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*
Rules for building statistical models
by

J. Hemelrijk

SUMMARY

One of the fundamental questions in statistical model building is when
to use the same model for different situations or experiments. Axioms, how-
ever useful mathematically, say nothing about this. The author therefore
proposes to introduce rules for the choice of a statistical model which
have the character of instructions for use of the statistical toclkit. One
of the basis rules proposed is the "principle of equivalence". Two repeat-
able experiments are called statistically equivalent if they cannot be dis-
tinguished from one another by means of sequences of outcomes of arbitrary
length. This principle is elaborated and illustrated by means of an example.
If experiments are (deemed to be) statistically equivalent the use of the
same statistical model for all of them is justified. This principle is then
used for the introduction of conditional probabilities and composite models,
with symmetric probability spaces as models for randomizers as a starting-

point.

KEY WORDS & PHRASES: foundations of statistics, statistical models,

statistical equivalence
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"Statistics uses the empirical hypothesis that apparatus ('lotteries')
exist, admitting random choices of one among any given number of elements.
Such apparatus do not exist in absolute perfection and their degree of
perfection can only be defined after development of their theory. Their
role is analogous to that of rigid bodies in euclidean geometry and of
perfect clocks in dynamics. Empirical interpretation of probability state-
ments is only possible with reference to such random apparatus or to natu-
ral phenomena empirically found to behave statistically sufficiently like

these".

D. van Dantzig (1957)

1. INTRODUCTION

The use of mathematical models is widespread and of an old date,

but the general recognition of this fact is comparatively new. The question
of how to choose a statistical mathematical model has led to considerable
confusion and controversy, and still does. Mathematical statisticians wise-
ly save their skins by using the axiomatic approach, leaving the controver-
sy to others and the confusion to the users of their theory. For axioms,
however useful, say nothing about their application. It seems to the author
that the time has come to formulate rules for the choice of statistical

models. In this paper a number of such rules are proposed. They will



certainly not please everybody, if only because they are formulated from
the classical, objectivistic, point of view. They may, however, strengthen
and clarify this point of view and help the user of statistical theory in
its correct use and interpretation.

The subject is an extensive one, which can only be touched upon in
a short paper. Therefore many details have to be taken for granted, the
history of the subject is left aside and the controversy between objectiv-
ists and subjectivists is ignored.

In general a mathematical model is a simplification and an exacti-
fication of a part of reality. The simplification is necessary because of
the extreme complexity of reality and the exactification because of its
vagueness. Reality is always a bit out of focus: equality, for instance,
is usually approximate equality and therefore not strictly transitive. In
a mathematical model transitivity of equality and other desirable proper-
ties hold exactly and this makes it possible to develop extensive theories.
But one should keep reality and model strictly apart. Confusing the two
leads to baffling paradoxes - some of them well known - which can only be
solved by disentangling reality and model.

Statistical models are concerned with parts of reality which are
subject to uncertainty and which we will call (statistical) experiments.
The possible outcomes of a statistical experiment are usually known, but
the actual results are in a higher or lesser degree unpredictable. Causal~-
ity does not seem adequate for analysing such experiments; instead the prob-
abilistic approach is used.

In the following sections rules for using this approach are formula-
ted step by step. These rules are not part of mathematics. They are not
theorems nor are they laws of nature. They may be seen as directions for
use of statistical models. They are certainly not perfect (nothing is) and
their use cannot be enforced. But they are useful as a quide for sensible

application of statistical methods.

2. RANDOMIZERS

Pure unpredictability in a statistical sense is found in a lottery,
or randomizer. Everybody knows what a lottery is, but nevertheless it is
suprisingly difficult to give a satisfactory description of its properties.

A separate paper would be needed to this end. Let us just point out some



properties which we need for later justification of our rules.

A randomizer is a machine which can be used repeatedly and which

a) every time when it is activated gives one of a fixed finite set of
results, but

b) every time the result to be obtained is completely unpredictable in
the sense that any method of prediction is just as bad as any other

and knowledge of past results does not help at all.

The vagueness of this description is a nice and proper example of the
vagueness of reality mentioned in section 1. The essence of a randomizer
is negative: it is impossible to find two systems of prediction which
differ systematically with respect to their number of sucesses. Nobody
has succeeded in bringing this negative property of a randomizer in a pos-
itive form, except in the framework of a mathematical model.

