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Abstract: We abstract from datatypes and set up Hoare logics for partial correctness for
process languages based on process algebra. These process languages cover features of
programming languages unrelated to program variables and data types: sequential
composition, non-deterministic choice, tests, conditionals, iterations and recursion. As
partial correctness formulas can be expressed in infinitary logics we define an £, -
assertion language for which completeness (= soundness + adequacy) is well-known.

For recursion we have two different recursion rules (Scott's induction rule and the
infinitary induction rule) and hence two different Hoare logics. Both logics are complete
for different classes of recursive processes (respectively processes which define a regular
or a context-free language). The strong completeness theorems for the Hoare logics
follow from the completeness theorem for assertion logic and the theorem stating that
assertion logic is a conservative extension of both Hoare logics. The strong
completeness theorems imply the usual relative completeness (in the sense of Cook)
theorems. As a corollary we obtain relative completeness theorems for the Hoare logic of
imperative (non-)deterministic programming languages. Another corollary is that the
semantics induced by the Hoare logics can now be axiomatized in the style of Process
Algebra.

Keywords and phrases: process, programming languages, Hoare logic, recursion,
infinitary logic, partial correciness, semantics, completeness.

1985 Mathematics subject classification: 68Q60, 68Q55, 68N15, 68Q10,
03C70

1987 CR categories: D.3.1., F.3.1, F.3.3, F4.1, F.1.2

Contents:

introduction

the process language

the assertion language

partial correctness formulas and weakest preconditions
Hoare logic for recursion free processes
Hoare logics for processes with recursion
Hoare logics for (non-)deterministic programs
relations to other work

acknowledgements

references

OOV -IRAWN W -

—

Report CS-R8957
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands



1. INTRODUCTION.
1.1. SHORT OVERVIEW.,

Abstracting from data in programs we prove two strong completeness theorems for the Hoare logic of non-
deterministic processes with recursion. The two theorems correspond with two options for a Hoare rule concerning
recursion: the infinitary induction rule and Scott's induction rule. For the infinitary induction rule we prove
completeness with respect to the general class of context-free processes, for Scott's induction rule we prove
completeness for the restricted class of regular processes. Scott's induction rule is not complete for the full class of
processes as we can show by a counter example (namely the process defined by the recursive equation x=axa+aa). The
main tools of the proofs are an infinitary assertion logic in which the partial correctness formulas are expressible
together with its semantics. The infinitary assertion logic can be seen as a conservative extension of two Hoare logics
in the following way:
e IfI is a set of partial correctness formulas and/or implications, then
I'FHoareLogic{0}P{B} = n‘AssertionLogic{a}P{B}-
e If I is a countable set of formulas in the assertion language, then
n‘AssertionLogic[a}P{B} = Th(I)FHoareLogic (@}P{B}, where Th(T):={a—B 1 T-Vs(e(s)-B(s) }-

The strong completeness theorems follow immediately from these theorems and Karp's well-known completeness
theorem for the infinitary logic [i‘)1 o Weak and relative completeness are easy corollaries of the strong completeness
theorems. For programming languages that are instances of the introduced process language we obtain several
traditional completeness theorems in the sense of Cook. As an example we consider the languages treated in the recent
monograph of Tucker and Zucker. The semantics of the infinitary assertion logic induces in a natural way a semantics
for the process language we abstract the programming language to. We give a process algebra axiomatization of this
semantics in the style of Bergstra and Klop. The semantics coincides with the semantics that the Hoare logic induces
on processes. We finish this paper relating our results to the literature on Hoare logic.

In the remainder of this section we introduce some of the above notions in more detail.

1.2. HOARE LOGIC FOR RECURSIVE PROCESSES.

Hoare logics are axiomatic methods for proving programs correct. The subject was introduced by Hoare in 1969 and its
tenth anniversary was celebrated by two survey papers by Apt, to which we refer for historic background (cf. [A1] and
[A2]). Hoare logic of partial correctness is concerned with partial correctness formulas of the form {a}p{B}: if the
assertion o describes the situation before execution of p, then any successful terminating execution of p results in a
situation satisfying B.

In Hoare logic two languages play a role: the language of the programs and the language of the assertions on these
programs. In this paper we abstract from variables and datatypes, and concentrate on the Hoare logic of processes. Then
interpreting programs as processes built from atomic assignments we can apply the results to programs again.

First we consider Hoare logics for recursion free processes covering features of programming languages not related to
data types: sequential composition, non-deterministic choice and tests (hence including conditionals). Using ingredients
of the process language we define an L(olm—assem'on language for which a strong completeness theorem exists by the
standard theory of infinitary logic (the idea to use such languages is not new in the field of Hoare logic and goes back
to Engeler (cf. [E] and section 8); Back recognized their expressibility for weakest preconditions in (cf. [Bac1&2] and



section 8)). We prove that the assertion logic () is a conservative extension of Hoare logic (+y) from which the
soundness and adequacy theorems for the Hoare logic of recursion free processes follow by an appeal to the
completeness theorem of the infinitary assertion logic.

Secondly, we introduce recursion. Now there are two different rules to extend Hoare logic with recursion (and hence
with while statements): the infinitary induction rule and Scott's induction rule, respectively (for one variable):

H{a}x{B}]
{a}t™B){B} forallneN and {a};(x){E}
(a)xx=1x)(B} (o)X=t {p) -

For both systems we have unrestricted soundness theorems. Completeness of the Hoare logic with the infinitary
induction rule will be shown for arbitrary processes. In case of completeness of the Hoare logic with Scott's induction
rule we have to restrict to regular (or linear) processes, i.e., processes in which linearly specified recursive equations
may occur.

