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We show that any k-regular bipartite graph with 2n vertices has at least 

ck~/): , y 
perfect matchings (!-factors). Equivalently, this is a lower bound on the permanent 

of any nonnegative integer /1 x n matrix with each row and column sum equal to k. 

For any k, the base (k - I )k 1/kk -2 is largest possible. rt· 1998 Academic Press 

1. INTRODUCTION 

In this paper we show that any k-regular bipartite graph with 2n vertices 
has at least 

(
(k _ } )k - I )n 

kk-2 
( I l 

perfect matchings. (A perfect-matching or !:factor is a set of disjoint edges 
covering all vertices.) This generalizes a result of V oorhoeve [ 11 ] for the 
case k = 3, stating that any 3-regular bipartite graph with 2n vertices has at 
least ( ~ t perfect matchings. 

The base in ( I ) is best possible for any k: let a.k be the largest real num
ber such that any k-regular bipartite graph with 2n vertices has at least 
( a.k )n perfect matchings; then 

(k- l)k-1 
(J.k = kk-2 

(2) 

Here, the inequality ~ was shown in [ 10], where moreover equality was 
conjectured for all k. That this conjecture is true is thus the result of the 
present paper. For completeness, we sketch the argument showing ~ in (2) 

in Section 3 below. 
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I-FACTORS IN REGULAR BIPARTITE GRAPHS 123 

The result can be equivalently stated in terms of permanents (for the 
definition of a permanent, see Section 4 below): the permanent of any non
negative integer n x n matrix with each row and column sum equal to k is 
at least (l ). 

The result of Voorhoeve [ 11] for the case k = 3 answered a question 
posed by Erdos and Renyi [ 3]: is there an e > 0 such that the permanent 
of any nonnegative integer n x n matrix with all row and column sums 
equal to 3 is at least (l + e)n? So Voorhoeve's result shows that one can 
take e = !. 

Voorhoeve's result was obtained before Van der Waerden's permanent 
conjecture was resolved, in 1981. This conjecture states that the permanent 
of any doubly stochastic n x n matrix is at least n !/nn. (A matrix is doubly 
stochastic if it is nonnegative and each row and column sum is equal to 1.) 
Van der Waerden's conjecture was proved by Falikman [ 4] and a sharper 
version by Egorychev [ 2]. 

Van der Waerden's bound implies that for any k, n, the permanent of 
any nonnegative integer n x n matrix A with all row and column sums 
equal to k is at least 

n ' n 
(3) 

since the matrix (1/k)A is doubly stochastic. Bound (3) is at least (k/e)n. 
Since 3/e >I, it implies the Erdos-Renyi conjecture. Also, Bang [ l] and 
Friedland [ 5] showed the Erdos-Renyi conjecture by proving that any 
doubly stochastic n x n matrix has permanent at least e-n. Since 

(k-l)k-l k 
-~-->--

kk-2 ?' e (4) 

for each k, also the bound ( 1) implies that the permanent of any doubly 
stochastic n x n matrix is at least e-n. 

The proof of V oorhoeve [ 11 ] for the case k = 3 is very elegant and 
simple (see, for instance, Lovasz and Plummer [6, pp. 313-314]. Compared 
to the simplicity of Voorhoeve's method and of the general statement, our 
method is quite complicated. Yet, the method forms a generalization of 
Voorhoeve's method. In fact, it generalizes bound ( 1) to weighted bipartite 
graphs, so as to enable induction. Although it leads to slightly complicated 
formulas, they all are quite natural and precise for our purposes. 
Nevertheless, the question remains if a simpler proof could be given. 

Another question is whether there is a common generalization of the 
Van der Waerden bound and the bound given in this paper. For any k, n, 
let p(k, n) be the minimum number of perfect matchings in any k-regular 
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bipartite graph with 2n vertices. Then the Van der Waerden bound states 
that for each n one has 

while our bound states that for each k one has 

(k-l)k-1 
inf p(k n) 11n =-~~-

neN ' kk- 2 

(5) 

( 6) 

So both bounds are best possible, in different asymptotic directions. It 
might be possible to derive a sharper lower bound for p(k, n) with the 
methods of the present paper. 