Consider a randomizer with N possible results: the numbers 0,...,N-1,

say. Call this an N-randomizer. Then the following properties hold:

¢) If an N-randomizer is activated n times in succession and the N"
n-tuples of possible results are considered as possible outcomes of
this composite experiment, then an N“-randomizer is obtained.

d) If, with M < N, an N-randomizer is activated until one of the numbers
0,...,M-1 is obtained, (skipping all outcomes but the last one) this

composite experiment constitutes an M~randomizer.

These properties, follow logically from property b), but they can also be
verified empirically if one wishes to take the trouble. It may be remarked
that the experimental law of large numbers, the approximate long-run equal-
ity of the relative frequencies of the N outcomes of a randomizer, also
follows logically from property b). The reverse is not true: periodic pro-
cesses (e.g. the hours indicated by a watch) obey the experimental law of
large numbers but do not have property b). Thus the unpredictability of
separate results is more fundamental than the experimental law of large

numbers.

3. THE BASIC STATISTICAL MODEL

As far as the statistical model for a randomizer is concerned there
is general concensus. The N possible outcomes are assigned equal probabili-

ties 1/N in agreement with the classical probability definition of Laplace:



the probability of an event is equal to the ratio of the number of possible

outcomes favorable for the event to the total number of possible outcomes.
More precisely, if we call the activation of an N-randomizer:

"drawing at random from 0,...,N-1", then the model for one random drawing

consist of three elements:

1) The space of (elementary) events: QO = {0,...,N—1}.*)
2) Composite events: all subsets of .
3) The Laplace-definition assigning a probability to every event:

(1) p@n) %€ Ny Qreq

with N(') = the number of element of Q°'.

The basic threefold structure of this model holds for all statistical
models, though usually in a more complicated form. It is also completely
in harmony with the axiomatic set-up. We call this model a finite symmetric

probability space and our first rule is:

Rule 1. For one random drawing we use a finite symmetric probability

space as mathematical model.

Now consider a sequence of n random drawings, resulting in an n-vector

of numbers from ). According to property c) of section 2 this composite
experiment is the same as one random drawing from the N possible n-vectors.
Thus rule ! also gives us the model for this sequence of drawings. If one
works this out the result is the product probability space of n finite
symmetric probability spaces, one for each of the n random drawings.

We omit the details; they are well-known to every statistician and we

want to hurry on to more important points. But we do remark that the
reasoning also holds for a sequence of random drawings from different

randomizers and that we arrive thus at our second rule:

Rule 2. For a sequence of n random drawings we use as a model the product
probability space of the n symmetric probability spaces of the

separate drawings.

Remark that the term "independent" need not yet be introduced at this stage;
it is implicit in property b) and emerges explicitly in a natural way when

later on conditional probabilities are introduced. At the present stage one

*)

" (possible) result", " (possible) outcome" and "elementary event" are
used as synomyms.



might say that a randomizer is independent of everything: it walks,

like a cat, by itself.

4. THE PRINCIPLE OF EQUIVALENCE

The transition from rule 1 to rule 2 has been accomplished by
stating that - according to property b) - n random drawings from 0,...,N-1
"are the same as" one random drawing from 0,...,Nn—1 (after numbering the
n-vectors in an arbitrary order). This expression "the same as" is not very
accurate; the two experiments compared are not the same, but they both have
the properties of a randomizer. In a certain sense they are equivalent with
respect to their statistical properties. It is worth while to elaborate on
this point because it leads us to one of the key-points of our set-up.

Consider two repeatable experiments E' and E" with the same possible
outcomes (' = Q") but otherwise possibly very different. Let the follow-

ing information be supplied:

1) an accurate description of E'and E",
2) two sequences of results A and B from these experiments, however with-
out identification; this means that it is not known whether A and E'

(and B and E") belong together or the other way around.
Additional information is supplied on request:

3) further details about E' and E",
4) extensions of the sequences A and B (again without identification),

5) sequences C' from E' and C" from E".

If in this situation there is no conceivable method of identifying the
sequences A and B, then E' and E" are called (statistically) equivalent.
Their statistical behaviour with respect to the possible outcomes consi-
dered, is the same. The generalization to more than two experiments is

straightforward and we can now formulate:

The principle of equivalence. If experiments are equivalent in the sense

described above, then the use of the same model for all of them is justi-

fied.

External reasons like practical importance and cost of time and money may
lead to the use of different models when, statistically speaking, the use

of the same model would be desirable. In this paper, however, we will



strictly adhere to the principle of using the same model for equivalent
experiments.