1.3. COMPLETENESS THEOREMS FOR HOARE LOGIC.

In a completeness theorem one tries to match in a sound and adequate way a logic of a particular type with a class of
models (possible consisting of only one model). If the fit is not proper then one could reconsider the logic or the class
of models. Hoare logics with finitary assertion languages mismatch easily. In [BT2] Bergstra and Tucker give some
strong examples of incompleteness: they describe models A (Pressburger arithmetic, the field of algebraic numbers and
the field of algebraic numbers) and sound Hoare logics over A such that the set of provable correctness formulas is r.e.
but not recursive, and the set of correctness formulas true in A is co-r.e. but not recursive. These models are all
computable algebraic structures with decidable first order theory Th(A) := (¢ | A=},

And only under a constraint concemning expressivity there is:

COOK'S RELATIVE COMPLETENESS THEOREM (cf. [C] or [Al]):

Given some model K, finitary assertion logic L and, if L is expressive for K (meaning that semantically defined
weakest preconditions (cf. section 4) over K are definable in L) then

K= {a}p{B} & {¢ | K=d}-H{c}p{B}).

If we consider infinitary assertion languages of the type La) the mismatch disappears. The incompleteness arguments
are circumvented because the infinitary assertion logic is an conservative extension of the Hoare logic considered in this
paper. We can now prove strong completeness theorems of the form:

STRONG COMPLETENESS THEOREM:
(i) (soundness) If T is a set of partial correctness formulas and/or implications, then

-H{olp{B} = N={a}p{B}.
(ii) (adequacy) If I is a countable set of formulas in the (infinitary) assertion language, then

D= {0} p{B} = ThOFn{c)p{B},
where Th(I):={ a—B | N-Vs(a(s)-B(s)) }.

In particular:



COROLLARY: for one's favourite standard model K it holds that
K= {a)p(B} < Th(K¥u{o}p{B},
where
ThK):={ {a}p{B} | Ki= {o}p{P], for all a, B and closed process expressions p}

(PROOF. Th(K)={a}p{B} < Ki={a}p{B} and Th(K) is closed under provability by soundness. o)

An infinitary assertion language is expressive by nature in contrast to arbitrary finitary assertion languages. Cook's
condition on expressibility is just the question whether there exist finitary equivalents of weakest preconditions and is
irrelevant for the question of completeness! One can imagine that finitary equivalents of weakest preconditions exist if
the finitary part of the infinitary assertion logic has sufficient coding properties, corresponding to the coding properties
of the natural numbers. See Harel's analysis in [Ha] an Bergstra and Tucker in [BT2].

Our strong completeness theorems and the corollary differ from the traditional relative completeness results for Hoare
logic:
e strong completeness, that is, we take sets with hypotheses into account.
o Th(I) is syntactically defined, i.e. Th(I') is model/interpretation independent.
e depending on the chosen recursion rule there are different completeness theorems with respect to different
classes of processes.
e we don't need all usual rules for completeness of the Hoare logics with recursion rules (in terms of [dB] we
don't need the conjunction and invariance rule nor the substitution rules).

1.4. HOW ADEQUACY OF HOARE LOGIC DEPENDS ON ADEQUACY OF ASSERTION LOGIC.

We now give a heuristic argument how the adequacy of Hoare logic depends on the adequacy of the assertion logic.
The consequence rule of Hoare logic is not exclusively concerned with correctness formulas:

a(s)oa'(s)  {(a'}p{B)} B'()-B(s)
{a}p(B}
This rule has expressions of the form a(s)—>0.'(s) among its hypotheses. Following the tradition of logic one would
like to prove adequacy: T={0}p{B} = D+u{a)p{B), that is: if any of our models in which all formulas of a set I" of
correctness formulas and/or universal closures of implications are valid also satisfies {o}p{p}, then we have a proof in
Hoare logic of {o)p{B]} based on the set of hypotheses I'.
This formulation of adequacy is not adequate. Suppose one can prove {ct}p{p}, and suppose B— holds in all models in
which {o}p{B]) is valid. Then {a}p{y} holds there as well. Completeness would imply that we can prove {c}p(y} from
I" in Hoare logic. In general this is only the case if in the assertion logic we can prove B—Y necessary for the Hoare
Togic proof of {a)p{Y}. One way of proving B—Y would be via an adequacy theorem for assertion logic. But then the
notion of adequacy for Hoare logic is:
D= {a)p{B}= Th(D+u{a}p{B},

where Th(I') is the set of assertion formulas valid in all models satisfying the set of hypotheses I". Using the
completeness theorem for assertion logic we can equivalently define Th(I") syntactically: let Th(I") be the set of
formulas ¢ such that I'+-AssLogd-

consequence rule



2. THE PROCESS LANGUAGE.

Processes are programs in which we have abstracted from data and variables. One should compare this in analogy to
propositions and predicates. Different theories for processes have been developed. In this section we will encounter a
variant of Process Algebra of Bergstra and Klop (cf. [BK3&4]).

In order to incorporate conditionals and iterations (if-then-else and while-loops) from programming languages we
consider a process language in which tests occur as processes. In Process Algebra one already has felt a need for tests:
tests can be found in disguise as state operators (cf. [BB1&2]). Of course the notion of tests in (even non-deterministic)
programming languages is well known (cf. e.g. [dB]).

Programs are often thought of as state transformers, and states are usually interpreted as valuation functions assigning a
value to variables of the programming language or leaving them undefined. Hence, in this view states are structured
objects. Processes abstract from the structure of states. The structure of the states is not observable, only the actions
performed on them. The abstraction from programs to processes preserves the idea of state transformers.

Following this line of thought it is natural to introduce a state semantics for processes, as in [Po]. The intuitive
picture is a system M being in some state s. The execution of an atomic action on M transforms the state s into a state
s'. Failure (notation L) can be interpreted as a special state of the system, it can be understood as a state which reports a
failure in the execution of the process (cf. [A2]). When a system enters failure it remains in failure: failure is a kind of
deadlock. The failure state is a fixed point for all processes. The semantics of a test ¢ is simple: we interpret ¢ as a
predicate on M. The effect of ¢ on a state s is the state s itself if ¢(s) holds in M and L otherwise. That is, depending
on the state a test skips or deadlocks to failure.

