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Introduction to Option Pricing in a Securities
Market — |I: Poisson Approximation
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The Netherlands
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In this part of the lecture notes on securities trading we aim at the limiting
transition from a binary market of part | towards the Poisson market described
in Section 4. The conditions for this are formulated in Section 3, and the results
in Section 5. The Poisson model describes the situation when the stock price
develops with sudden jumps of a constant amplitude at random instants.

1. INTRODUCTION

In this paper the material is used of the previous paper by DZHAPARIDZE
and VAN ZULJLEN (1996), which is referred to below as part 1. Most of this
material is presented in Section 3 in the form aimed at the limiting transition in
Section 5 towards the Poisson model (see Section 4 for details on this model).
The presentation in this paper is kept at the same low technical level as in
part I. A path by path approach pursued in these papers is based on certain
unsophisticated algebraic considerations, in contrast with the usual treatment
based on a probabilistic approach, namely on a martingale approach, cf. e.g.
AASE (1988). BAck (1991), CoLwELL, ELLIOTT and Kopp (1991), FOLLMER
{1991), HArRISON and PLISKA (1981), PAGE and SANDERS (1986). The results
obtained in this manner in Section 5 are of an heuristic nature, for the full
rigour would require higher technical level of the general theory of stochastic
processes, see e.g. DUFFIE and PROTTER (1991) and the references therein, cf.
also WILLINGER and TaqQqQu (1987, 1989, 1991).
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As in part I, it is assumed that in a securities market two assets, called the
bond and stock, are traded during the time interval [0, T]. New prices on both
assets are announced at certain fixed trading times, say to < ¢; < -+ < tn
where t; = 0 is the current date and ¢ty = T the terminal date. Thus the whole
time interval [0, 7] is divided in N trading periods by a grid {to,t1,...,tn}. Itis
supposed throughout the present paper that the number N of the trading times
is very large, and possibilities are sought for approximating the option pricing
formulas of part I. To this end, we let N — co. We can expect in the limit
sensible results if only the grid {¢o,%1,...,tn} of trading times becomes finer
and finer in the sense that the mesh size of the grid tends to zero as N — oo (the
mesh size is the maximal length of the trading periods) and if the asset prices
are made dependent on the index N in a certain special manner. See Section
3.1 for the conditions under which the Poisson approximation of the present
paper is obtained. Asymptotically, the cumulative return process on the bond is
assumed to increase with a constant interest rate, see (3.1.10). The asymptotics
of the returns on the stock is characterized by the displacements at certain
random instants, upwards with a constant amplitude or downwards with an
infinitesimal amplitude, cf. (3.1.17) or (3.1.18). To these displacements certain
weights are assigned (called as in part I risk neutral probabilities, cf. (3.2.11)
and (3.2.12)) so that under the conditions 3.1.1 and 3.1.2 the approximation
(3.2.18) holds. (In the probabilistic interpretation, the upward displacements
become rare events.) This leads to the Poisson approximation of Section 5.

In Section 4 the complete description of the Poisson model can be found
(or Merton’s model, as it is sometimes called, cf. MERTON (1990)). The
price processes on the bond and the stock are given by (4.1.2) and (4.1.4),
respectively (see (4.1.1) and (4.1.3) for the corresponding returns). As usual,
the self-financing strategy is defined by the portfolio selection founded only
on an initial endowment so that all changes in the portfolio values are due to
capital gains during trading and no infusion or withdrawal of funds is allowed.
It is shown that the value process of a self-financing strategy has the integral
representation and, moreover, Clark’s formula holds; cf. the propositions 3.2.2
and 3.2.6 in the binary case and the similar propositions 4.2.1 and 3.2.2 in
the Poisson case (see OCONE and KARATZAS (1991) and NUALART (1995) for
the genuine Clark formula). Next, it is shown in proposition 4.2.3 that this
value process satisfies the differential equations (4.2.12) which play the same
réle in the Poisson case as equations (3.2.16) in the binary case. In particular,
they entail the completeness of a Poisson market, see proposition 4.3.4. The
hedging strategy against any desired wealth is explicitly defined by the portfolio
components (4.3.9) and (4.3.10) in terms of the Poisson distribution (4.3.3) (in
fact, the right hand side of (4.3.12) is a certain conditional expectation). This
gives rise to the term Poisson market. Finally, the option pricing formulas are
presented for a certain contingent claim (see (4.3.13) with a Poisson expectation
on the right hand side) and for the European call option in particular, see
proposition 4.3.5.

The integral representations (3.2.8) and (4.2.5) mentioned above involve
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the R%emann—Stieltjes integrals with respect to piecewise continuous functions.
Certain elementary facts concerning this kind of functions and respective inte-
grals are gathered in the next section.

2. AUXILIARY RESULTS
2.1. Piecewise continuous functions

In the present paper the asset prices are supposed to evolve along piecewise
continuous trajectories in a time period [0,T]. Therefore we will need some
common facts concerning functions of this type. For the definitions below we
make use of the indicator function Ir of a set 7 C [0, T] which is a function of
time t € [0, 7] such that

1 ifteT
I+(t) =
7(t) {O otherwise.

Let F' be a function of the same argument ¢ € [0, 7], discontinuous at certain
instants T1,...,T, sothat 0 < T} < ... < T, < T and continuous in-between.
Let be defined by means of certain continuous functions { f¢}x=o0,1,... . 50 that

(2.1.1) F(t) = ka(t)I[Tk,THl)(t)'
k=0

Here Ty = 0 and Ty, > T for convenience. Note that F is a right-continuous
function in the sense that by approaching an instant ¢ € [0, T) from the right we
get lim,; F'(s) = F(t). With this function F another function F_ is associated
by the following conventions: F_(0) = F(0) and F_(t) = F(t—) = lims F(s)
for ¢t € (0,T]. By continuity of the components {fi}x=0,1....n we have

(2.1.2) F_ (t) = fo(t)I[To,Tl](t) + Z fk(t)I(Tk,Tk+l](t)'

k=1

Obviously, F_ is a left-continuous function. We will write equally F(t) or Fj,
F(t-) or F;_, for the notation with the variable as a subscript is more widely
used in stochastic calculus.

Further, the function AF of jumps of F is defined by AF = F — F_. In
view of (2.1.1) and (2.1.2), AF takes on non-zero values only at the instants
of discontinuity Ti,...,7T, when

(2.1.3) AF(Tk) = fk(Tk) - fk._1(Tk), k= 1,. ..o,

2.2. Riemann-Stieltjes integrals

In the propositions 3.2.2 and 4.2.1 integral representations are asserted, in terms
of Riemann-Stieltjes integrals with respect to piecewise continuous functions.
The definition of such integrals is as follows (see e.g. SHIRYAEV (1984), Section
I11.6.10, for more details).
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Let H be another piecewise continuous function defined by

t)—zhk [T Tean) (B)-

We define the integral up to ¢ € [0,T] of H_ with respect to F, using two
alternative notations

t
/ H, dF,=H_ F,
0

the latter being usual in stochastic calculus.
Let G be a function of the above type so that

ZJI. [Te Ty 1) (8)

k=0
where

ot
ok(t) = gu(Te) + /F he(w)dfe ()

for t € [Ty Tyt1). with go(0) = 0 and

k—1 Ti+1 k
gk(Tk) = ZL h,j(u)rlfj(u) + Zh_,_[(TJ)AF(TJ)
j=0"T; j=1

for k = 1,....n. In order to give a proper meaning to the integrals just
introduced, assume all {fx}r=0.1....., to be of bounded variation. Though this
is truely superfluous, as in the present paper only continuously differentiable
functions fi will occur, with dfy(u) to be understood as f} (u)du where fiis
the derivative of fj.

The integral of H_ with respect to F is now defined by the identity

G=H_-F.

Note that for k = 1,....n and t € [T, Try1)

t
0k(t) = g1 (Tw) = hiy (T AF(T) + /T o () fs ().

Hence by (2.1.3)
(2.2.1) A(H_-F)=H_AF.

In Section 3 the trajectories of price development are certain piecewise con-
stant functions. In this special case of F given by (2.1.1) with the constant
components fr(¢) = fy, it follows from (2.2.1) that

(2.2.2) H_-F, =) H.,AF,
u€(0.t]
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2.8. Integration by parts

Integrals defined in the previous section allow for integrating by parts: for each
te€[0,7]

‘ H:F;, —HyFy, =H_-F;+ F-H,;
with the second integral on the right hand side to be understood as
F-Hy=F_-H+ Y AHAF,
u€(0,t]

(see SHIRYAEV (1984), Section I1.6.11 for more details). In the course of proving

proposition 3.2.2 we will use the following consequence for this integration by
parts formula.