We give our main theorem and its proof in Section 2, after which we 
derive bound ( l) in Section 3. The theorem also implies a bound on the 
permanent of certain matrices derived from doubly stochastic matrices, 
which we discuss in Section 4. Finally, in Section 5 we observe that our 
bound also gives tight bounds for the number of I-factorizations (edge
colourings) of regular bipartite graphs conjectured in [ 9]. 

In this paper, a bipartite graph G = ( V, E) can have multiple edges. For 
any vertex v, the set of edges incident with v is denoted by 6( v ). For any 
function w: E-> Z +, we generally put we for w( e) ( e E £), and 

w(F) = I H'e (7) 
eeF 

for any F ~E. For any e E £, xe denotes the function [ E-> { 0, 1} with 

xTll = l if and only if/= e. 

2. THE MAIN THEOREM AND PROOF 

We now formulate and prove a theorem that implies bound ( l ). In this 
section we fix k. Let G = ( V, E) be a bipartite graph, and let w: E-> Z +. 

For any perfect matching M in G define 

c/>(w,M) := 0 we(k-we). ( 8) 
eeM 

Next let 

r(w) := "[</>(w, M), (9) 

M 
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where the summation extends over all perfect matchings M in G. So r( w) 

is equal to the number of perfect matchings in the graph obtained from G 
by replacing each edge e by we(k-we) parallel edges (assuming w,~k). 

Call w k-regular if w( 6( v)) = k for each v E V. 

THEOREM 1. For any bipartite graph G = ( V, £) and any k-regular 
w: E-+Z+, 

r(w) ~klVJ-IEI n (k-we). (10) 
eeE 

Proof We prove a generalization. Call a function w: E-+ Z + a 
I-weighting if either w is k-regular or there exist two vertices t and u such 
that w(J(t))=k-1,w(o(u))=k+l, and w(O(v))=k for all v:;6t,u. 
(Necessarily, t and u belong to the same colour class of G.) 

Call w: E-+ Z + a - I-weighting if there exist two vertices t and u such 
that w(J(t))=w(O(u))=k-1 and w(O(v))=k for all v=fat,u. (Necessarily, 
t and u belong to different colour classes of G.) 

Note that any cx.-weighting can be obtained as follows from a k-regular 
w: E-+ Z +. Choose a simple path Pin G, with edges e1 , ... , et> in this order 
(possibly t=O), such that we>O if e=e; for odd i~ t. Now reset 
We : = IV e - 1 if e = e; for some odd i ~ t and We : = We + l if e = e; for some 
even i ~ t. Then the resulting w is an cx.-weighting with ex.:= ( -1 )1• 

Let tx: E { + 1, -1}. For any tx:-weighting w define 

k + C( 
{J(w) :=--klVJ-IEI n (k-we). 

k + 1 eeE 

( 11 ) 

We show that for any bipartite graph G = ( V, £), any tx: E { +I, - I}, and 
any cx.-weighting w: E-+ '1L +, one has 

r(w);;:;: /3(w). ( 12) 

This implies the theorem. 
Suppose ( 12) does not hold. Choose a graph G = ( V, £) for which there 

exist tx:, w violating ( 12), with 1£1 minimal. Then G is connected, since 
otherwise a component of G will give a smaller counterexample. 

Having G, we choose ex., w violating (12) so that the quotient 

r(w) 

{J(w) 
(13) 

is minimized (this is possible, as p(w) > 0). We call any w attaining this 
minimum minimizing. 
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If possible, we choose w, among all minimizing w, such that w is 
k-regular; otherwise, we choose 11· such that the two vertices v with 
IV( o( v)) #- k have minimum distance in G. (So the path p described above 
is minimized.) 

Since we can delete edges e with we= 0, we know that ll'e ~ l. Since 
jJ(w) = 0 if we= k for some edge e, we know that we~ k - I. So it follows 
that k~2. 

