-
sion horizon for the (i — 1)th unit.

Fig. 7 compares the option values of the two projects for differ-
ent decision horizons for starting the construction of the first unit.
When a firm has more time to decide when to construct the reac-
tor, the option value of the project increases. From these results
it seems that for the parameters chosen the project involving four
independent units appears to be a better choice, under our model
assumptions.

Fig. 8 compares the two projects for different uncertainties in
the electricity prices. The project involving four independent units
seems to be less profitable in a more certain environment of elec-
tricity prices. The benefit of flexibility in a project becomes more
apparent with increasing uncertainties in electricity prices.

It can be seen that although building two twin reactors at a
single site significantly reduces the costs of producing electricity
for the units, the project loses on the value of flexibility. The four
units constructed at different sites, although produce electricity at
higher prices, can benefit from the opportunity to construct at more
optimal market electricity prices. It should also be noted that the
construction of the units in this manner may also benefit since in
an event of natural disaster not all units would shut down (see
Takashima and Yagi, 2009, for more details). Also it is clear that
when the uncertainty in electricity price increases, it appears to
be advisable to focus on flexibility, by constructing independent
reactors, rather than the increased cost efficiencies, by constructing
twin units at the same site. On the other hand, when the electricity
price is less uncertain not much is gained by the flexibility in the
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Fig. 8. Option values (Euro/kW) for the twin units, and the four independent units
for different levels of uncertainties in the electricity prices. The option values are
computed when the initial electricity price is 3 cents/kWh and decision horizon for
the first unit is 7 years.
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Fig.9. Optimal investment policy for ordering sequential modular reactors, with a sample scenario path. Overlap between construction period of two reactors is possible in

this case.

time to order and it appears more profitable to choose cheaper twin
units in our model.

3.3. Sequential construction

We consider the theoretical case where an investor needs to
decide between two projects, one involving a single large reactor
of 1200 MWe and the other consisting of four modules of 300 MWe
each. The construction time and costs for the two projects, given
in Table 4, are taken from the reference case by Gollier Gollier
et al. (2005). The discount rate is taken as 8% per annum and the
predicted growth rate of electricity price is 0% here. The cost of
electricity production for the first unit is relatively expensive when
compared to the series units, as a large part of the fixed costs for the
modular assembly, like the land rights, access by road and railway,
site licensing cost, connection to the electricity grid are carried by
the first unit.

We assume that a new unit can be ordered if all previous units
have been ordered (not constructed). It is common practice to have
parallel construction of different units in order to achieve cost sav-
ings, as it allows rotation of specialized labour between different
units (NEA, 2000).

Fig.9 shows a scenario path and investment policy fora modular
project with the above considerations. It can be seen thatin this case
overlap in the construction period of different units is possible.

3.3.1. Effect of decision horizon

Fig. 10 compares the real option values of the two projects for
different decision times. The decision time for the large unit is kept
the same as that for the first unit in the modular project. Decisions
of generation capacity expansion are based on meeting increas-
ing electricity demands with a certain minimum reliability and
therefore the decision horizon is chosen to be the same for the

Table 4
Construction times and discounted averaged costs used for the large reactor and the
modular case.

Construction time

Discounted average

(months) cost (cents/kWh)
Large reactor 60 29
Modular case
Module 1 36 38
Module 2-4 24 25

first module and the large reactor. In this case the modular project
appears more profitable than the single large reactor.

In order to detail the results obtained, we compute the expected
cashflow from different units of the modular project and the frac-
tion of modules ordered for different decision times. Fig. 11 gives
the expected cashflow from the four units for different decision
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Fig. 10. Real option value for the large reactor and the modular project for different
decision horizons when the initial price of electricity is 3 cents/kWh.
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Fig. 11. Cash flow from different modules with increasing decision time. The initial
price of electricity is 3 cents/kwWh and volatility in the electricity prices is 20%.
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Fig. 12. Fraction of modules ordered at the end for different scenario paths with
increasing decision times. The initial price of electricity is 3 cents/kWh and the
volatility in the electricity prices is 20%.

times. It can be seen that the expected cashflow grows with deci-
sion time. When overlap in the construction periods of different
units is allowed, the cashflow from the three similar costing units
is almost the same. The reason for this is that most often the three
units are ordered around the same time, and so the effect of dis-
counting to present time is almost the same. An important reason
for modular projects having higher real option value is that the
effective decision horizon for the modular project is significantly
longer than that of the large reactor (which is the same as that
of the first unit). Another factor which adds up to the profitability
of the modular project (when parallel construction is allowed) is
that modular units have less construction time in our model, which
allows cashflows from the sale of electricity to start before it would
start from the large reactor.