STATEMENT 2.3.1. Let H',F' and H",F" be piecewise continuous functions
of the above type. The function

F=FH +F'H"
has integral representation
F-F,=H -F+H"-F"
if and only if
F.-H +F'-H"=0.

2.4. Exponentials

The details on the material of present Section can be found in SHIRYAEV (1984),

Section 11.6.12. See also Jacop (1979), ELLIOTT (1982) or PROTTER (1990).
Obviously, in case of a continuous function F of bounded variation the

solution of the integral equation

(2.4.1) H=1+H_-F

is uniquely defined by
Ht = eF’”F" -

In the another extreme case of a piecewise constant F

Ho= ] a+aF).
u€[0,t]

In case of a piecewise continuous function F' the above two cases are combined
in the solution

(24.2) Hy =m0 [ (1+AF)e 2™
u€[0,¢]
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In stochastic caleulus the solution to (2.4.1) is usually denoted by H, = £(F),
and called Doléans-Dade exponential (or stochastic exponential).

We apply (2.4.2) to the following special case. Let A" = {A}},¢p0.7) be
the so-called counting process with N'(t) which counts the number of jumps
observed up to time t € [0. T]. By assumption N'(0) = 0. Further A'(¢) = 0if no
jumps occur up to time t and \'(¢) = k if and only if Ty < t for k € {1,..., n}.
Let

F(t) = a(N(t) = \)

with certain positive numbers a and A, ¢f. (4.1.6). Then

AF{ :{(l lffG{Tl,Tn}

0 otherwise.

Hence (cf. (4.1.3)) -
LC.(F)[ = (] + (l)'N(”e‘"’\i‘

3. BINARY MARKET

3.1. Conditions on the bond and stock price processes

Consider a binary securities market in which the bond and stock are traded
during the time interval [0, T] which is divided in N trading periods by a grid
{fot. .. tn}. Unlike in part I, the prices on the bond and stock announced
at the n'" trading time ¢, with n € {0,1,...,N} are now denoted by BY
and S, respectively, in order to express the dependence on N. Moreover, the
corresponding price processes BY = {BN bep.r) and SN = {S,N},e[oﬂ are
defined in the entire time interval [0, T] by

N
(3.1.1) BY(t) = BNy, 4.0(0)
n=0
and
N
(3.1.2) S¥(H) =D SN, a0 (D).
n=0

Asin (2.1.1), an additional instant t x y; > T is introduced for convenience. Put
BN(0) = 1 and SN(0) = s for simplicity, where s is a certain positive number.
The discounted stock price process is denoted as in part I by SV = {SN hepo.m
with

SN(t)
BN(t)

(3.1.3) SN =

The bond is a riskless asset and the price process BN evolves along a pre-
scribed piecewise constant trajectory, while the stock is a risky asset and the
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. N .
price process S™ is allowed to evolve along 2V different piecewise constant
trajectories. These trajectories are specified by the binary transition scheme
of part I, Section 3.1. They all start from the same fixed state s, the current
state of the stock price
s =50 >0.

Further, the whole price tree is uniquely determined by two offsprings at each
trading time. If at ¢t,_; with n = 1,..., N the stock price was in state s,’c" 1
then at the consecutive trading time ¢, it is announced either in state s."”n or
5% _1.n With o

N N
S2kn > Sok—1,n > 0.

Hence if ¢t € [tn,tp41) with some n = 0,1,..., N the stock price S™(t) may
occupy one of the states {si(¢)}r=1,. 2+ with s (t) = s . Note that by
definition (cf. (2.1.2)) )

N-1
(3.1.4) SN(t=) = I (8) + D SA i1, 0] (B)-

n=1

During the first period [to, t1), for instance, the stock price stays in the current
state s > 0. At the terminal date ty = T the stock price SV (T') may occupy
one of 2V states s (T) with some k = 1,...,2". In this case we also say that
the stock price evolves along the k" trajectory. In order to describe the stock
price development along this particular trajectory, we specify the stock price
state at each t € [tn,tny1) forn = 1,..., N by the identity s () = San,n where
kn = ky(k, N) is the smallest integer exceeding 5’%;7.—1,; Cf. part I, definition
(2.1.4), according to which

(3.1.5) kn(k,N) =1+ [;—"1—\,1_%] .

Here and elswhere below the largest integer not exceeding a number  is denoted
by [z].

We shall now formulate the conditions of the present paper which restrict
the behaviour of asset prices in the market so as to allow for the limiting
transition in Section 5 when the number of trading periods NN increases un-
boundedly while the length of each trading period, say At, =t, —t,—1 with
n € {1,...,N}, tends to zero. For instance, think of the special case of mar-
kets where new prices are announced regularly so that the trading times are
equidistant, given by (5.1.1) in Section 5, and the corresponding mesh is given
by (5.1.2). In fact, all the entries {tj}j=0.1,..~ in the N grid depend on NV
and one should write {t;V }j=0,1,...~ instead, but for simplicity the upper index
is always suppressed.

Our conditions will be formulated in terms of returns on both assets. The
cumulative return process on the bond RY = {RY }eeo, ) is defined as the
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sum of all previous returns. At the current date to = 0 the return equals O by
convention and at ¢t € (0,T] it equals

ABN BN
Np =28 5t 1
(3.1.6) ARN(t) = BN = BY 1
So
ABI tdBN
(3.1.7) RV = > —F =/ BN
s€(0,¢] U~ 0 Fu-
and
(3.1.8) BNty = [ a+ARrY))=&R"),
u€(0,t]

see Section 2.3.

ConDITION 3.1.1. As N — oo the increase of the return process on the bond

over each trading period becomes proportional to the length of this period: for
eachn=1,...,N

RN (tn) = RN (ta-1)
n 1 =r+911:f’

tn - tn—l
where 7 > 0 is a positive constant, while QIHV is a negligible remainder term.

Obviously, condition 3.1.1 means that the return on the bond at the trading
time ¢, with n =1,..., N (when it is non-zero according to definition (3.1.6))
is asymptotically proportional to the length of the preceding period:

(3.1.9) ARN(t,) = (r + o)Aty ~ rAL,.

Here and elsewhere below the sign ~ indicates that the ratio of the two sides
tends to unity. In view of (3.1.6) - (3.1.8), we have for each t € [0, T] that

(3.1.10) RN (t) ~ rt
and
(3.1.11) BN (t) ~e™.

Indeed, by (3.1.9)

log BN (t) ~ > " log(1+rAty) ~ 1> Aty
k k
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(here log(1 + z) ~ z is used) and

RY(E) ~ 7 Aty ~ rt
k

where the summation extends over the lengths of all past periods up to time ¢.

The cumulative return process on the stock RV = {RN }tefo,1) is defined
similarly as the sum of all previous returns. At the current date tq = 0 the
return equals 0 and at t € (0,77 it equals

- ASN 5N
ARN() = =5t = 2t 1.
RN(t) G 1
%0 tdsy ASN
RV0)= | o= 3 =
0 Pu— ey Tu-
and
(3.1.12) SNty =sE(RY) =5 [ (1+ARD),
u€(0,]

analogously to (3.1.7) and (3.1.8). In part I, Section 2.3, we also introduced
the return process RN = {R] }+¢(0.1] by
\ ggn AGY
BV= [ e Y o
0o SN S,_

u€(0,t]
with the discounted stock price process SV defined by (3.1.3). Obviously,

SNty =sE(BRM)e=s [ (1+AR]).

u€(0,t]
As was shown in part I, Section 2.3, at each t € [0,T]

: ASY _ ARN(t) - ARN(®)
N _ t .
(3.1.13) ARM(t) = SN T T 1+ ARN®

We now formulate conditions on the behaviour of the returns {ARN(t)}n=1...N
in terms of their states

N St 1, k=1,...,2°
(3.1.14) Tkn = -~ 5 = Ly 3
Skn_l,n—-l

where kp_ = kn_1(k,n) = [5], cf. (3.1.5).
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CONDITION 3.1.2. At the trading time t, with some n = 1,..., N the return
on the stock AR™M(t,) is in one of the 2" states

(3.1.15) rhn=a+ad,, k=1,...,2""1,
or
(3.1.16) Pt = —(b+ BN A, k=127

where a and b are some positive constants, while {agc‘n}k____l’“_vgn-—l and

{ﬂé‘{c_l ntk=1,..2n-1 are negligible remainder terms as N — oo. In fact b can be
negative but exceeding —r with r > 0 of condition 3.1.1, to guarantee inequality
(3.1.19) below.