We can now define equality on processes p and q: if for all models and all interpretations of the process language in the
models, whenever process p is able to transform a state s into s', the process q can do the same, and vice versa. We
show that a standard set of axioms from Process Algebra together with Trace axioms and Test axioms is a complete
axiomatization of this equality relation.

The axiomatization of tests is of independent interest, as it does not use any kind of reference model where the tests
have to be performed. It should not come as a surprise that the set of processes which are constructed from tests only is
a boolean algebra.

2.1. SYNTAX OF PROCESS ALGEBRA WITH TESTS AND RECURSION,
We will now give syntax definitions of three languages of processes, that we will use in this paper. These languages
are constructed from three ingredients:

o aset A of atomic actions A (its typical elements are usually denoted by a,b,...),

e aset ¥ of atomic tests or atomic propositions (typical element ¢),

e acountable set Var of process variables (typical element x).
Basic processes are constructed from these ingredients by sequential composition and alternative composition (or non-
deterministic choice).



2.1.1. DEFINITION. (syntax of basic tests and processes)
(i) The class ¥¥ of basic tests (typ"ical element ) is given by
yiu=0|-y|8le
(ii)) The class of basic processes BPT(A,¥) (typical element q) is given by
q:=alylqiq2 I (q1+q92)

We have introduced € and 8 as tests: € will be the test that always succeeds, whereupon the process continues, and &
will be the test that always fails, whereupon the process deadlocks. The axioms for BPT(A,'V) are the following

X+y = y+X Al
x+(y+z) = (x+y)+z A2
X+Xx =X A3
(x+Y)z = Xz+yz Ad -yy=38 TI
(xy)z = x(yz) AS xd =96 Trl —y+y =€ T2
x+6 = x A6 x(y+z) = xy+xz Tr2
Ox =8 A7 v is a basic test
€X = X A8
XE = X A9

Axioms for BPAg¢ Trace Axioms Test Axioms

Axioms for BPT(A,¥)

The axioms A1-A9 are standard for basic process algebra (cf. [BK3&4]) with empty process (€) and deadlock constant
(8). The trace axioms Tr1 and Tr2 do not belong to standard axiomatizations of process algebra. We need them for the
complete axiomatization for the state semantics, in which we will interpret Hoare logic. The axioms T1-T2 for atomic
tests are new for process algebra. The axioms for tests may seem not complete, the whole axiom system of process
algebra is strong enough to prove that BPT(&,¥) is a boolean algebra. We will sketch a proof of this fact at the end of
this section 2.1. In a different context Manes and Arbib (cf. [MA]) construct a Boolean algebra of guards in a partial
additive semantics using similar axioms.

2.1.2. DEFINITION. (syntax of processes with recursive specifications)

(i) The class of open process terms (typical element g)
gu=alylxigigal(g1+g2) E

(i) A recursively specified process is a syntactic construct of the form X,
where E = {x1=g1,....Xn=8n) is a set of n equations and the g; are process terms with variables from {xi,....x5]}.
In the context of programs the equations are often interpreted as declarations and written as {X1<=g1,....Xn=gn)}-
The variable ranging over the (minimal, as will follow from the axioms) solution(s) of x; in E will be denoted
by Xf‘,

(iii) The class BPTyec(A,'Y) of processes with recursive specifications (typical element p) is given by

pi=alyl X;E I p1+p2 | p1p2 | mn(p), where E is a recursive specification and n=0.
The m, are projections restricting the number of steps a process can make (cf. the axioms at the next page).



2.1.3. DEFINITION. (syntax of processes with linear recursive specifications)
(i) The class of linear process terms is defined by the grammar
ku=qlgx|gklki+kp
(ii) A linear recursively specified process is a syntactic construct of the form XE. where
Elin = {x1=K1,....Xxn=Kp}, and the k; are linear process terms with variables from {x1,....xp}
(iii) The class BPTyjinrec(A,¥) of processes with linear recursive specifications (typical element p) is given by
p:r=alyl X? I p1+p2 | p1p2 | 7on(p), where E is a linear recursive specification and n>0.

Remark: the definitions exclude nested (linear) recursion. (If one insists on nested recursion one should iterate ad
infinitum, i.e., ad o, this construction, enriching at each iteration step the set of atomic actions with the constructs
X'F‘ constructed at the previous step (cf. {Po]).)

Comparing these two definitions with the standard ones for process algebra (cf. [BK3&4]), one should note that we
don't insist on the guardedness of the recursive specifications. Recall that a recursive specification is guarded if the
occurrence of a recursion variable cannot be accessed without passing an atomic action (cf. [BK2]). We have added
atomic tests. And there is an inessential change in notation (Xll3 instead of <x;|E>).

We have a pragmatic reason for not considering guards: eventually we want to be able to extend the process language
again to a programming language by treating assignments x:=t as atomic actions. However, it is difficult to
distinguish an assignment like x:=x from €. In general it even does not need to be decidable that x:=t acts like €. The
notion of guardedness is used in standard process algebra to ensure that in the presence of a finite approximation
principle (AIP) guarded equations like x=ax+b do have a unique solution in contrast to unguarded equations like x=x+b.
We will solve this uniqueness problem differently: the axioms we shall formulate for recursion will guarantee the
existence and uniqueness of solutions (e.g. the solution of x=x+b will be 8+b (=b)) (the solution can be recognized as
minimal in terms of the usual metric on the terms of process algebra (cf. [BK2] for more details on the distance
underlying the metric). An instance of the axiom in case of the recursive specification of a single variable is
T (X*=UX)) = 1, (t"(8)) for some n>0.