For any edge e let 

r(w, e) := I cj>(w, M). ( 14) 
M=e 

So for each vertex v one has 

I r(w,e)=r(w). ( 15) 
eeo(v) 

Let u be a vertex satisfying w( o( u)) = k +a, if it exists, and let u be any 
vertex otherwise. (So a= l and w( o( u)) = k in the latter case.) Then w - ax' 
is a - a-weighting for any edge e E o( u ). 

CLAIM 1. For each edge e E o( u ), 

\\' 
1X(k-2we+a)r(w,e)~oc(k-2w,+a)-k ' r(w). (16) . + oc 

ff' equality holds, then \\' - IXX' is minimi:::ing. 

PrrH!l Since 11• - 1XX' is a - a-weighting and since 11· is minimizing we 
have 

/J( W - 1XX') k - IX k - \\'e +IX 
r(w-ax")~ r(w)=--· k r(ll'). (17) 

fi(w) k +a · - w, 

Moreover, we can express r(w-IXXe) in terms ofr(w) and r(11·,e): 

(
(We - a)( k - II',+ IX) ) 

r(JV-1XX')=r(w)+ -1 r(11',e) 
11' ,(k - \I',) 

k-2we+a = r(w)-IX r(w, e). 
w,(k- w,) 

( 18) 

Combining ( 17) and ( 18) gives: 
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a(k-2w.+Ot'.) r(w, e) 

= w.(k -11·.)( r(w) - r(w- Ot'.Xe)) 

( k- O'. k - )\' + O'.) ,,,-; w .( k - II' e) r( \\') l - -- e 
k+a k- \\'e 

127 

(k2 + o:k- kw - a11• ) - (k2 - o:2 -kw + Ot'.W ) = We( k - We) r( W) e e e e 
(k+a)(k-11'.) 

o:(k- 2we +a:) 
=w (k-w) r(w)----'---

e e (k+Ot'.)(k-w.) 

II' 
=o:(k-2w.+o:) -k e r(ll'). 

·+Ot'. 

As equality in ( 19) implies equality in (17). this shows Claim l. I 

From this we derive: 

CLAIM 2. There exists an edge e E o( u) satisfying 

and 
I\' 

O'.·r(w,e)>cx-k e r(w). 
. + O'. 

Proof Suppose not. Then by Claim 1, 

\\' 
Ot'.·r(w,e),,,-;o:-k e r(w) 

·+o: 

for each ee6(u) (since if11·.<~(k+Ot'.), (16) amounts to (21)). Hence 

we w(o(u)) 
O'.·r(ll')=o: I r(11•,e),,,-;Ot'. I -k-r(w)=o: k r(w) 

eeo(u\ eeo(u) • + O'. · + Ot'. 

,,,-; a:· r(w), 

( 19) 

(20) 

(21) 

(22) 

since a· w( o( u)) ,,,-; Ot'.( k +a). So equality holds throughout in ( 22 ), implying 
1v( £5( u)) = k +a. and implying equality in ( 16) for each e E 6( u ). So by 
Claim I, w - cxxe is minimizing for each e E 6( u ). 

Now let e be the first edge of the shortest path connecting u with 
the vertex v=t-u satisfying w(<5(v))=k-l. (w is not k-regular since 
w( o( u)) = k +a.) Then replacing w by w - Ot'.Xe we obtain a minimizing 
-a-weighting which is either k-regular or has a shorter distance between 
the vertices u with w(6(u)) =t-k. contradicting our assumption. I 
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Let us fix edge e as in Claim 2, and let e connect vertex u with vertex v 
(thus fixing v from here on in this proof). Let F be the set of edges j",f e 
incident with v. Then 

CLAIM 3. wl < k - we for each f E F. 

Proof For if not, then w1 +we;;?=k, implying that w(o(v))=k (since 
w(o(v))~k), and that e and fare the only edges incident with v. So 
w1 =k-we. 