Using the same sign ~ as above we may express (3.1.15) and (3.1.16) in the
following form

N a if k£ is even
(3.1.17) Tkn { —bAt, if k is odd.
If condition 3.1.1 holds as well, then the states {';'llxl}kzl,...,‘ln of the discounted

return ARN(t,) with n € {1,...,N} are approximated as follows. Due to
(3.1.13) it follows from (3.1.10) and (3.1.17) that

N a if k is even
(3.1.18) Tkn { —alAt, if kis odd
where
(3.1.19) LY

is a parameter which later on will play the réle of the intensity of the Pois-
son distribution, cf. (4.3.3). Since the even state indices correspond to the
upward displacements, and the odd indices to the downward displacements,
the asymptotic relations (3.1.17) and (3.1.18) tell us that for N sufficiently
large all the upward displacements are of the same order a > 0. We call this
parameter a the amplitude of the upward displacements. On the other hand,
all the downward displacements are infinitesimal, of magnitude At,. More-
over, the range of the parameter b is restricted (see inequality (3.1.19)) so as
to guarantee the negative downward displacements of the discounted returns
in (3.1.18). This will allow us to assign the weights AAt, and 1 — AAt,, to the
upward and downward displacements, respectively, which may be interpreted
as risk neutral probabilities, see formula (3.2.18) and related comments. In the
probabilistic interpretation the upward displacements become rare events with
the probability of occurrence AAt, and this provides for the conditions under
which the Poisson approximation of Section 5 is valid.
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REMARK 3.1.3. In condition 3.1.1 the remainder term ok is called negligible,
because it can be suppressed in the asymptotic relation (3.1.9), as well as in
its consequences (3.1.10) and (3.1.11). This is achieved, in particular, if
N
nefiox o len] =0

as N — o0o. The negligibility of o2 will be used several times below; see, for
instance, lemma 3.2.7 and formula (3.2.20). The same applies to the remainder
terms {a), ,}g=1, . on-1 and {BN,_; ,}x=1, .2n-1 in condition 3.1.2, since they
are negligible in the asymptotic relation (3.1.17) (cf. lemma 3.2.7 below, where
yet another set of negligible remainder terms (3.2.20) occurs). For instance, let
{ad ntb=1,.20-1 to satisfy

ax N
m max o 150
ne{l,...,N} k€{l,.,,,2n—1}| 2k,n|

as N — oo.

3.2. Self-financing strategies and value processes

Suppose that one invests an amount v > 0 in the two assets described in
Section 3.1. Let ¥y and &g denote the number of shares of the bond and stock,
respectively, owned by the investor at the current date to = 0. Since BV (0) =1
and SN(0) = s, the investment equals

(321) v=VWq+ 5P;.

Furthermore, let ¥ and &% denote the number of shares of the bond and
stock, respectively, owned by the investor at the consecutive trading times %,
n=1,...,N. The couple (¥, ®N) is called the investor’s portfolio at time t,,.
Observe that the components ¥/ and @1 of a portfolio may become negative,
which has to be interpreted as short-selling the bond or stock.

Since the investor selects his portfolio at time ¢, withn =1,..., N on the
basis of the history of the price development in the market, the number of
shares ¥V and [V of the bond and stock he owns at time ¢, may depend on
prices BY and SV with v < n, but not on prices not yet announced, e.g. BY
and SY. In particular

(Lo, Bo) = (T7, @7),
which means that the currently selected portfolio is kept unchanged during
the whole first period [to,t1]. Afterwords, just after the stock price SN is
announced at time ¢; the portfolio turns into (U2, ®Y) and stays unchanged
during the whole period (1,t;]. The investor proceeds further in the same
manner, selecting last time his portfolio (X, ®¥) just after the announcement
of the stock price S§_, at time ¢; and keeping it until the terminal date iy = T'.
The process ¥ = (¥}, ®));c[0,7) With the bond and stock components

N-1
(3.2.2) TN () = O gy () + D TR Lt b0 (B)

n=1
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and
N-1

(3.2.3) N (t) = BN L) () + D 1 Lt sl ()
n=1

is called a trading strategy. Note that the possible trajectories of both com-
ponents are piecewise constant functions of the same type as those of SN (cf.
(3.2.2), (3.2.3) and (3.1.4)). At each t € (0,T] the dependence of the portfolio
only on the past prices means that if t € (tn, tn11] and SV (¢—) is in state sf,
for somen =0,1,...,N —1land k=1,...,2", then (T}, ®}) is in state

(\Pg-H (sllcvn)a ‘I’nN-n—l (‘Sﬁz))

In stochastic calculus processes of this type are called simple predictable, cf.
PROTTER (1990), p. 43.
With each trading strategy 7’ we associate the process

VN () = {V;N (1) }epo.m)

b
Y VNt m) = BV @) BN (t) + @V (t)SN (1)

so that VN(0;7) = v > 0, ¢f. (3.2.1). This process is usually called the value
process for a trading strategy ©V, since V'V (¢; ) represents the market value of
the portfolio at time ¢ held just before any changes are made in the portfolio. It
will be shown below that the value process V¥ () is of special structure when
7N belongs to the following class of trading strategies:

DEFINITION 3.2.1. A trading strategy is said to be self-financing if the con-
struction is founded only on the initial endowment so that all changes in the
portfolio values due to capital gains during trading and no infusion or with-
drawal of funds takes place. Then the corresponding portfolio satisfies the
condition: for all ¢ € [0,7]

(3.24) BY . g + SV .ol =0.

The notion just introduced is of universal use whenever the integrals in (3.2.4)
are well-defined, which in the present special case of piecewise constant portfolio
components (3.2.2) and (3.2.3) are particularly simple:

(3.2.5) BY.w)¥ = %" BY AWl
u€[0,t]

and

(3.2.6) SY-eY = Y SN Asl,
u€[0,¢]
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cf. (2.2.2). Hence (3.2.4) is equivalent to
(3.2.7) BYATY 4 sV AN = 0.

Using the integrating by parts formula of Section 2.3, we obtain exactly in
the same manner as in part I, Section 3.2, the following characterization of
self-financing strategies.

PROPOSITION 3.2.2. A trading strategy ©" is self-financing if and only if its

discounted value process VN () = (VN (7)}eefo,1) admits the following integral
representation: at each t € [0,T]

(3.2.8) VNt = v+ @V - SN

PROOF. In view of (3.2.5) - (3.2.7), the integral representation (3.2.8) follows
by the same arguments as in part I, proposition 3.2.1. But it is valid also in
general whenever the integrals are well-defined and statement 2.3.1 holds. This
is easily seen by taking into consideration that (3.2.4) is equivalent to

oN g+ 5N -8 =0.

|
REMARK 3.2.3. It is important to notice that the value process for a self-
financing strategy is a process of the same type as the stock price process,
since it evolves along one of 2%V piecewise constant trajectories. In fact

N
VNt ) =D Vi (M) Ity 1) (2)

n=0

where V.V (7) may occupy one of the states

n
(3.2.9) W) = v+ Y BN, o) BR L — 3k um1)

v=1

with k = 1,...,2", cf. part I, remark 3.2.3. Recall that &, = k,(k,n) is given
by (3.1.5).

REMARK 3.2.4. Suppose that currently an amount (3.2.1) is invested by se-
lecting the portfolio (¥g,®o) which afterwards is kept unchanged. Clearly,
this particular strategy of keeping the constant portfolio (¥7Y, &) = (¥o, ®o)
all the time ¢ € [0,7] is self-financing - this needs no infusion or withdrawal
of funds (both terms on the left-hand side of (3.2.7) equal 0). The integral
representation (3.2.8) gives

VN ) =0 = &o(SN(t) - 5).

In the trivial case (®g,®o) = (0,1) this reduces to the identity VN (r) = SN,
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In order to rewrite the integral representation (3.2.8) in the form of Clark’s
formula (cf. part I, Section 3.3), define the difference operator D in the state
space that is applied to the stock price process SV according to the following
definition (cf. part I, definition 2.4.1).