Processes in BPTyec(A,¥) are subject to the axioms of BPT(A, W) together with the following axioms:

mo(y) = v for ye ¥ PR1
wp(ax) = & forac A PR2
Tin(YX) = Yrn(x) for ye P# PR3
Tin+1(ax) = anp(x) forae A PR4
Tp(X+Y) = Ttp(X)+7n(y) PRS
(X ) = () PR6
where for 1<i<k
0._5s
t =

1
B = (e ty)




E E LE
X = 4K X D) RDP

Tin(x) = mp(y) foralln20 = x=y AP

The axioms PR1-PRS5, RDP and AIP are a standard extension to basic process algebra with recursion (cf. [Gl], where
the projection interacts in a similar way with T as here with tests). PR6 seems to be new in the process algebra
tradition. Of course in case of guarded equations PR6 is derivable in basic process algebra with recursion.
Examples:

Ta(X*=X) 1= m,(8) = 8 for all n20, hence X*=X = § by AIP.

T (X*=%2) := 1,(8a") = § for all =0, hence X*=*2 = § by AIP.

T (XX=Xatby .= o((Sa+b)a+b) = mo(ba+b) = ba+b

Tp(X*=2%+b) ;= mo(a(ad+b)+b) = mp(ab+b) = ab+b

T (XX=3%) ;= 11,(a™8) = a"ng(d) = & for all n=0, hence X*=2X = § by AIP.

In the remainder of this section (2.1) on syntax we will sketch how to prove that BPT(*¥) (more precisely: equivalence
classes of all processes constructed from ¥ (no atomic actions), where we take provable equality as equivalence
relation) is a Boolean algebra (cf. for instance [Ja]). This fact plays no role in other parts of the article, and can be
skipped. In the next section 2.2 we will consider a state semantics for the above process algebra. The existence of such
a semantics shows the consistency of the axioms..

2.1.4. EASY FACT.
Since the following statements are equivalent
(i) there exist a proces p' such that p+p' =q,
() p+q=q.
we denote either of them by p<q.

2.1.5. LEMMA. The foregoing axioms for BPT(A,¥) imply:
(i) Lety be a basic test, and ¢ some arbitrary compound test.
If o<y then yo = ¢ and —yo = 8.
(i) () = for basic tests y
(iii) Lety and ¢ as in (i).
If ¢<y then also & = p(—v).

PROOF.
(i) Let y be an basic test, and ¢ some arbitrary compound test. Assume $<v, i.e. p+y = y. Then & = —yy =
—Y(O+HY) = —ydi—yy = —yd+d = —yd. It follows that ¢ = £d = (W+—¥)o = y¢+d = yo.
(i) Since —y = e~y = y—y+—(—) we have y—y<—y by (2.1.4). Hence by (i) W=y = —y(y—y) = (~yy)—y =
S—wy =34.
(iii) Make assumptions as for (i). Then using (ii) & = Y(—y) = (G+W)(Y) = GWHY(—Y) = d(y)+d = d(—W).
O



Remark: a similar statement is proved in a rather different context and a different way by Manes and Arbib (cf. (3.19) in
[MA)). There they make use of an interesting principle x+y = 8 = x = 3. In process algebra one can prove this
principle in one line: assume x+y = § then x = X+3 = X+X+y = x+y = 8.

Negation of basic tests can be extended to negation of arbitrary compound tests:
Y=y
-(x+y) = (-x)(-y)
-(xy) = (-x)+(-y)

One can now check that the axioms for basic tests hold also for arbitrary compound tests, i.e., terms involving no
atomic actions.

2.1.6. LEMMA. For x,y in BPT('P) it holds:
B xy=yx
i) -xx=96
(iii) -x+x=¢

PROOF: (i) is proven by induction to both x and y. (ii) and (iii) are proven simultaneously by induction on the
structure of x. o

Now the following lemma can be proved by simple algebraic manipulations.

2.1.7. LEMMA. For elements of BPT(¥) the following holds:
i) e€=-5
(i) 6=-¢
(i) xx=x
(iv) --x=x
V) xy+x=x
(vi) (x+y)x=x
(vii) x(y+z) = xy+xz
(viii) xy+z = (x+z)(y+2z)

PROOF. For example:
1v) -y = (y+-Y)(-y) = y(--yHd = (--y)y = (-y)y+d = (-Y)y+(-y)y = (~y+y)y =y
(V) x=¢ex = (-y+y)X = ((-y+y)+y)X = (E+y)X = X+YX = X+Xy

Collecting all results we conclude that BPT(@,¥) is a Boolean algebra, i.e., a model for classical propositional logic
(for a definition see [Ja] or [MA]).

The fact that mathematical structures have subsets that form boolean algebras is well known, as Manes and Arbib
remark. The case of process algebra forms yet another example. It differs from the examples mentioned in [MA]: in
process algebra we don't have full distribution: x+(yz) = (x+y)(x+z) does not hold.
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It is also possible, but outside the range of this paper, to construct a subset representing a Heyting algebra. Then
instead of a unary operation — one uses a binary operation — on atomic tests satisfying:

o->0=¢

oy = vyo
o(¢—-v) = oy
Yooy =y

o= (y1v2) = (0—>v1)(9—-V2)
For more information on Heyting algebras, see for instance [Jo].

2.2. STATE SEMANTICS FOR PROCESSES INCLUDING TESTS

In the context of Hoare logic it is natural to think of processes as state transformers. That is, we will interpret a
process p as a function from a state space M into its powerset P(M). The execution of an atomic action or test results
in the transformation of a state. This will be modeled by effect functions. In this section we will give a precise
definition of the state semantics for processes and prove a completeness result with respect to the axiomatization of the
previous section.

2.2.1. DEFINITION. A model <M,effect,test,L> (shortly M) for processes as state transformers consists of three
ingredients:;
¢ anon-empty set M containing a fixed base point L (like in flat cpo constructions),
¢ a function effect: Mx(Aw{8,e})—M such that: (@) effect(l,a)=1, forall ac A,
®) effect(s,d)=L, for all se M,
©) effect(s,e)=s, for all se M,
e a function test: ¥—>(M—{0,1})

We extend the domain of the effect function to atomic tests and their negations:

effect(s,y) = {i if;fhs‘:r(v‘lv’i)sis)ﬂ

s if test(y)(s)=0
1 otherwise

for se M and ye V.

effect(s,—y) = { for se M and ye V.