If e and fare not parallel, we can contract them and obtain a graph G' 
with a smaller number of edges and an oc-weighting w'. Then by the mini
mality of G we know r( iv') ;;?: /J( \\' 1 

), and hence 

r( H') = H'eH/!(11' 1 );;?: WeH'j/J(iv') = /J(w), (23) 

contradicting the fact that w gives a counterexample. 
lf e and f are parallel and form the whole graph, then a= I and 

r(w) = we(k - ll'el + Hj(k-Hj) = 2we \VJ. So 

again contradicting the fact that we have a counterexample. 
If e and f are parallel and do not form the whole graph, then 

w( o( u)) = k + I for the vertex u adjacent to v. Hence a= 1. Then deleting 
u and v, and the edges incident with u and v, we obtain a graph G' with 
- I-weighting w'. Since G is a counterexample with 1£1 smallest, we know 
that r( 111');;?: /J( \\' 1 

). However, r( w) = 2w. w1 r( w') and hence 

contradicting the fact that w gives a counterexample. I 

Since we~ ~(k + oc ), Claim 3 implies 

W.r<~(k-a); equivalently, k - 2w1 - oc > 0. 

So we can define for any f E F, 

(26) 

(27) 

By (26) and (20) we have that J.1 ;;?=0 for eachfEF. Moreover, one has: 

CLAIM 4. LfeF A1< l. 
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Proof Since this is trivial if k - 2w e +IX= 0 (in which case ),f= 0 for all 
f E F), we can assume k - 2w. +ex< 0. So we must prove 

wf(k-wf) 1v (k-w) L < _ e e 

k - ?wf- IX k - 2w + rx · feF - e 

(28) 

To prove this, first observe that the function h(x) =x(k-x)/(k-2x-cx) 
satisfies h( 0) = 0 and is strictly increasing and strictly convex for 
x < i(k- rx ), since 

h'( )- (k-2x)(k-2x-rx) + 2x(k-x) 
x - 2 

(k-2x-cx) 

(k2 -4kx + 4x2 -rxk + 2cxx) + (2kx-2x2 ) 

(k-2x-rx) 2 

k 2 - 2kx + 2x 2 - rxk + 2rxx 

(k-2x-a) 2 

I !(k2 -rx2 ) 
=-+-----

2 (k-2x-rx) 2 ' 

!(k-2x-rx) 2 + !(k2 -cx.2 ) 

(k-2x-rx) 2 

and therefore h'(x) is positive and strictly increasing for x < i(k- rx). 

(29) 

Since Lf e F w f= w( c5( v)) - we,,,; k - we• the strict monotonicity and strict 
convexity of h imply that 

L wf(k-wf) < (k-w.)w. 
k-2wf-rx k-2(k-w )-rx feF e 

w.(k-w.) 

-k+2we-cx 

(the inequality is strict because of Claim 3 ), which is ( 28 ). I 

(30) 

We now finish the proof by deriving a contradiction. For each 
f E F, w - rxx• + rxxf is an a-weighting. Hence, since w is minimizing, we 
have: 

f {J(w- rxx' + rxxf) (k- we+ rx)(k- wf- rx) 
r(w-rxx•+cxx );::: (J(w) r(w)= (k-w )(k-wf) r(w). 

e · (31} 

Moreover, we can express r(w-rxx•+axf) in terms of r(w), r(w,e), and 
r(w,j): 
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( ( w - a)( k - II' +a) 
T( \\' - axe+ (XXf) = T( IV) + e k e 

wei - \\'e) 
I) r(w, e) 

+ - T(IV, ) ( (11:r+a)(k-w1 -a) i) 1. 
W1(k- W1) 

-a(k-2we+a) 
= T( \V ) + T( IV, e) 

w,(k-w,) 

(32) 

Combining (31) and (32) then gives a bound for r(w,j) in terms ofr(w) 
and r(11·, e): 

II' ·(k - \\' ) 
a·r(11·,f)=k 1 1 (r(w-ax•+ax1)-r(w))-a),1 r(w,e) 

· -2w1 -a 

l) r( w) - a),1 r( w, e) 