DEFINITION 3.2.5. The process DSY = {DS}N},¢(o,7) is defined by

N-—1
DSN(t) = DS Iigy 41 () + > DS T, 1) ()

n=1

which is of the same type as SV (t—), cf. (3.1.4). Its states are defined condi-
tionally on those of SN (¢—): if SV (¢—) is in state s, with some k =1,...,2",
i.e. t € (tn,tny1] according to (3.1.4), then DSN(t) is in the same state as
DSY., which is s3} .1 — $5%_1 n41 > 0. Taking into consideration remark
3.2.3, define similarly

N-1
DVN(t;m) = DVN () I1y 01 (8) + Y DVNL (1) e, 1001 ()
n=1

which is in state vy, ., (7) — vl,_; ., (7), provided SN (t—) is in state sp,.
Introduce finally

DVN(t; ﬂ.) DVN (71' DVn‘N
DSV Dls{" T (1) +Z e 1+1 SAN)

(3.2.10)

The results similar to proposition 3.3.1 and corollary 3.3.2 in part I are now
formulated as follows:

PROPOSITION 3.2.6. Under the self-financing condition (3.2.4) the stock com-
ponent of the portfolio is given by (3.2.10): for each t € [0,T]

DV (t;m)
DSN(t)
and therefore the integral representation (3.2.8) takes the form
DVN(r)
DSN

M) =
VNt =v+ StN

In the sequel we focus our attention on markets excluding arbitrage opportu-
nities (see part I, Section 6) in which

SN N N
S2k—1,n < Skn-1 < Sap

foreachn = 1,...,N and k = 1,...,2""!. This means that the numerical
values of
3 3
N k,n—1 2%k—1,
(3.2.11) Pk = _‘Nﬁ—————"

N
S2kn T S2k—1,n
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and
N WN
3 -3
N 2%.n kon~1
(3.2.12) Dop—in = _N—_E_

3N
2k.n Sok—1.n

are positive and satisfy
(3.2.13) PYen T PYe—1n = L.

As is easily seen (cf. part I, Section 3.4), in this case every state sfx n_y at
trading time ¢, is expressed as a convex combination of two alternative states
33%_1., and 3%  at the next trading time t,, i.e.

g SN 3 a
(3'2'14) sk,n—l = pé\;c,ns‘]zvk,n +p‘]2\;c—1,n$‘12\§c—1,n‘
By these considerations the numerical values of pJ , and pf;_, , are called in
part I the risk neutral probabilities, see part I, remark 3.4.1. It is easily verified

that in terms of the states of the discounted returns (3.1.13), relation (3.2.14)
turns into

— N AN N ~IN
(3215) 0= p2k,nr‘2k,n + p2k—1,nr2k—1,n

which means that the weights (3.2.11) and (3.2.12) with property (3.2.13) are
chosen so as to neutralize the upward displacements in the discounted returns
by the downward displacements (corresponding to the even and odd space
indices, respectively). The identity (3.2.15) is easily derived:

_ N (N SN N SN N
0 = Pory, (32%n — 5pne1) T Pok—1.n (30%—1.n — 3kn-1)

= p‘g;c,n (r‘gvk,'n - ARN(tn)) +p£;c——l,'n (7‘212\;;—1.11 - ARN<tn))

_ N AN N SN
= DPak,nT2k,n + Pok—1nT2k—1.n

Furthermore, it is shown in part I, proposition 3.6.1, that the relations (3.2.14)
extend to the states (3.2.9) of the value process VN(r) for any self-financing
strategy 7V: forn=1,...,N and k= 1,...,2""! we also have

(3216) ’bic\,,n—l(ﬂ_) = p“zl\i',n,b‘l[\l[c,n(ﬂ) + pgc-—l,ni"‘.j),vk—l,n(ﬁ)'

Note that (3.2.16) reduces to (3.2.14) in the trivial case of remark 3.2.4 when
only one share of the stock is kept all the time. Similarly, the relations of part
I, corollary 3.6.2,

(3.2.17) o U () = 054y ()
- Dkon T TN N
2k, n 'Ué\//c,n(ﬂ') - U'?k—l,n(ﬂ)
and
N 7 N ,V
N — vé\k,‘n(ﬂ-) - v;c,n—l (7T)
Pag-1,n =

bé\lrc,n (TF) - i)“l’\l:—l,n(ﬂ)

79



.| Quarterly

reduce in this special case to (3.2.11) and (3.2.12).
It will be shown next that under the conditions 3.1.1 and 3.1.2 we have the

following approximation to the risk neutral probabilities: for eachn =1,...,N
andk=1,...,2"!

(3.2.18) P ~ Aty

By (3.1.19) the intensity X is positive so that the expression on the right hand
side of (3.2.18) may be interpreted as the risk neutral probability of the upward
displacements. We have already mentioned this at the end of the previous
section. By (3.1.18) and (3.2.18)

P e + Pt nTBk—1.m ~ GAAL, + (1 = AAL,)(—adAt,) = a(AAL,)?,

which is of a lower magnitude than (3.2.18). Clearly, this meets (3.2.15), with
0 on the left hand side. Thus the approximation (3.2.18) ensures that the
contribution of the approximate upward displacements in (3.1.18) is neutralized
by the contribution of the downward displacements.

LEMMA 3.2.7. Under the conditions 3.1.1 and 3.1.2 we have for each n =
1,...,N that

(3.2.19) Phn = A+ AN )AL, k=1,...,2"7!

7 b

with negligible remainder terms {)\ﬁc’n}k_:l’.”"zn—l.

Proor. It will be shown that with the notations of the conditions 3.1.1 and
3.1.2

N N N N
N On + Bok—1n Aok n ~ T2k—1.n
(3.2.20) Ao, = -
2k,n N _ N _ N ’
Takn ~ T2k—1,n "ok ~ Tok—1,n

which is indeed negligible under these conditions (cf. remark 3.1.3). To this
end, we first rewrite (3.2.19) in terms of the returns on both assets. By (3.1.3),
(3.1.6) and (3.1.14)

N _ ARN(tn) - T‘é\lrc——l,n

p2k,n - N N
ok ~ T2k—1,n

Due to (3.1.9), (3.1.15) and (3.1.16), it follows from the latter equality that

p‘lz\i',n - )‘Atn _ Q'Iry + ﬂé\l,c——l,n /\a‘{z\;c,n + (b + lﬁé\llc-l,n)At"

Aty h T%c,n - Té\i‘—l,n T‘é\llc,n - Té\lrc-l,n
Compare this with (3.2.19). It is easily seen that (3.2.20) holds. O
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The approximate relations (3.2.22) asserted in the next proposition, may be

viewed as a prelimiting version of equations (4.2.12) for the Poisson model to
be discussed in Section 4.

PROPOSITION 3.2.8. Let 7V be a self-financing strategy and VN (x) its dis-
counted value process.

Then for each n = 1,...,N the states {i],?;(ﬂ‘)}k:l’.__’Qn given by (3.2.9),
satisfy the following identities:

b‘N-— n(”T) —bN — (ﬂ')
PRI = (0 M) (08 () — 1 n(7)

(3.2.21)
with A and {/\Q;’n}kﬂwm-x given by (3.1.19) and (3.2.20), respectively. If,
moreover, the conditions 3.1.1 and 3.1.2 hold, then

V91, (1) = VR (1) X
(3.2.22) 2k l’t — ’:’" L AW () = 03y ().
n n—

REMARK 3.2.9. It is easily verified that the equations (3.2.21) and (3.2.22)
take the following undiscounted form:

N
vé\;e—l,n(")_vk n=1(m)

P - (r+ Qﬁ)vﬁn_l ()

(3.2.23)
= —(/\ + A‘:’Z\;,n)(vé\{e,n(ﬂ) - vé\{c—-l,n(ﬂ))
and
N ) — o
(322g) ot a0 oy @l () - o)y a(m)-

tn - tn—l

PROOF. We prove at once the undiscounted equations (3.2.23) and (3.2.24),
departing from the following undiscounted version of equation (3.2.17):
N A+ ARN )l (m) — vl o (7)
Fokin = off (1) — B (7)
see (3.1.6) for the definition of AR™. By (3.2.19)
1+ ARN(tn))vllc\{n—l (m) = vé\lre—-l,n ()
’Ué\lc:,n(ﬂ-) - v%c—l,n(ﬂ-)

Due to (3.1.9), this is equivalent to

b

= (A+ A%, ) At

vljc\{n—d(ﬂ.) ’Ué\lfc 1, n(Tr) + (1" + On )’Uk n—1 ( )Atn
= (Ugﬂ:,n(ﬂ-) - vzk-l,n(ﬂ'))()‘ + ’\2k,n)At'n

which yields (3.2.23). In conclusion, (3.2.23) implies (3.2.24), since oY and
{AX }i=1.. on—1 are negligible remainder terms. O
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3.3. Completeness, hedging strategy and option valuation

Given the states of the discounted stock price over the entire trading period
[0, 7], the risk neutral probabilities {pf, }x=1,....2n are determined by (3.2.11)
and (3.2.12). For each fixed n € {1,...,N} and k € {1,...,2"}, we define

(3.3.1) PN (K) = PR,y ps1 Pl ¥=01,..,m—1,

where k, = k,(k,n) is given by (3.1.5). Put P, In(k) = 1 for convenience.
Denote P = n|0(k) so that

(33.2) Py =pp 1 PR

Note that p), = P _, (k). We usually write PN, = PN(T). We use these

n
notations to describe the solution of the system of recurrent equations (cf.