Furthermore, we extend the effect function to finite non-empty sequences:
eff, (s) := effect(s,a)
effal o(s) = effo (eff (s)), where © is a sequence of elements from AUYU{—blpe Yiu{de}.

A process embodies a family of successful computations, i.e., complete, successful behaviour of a process observable
in a finite amount of time: one performance of a process is just the execution of a finite sequence of atomic actions and
atomic tests not including & and/or €. It is standard to formalize finite successful computations with help of
termination traces (cf. [GI] for an overview of trace notions). The undecided dual character of the atomic tests forces us
to include them in the standard notion of trace. We will call this extended notion path. The possible paths of one
particular process p form the path set Paths(p) of p. The termination trace set TerTr(p) (in [GI] one finds the notation
-tr(p)) can be defined with help of paths sets: replace in p all tests ¢ by € and then take the path set.
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Examples: Paths((aed+b+6+¢)a+(d+€)) = {ba,pa,p,<>}
TerTr((ac8+b+6+)a+(¢+e)) = {ba,a,<>}
Paths(X*=02x+—%) = ((¢a)"*1—¢ | ne N}
TerTr(X*=%ax+0) = {an*]| ne N)

With help of the notion of path we can define a semantic equality (cf. 2.2.4) between processes: p=q if and only if the
process p transforms a state s into a state s' only if q does as well, and vice versa, where p transforms s into s' if there
is a path in the path set of p such that the effect of this path on s is s'.

2.2.2. DEFINITION. By induction on thie structure of pe BPT.c(A,¥) we define
Paths:BPTrec(A,W)—P((AUYA(8,))*),
where P((AUP™\(8,£))*) stands for the power set of (AUPA(§,£))*:
(i) Paths(a) := (a} foracA
(i) Paths((=)2"y) := () for ye ¥
(iii) Paths((—)2"*1y) := (—y) for ye ¥
(iv) Paths(8) :=@
(v) Paths(g) := (<>} (i.e., the empty sequence)
(vi) Paths(p+q) := Paths(p)Paths(q)
(vii) Paths(pq) := {oc'loePaths(p)ac’'e Paths(q)} = Paths(p)xPaths(q)
(viii) Paths(mt,(p)) := {oePaths(p)! o contains at most n atomic actions)
(ix) IfE = {x;=t;(X1,...,.XK) | 1<i<k}, define for 1<i<k and ne N
t 0 =8
t“i'l = (1] )

then
Paths(X;) := Une n Paths(t }) for 1isk.

Paths will be treated as processes by identifying the empty sequence <> with € again, and non-empty words with the
corresponding sequential compositions.

We give some examples stressing that path sets contain only the succesful terminated (i.e. finite) paths:
Paths(X*=2*+b) = {alblne N)
Paths(X*=Xa+b) = (baMne N}
Paths(X*=*+b) = (b)
Paths(X*=2X) = \_ - y Paths(a"d) = @
Paths(X*=b) = (b}

Paths nor traces are immediately suitable to distinguish processes. Traces ignore tests, and paths sometimes pay t0o
much attention to them:

TerTr(adg+b) = {a,b} = TerTr(a+b)

Paths(a) = (a} # (¢a,—~¢a} = Paths((p+—¢)a).

We solve this problem by considering instead of Paths(p) a set Pathsg(p) of all paths that are ®-consistent with some
path of p, where @ is some fixed, finite set of atomic tests. We will introduce this concept next.
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A path of p is of the following form:

(¢, ---‘k)no)al(‘h 1 ---¢1nl)32---ak(4]( 1 ...qu) (k=20, n;20)
or, for short

®paidjas...axdPy.

Let ®=(61,....0n} be a fixed finite set of atomic tests. Let us call a sequential composite of basic tests ...y, where
y; equals either ¢; or —¢; for all 1<i<n a valuation v over @ is .
We say that

vpa1viaz...amVm, where vj are valuations of @ *)
is D-consistent with

®ga; ®az...a Oy
if all elements of ®; occur with the same sign (more precise: parity of the number of negations) in the valuation v; for
0<i<m.

Finally we will need one more notation for path sets: Pathsp(r) will denote all nonempty sequences in (AUY)* that
have the form of (*) and are ®d-consistent with a path in Path(r), where @ now is the set of all atomic tests that occur
in p.

It is a well-known result of basic process algebra that with help of additional trace axioms processes without tests can
be rewritten as a sum of traces. In case of recursion one has to be careful with possible infinite sums. For processes
with tests we have a similar result for paths:

2.2.3. LEMMA. Let empty sums be equal to 8 by definition.

() BPTrec(A®)F my(@)= 9,0 for any process p of BPTrec(A2) and ne N.
o€ TerTr(Tn(p))

(i) BPTrec(A,W)F mu(p) = z o for any process p of BPTrec(A,'¥) and ne N.
oe PaﬂlSp(nn(p))

With help of paths we give a semantical definition of a binary predicate p(s,s’) on MxM for each closed process
expression p in BPTrec(A,¥). This enables us also to define a semantic notion of equality of processes. In the
following section we will extend this logic to give a syntactic definition of p(s,s’).

2.2.4. DEFINITION.
(i) Mkp(s,s) if there exists a path ¢ in Pathsp(p) such that Mi=s'=effs(s).
(i) Mi=p=qif ME=Vs.s%L[p(s,s)q(s,s)].

We have the following relationship between provability from the axioms of the process algebra BPTec(A,¥), state
semantics and path semantics:
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2.2.5. COMPLETENESS THEOREM. The following are equivalent:
(i) BPTrec(AY¥) - p=q
(ii) Pathspg(p) = Pathspg(q)
(ii)y M p=q for all models M.