A lot more can be said about the concept of equivalence, but a
practical example may at this point be more clarifying. Five experiments

have, to this end, each been excecuted 221 times. They are

E1: recording the last digit of the hodometer*) of the authors car when
he left the car for more than half an hour.

E,: recording at the same moments, the last digit of the sub-hodometer,
which records the same distance in units of 100 m (mod 10 000).

E,: recording the last digit of the hodometers of cars in public parking

lots.
E4: throwing a blue tensided die carrying the numbers 0,...,9.
ES: throwing a red tensided die with the same numbers.

For every experiment the results of 221 excecutions were recorded in the
order of their observation. The dice were well made and they were thrown in
such a way that E4 and E5 may be considered to be 10-randomizers. For these
two experiments equivalence is clear: from property b) of section 2 it
follows that all N-randomizers are equivalent (for any fixed N). It is not
very plausible that E, and E_, are equivalent to E, and E but E_ might

1 2 4 5’ 3

well be. For although E3 is much more complicated then E4 and E5 it is
difficult to imagine why it would be possible to find two systems of pre-

dicting the next outcome of E, one of which is better than the other. This

3
might well be possible for E, and E,_.

It is clear that specuiationszof this kind are not a sufficient basis
for deciding about equivalence. The observations themselves, however, may
help. And one of the tasks of statistical theory is to provide methods to
test equivalence of experiments and the goodness of fit of models to experi-
ments. These methods are indeed available and one of them can be used in
our case. In order to confuse the reader the five sequences have been
assigned labels A, B, C, D, E at random. Table 1 contains the observations
in their original form. It is difficult to draw any conclusions directly
from these date. They have been completely recorded in Table 1 in order
to enable the reader to play around with them himself. A first step in
getting a better survey of the data is to arrange them in a frequency table.

*)

The hodometer cumulatively counts the distance covered by the car in km
(mod 100 000).



This has been done in table 2, where two columns have been added, one for

and one for the right-hand tail-probability

2

the well-known test statistic X

the number of

P. Extreme values of P indicate deviations from randomness;

randomness.

degrees of freedom is 9, the hypothesis tested

Five sequences of observations

Table 1.

9049336187759538185399792352700086
465519454704251785631461334731293

89806065664390038990853425547252

0

1

8

2

0873706964913239703266289¢62838
85338805772471066055664499078374

137949840464137933084387444729

38879127461827788783347893227

523

7128818954060001167475283135467 7]

29499912473164976388368969593851
79173681882130230450780529343451

1612

4
27 3942651962872864550700495158729
48393232668515298277520206195174
01744214063609822511851608798

8613853201396792464046139578

4579027373011095540923419888606 3

50636430964016150238976878962602
55883932205212710178920138211361

504483567559857723881780000784929
95016715829236496555919265617973

040824323570707830672719499994129
76921583710206641210090627151

566082653926554548295677299873203

592932241596285114793346484740438
150377314365932398481143923439529
2964595738360623454160471737124A74

47150132591704879833702876592510

19365688492819365142603327704815
22598246104757533710593699876

73959513470009519659019694416 370l
0490786733108732519791047962142 2

299359621810194103763431889888¢05

16513805868257658293097559319424
43553897014625347010594446300949

13648458223588268359738470347923
73388799254192149216034665340




Table 2. Frequencies of 0,...,9 in the five sequences

1
19| 26 {23 (20 |21 {21122 21! 25|23 1.94] 0.992
20|25 |22 119 1422121 23] 20|26 6.92| 0.65
14|20 {22 |28 (26 {26 20! 221 18 25| 7.46| 0.59
22022 |17 (27]25|22{17|18!21 30| 7.46| 0.59

19 14 |16 {30 | 25 | ‘20 127127 |24 111.26] 0.26
!
!
|
!

H o 0 @© »

None of the frequencies in table 2 deviates extremely from its mean 22.1.
None of the values P is very small. One, however, pertaining to sequence
B, is very close to 1, indicating some source of regularity which cannot
be expected in a randomizer. Thus B may well stem from E1 or E2. But the
result is still very undecisive. Therefore we go one more step in our
analysis, aiming straightly at a point where E1 and E2 may well be very
different from E3, E4 and E5. For every pair of consecutive results, x

1
and X, say, we form the difference x —X, (mod 10). This gives us five new

sequences of 220 results each. We neid not give a table of these in the
form of table 1, because the reader can easily write this down himself.
The new sequence A would start with: 1 4 5 4 0 ... This operation applied
to successive results of a 10-randomizer gives again a 10-randomizer. This
can easily be proved by means of the model implied by rules 1 and 2. It
can also be viewed as a property like c) and d) of section 2; the reader
can easily verify this by some thinking. On the other hand it is very
plausible that this does not hold at all for E, and E. because the author

1 2
often travels the distance from home to work by car.