(3.2.14) and (3.2.16))

N N N S
(3.3.3) Thyn—1 = Pag nT2k,n + P2k—1,nT2k—1,n

forn=1,...,Nand k=1,...,2""}, subject to the boundary conditions

(3.3.4) ey =R (T), k=1,...,2",

with given numbers {@) (T)};=1, o~. They are assumed to be given in the
form

. W(sy (T
rforn = 0,1,...,N the solutions {&x N_n}g=1,. 2~v-~ Of these equations are
obtained by
(3.3.5) ErNon = > P |n_n ()Wl (T).

2 (k=1)<j<27k
In particular
(3.3.6) Tip = ZPN o (T).

In the trivial case of W(z) = z the boundary conditions are

Tev =30 (T), k=1,...,2N
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(cf. (3.3.4)) and the solutions (3.3.5) and (3.3.6) reduce to

(3.3.7) Sen-n= 3 PRnoa )3T
2m (k—1)<j<2m k
and
2N
(3.3.8) s=Y PNDEND).

j=1
A similar relationship is satisfied by the states of a value process for a self-
financing strategy (cf. (3.2.16)), and this results in the completeness of a binary
market in the sense to be described next.

Under the circumstances of Section 3.1, consider an investor who is willing
to invest now (at ¢ = 0) in the bond and the stock in order to attain at
the terminal date T a certain wealth, say W/ (T), by trading over N periods
without infusion or withdrawal of funds. Knowing the conditions in the market,
e, knowing the 2"V possible trajectories of the stock price development up to
the terminal date T (which correspond as usual to the states {sY (T)};=1.. 2~
of the stock price SY(T)), the investor determines the wealth he desires to
nitain at the terminal date T by evaluating each of these possibilities. In this
way WHN(T) is interpreted as a variable which is in one of the 2% possible
states: in state wl (T) say, if the stock price is in state s;'f(T). In other
words, WN(T) is a certain function of SN(T), say WN(T) = W(SN(T)) and
wi (T = W(sf(T) fork=1,.... 2N,

DEFINITION 3.3.1. A binary market is complete if any desired wealth WV (T)
of the above type is attainable with a certain initial endowment: there is a
self-financing strategy 7" whose value process at the terminal date attains
the identity VN (T;m) = WN(T). The necessary initial endowment is then
0 o= VN(O;Tr).

As is shown in part I, proposition 4.3.3, the present market is indeed com-
plete and, moreover, there exists a unique strategy, called the hedging strategy
against WNV(T), which attains this wealth. In part I, Section 4.3, one can fin
the detailed construction of such strategy. Here we only note that the proce
dure is based on the solution of the equations (3.3.3), subject to the boundary
~onditions (3.3.4) with the states of the discounted desired wealth on the right
hand side. If WnM is a variable with the possible states '{'l))i,\,ln}kzlw_g_)n which
are identified with the solutions (3.3.5) (so that 4, = 'zbgl), then a process

wh = {W/V}ze[o,’r] is formed by

N
W) =S Wl Ty, t0,0(2):
n=0
Obviously, at the terminal date T this process attains the desired wealth. Ac-
cording to (3.3.5) and (3.3.6), it starts from
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'ZN

(3.3.9) wiy =Y PN(T)w}(T)
i=1

and then, forn =1,..., N,

(3.3.10) Wy = > PR (e} (D), k=1,...,2"
2N = (k—1)<j<2N ="k

The hedging strategy against W (T) is then a unique strategy n’¥ whose value
process VN (7) coincides with the process W¥ formed above.

In part I, Section 5, formula (3.3.9) is applied to the following problem of
option pricing. Suppose that today, at time ¢t = 0, we are going to sign a
contract that gives us the right to buy one share of a stock at a specified price
K, called the ezxercise price, and at a specified time T, called the maturity
or expiration time. If the stock price SV (T) is below the exercise price, i.e.
SN(T) < K, then the contract is worthless to us. On the other hand, if
SN(T) > K, we can exercise our option: we can buy one share of the stock
at the fixed price K and then sell it immediately in the market for the price
SN(T). Thus this option, called the European call option, yields a profit at
maturity T equal to

(3.3.11) max{0, SN(T) - K} = (SN¥(T) - K)™.

The function (3.3.11) of the stock price SN (T) is called the payoff function

for the European call option. A contract with some fixed payoff function

HN(T) = H(SN(T)), where HV(T) is a nonnegative variable with possible
~states H(skY (T)) (not necessarily of form (3.3.11)) is called a contingent claim.

The European call option is thus a special contingent claim with payoff (3.3.11).

Now, how much would we be willing to pay at time ¢ = 0 for a ticket which

gives the right to buy at maturity ¢t = T one share of stock with exercise price

K7 To put this in another way, what is a fair price to pay at time ¢t = 0 for

the ticket? In order to determine the fire price of a contingent claim, consider

the following procedure:

(i) construct the hedging strategy against the contingent claim in question,

which duplicates the payoff;

(i) determine the initial wealth needed for construction in (i);

(iil) equate this initial wealth to the fair price of the contingent claim.

In other words, construct the hedging strategy 7 against the contingent claim

with a payoff function H™(T'), whose value process V™ () coincides with a pro-

cess that is obtained exactly in the same manner as the process W™ by solving

the equations (3.3.3), but now subject to the boundary conditions (3.3.4) with
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; H(sy (T))
hi (T) = —E22-
instead of w{ (T). This strategy indeed duplicates the payoff. It requires the

initial wealth that yields the fair price C = C(HV) of the contingent claim
with the payoff function H™(T), which amounts to

21\’
CHN)=> PN(T)AN(T).
=1
The Eu_ropean call option (3.3.11), in particular, has a special payoff function
depending only on the stock price at maturity ty = T and its fair price is

PR

(3.3.12) cN =% PNTGN(T) - Kt

J=1

4. POISSON MARKET
4.1. Asset pricing

In this Section we consider the limiting model for a securities market. According
to (3.1.10) and (3.1.11), the model for the bond is defined by the linear return
process R° = {R¢}iefo,7] with

(4.1.1) RS = rt
and the exponential price process B® = { B} }¢¢[o,7] With

(4.1.2) By =",

where 7 > 0 is a riskless interest rate on the bond. Note that B® = £(R°) in
the sense of Section 2.4.

The stock is again a risky asset and its return process R® = { R} },cj0.7)
may jump unexpectedly at certain instants. Let m be a number of jumps, a
nonnegative integer equal zero if no jumps occur. Otherwise, if 10 > 0 jumps
occur, we denote by T, ..., Ty, the consecutive instants. We assume Tx < Tr41
forall k =0,1,...,m by adding Tp = 0 and T4y > T for convenience. Thus
AR°(t) = 0 for all t € [0.T] except for

AR (Ty)=a>0, k=1,...,m.

In order to describe cumulative return process R° we define the so-called count-
ing process N' = {N} }epo, 77 with A'(¥) which counts the number of jumps ob-
served up to time t € [0,T]. By assumption N(0) = 0. Further N({t)=0ifno
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jumps occur up to time t and N'(t) = kif Tp <t for k € {1,...,m}. In par-
ticular A(T') = m. We define next the limiting return process R° on the stock
in accordance with the right-hand side of (3.1.17): the cumulative effect on
the upward displacement yields aA(t) and that of the downward displacement
vields —bt. This leads to the model

(4.1.3) RO(t) = aN (t) — bt.

Consequently, the price process on the stock S° = {S7}i¢(o,7) is now defined
by

Se(t) = sE(R%)
(4.1.4)
= s(1 +a)V et

(cf. Section 2.4) where s > 0 is a fixed current price on the stock S°(0) = s.
By (4.1.2) and (4.1.4) the discounted stock price process is defined by

Sy =W
15)
— 3(1 +a)N(t)6—a)\L

and the corresponding return process R° = {R?}te[o"]‘] by

(4.1.6) R°(t) = a(N(t) — At),
cf. (3.1.18). The relation S = sE(R") is obtained in Section 2.4.