PROOF.
Given a fixed, finite reference set & of atomic tests, as before, we define <Mg,effect,test, 1> as follows.
The states of M are L together with all pairs of the form <aj...ap,V> where aj...ap€ A" is a (possible empty)
sequence of atomic actions, and V is a function from natural numbers to valuations over ®.
We define
effy(<ay...ap,V>):=<aj...ana, V>
testp(<ai...an,V>):=1 if ¢ occurs positively in the valuation V(n)
test¢(<aj...an,V>):=1if ¢ occurs negatively in the valuation V(n)
By definition it follows:
effy(<aj...an,V>) = {<all’a“’v> ¢OE m\;::vzse
eff_¢(<aj...an,V>) = {<a1l.an,V> ﬁ:tlfe:,“(/?s)e

Let Mpq denote the model constructed for the set of atomic tests that occur in the processes p and q.

We can now give the proof that (iii)=>(ii)=>(i). Soundness, that is (i)=>(iii), remains. This is but a standard verification
of all axioms.

MpqE p=q & Mpq = Vs,s2L[p(s.8)q(s.s)]
o Vsse Mpq\[J.}(Mpq E p(s.s) & Mpq = q(s,s")

¢ Vs,5'e Mpq\( L) (o€ Pathspq(p) effg(s)=s' <> Joe Pathspq(q) eff(s)=s) )
= Pathspq(p)=Pathspq(q) ($%)
= Pathspg (ntq(p))=Pathspq(tn(q)) for allneN
= BPTec(A¥) - 2 o = 2 o forallne N

o€ Pathsp(,(p)) € Pathsyq(m(q)
& BPTec(AY) + mh(p)=mtn(q) for all ne N (lemma (2.2.4))
& BPTrec(A,¥) + p=q (ATP)

Proof of ($)=($$). Suppose ($). To prove ($8) it suffices by symmetry to show that Pathspq(p)S Pathspg(q). So, let
v0a]v1a2...anVy be a path in Pathspq(p). Consider some element <<>,V> in Mpgq such that V(i)=v; for 1<i<n.
Clearly

ef(,oalv1 az---an"n(<<>’v>)= <<aj...ap>,V>.

Now by (3) we get 6=wob1wb)...bmWn, in Pathspq(q) such that

eft;valwlbzmbmwm(<<>,V>)= <<aj...ap>,V>.

?y constructior.n efﬁvoblwlbz_"bmwm(<<>,V>) =Llor ef("oblWlbz---bmwm(<<>’v>) = <by...bm,V>. The first possibility
is ruled out since <<aj...ap>V> # L. Thus we get n=m, and aj=b; for 1<i<n. Moreover, it follows from

ef(VOblwlbzmbmwm(<<>,V>) # L that w; is pg-consistent with V(i), hence because w; and V(i) are valuations we
conclude that V(i)=w; for 0<i<n.

Therefore vpav1a2...anvn = Wob1w1b2...bmwm € Pathspg(q).
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Remark that if our initial set of atomic tests ¥ is infinite then this completeness proof requires for each pair p and q
the construction of its own model Mpq, In case of a finite set ¥ of atomic tests one single model Mg suffices.
However it is possible to modify the proof such that only one model is needed. Just take the union of all models Mg
for all finite subsets & of V.

nl

3. THE ASSERTION LANGUAGE

What is the right logic to express correctness formulas of the form {o}p{B} in?
Suppose we have a language in which o and P are expressed and we can express with the formula p(s,s’) the semantic
concept there exists a path o in Paths(p) such that s'=effg(s). Then the semantic definition of {a}p{B) is the
interpretation in M of the formula

VszL[o(s)—>Vs'=L[p(s,sH—B(sH]].
The naive way of writing p(s,s’) is s'= _ef% (s)vs" —efg (s)vs" —eff (s)v , where 61, 02, 03, . is an enumeration of the
at most countable many paths of p. Inﬁmtary loglc prov1des us with a shorthand for countable disjunctions and
conjunctions. Then p(s,s’) becomes V ge Paths(p) S=effq(S)-
L(D -languages (cf. [Ka] and [Ke]) are finitary first order languages to which countable disjunctions and conjunctions
are added respectively denoted by Ve iy and Ape . As for first order finitary predicate logics, there is a completeness
theorem for Lml m—languages. We will now give the definition of the Lml m—asseruon logic we will use here:

3.1. DEFINITION. The assertion language £ for process correctness consists of the following ingredients:
(i) asort S containing states
(ii) variables s,s'.s",...
(iii) a constant L for unsuccessful termination
(iv) unary functions eff, for each ac AUYU{—0 | pe DIU{d,e}
(v) unary predicates y for each ye W
(vi) terms are generated by the grammar:
= LIsleffa(t)
(vii) formulas are generated by the grammar:
o= t1=ty Ly(t) | true | false | & | 1402 1 @1vd2 1 192 1 Vs &(s) | s ¢(s)
I Aje1®i! Vie1®;  (where Lis an infinite but countable index set)

NOTATION.
e Sometimes we will use the notation Ajc1 ¢; and Vie1 ¢; if I is a finite set.
In case of the empty set the Aje ¢ is understood to be true and Vie1 ¢ is taken to be false.
e For paths ¢ we define
eff(5):= effa(s) i.f o=a
effg(effa(s)) if o=ac’

e We will use p(s,s") as abbreviation for V ge Paths(p) $'=¢€ffo(s) (recall the semantic definition (2.2.4.1)).
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This infinitary logic can be interpreted in models in the same way as predicate logic. We will give a quick overview.