Fig. 12 shows the fraction of different modules constructed by
the end of the decision time for the modular project. It is clear
that when the constraint of waiting for completion of a unit before
ordering a new one is relaxed, that once the first unit is ordered, in
most cases it results in all four units being ordered.

3.3.2. Effect of electricity price volatilities

Fig. 13 compares the real option values of the two projects for
different volatilities in the electricity prices. We see in this case that
the modular project is always more profitable than a single large
reactor.

Most of the units are ordered around the same time, as can be
concluded from the discussion above. However, this will not be the
case when the uncertainty in the electricity price increases. Fig. 14
shows the fraction of scenario paths for which different numbers
of units are ordered by the end of the decision horizon. It is clear
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Fig. 13. Real option value for the large reactor and the modular project for different
volatilities when the decision horizon is 9 years and the initial price of electricity is
3 cents/kwWh.
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Fig. 14. Fraction of modules ordered at the end for different scenario paths with
increasing volatility. The initial price of electricity is 3 cents/kWh and the decision
horizon for the first module is 9 years.

that with increasing uncertainty more often the project ends with
fewer units than were planned initially.

4. Effects of uncertain life time of operation

Uncertain life times of operation should be taken into account
when computing the value of investment in an NPP. Adetailed anal-
ysis would not just take the uncertain life time of operation into
account but also uncertain capacity factors during the operation
of the reactor. Du and Parson (2010) perform a detailed analysis
on the capacity factor risk in the nuclear power plants. Rothwell
(2006) employs a stochastic process for varying capacity factors
in his analysis. We here assume (like Gollier et al, 2005) that the
nuclear reactors operate at a mean capacity factor of 90% through-
out their lifetime, which is a reasonable assumption Varley (2002)
for modern reactors.

In our analysis we assume uncertain life time of operation of
NPPs which can be due to premature permanent shut down on one
hand or due to extension of operating licenses and lifetime on the
other hand.

4.1. Effects of premature permanent shut-down

We use the term premature permanent shut down for the case
when an operating reactor is permanently shut down before com-
pleting its licensed operating life time. Historically, premature
permanent shut down of reactors have been observed for direct
reasons- like accidents or serious incidents in a reactor (e.g. Three
Mile Island 2 - 1979, Chernobyl 4 - 1986, Fukushima Daiichi 1,2,3,4
- 2011), or it could be indirect by - for example shutting down
of reactors due to increased safety measures, economic reasons,
changing government policies, etc. (e.g. Shoreham, in US 1989).

The arrival time of such an event (elsewhere called rare events
or catastrophic events) has been modelled by a Poisson process, e.g.
Clark (1997) for a real options application with a single source for
rare events, Schwartz (2003) uses Poisson arrival times to model
catastrophic events when investing in R&D. We also model the
arrival time for the cause of premature permanent shut down as a
Poisson process whose arrival frequency, 4, is the expected number
of such events a year.

In order to compute the frequency of premature permanent shut
down we use dataavailable from the IAEA report (2005) and a WNA
report Varley (2002 ).In total there have been 133 reactors that have
been permanently shut down after they started operating. Out of
these, 11 reactors were shut down due to accidents or serious inci-
dents, and 25 have been shut down due to political decisions or
due to regulatory impediments without a clear or significant eco-
nomic or technical justification. The remaining 97 reactors were
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Fig. 15. The real option price for the large reactor, and the modular project for
different values of A when the volatility of the electricity price is 20% and the decision
horizon for the large reactor and the first module equals 7 years.

shut down because they completed their designated lifetime and
costs associated with a lifetime extension did not make economic
sense for these reactors. The total cumulative life time of operation
for the reactors in the world is approximately 14,500 years. There-
fore, the number of premature permanent shut downs per reactor
yearis (25+11)/14,500, which is 0.0025 reactors per year. Thus, the
rate of arrival of the cause for premature permanent shut down, is
modelled as A =0.0025 events every year, from a statistical point of
view.