Table 3. Frequencies of 0,...,9 in differencies mod 10

ol1|l2t3la;s|el 7|89l p

26 |26 22 (21 [18 124 [20 [ 20 |24 |18 || 4.82 | 0.89

17 {20123 (12 |19 ] 28 |37 |28 |18 18 [21.27 | 0.012
24 {29118 {16 |25 |28 |22 |18 116 | 24 || 9.36 | 0.40

18 {15 | 14 135 |49 | 10 |26 | 11 | 11 | 31 |68.64 | 2.6x10"
23 {19122 |31 12220 |19 |16 123 |25 | 6.82 | 0.66

m o o w >




The frequencies of the five new series are given in table 3. Now the
situation is completely changed. In D the differences 3 and 4 are very
predominant and in B the same holds, but less strongly, for 5, 6 and 7.
The value of P is very small for D and small for B; there is little doubt

that D and B stem from E1 and E2, possibly even in this order. Additional

information of the types 4) and 5) mentioned above would most probably lead

a4’ ES and E6

certainly are not equiva-

to a decision in this question. Thus our conclusion is that E
may well be considered equivalent, but E1 and E2
lent, neither to each other nor to the other three. If the reader would

wish to try to identify E_ among &, C and E, he can provide additional

3
observations of E_ himself.

Anticipatin; an objection to the principle of equivalence we may
concede that it will never be possible to prove conclusively that two exper-
iments are equivalent. But then, absolute certainly about such things is
not part of this life. If experiments are deemed equivalent for suffi-
ciently sensible reasons and if observations in sufficient numbers do not
contradict this, then the principle can be used. For on the other hand non-

equivalence can be proved experimentally to a reasonable degree of certain-

ty, as the example illustrates.

5. PROBABILITY SPACES WITH UNEQUAL PROBABILITIES

To arrive at probability spaces with unequal probabilities for the
elementary events, the space of events { of a symmetric probability space
is partitioned into a set of non-overlapping subsets. These, together with
their probabilities form a new probability space. The addition law for
exclusive events, which in the symmetric probability space follows from
the Laplace-definition, is carried over to the new probability space and
this leads us to finite discrete probability spaces. The principle of equi-
valence then justifies the use of such a space as a model for experiments
where a lack of symmetry does not suggest the use of equal probabilities
at all. A simple example: let experiment E' be throwing a loaded six-sided
die, E" using an N-randomizer with sufficiently big N with @ = {0,...,N-1}
partitioned into si# subsets with unequal numbers of elements nl,...,n6,
carrying the numbers 1,...,6. The contention is that for suitably chosen

N and Nyyeeeyn the two experiments are equivalent, thus Justifying the

6
use of a discrete probability field for E'. Of course a suitable choice
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of nl,...,n6 (and N) would have to depend on observations of E' but that
only emphasizes the need of testing the goodness of fit of a model which
has been chosen on the basis of rules and practical considerations. We

thus arrive at:

Rule 3. If an experiment is equivalent to a suitably chosen partitioned
randomizer then we use a discrete probability space as mathemati-

cal model.

6. STATISTICAL INDEPENDENCE

At the end of section 3 it was remarked that the independence of
successive uses of randomizers is implicit in the properties of a randomizer.
It is expressed in property b) by means of the fact that the past does not
help to predict the future. This concept must be generalized and more for-

mally expressed:

DEFINITION. Consider n experiments El""’En’ each of which separately

is adequately described by a completely specified probability space; if
knowledge of the results of any part of these experiments (after they have
been performed) does not influence the predictability of the results of

any of the others, then the experiments are called statistically indepen-

dent.

‘ This, again, is a practical concept of considerable vagueness, which needs
exactification by means of a mathematical model. It is clear from the defi-
nition and the previously formulated rules that the whole sequence @1,--.,En)
is equivalent to n random drawings from suitably chosen partitioned random-

izers and thus rule 2 indicates the use of the product-space:

Rule 4. If n statistically independent experiments are each described by
a probability space the combined experiment (El""'En) is des-

cribed by the product of these probability spaces.