3.2. DEFINITION. Let a valuation of variables v:Var—>M be given. By induction on the structure of terms we define
valuation of terms in <M ,effect,test, L>:
() l[l]ly[ =1
@) sl =) u
(i) [effa(D], := effect(ltl, ,a), where ac AUYU{—0ldpe YIu{d,e}
And extending the notation of (2.2.1)
(iv) I[effc,(t)l‘r,vi = effo([t]'f) (sequences are always paths)

3.3. DEFINITION. We define satisfaction k= of formulas in £ by induction on the structure of formulas in M =
<M effect,test,1>:
. M M
®H Myvey=t2:=I[yl, =]&t2]‘,
(i) M,vey() if est(y)(lt), ) =1 (cf. (2.2.1))
(iii) M,vieAic1 ¢; if for any ie I we have M, vi=¢;
(iv) M, vi=Vic1 ¢; if for some ie I we have M,vi=¢;
(cf. any textbook on elementary logic, e.g. [vD] for the interpretation of the not mentioned symbols)

We write I=¢ if for all M and v it holds that if for all weI" we have M,vi=y then M,vi=¢.

3.4. DEFINITION.

(i) A natural deduction calculus for the assertion language L consists of the usual rules of natural deduction for
finitary first order predicate logic (cf. e.g. [vD]) to which are added the following introduction and elimination rules for
the countable disjunctions and conjunctions (cf. [MR]):

01 02 @3 - (A nroduction)
Aie N ¢i
’—\ieq)‘f‘—q’i for any i (A elimination)
i
:/_if;i-;;— for any i (V. introduction)
[?1] [4?2] [?3]
Viel ¢i ¢ ¢ ¢

(V elimination)
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o The square brackets [ ] indicate that {a}p{p) is a canceled hypothesis (cf. [vD] for this convention of natural
deduction.

(i) Axioms for our assertion logic concern the effect functions:

Vs effg(s)=1,

Vs effg(s)=s,

Vsvs' [eff\l,(s)=s'<—)((\|/(s)—)s=s')A(—-.w(s)—>s'=J_))],
eff,(L)=1 for each ac AUYU{—dlpe VIU{S,e}.

We write I'-¢ if there is a natural deduction derivation of ¢ with hypotheses in I in this calculus.

3.5. DEDUCTION THEOREM (Karp) (cf. [Ka]). For any at most countable set of formulas I" and for any formula ¢ it
holds that

+6 o FAyery)—0.

3.6. COMPLETENESS THEOREM (Karp) (cf. {Ka]). For any at most countable set of formulas I" and for any formula ¢
it holds that
¢ e N=d.

The following lemma summarizes a number of useful properties of infinitary logic.

3.7. LEMMA. LetI and J be countable index sets:
O  FAeIn 6 © (Aie1 9 AAieT 90
(i)  FVielus ¢i © (Viel ¢i vViel 9D
(i)  FAG eIxT 9ij © Niel AjeT djj
(iv)  FV(,jhelxd 0ij © Viel Vel ¢ij
V) FViel(9nd) © @AVie1 d)

(Vi) FAeI(®VvD & (OvAeT ¢1)
(vii) FVie3x¢j © IxViel 0
(viii) FAjeIVx0; & VXAjel b
(ix)  F(Viel9i—9) © Aic1($i—9)
®)  FOoAId) © Aiel(d—d)
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4. PARTIAL CORRECTNESS FORMULAS AND WEAKEST PRECONDITIONS

Before we introduce Hoare logic for processes in the next section, and before we prove a completeness theorem for it,
we will first define the concept of weakest precondition for closed process terms and derive some useful properties
using the infinitary assertion language of the previous section.

We can express the partial correctness formula {a)p(B} where p is a closed process expression, and o and 3 are
formulas in L by the formula of the infinitary assertion logic Vs#L(a(s)—Vs'#L[p(s,s)—B(s)]). The interpretation of
(o}p(B) in a model <M,effect,test,|> corresponds to the usual semantic formulation: any successfully terminating
execution of p from a state s# L satisfying a results in a state s' satisfying B.

4.1. DEFINITION. Let p be a closed process expression, and o and B be formulas in L.
We denote by {a}p{B} any of the three equivalent formulas
o Vszl(o(s)—Vs'=L[p(s,sH—P(sH)
oo Vs(0u(s) VS [p(s,s) > (s=Lvs'=LvB(EN])
see  Vs(0(S)—Age Paths(p)[s=Lveffs(s)=LvB(effs(s))]).

REMARK:
(i) p has to be a closed term, otherwise Paths(p) is undefined.
(i) the interpretation of {o)p{B} in a model <M effect.test, 1> corresponds to the intended semantic formulation:
any successfully terminating execution of p from a state s=1 satisfying o results in a state s’ satisfying [3.

Weakest preconditions for program correctness are usually defined semantically: a weakest precondition for partial
correctness of a closed process expression p with respect to an assertion [ is an assertion w(p,)(s) such that for any
model M and valuation v it holds that M,vi= (w(p,B)}p{B} and M,vi={at}p{B} & M,v=Vs(o(s)—>w(p,B)(s)) for all c..
Inspection of the syntactic definition of {a}p{p)} reveals what the syntactic definition of w(p,) should be:

4.2, DEFINITION. Let p be a closed process expression and § be some assertion.
The weakest precondition for p w.r.t. 3 is the assertion:

w(p,B)(s) := Vs' [p(s,s)—>(s=Lvs'=LvB(s)].

In the remainder of the section we will prove a number of lemmas for weakest preconditions.

4.3. LEMMA. Let B be an assertion and p a closed process expression.
Vs [W(p.B)(S)>Ace Paths(p)W(G:B)(s)]

PROOE. The proof is the trivial observation that
FwWP)s) &
FVs'[p(s,s)—>(s=Lvs'=1vp(s')] &
Ace Paths(p)[s=-Lvefls(s) = LvB(effs(s) )] <
FAce Paths(p)W(S,B)(s) o
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4.4. LEMMA. Let B; be assertions forieI (I at most countable) and p a closed process expression.

FVs [w(,AieIB)(S)Aie1 W(D,Bi)(s)]

PROOF. The proof uses properties of the infinitary logic as listed in (3.8).