(33) 

Hence, using ( 15 ), ( 20 ), and Claim 4, we obtain the following contradic
tion: 

a· r( 11·) =a · r( w, e) + L a· r( w, f) 
feF 

( wr( w - w ·-a) ) 
~a·r(w,e)+ I (X· k • 1k r(w)-),1 r(w,ei 

feF (·-2wf-a)(·-11'.) 

w (w -w -a) ( ) 
=a L k J ek ~ r(w)+a 1-I; ),1 r(11·,e) 

/eF( -w,)( --11'/-a) feF 

WJ( It'.- Hj- a) 
>a L r(w) 

feF (k - \\'e)(k - 2w1-a) 

( ) w 
+a 1 - L )..1 -k-e r(w) ~a· r(w). 

feF +a 
(34) 
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The last inequality can be seen as follows. First we have for each .f E F, 

as follows directly from the definition ( 27) of ),f· (Indeed, 

llj(ll',- llj- X) llj(k -211·. + ot)(k- Hj) _.....___;;__,,___ __ +-~-----~-
(k - ll'e)(k - 2111- x) (k-w,)(k-2u1-x)(k+x) 

( ll',-ll'1 -x)(k + x) + (k-211', + x)(k- ll'1 ) 
= w --~----------~~ 

.f (k-u·,)(k-hj-!X)(k+x) 

k 2 - kll'.- 2kw1 + 211·e w1 - 2x111+ xw, - x 2 
=II' -----~----''---~---

/ (k-1re)(k-2u1-x)(k+!X) 

(k-21r -!X)(k-1r,+x) 
= \\' .f 

J (k-ll'e)(k-211'_r-!X)(k + x) 

k-11·e+x 
=II' .) 

1 (k-ll',)(k+x) 
(36) 

Now (35) gives, using the inequality ocw(6(v))~ak, 

( lij(ll'·-llj-OC) A w, ) 
oc f~F (k-ll',)(k-2wf-oc)- 'fk+oc 

k-w,+oc '\' (k-11·.+oc)(w(b(v))-w,) 
=oc Li II' =oc 

(k-w,)(k+oc) feF f (k-w,)(k+oc) 

(k-w,+a)(k-w,) (i w,) 
~oc =oc --- , 

(k-w,)(k+oc) k+oc 
(37) 

implying the last inequality in ( 34 ). As ( 34) is a contradiction, there is no 
counterexample to ( 12 ). Ill 
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3. DERIVATION OF BOUND ( 1) 

COROLLARY la. Any k-regular bipartite graph G = ( V, E) with 2n ver

tices has at least 

perfect matchings. 

(
(k-l)k-l)n 

kk-2 
(38) 

Proof Define w: E-+ £. + by we= 1 for each e EE. So w is k-regular in 
the sense of Section 2. Now r( w) is equal to ( k - 1 )n times the number 
of perfect matchings in G (since w.(k- we)= k - 1 for each edge e). 

Moreover, 

( (k- 1 )k)n 
k[Vl-IEI TI (k - IV ) = 

eeE e kk-2 . 
(39) 

So Theorem I implies the corollary. I 

We sketch a proof that the base in ( 38) is best possible; that is, we show 
(2). Fix k and n. Let ll be the set of permutations of {I, ... , kn}. For any 
nEll, let Gn be the bipartite graph with vertices u 1 , ... , un, v1 , •.. , vn and 
edges e 1 , •.• , ekn' where 

e; connects u1;/kl and v,n(i)/kl (40) 

for i = I, ... , kn. (Here \ x l denotes the upper integer part of x.) So G" is a 
k-regular bipartite graph with 2n vertices. Hence, by definition of rxk-

(41) 

where u( Gn:l denotes the number of perfect matchings in Grc. 
On the other hand, 

I u(G")=eknn!((k-l)n)!. (42) 
"E II 

This can be seen as follows. The left-hand side is equal to the number of 
pairs (n, /), where n is a permutation of {I, ... , kn} and where I is a subset 
of {I, ... , kn} such that { e; I i EI} forms a perfect matching in G"; that is, 
such that 

(i) In{Jk-k+l, ... ,jk}\=I for each j= I, ... , n, 
(43) 

(ii) In(!) n {Jk-k +I, ... , jk} I= I for each j = 1, ... , n. 
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Now by first choosing I satisfying (43)(i) (which can be done in kn ways), 
and next choosing a permutation n of { I, ... , kn} satisfying ( 43 )(ii) (which 
can be done in knn !( (k- I) n )! ways), we obtain ( 42 ). 