The price process on the stock may be presented alternatively by introduc-
ing the state s (t) of this process in the interval [Ty, Ty41),k = 0,1,...,m. By
(4.1.4)

(4.1.7) so(t) = s(1+a)ke?
(note that in the present case no distinction is needed between states of the

stock price and their numerical values, due to one to one correspondence) and
at each t € [0, T

So(t) = Z SZ(t)I[Tk,TkH)(t)'
k=0

Similarly,
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m

(418) 5°<t> = Z 52@”{%.7‘“1 )(t)

k=0

with the states

(4.1.9) gz(t) =s(1+ a)ke—-aAt

in the interval [Tk, Tis1), k = 0,1, ..., m.
Analogously to (3.1.4)

m

(4.1.10) S°(t=) = sg(t)I 1o, 1, (1) + Z S (1 T (1)
k=1

Suppose that S°(t—) is in state s5(¢). Then at time ¢ the stock price either
stays in state s3(t) or jump to state sp, (). This observation leads to the
following definition of the difference operator DS°(t) in the state space of the
present market: if S°(¢—) is in state s3(t), then DS°(t) in the state

(4.1.11) Di(57) = s3(t) = s (1),

Hence

DEFINITION 4.1.1. The process DS® = {D5}{ }s¢[o.1) is defined by

m

(4.1.12) DS°(t) = Di(S) o,y () + Z Dy (SOt 1o i1 ()
k=1

with the states given by (4.1.11). The process D§° = {DS‘;’},E[Uﬂ is defined
similarly so that

DS°(t)
Be(t)

PROPOSITION 4.1.2. The states (4.1.7) and (4.1.9) of the stock price process
and its discounted version satisfy the following differential equations:

DS°(t) =

dsy(t) _

(1.1.13) .

TSZ(t) = _‘ADk-I-l(Sto)ﬂ te (kaTk+l]~

and
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(4.1.14) B~ ADea(87), t€ @ Tun)

PROOF. By (4.1.7) it follows from (4.1.11) that

Di(S?) = as(1+a)*te " = asi_, (1).
Therefore, by differentiating both sides of (4.1.7) we get

BHO (1) = ~(r +8)s3.1) = —Aasf() = ~ADisa (S5),
which yields (4.1.13). By definition (4.1.12), equation (4.1.14) follows from
(4.1.13). The proof is complete. O

4.2. Self-financing strategies

Consider an investor who invests an amount v > 0 in the present market
and then follows a trading strategy = = (¥,®) with portfolio components
U = {¥s}icpo,r) and & = {P4}sc(0,77 which yield the value process V°(r) =
UB° + ®S5° defined at t € [0,T] by

(4.2.1) Vo(t;m) = T(H)B°(t) + ®()S°(t).

Clearly, the initial condition is

v=V°(0;7) = ¥(0)B°(0) + &(0)S°(0).

Since between two consecutive jumps the stock price process evolve smoothly,
the investor selects both components as piecewise continuous functions of type

(4.2.2) U(t) =1 ()10, (t) + Z Y1 (O (1, Ty ()
k=1

and

(42.3) o(t) = ¢1 (1) jo,1) (1) + D b1 (D1, 13041 (1),
k=1

where 1 and ¢, are continuously differentiable functions with ¥(0) = 4 (0)
and ®(0) = ¢1(0).

According to definition 3.2.1, a trading strategy = = (¥, ®) is self-financing
if for each t € (0,T]
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In the present case proposition 3.2.2 may be reformulated as follows:

PgOPOSITION 4.2.1. A trading strategy m is self-financing if and only if its
discounted value process V°(m) = {V°(7)}iejo,r) admits the following integral
representation: at each t € [0,T

(4.2.5) V°(t;7r) =0+ &- S’l?

It is important to notice that the process V°(rr) for a self-financing strategy
is of the same type as the stock price process, since at each t € [0,T] it may be
represented similarly to (4.1.8) as follows:

‘:’vo(t; ’/T) = Z ‘i)z(t; Tr)I[Tk-Tk+1)(t)’
k=0

In view of definitions in Section 2.2, the states {0} (t;7)}r=0.1,...m at t €
[T, Tit1) satisfy

t
(4.2.6) Op(t, ) — O (Ti; ) = - Brer1 (u)dsi (u)

with 3§ (To; ) = v and

k

T;
(Tim) = v+ {/T by (w3 () + by (T5) (33(Ty) — s;-lm-))}.
j= -1

Note that $3(T;) — 35_,(T}) = Dj(S%j), of. (4.1.11).

Arguing as before, we define DV°(t; 7) as follows. Suppose that Se(t-) is
in state s3(¢). Then V°(t—;) is in state vp(t;7) and at time ¢ the process
V() either stays in state vg(t;m) or jump to state vg,(t; w). Therefore the
corresponding state Dy (V,°(w)) of DV°(t; ) is defined by

(4.2.7) Dy (V2 () = vp(tim) — vp_y (& 7).
Hence
DEFINITION 4.2.2. The process DV°(r) = {DV?(7)}iefo.1) is defined by

DVe(t;w) = Dy (V) o (t) + D Dar (V) i 1y} (1)
k=1
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where Dg(1°(x)) is given by (4.2.7). Obviously, Df"’(n) = DV°(x)/B°. De-
fine finally the process DV°(n)/DS° by

D"a(tiﬂ') Dl(“c('&)) m Dk+l(‘;o(ﬂ'))
= oL 1 (1)
DSD(” Dl(sto) +Z Dk+1(Sf) (r“‘lk+lx(t)

In the next proposition Clark’s formula (4.2.9) is obtained.

PROPOSITION 4.2.2. Under the self-financing condition (4.2.4) the stock com-
ponent of the portfolio is given by

DV e(t;
(428) @(f) = —IT?(;)T—).

Therefore the integral representation (4.2.5) takes the form

. DVe(r)

(4.2.9) ‘Vo(t:ﬂ') =v+ ——D—S-—O—— : Sto

Proor. It suffices to prove (4.2.8). So, it is needed to verify that if S°(t—) is
in state sp(f). i.e. t € (Tg, Tp+1], then

(4.2.10) Dr(VP(m)) = ox(t) Di(S7).
But if t € (Ty, Tk+1]. then in view of (4.2.1) we either have
V() = Ui(D)e™ + ok ()s3(8)
or
Vi (im) = Ur(t)e™ + Ok (t)sg41 (1)
These identities imply (4.2.10). The proof is complete. a

It will be proved in the next proposition that the value process for a self-
financing strategy satisties differential equations (4.2.11), similar to (4.1.13).
Note that the discounted versions of these equations (4.1.14) and (4.2.12) play
in the present market the same role as the equations (3.2.14) and (3.2.16) in
the binary market.

PROPOSITION 4.2.3. Under the self-financing condition (4.2.4) the states of
the value process and its discounted version satisfy the following differential
equations: at t € (Tk, Thi1]

dvp(t: = o ‘o
(4.2.11) —i((i—t—-—-—) —rvp(t) = =ADk1 (V7 ()
and
dvg (¢ ‘o
(42.12) HOE) o D (7 ().
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By (4.2.6) 2 (8 ) a5 )
vp(tim) _ 3%
dt ¢k+l(t) dt

4.2.12) follows from (4.1.14) and (4.2.10). The equivalence of (4.2.11)
12) is straightforward. The proof is complete. O

lging strategies
0,T]. Consider the system of differential equations

@C—lk—tgé)_ = —')‘(i:k-i-l(t) _i'k(t))a k 20715'-'a

to the boundary conditions

2(T) = hi(T), k=0,1,...,

ren numbers {hk (T)}k=0,1,.... The parameter A > 0 is the same as

f. (4.1.14) or (4.2.12).
explicit solution of this system is expressed in terms of so-called Poisson

tion with the intensity A, defined by Py = {p;(A)};=o0,1,... with

Ao
pi(A) = ﬁe A

positive numbers (4.3.3) sum up to 1, so that P, is a probability dis-
n. Note that definition (4.3.3) extends to A = 0 as follows:

po(0) =1 and p;(0) =0for j =1,2,...

lowing property of the Poisson distribution is well-known.