Omitting, in this rule, the term "completely specif%ed", which figures in
the above definition, only means a slight generalization. The term cannot
be omitted from the definition: if there are unknown parameters involved
previous experiments - independent or not - may supply information about
these parameters and thus influence the predictability of the other expe-

riments. This would for instance occur in a sequence of throws of the
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loaded die used as an example in section 5, where nevertheless successive

throws would be independent.

7. CONDITIONAL PROBABILITIES AND COMPOSITE MODELS

From independence to dependence is only one step but a very important
one. An example of statistical dependence is found in repetitions of E1 of
section 4; line D of table 3 (which does in fact pertain to El) clearly indi-
cates that adding 4 to the previous result (mod 10) is certainly: superior
as a method of prediction to adding 5. To build models for dependent expe- ‘
riments we need conditional probabilities.

Usually conditional probabilities are introduced in the model by
means of a definition. Let 91 and 92 be subsets of the space of events Q
then the conditional probability of finding an element of 92 under the con-

dition that an element of 91 occurs is

def

(2) P(Qzlﬂl) P(anﬂz)/P(Ql),

where P(Ql) must be positive. This definition in itself says nothing about
the way it should be used in applications. We therefore present a justifi=-
cation of (2) based on our rules, which also leads to a new rule giving
insight in the way it should be used for model-building.

Consider the following two experiments.

E': drawing one element at random from Ql (using an N(Ql)—randomizer for
the purpose),

E": drawing elements at random from . (by means of an N(Q)-randomizer)
until for the first time an element from Ql is obtained and considering
this element as the outcome of the composite experiment.

According to property d) of section 2 E' and E" are equivalent and thus we

ought to use the same model for both of them. But according to rule 1 the

model for E' is a symmetric probability space with Ql as space of events
and with the Laplace-definition. This means that we should also use this
model for E" and th;s is exactly what happens. The notation " Ql" is used

to indicate the conditioning on £, in either of the two ways indicated by

1
E' or E". The Laplace-definition applied to E' now leads straight to (2),

for according to this definition we have
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P(Qzlﬂl) N(anQZ)/N(Ql) =

{N(anﬂz)/N}/{N(Ql)/N} =

P(Qlﬂﬂz)/P(Ql),

where the unconditional probabilities pertain to one random drawing from
{l. Note that neither E' nor E" can be performed if N(Ql) = 0; thus the
reasoning only holds if P(Ql) > 0.

The equivalence of E' and E" seems rather evident but the following
anecdote shows that this does not hold for everybody*). An advertising
agency organized a quiz in order to promote some product. The quiz consisted
of some simple questions and the response was overwhelming. Thousands of
answers were received and, of course, the prizes had to be awarded at random
among the correct solutions. To this end the agency hired a number of work-
ing students in order to sift out the wrong answers (which were comparati-
vely few). This took several weeks time and when this work was completed
the winners were drawn at random from the correct solutions. This procedure
corresponds to E' and it is perfectly correct. How much more simple and less
time-consuming it would have been, however, to use procedure E"!

The generalization of (2) to partitioned probability spaces is
straightforward. We will skip it. It is also clear that from (2) the gener-
al multiplication law and the theorem on composite probabilities follow
and that statistical independence means that conditional probabilities are
equal to the corresponding unconditional ones.

After these preparations we want to formally introduce the use of
conditional probabilities in building up models for stepwise experiments.

(1) (1) (1)

be an experiment with Q as its space of events and P as its

2
(1), all according to previous rules. Let E( ) be

2 .
a second experiment with space of events Q( ), but depending on the result

1 2
of E(l) in the following sense: for every w(l) € Q( ) an experiment E( }1)

(2)

2 . w
is given which has a probability function P( 11) (on Q ), depending on
w

1)

w( , again in accordance with previous rules. The composite experiment

(1),E(2)) is composed of E(l) and E(211), where w(l) is the event
w

(1). In these circumtances E(2) is called statistically depen-

Let E
probability function on §

E = (E

realized in E

(1)

dent on E and E is called a stepwise composed experiment. By induction

*)

H. Piller, personal communication.
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we get any finite number of steps.
The model for E must be in accordance with previous model-rules and

to find such a model we again consider two equivalent experiments:

2 . L. .
E': one realisation of E( {1) for given w(l); the probability for obtaining
w

w(z) € 9(2) is then

(2)

(2)
Pam®

).