Since 1111 =(kn)!, (41) and (42) imply 

ex o<(k2nn!((k-l)n)!) 1/n 
k""- (kn)! ' (44) 

yielding ( 2 ), with Stirling's formula. 

4. CONSEQUENCES ON PERMANENTS 

Our result can also be expressed in terms of permanents. Recall that for 
any n x n matrix A= (a;, 1), the permanent per A is defined as 

n 

per A:= L fl ai,n(i)' (45) 
n: i=l 

where the summation extends over all permutations n of { 1, ... , n}. (For 
background on permanents, see Mine [ 7, 8].) 

Then we have: 

COROLLARY lb. let A= (a;,) be a nonnegative integer n x n matrix with 
each roli' and column sum equal to k. Then 

(
(k-J)k-l)n 

per A~ e- 2 (46) 

Proof Make a bipartite graph G with vertex set u 1 , ••• , un, v1, •• ., vn, 
where L'; and v1 are connected by a;, 1 edges (parallel if a;. 1 ~ 2 ). Then 
per( A) is equal to the number of perfect matchings in G, and hence 
Corollary la implies the present corollary. I 

Our more general Theorem 1 implies another theorem on permanents. 
For any real number a let ii:= a( I - a), and for any matrix A= (a;,;) let 

(47) 

COROLLARY le. For any doubly stochastic n x n nwtrix A= (a;, 1 ), 

n n 

per A~ fl fl (I - a;,;). (48) 
i=l }=I 
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Prr)(J( By continuity. we can assume that A is rational. Hence there 
exists a natural number k such that kA is an integer matrix. with all row 
and column sums equal to k. 

Let G = ( V, E) be the complete bipartite graph with colour classes 
{ u1 ••..• un} and { v1 •...• l'n f. Let II': E-+ l + be defined by ll'e := ka;,j for the 
edge e connecting u; and vj(i, j = !, .... n ). So w is k-regular, and hence by 
Theorem !, 

n n 

k2nperA=r(11•)?:kiVl-IEI TI (k-we)=k 2n TI TI (1-a;.j)• (49) 
eEE i= I J= I 

implying the corollary. I 
In fact, this corollary can be seen to be equivalent to Theorem !. We 

have tried to find a direct proof of it, based on continuity and differen
tiability. but we did not succeed. 

5. !-FACTORIZATIONS 

Our bound also implies a tight bound on the number of I-factoriza
tions of regular bipartite graphs. Let G = ( V. E) be a bipartite graph. 
A l-j(1ctori:::ation of G is a partition of E into perfect matchings 
M 1 •••• , Mk ("factors"). A I-factorization can also be considered as an edge 
colouring. 

The following was conjectured in [9] (and proved for all k of the 
form 2a3b): 

COROLLARY Id. The number of l~factori:::ations of a k-regular bipartite 
graph 11·ith 2n t'ertices is at least 

( k!2)n 
e· (50) 

Pro(}j: By Corollary 1 a, the first factor M 1 can be chosen in at least 

(
(k-l)k-l)n 

kk-2 
( 51) 

ways. Deleting the edges in M 1 we obtain a (k - 1 )-regular bipartite graph. 
having (by induction) at least 

( (k-1)!2 )n 
(52) 

(k - l )k-1 

I-factorizations. Multiplying (51) and (52) we obtain (50). I 
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Again, by an argument similar to that of Section 3, one shows that the 
base in ( 50) is best possible ( cf. [ 9] ). 
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