The inclusion of catastrophic events results in an effective dis-
count rate from r to r+ i (see Schwartz, 2003) for more details)
once the plant gets operational. Fig. 15 compares the option values
for the modular project and the single large reactor, with parameter
valuesas givenin Table 4. It is clear that the value of the investment
option reduces with increasing probability of catastrophic events;
however, the modular project seems to be more profitable in the
realistic domain of X values.

4.2. Effects of life time extension

Most nuclear power plants originally had a nominal design life-
time of 25-40 years, but engineering assessments of many plants
have established a longer operation time. In the USA over 60
reactors have been granted licence renewals which extend their
operating lives from the original 40-60 years, and operators of most
others are expected to apply for similar extensions. Such licence
extensions at about the 30-year mark justify a significant capital
expenditure for replacement of wornequipment and outdated con-
trol systems. In 2010 the German government approved a lifetime
extension for the country’s 17 nuclear power reactors. However,
after the Fukushima accident in March 2011, Germany planned a
complete phase-out by the year 2022, reverting the previous deci-
sion. It is clear therefore that the lifetime of a nuclear power plant
can be uncertain.

Genllland Gen IV reactors are mostly designed for a life time of
60 years (Kessides, 2012). However many generation Il reactors are
being life-extended to 50 or 60 years, and a second life-extension to
80 years may also be economic in many cases (NEI, 2010). In order
to address the uncertain lifetime of operation due to the possibility
of lifetime extension, we use a normal distribution with a mean
reactor life of j¢;=50 years and a variance of o, =4, which fits well
to the discussion above, as can be seen in Fig. 16, It should be noted
that such a distribution allows for negative life time, however the
probability for such lifetime is almost negligible.

In the case where the electricity price follows GBM and the life-
time has a normal distribution, as described above, Eqs. (2) and (1)
can be written as

1 ¢ (r-au-(ofra@)/2)

Ri(X; = x) = e (r-«G T a X, (13)
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Fig. 16. The distribution for the lifetime of operation of a nuclear reactor, which
was originally licensed for 40 years of operation.

450
=
X
6
£ 400 ---Single Large Reactoﬂ
frij —Modular Project
E
[
>
C 350 - e
§ 350
7~
= N S S SN
o
3000 5 10 15 20 25
¢ lifetime
Fig. 17. Option value vs uncertainty in lifetime of operation.
and
1. e,(m,,((afﬂ)/z))
K = e*'C. 6;. (14)

r

Fig. 17 compares the real option value for the modular project
and the single large reactor with parameter values taken from
Table 4. We plot then for various oy with a mean reactor life of
50 years. It can be seen that with increasing uncertainty in the life-
time the option value reduces in value, although it follows the same
trend for both cases considered.

5. Conclusion

In this paper we presented a real option valuation of different
construction strategies of NPPs for finite decision horizon. We ana-
lysed a few scenariosa utility might be interested in before makinga
choice of nuclearreactor. The conclusions drawn from the test cases
under the model assumptions in the present paper can be summarized
as follows:

1. In a finite decision horizon, sequential modular units can be
ordered at more competitive electricity prices, compared to a
construction of units in isolation.

2. The model shows that the real option value of nuclear power
plants increases with implementation of long term cost reduc-
tions. Such cost reductions might be achieved e.g. by plant
upgrades and/or increased R&D efforts.

3. When twin units are constructed at the same site, significant
cost reductions can be achieved. On the other hand, in order to
achieve these cost savings, the utility loses the flexibility to order
units at optimal market conditions. When the electricity price
uncertainty is low it appears that cost savings by a construction
of twin modules at the same site would be favourable under
our model assumptions, while when electricity prices are more
volatile, the flexibility of choice dominates.
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4, Uncertain lifetime of operations reduces the option value of both
the modular and single large reactor test cases. However, with
increasing frequency of premature permanent shutdown, the
modular construction works out more profitable than individ-
ual large reactors. Uncertainty in life time extension affects the
option value of a single large unit and modular units almost
similarly in our model.