1 1 2
E": repeating E until E( ) gives m( ) and looking at the result of E( ) in

(1) on E, and thus the

(2)6 Q(z)is

that trial. This means:imposing the condition w

model for E must be such that the probability for obtaining w

(2)|w(1)

P(w ).

The equivalence of E' and E" now leads to

(3) P(w(2)|w(1)) =P(2)(1)(m(2))
w

and together with the multiplication law, which must also hold in the model
(1) (2)

for E, we find that we have to build up this model on x 0 by means

of

1 2 1 1 2 2
@  pw™e®y) - pMehp® ) W@,
This is the only possibility if we want to obey our previous rules and the

principle of equivalence. This result can be summarized as follows.

Rule 5. For stepwise experiments where for every step previous rules lead
to a probability space depending on the results of previous steps,
a model is built up by means of conditional probability spaces for
the steps and by means of the multiplication law for simultaneous

probabilities.

8. CONDITIONAL PROBABILITIES AND INFORMATION

Although some details were glossed over in section 7 the treatment of
a seemingly obvious method may seem rather extensive to some readers. But
one must be careful as the following example is meant to show. A player
throws a good six-sided die and you are to guess the result. This is the

situation of section 2: your guess does not really matter as long as it is
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one of the numbers 1,...,6; the die is a randomizer. But now the player
throws the die, has a look at the result without enabling you to do the

same and he gives you the following information: "it is not 6". Now let us
suppose that he does not lie (that is another game), how does this infor-
mation influence your guess? I asked a number of statisticians this question
and all of them agreed that the guess would now be made as if 1,...,5 were
equally probable. This would seem in accordance with property d) of section
2 and with the use of conditional probabilities as in the previous section.
But this method may be completely wrong. Suppose the player uses the follow-
ing information-policy: if the result is 1 he says "it is not 6", if it is
not 1 he says "it is not 1". Then he will in any case give true information,
but it will be very misleading if the result is 1. Equal conditional proba-
bilities are then not the right model. Without the information the model

was clear: a random drawing from 1,...,6. After the information one is
completely muddled. Giving out information should be accompanied by the

knowledge of the information-policy.

DEFINITION. Information about the result of an experiment is only reliable
1f the receiver knows the information-policy used, i.e. if he knows which

information would be given for every possible result of the experiment.

This boils down to a partitioning of ) into subsets of elements with
the same information. The information then indicates in which of these known
subsets the result occurs and then conditional probabilities can be used

without fail.

Rule 6. Information about the result of an experiment can only be expressed
in the model by means of specified conditional probabilities if the

information is reliable in the sense of the above definition.

If information is not reliable it is unreliable. This is how some news
media and politicians misinform people without actually telling lies:

what they say is formally true but if one does not know their information-
policy or forgets to keep it in mind, their truth is twisted and may be very

misleading.
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Lack of knowledge about the information-policy can be incorporated
adequately in the model by introducing an unknown partitioning of Q, i.e.
unknown conditions for the conditional probabilities. In our example with
the die this would, in case "it is not 6", lead to five possible outcomes
with unknown probabilities, which can have only a finite number of different
values because there are only a finite number of possible partitionings.
Further knowledge about the actual values but also about the actual infor-
mation-policy could then be gathered by observing repeated independent
trials of the same experiment. On the other hand it may be remarked that
one may remedy the situation by randomizing ones guess among the numbers
1,...,5. Then at least the probability of a right guess is 1/5. Thus per-

haps, one should never read a newspaper without a die or a coin at hand.

9. FINAL REMARKS

Although up till this point we only have finitely many rational
probabilities in a probability space the generalization to infinitely many
real ones and to continuous probability spaces is of a less fundamental
nature. It is all passing to the limit and approximating discrete situa-
tions by means of continuous ones for the sake of mathematical convenience
and greater generality. So we need not be sorry that the scope of this paper
does not allow us to go over all that. It is a pity that the space allotted
is too small to talk about some other things like: the interpretation of
probabilities in order to go back from the model to reality after the anal-
ysis in the model is completed and to the phenomenon that statisticians
do not only seek to predict the future, but also the past: the example in
section 7 is of that character just as e.g. the method of confidence inter-
vals for unknown parameters. These things are interesting but they will

have to wait.
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