-4.3.1. Ateacht € (0,T) the Poisson distribution Pry = {p;(t\)}j=0.1,...
by (4.3.3) satisfies the following system of differential equations

dpj(t/\) — -—/\(pj(t/\) "pj—l(t’\))v ] = 07 1’ e

dt
1(tX) = 0 and the initial conditions (4.3.4).
. This is easily verified by the direct differentiation of (4.3.3). a

>rekdetails see, e.g. FELLER (1971), vol. 1, Section 17.2, or Cox and
R (1965), Section 4.1. Lemma 4.3.1 allows for the following explicit

n of the system of equations (4.3.1).
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PROPOSITION 4.3.2. The system (4.3.1) of differential equations in the interval
t € [0,T), subject to the boundary conditions (4.3.2), is satisfied by

(4.3.5) zr(t) = py (AT - Nheyi(T), k=0,1,...

j=0

provided that the numbers {hk(T)}kzo,lym allow the differentiation under the
summation sign. In particular

(4.3.6) 20(0) = Y p;(AT)hy(T).

=0

PRrROOF. The boundary conditions (4.3.2) are satisfied due to property (4.3.4) of
the Poisson distribution. Differentiating both sides of (4.3.5) we get by lemma
4.3.1 that

di (¢ N R
D {55 e AT D)y (T) — X520 2y T = )iy (1)}
= =X (k41 (1) — 2 (8)) -
This yields (4.3.1). The proof is complete. a

By comparing (4.1.14) and (4.3.1) we see that the states (4.1.9) of the dis-

.

counted stock price process S° satisfy the relations

(4.3.7) 30 =D pi(MT = 10)3345(T).
j=0

In particular

[ee]

(4.3.8) s =Y pi(AT)33(T).

j=0
This can also be verified directly, since

[o ¢}

AT —t))J . , .
Z( ( i )) e—/\(’l —8)3(1+a)k+]e~a)\7 :S(l _‘_a)ke—o)\t_

Jj=0 J!

Cf. (4.3.7) and (4.3.8) with (3.3.7) and (3.3.8). The differential equations
(4.3.1) and their solutions (4.3.5) and (4.3.6) play here the same role as equa-
tions (3.3.3) and their solutions (3.3.5) and (3.3.6) in a binary market. They
yield, in particular, the completeness of a Poisson market to be shown next.
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Let W(T') be a wealth desired by an investor at the terminal date T'. Sup-
se that W (T") may occupy one of the states {wp(T)}r=0,1,.... There is, say
sertain function W so that W(T') = W(S°(T)) and wi(T) = W(s3(T)), k =
1,.... The definitions in Section 3.3 of the completeness and the hedging
-ategy extend straightforwardly to the present situation. However, we present
ew the formulations, because of their importance.

IFINITION 4.3.3. A Poisson market is complete if any desired wealth W (T")

the above type is attainable with a certain initial endowment: there is a
f-financing strategy = whose value process at the terminal date T attains the
antity V(T'; ) = W(T'). The necessary initial endowment is then v = V(0; 7).
1is particular strategy is called the hedging strategy against W (T').

milarly to proposition 4.3.3 in part I, we have

ROPOSITION 4.3.4. A Poisson market is complete. The hedging strategy m
rainst o desired wealth W(T) of the above type is uniquely defined by the
wtfolio components (4.2.2) and (4.2.3) with

.3.9) Y(t) = ;)pj(A(T — 1) 1+ a)ﬁ)j+k(Ta) — Wik 1 (T)
rd

< Wit k1 (T) = wjx(T)
:.3.10) oi(t) = jgopj(/\(T — 1)) 2 0 J 7

here {0 (T)Yx=o.1,... are the discounted states of the wealth W (T), i.e. wi(T) =

’;g; The initial endowment needed amounts to

1.3.11) v= ij(,\T)wj (T).
Jj=0

'ROOF. Let t € [Ty, Tp+1). By definition (4.2.1) the discounted value process
>r the present strategy = is in state
D30t ™) = () + B ()3 (1
rhich by (4.3.9) and (4.3.10) coincides with
o
4.3.12) we(t) =Y pi(MT = 1))t (1)
Jj=0

3y proposition 4.3.2, (4.3.12) solves the differential equation (4.3.1) subject to
he boundary condition (4.3.2) with wx(T) instead of hx (7). Then by propo-
ition 4.2.3 the present strategy is self-financing. Moreover, at the terminal
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PROPOSITION 4.3.2. The system (4.3.1) of differential equations in the interval
t € [0,T), subject to the boundary conditions (4.3.2), is satisfied by

(4.3.5) 2k(t) = 3 py(MT = )by (T), k=0,1,...

=0

provided that the numbers {hg(T)}r=01,.. allow the differentiation under the
summation sign. In particular

(4.3.6) 20(0) =D _ pi(AT)hy(T).
j=0

PRrOOF. The boundary conditions (4.3.2) are satisfied due to property (4.3.4) of
the Poisson distribution. Differentiating both sides of (4.3.5) we get by lemma
4.3.1 that

dz(t N o .
LD {55 pi AT~ )iy (1) = S50 py T — ) (T)]
= =X (Zpt1(t) — 2k(2)) -
This yields (4.3.1). The proof is complete. O

By comparing (4.1.14) and (4.3.1) we see that the states (4.1.9) of the dis-
counted stock price process S° satisfy the relations

(43.7) 30 =D piMT = £)8345(T)-
j=0
In particular

(4.3.8) s =Y pi(AT)35(T).

=0
This can also be verified directly, since

o~ (AT —t)) N

Z( ( - t)) e-—)\(T~—t)s(1+a)k+Je——a>\I‘ =s(1+a)ke—a/\t.
I

Cf. (4.3.7) and (4.3.8) with (3.3.7) and (3.3.8). The differential equations
(4.3.1) and their solutions (4.3.5) and (4.3.6) play here the same role as equa-

tions (3.3.3) and their solutions (3.3.5) and (3.3.6) in a binary market. They
vield, in particular, the completeness of a Poisson market to be shown next.
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Let W(T') be a wealth desired by an investor at the terminal date T. Sup-
pose that W (T') may occupy one of the states {wi(7)}r=0.1.... There is, say
a certain function W so that W(T') = W(S°(T)) and wi(T) = W(sy(T)). k =
0,1,.... The definitions in Section 3.3 of the completeness and the hedging
strategy extend straightforwardly to the present situation. However, we present
anew the formulations, because of their importance.

DEFINITION 4.3.3. A Poisson market is complete if any desired wealth W' (T')
of the above type is attainable with a certain initial endowment: there is a
self-financing strategy m whose value process at the terminal date T attains the
identity V(T';7) = W(T'). The necessary initial endowment is then v = V(0; 7).
This particular strategy is called the hedging strategy against W (T).

Similarly to proposition 4.3.3 in part I, we have

PROPOSITION 4.3.4. A Poisson market is complete. The hedging strategy =
against a desired wealth W(T) of the above type is uniquely defined by the
portfolio components (4.2.2) and (4.2.3) with

> (1 + @)k (T) = Wj4k+1(T)
(4.3.9) Yr(t) = ) pi(MT —1))
k Jz:(:) j a
and
= Wjgrs1 (T) = 0j4k(T)
(4.3.10) i (t) = ;)pj(A(T - :

where {Wy(T)}k=0,1,... are the discounted states of the wealth W(T), i.e. wp(T) =

g’;((qq:)) The initial endowment needed amounts to

(4.3.11) v="Y p;AT)a;(T).

=0
PROOF. Let t € [Tk, Tk+1). By definition (4.2.1) the discounted value process
for the present strategy m is in state
2ty m) = v (t) + ek (D)3 (1)

which by (4.3.9) and (4.3.10) coincides with

o
(4.3.12) we(t) = O Py AT = )i (T)-

Jj=0

By proposition 4.3.2, (4.3.12) solves the differential equ\ation (4.3.1) subject to
the boundary condition (4.3.2) with . (T) instead of Ax(T). Then by propo-
sition 4.2.3 the present strategy is self-financing. Moreover, at the terminal
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date T its value process attains the desired wealth W(T'). Thus 7 is the hedg-
ing strategy against W (T'). Since {wy(T)}x=0,1,.. in (4.3.12) are arbitrary, the
Poisson market is complete. Finally, (4.3.11) is an easy consequence of (4.3.12).

O

The application of proposition 4.3.4 to option pricing is streightforward. Let

H(T) = H(5°(T))

be a payoff function of a contingent claim, with possible states {h;(T)};=o,1,...
where
h;(T) = H(s5(T)).