5. Specific cost of SMRs can be much higher than of a single large
unit, because of the economy of scale argument. Some cost
reduction is achieved by the learning effect with each new mod-
ule. However, it appears that cost savings due to learning are not
sufficient to make modular SMRs competitive with large units.

Appendix A.

The real option problems we are interested in have finan-
cial counterparts, i.e. the Bermudan options and multiple exercise
Bermudan options (Seydel, 2012). A Bermudan option gives the
holder the right, but not obligation, to exercise the option once, on a
discretely spaced set of exercise dates. A multiple exercise Bermu-
dan option, on the other hand, can be exercised multiple times
before the option expires. Pricing of Bermudan options, especially
for multi-dimensional processes is a challenging problem owing to
its path-dependent settings.

Consider an economy in discrete time defined up to a finite time
horizon T,. The market is defined by the filtered probability space
(2, F,F, P). Let X, with t=tg, ty, ..., ty =Ty, be an R4-valued dis-
crete time Markov process describing the state of the economy, the
price of the underlying assets and any other variables that affect
the dynamics of the underlying. Here P is the risk neutral probabil-
ity measure. The holder of the multiple exercise Bermudan option
has n exercise opportunities, that can be exercised at to, ty, .. ., tm.
Let h;(X;) represent the payoff from the ith exercise of the option at
time t and underlying state X;. The time horizon for the ith exercise
opportunity is given by T;.

We define a policy, 7, as a set of stopping times 7y, ..., 71 with
Tn <...<Tq, which takes valuesin tg, .. ., tm = Ty, and 7; determines
the time where the ith remaining exercise opportunity can be used.
The option value when there are n early exercise opportunities
remaining is then found by solving an optimization problem, i.e. to
find the optimal exercise policy, 7, for which the expected payoff
is maximized. This can be written as:

n
Va(to, Xt = X) = SUPE | >y (Xe, JXeo = X| - (15)
14
k=0

Insimple terms, Eq. (15) states that of all possible policies for order-
ing the reactor in the given decision horizon, the real option value
is the one which maximizes the expected future cash flows.

SGBM solves a general optimal stopping time problem using a
hybrid of dynamic programming and Monte-Carlo simulation. It
extends SGM (Jain and Oosterlee, 2012) to efficiently solve such
problems in high dimensions. The method first determines the
optimal stopping policy and an estimator for the option price. The
optimal stopping policy for the ith module at time step t, involves
finding the critical electricity price X,‘k. When the market price of
electricity is equal to the critical price, the value of delaying the
construction of the module to the next time step is equal to the
value of starting the construction immediately, i.e.,

Quti X5,) = hy(X;,).

Therefore, the critical price is taken to be the largest value of Xy, ,
for which Q;(ty. X, ) > h;(X, ). The module is ordered if the present
market price of electricity is greater than the critical price for the
given time step. Once the policy for all the time steps is known,
SGBM computes lower bound values, using a new set of simulated

electricity paths, as the mean of the cashflows from each simulated
path where the module is ordered following the policy obtained
above.

SGBM for multiple exercise Bermudan options begins by gen-
erating N stochastic paths for the electricity prices, starting from
initial state Xp. The electricity prices realized by these paths at time
step t, constitute the grid points at t,. Numerically the main task
involved is computing the continuation value Q; at all time steps.

In order to obtain the continuation value for grid points at t;,
we need to determine the functional approximations of the option
value at t;,;. Once the option values at the grid points at t;,, are
known, the functional approximation is obtained using combina-
tion of least squares regression and bundling (Jain and Oosterlee,
2013). Therefore, to compute the continuation value for grid point
Xy, (n), ne(1,...,N], with nthe path number, we only use only those
paths which belong to bundle containing Xy, (n). Let Ba(ty) be the
set ofindexes including n which are bundled with Xy, (n). The corre-
sponding functional approximation for this bundle is obtained by
regressing the option values for these paths at t;,; ona set of basis
functions of state variables at t;,,. This functional approximation is
then used to compute the continuation value at the particular grid
point Xy (n).
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