According to (4.3.11), the fair price of the contingent claim H is

(43.13) C(H) =3 p(\Dhy(T)

Jj=0
with ﬁj(T) = %{,—((%. In the special case of the European call option
(4.3.14) hi(T) = (s3(T) — K)*
J J

(with a certain exercise price K, cf. (3.3.11)), we have
PROPOSITION 4.3.5. For a nonnegative integer jo denote
(4.3.15) F(jo; 2) = Y pj(N),

Jj>Jjo

cf. (4.3.3). Then the fair price C of the European call option with the payoff
function (4.3.14) may be presented as follows:

C =sF ([';’5;‘;1;{] (1 +a)/\T)

(4.3.16)

+e K F ([SE520])7)

PROOF. By (4.3.13) and (4.3.14)

(4.3.17) C= ipj(/\T)(é’?(T) - K)*

j=0

where K = e~"TK as usual. Therefore, by (4.3.3) and (4.1.9)

2 (AT . .
(4.3.18) C=e?Ty" ( j,) (s(1 4 a)e T — K)T.
J=0 )
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Obviously, the terms with

equal zero so that (4.3.18) reduces to

J , .
C=e?T Z ———(Xf,:) (s(1+a)/e 27T — K)
i>jo )

which yields (4.3.16) by definition (4.3.15). a

REMARK 4.3.6. Formula (4.3.17) is often called the Cox and Ross option
pricing formula (see e.g. Cox and RoSs (1976) or HARRISON and PLISKA
(1981), Section 6.2; cf. also Cox, Ross and RUBINSTEIN (1979) and Cox
and RUBINSTEIN (1985)). Its probabilistic interpretation is as follows: the
right hand side is the expectation with respect to the Poisson distribution
Pyt of a random variable taking on the value (s;?(T) — K)* with probability
pj(AT),7 = 0,1,.... In its specific form (4.3.16), this formula is comparable
with the well-known Black-Sholes formula for the geometric Brownian motion
model, see BLACK-SHOLES (1973), HARRISON and PLISKA (1981), formula
(1.5), or KARATZAS and SHREVE (1988), Section 5.8.

5. ON THE POISSON APPROXIMATION

5.1. Approxzimation of the assets

In the present Section the link is sought between the binary model of Section
3 and the Poisson model of Section 4. By using certain heuristic arguments we
show that under the conditions of Section 3.1 the Poisson model can serve as
an approximation to the binary model. This is already visible by the simple
comparison of equations (3.2.22) and (4.2.12) (or (3.2.24) and (4.2.11)), for the
right hand side of (3.2.22) may be viewed as a prelimiting version of that of
(4.2.12).

The limiting transition is carried out by letting the number of trading pe-
riods NV to increase unboundedly and letting the lenght of each trading period
At, = t, — tn—1 to tend to zero for n = 1,...,N. Furthermore, we restrict
our attention to the special case of markets where new prices are announced
regularly so that trading times are equidistant, given by

(5.1.1) {1 - ﬁ:f}
. " N n=0,1,...,N ’
and the lenghts of the trading periods are all given by
T
( ) ‘?\’ n=1,..., N
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For, asvmptotically, this makes no difference (in fact one can proceed without
this specification, however at the expense of some details which we want to avoid
here). At the same time, the formulations are somewhat simplified. Instead of
(3.1.1) and (3.1.2). for instance, we may write

BY(t) = Bfiyr,

and
SN () = Sfin -
As usual, [z] is the largest integer not exceeding .
Concerning the bond, the situation is simple, since condition 3.1.1 means
that at each fixed ¢ € [0, T]

BYN(t) ~ B°(2).

as we have already seen, ¢f. (3.1.11) and (4.1.2).
As for a risky asset. the stock, the desired statement that at each fixed
te0.7]
SN(t) ~ S°(t)

concerns the trajectories of the processes on the both sides. The idea behind
it is quite simple, as will be explained below. Its exact formulation, however,
would require probabilistic considerations that lay beyond the scope of the
present paper (we intend to return to this subject in a latter part of these
lecture notes).

At fixed t € [0.T)

(]
(5.1.3) SNt =s [J(1+ARY)
0

4=

n

{(cf. (3.1.12)) may occupy one of the ol ] states, i.e. up to time t the stock
price may evolve along one of 2lF] trajectories. The states of the returns
ARY in (5.1.3), given by (3.1.14), are under condition 3.1.2 approximated by
(3.1.17), with the right hand side independent of the index k. Therefore all
trajectories of the stock price up to time ¢ € [0, 7] formed by the same number.
say j € {0,1...., [%F]}. of upward displacements (and [4¥] — j downward
displacements), get the same approximation equal

_ [#]-)
(5.1.4) s(1+a) (1 - 2’?) ,

due to (5.1.3). The latter expression tends to s3(t) (cf. (4.1.7)), since for fixed
Jj>0and t€0,T]
tN tN
T

[]- ki
lim (1 - _Iz_:l_’) = lim <1 — E) = e,

N—=oc N N-—oc N
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As N — oo the index j in (5.1.4) may take on any nonnegative integer value,
so that the approximate states are indeed {s$(t)};=o,.1.....

5.2. Approzimate option pricing

According to lemma 3.2.7, for each n = 1,..., N the risk neutral probabilities
{pan} k=1,...2n are approximated independently of the indices k and n by
AT
(5.2.1) Phen ~ T
and
AT
(5-2.2) ptllvk—l,n ~ 1 _— —ﬁ

(cf. (8.2.19) and (5.1.2)). This allows for the approximation of the probabilities
{P }r=1,. o~ defined by (3.3.2). Recall that each value of the index k corre-
sponds to a certain trajectory of the stock price development. Let us pick out
any index k which belongs to the set of indices corresponding to the set of all
trajectories formed by j upward and N — j downward displacements. Clearly,
their number equals (’;’ ). By (5.1.2) in all these (1;’ ) cases we have the same
approximation

AT\’ AT\ N
523 i~ (Z) (:-20)"

We shall apply (5.2.3) to the option pricing formula (3.3.12). Taking into
consideration the approximation of Section 5.1 to the stock price, we obtain

S i (DG (-5) wm-ior

The expression on the right hand side may be simplified, since for each fixed
integer j >0

() ) (-3 -
o2 (-8 (-3) - (-15)
OTY

J!
as N — co. The limit is p; (AT), cf. (4.3.3). Thus (5.2.4) yields

Y ~ Y p(ATYE(T) - K)T,

Jj=0
of. (4.3.17).
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5.3. Approximate hedging strategy

In this Section the heuristic arguments of the previous Sections 5.1 and 5.2
are applied to the hedging strategy against the European call option. The
construction of this strategy is based on the formula (3.3.10) with

: N(T) - K)*+
(5.3.1) M (T) = E&%(T)‘L

We already know from Section 5.1 how to approximate the states (5.3.1). The
set of weights in formula (3.3.10)

(5.3.2) {PAn-a@ (k=1 + 1) PYn-n(2"B)}

has to be approximated as well. for all k € {1,...,2Y~"}. By arguments similar
to that of the previous Section, the approximation is free of the index k. Indeed,
all entries in the subset of (5.3.2) corresponding to the subset of the trajectories
formed by j upward and n — j downward displacements, j € {0,1,..., n}. are
approximated by the same number

AT’ AT e

N N ’
due to (3.3.1), (5.2.1) and (5.2.2). For each j € {0,1,....n} this subset consists
of (;‘) entries. Consequently, the process W of Section 3.3 occupies at time
t € [0.T] one of the states {d (tN/T] k=1.... 2tv/7) approximated as follows:

(5.3.3)
N-[4] , - N [5]
. N =[N ATV AT\N [
i~ JZ_:O < j[T]> (W) (“F) Wity (T)

with zi'}‘»v(T) given by (5.3.1). The expression on the right hand side may be

simplified by the following considerations. Firstly, by the results of section 5.1
and by (5.3.1)

(5.3.4) N (T) ~ w;(T)

with .
w;(T) = (5(T) - K)*.
Secondly, for each integer j > 0 and t € [0,T]

i = o (1= ) (1 1)
- wr=-t)p

J!

(5.3.5)

98



- Quarterly

as N — co. Finally,

) AT N-[t}]-j N(-4%)
(5.3.6) 1\}11’1’1 (1~ —]\—[—> = lim (1_ %) T — e~ MT=1)

N—co

In view of (4.3.3), the equations (5.3.3) - (5.3.6) result in

(5.3.7) Wi enyT) ~ Wi(2)

where

Wi () = Y pj(A(T = t))ogs;(T)
j=0

(cf. (4.3.12)). Thus we have derived the relation (5.3.7) between the states
of the processes W and W which yield the value processes for the hedging
strategies against the European call option in the prelimiting binary market of
Section 3 and the Poisson market of Section 4, respectively.
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