Fw(D.AieIB)(s) &

FVs' [p(s.s) o (s=Lvs'=LvAic1Bi(s)]
FVs' [p(s,s)2AjeI(s=Lvs'=1VBi(s"]
FVs'Ajel [p(s,s)(s=Lvs'=1vBi(s"] &
FAieIVs' [p(s.s)o(s=Lvs'=1vB;i(s"] &
FAie1 W(P.Bi(s)

4.5. LEMMA. Let a and B be assertions.

)
(i)
(iii)
(iv)
)
(vi)

Vs(w(8,8)(s)>true)
FVs(w(e,B)s)-B(s))
FVs(w(a,B)(s)>P(effa(s)))
FVs(w(y,BX(s) = (w(s)-B(s))
FVs(W(p+q,B)(S)(W(P.B)(s)Aw(g,B)(s)))
FVs(w(pa,B)(s)->w(p.w(q,B)Xs))

PROOF. (i)-(iv) are similar, for instance:

@iv)

)

(vi)

Fw(y.B)(s) &

FAge Paths(y)[s=Lveffa(s)=LvB(effs(s))] & (recall (3.4.ii))
H(Y(E)-BENV(—y(s)Htrue) &

Fy()—B(s)

Fw(p+q,B)(s) &

FAce Paths(p+q) W(G,B)(s) &

FAge Paths(p)UPaths(q) W(0,B)(s) &

FAce Paths(p) W(O.B)(S)AAse Paths(q) W(O,B)(s) &
Fw(p,B)(s)Aw(q,B)(s)

Fw(Pa.p)(s) <

FAge Paths(pq) W(G,B)(s) &

FA(c',6")& Paths(p)xPaths(q) W(G'G" B)(s) &

FAg'e Paths(p)/\6"e Paths(q) W(G'0" ,B)(s) &

FAg'e Paths(p)/\o"e Paths(q) (s=LVeffg'g"()=LvB(effg's(s))) <

FAg'e Paths(p)\c"e Paths(q) ($=-Lvelfs (effe'(s))=LvB(effs"(eff5'(s)))) < (note: s=L - effg (effg(s))=L1)
FAg'e Paths(p)\o"e Paths(q) (s=Lveffo(s)=Lv(effo (effe(s))=LVP (el Etle(s))) <
FAg'e Paths(p)\o"e Paths(q) (§=Lveffg(s)=Lvw(a",B)(effx(s))) &

FAg'e Paths(p)/\o"e Paths(q) W(O',W(c" ,B))(s) &

FAc'e Paths(p) W(G',Ac"e Paths(q)W(G",B))(s) &

FAg'e Paths(p) W(O';W(q,B))(s) <
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Fw(p.w(a,B))(s)
We do not claim this is the most elegant way to prove (vi), but within the formalism of the infinitary assertion
language the proof is a long one-liner that can not be missed.
u]

5. HOARE LOGIC FOR RECURSION FREE PROCESSES

In this section we will define a Hoare logic for partial correctness formulas of recursion free closed process expressions
in BPT(A,¥). From the semantics for the assertion logic and the interpretation of partial correctness formulas we
obtain a semantics for the Hoare logic. We will prove strong completeness for the Hoare logic using the completeness
theorem of the assertion logic and the relation between the Hoare logic and the assertion logic.

Being able to express our partial correctness formulas in the assertion language it is natural to investigate whether we
the derivation of the various axioms and rules of Hoare logic (cf. 5.2.) in our assertion logic, instead of checking them
semantically:

5.1 LEMMA.
(@ +{w(,B)}p(B} for pe ALYU{—bloe ¥} {e, 8}
(i) +{o)p(B}and{a}q{B} if and only if - {o}p+q(B}
(iii) if+{o}p{B} and{B}q(v} thent (a}pq (v}
(iv) ifro—a’ and{o'}p(P'} and -B'—P then+ {o)p{B)

PROOF.
(i) Trivial, using the definitions of p(s,s') and w(p,B) for pe ALY U{—0lde ¥} U{e,}.

(i) +{a)p(B}and+{a}q(B} <
F{o}p{Bla(alq{B) <
FVs(0(s)>(w(@.B)(s)NAw(q,B)(s))) <
FVs(a(s)->w(p+q,B)s) &
+{op+rq(B)

(i) +{a)p(B}and+(B)q(y} =
H{alp{BIA(Blaly} =
FVs(a(s)oVs'[p(s,s) o (s=Lvs'=LvB(sN]) AVS'B(E)->w(gn(s)) =
FVs(a(s)>Vs'[p(s,s)—(s=Lvs'=Lvw(q,7)(s)] =
FVs(a(s)->w(p,(w(g)(E)) =
+Vs(o(s)-w(pg,y)(s)) =
+{o)pafy)

(iv) Fo—0o'and-(o'}p(B'} and -f'—B =
FVs[(a(s)—a(s)) A (0'(s)>Vs[p(s,s)>(s=Lvs'=LvB'(sN]) A (B'(s)-B(s)] =
FVs(o(s)-Vs'[p(s,s)—(s=Lvs'=1LvB(sH]) =
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+{o)p(B}).

5.2 DEFINITION of a proof system for Hoare logic for closed process expressions without recursion in BPT(A,'¥). The
building elements of the proofs are partial correctness formulas {o}p{B} and closed formulas of the form V's(o(s)—f(s))
which we will abbreviate by o.—p:

@

{o}5{B}

® {aje{o}

(iii) , where 1 stands for the predicate ¢(s)>B(eff;(s)) and ac A

{(M}a(B}

(iv) for each basic test ye WA\ (e,5)

(B (BY

{a)p{B) {o}a{B}
{a)p+q(B}

{a)p(B} (Blqf{y)
(a)pa{y)

v)

sum introduction

(vi)

sequential composition introduction

(vii) a—a'  (a'}p{B) PP
{a)p(B)

consequence rule

Let us denote derivability for partial correctness formulas in this proof system by kg in contrast to the derivability - of
the assertion logic and two extions of -F in the next section. Let Th(I") denote {o—B | T+Vs(0(s)—B(s)) } -

5.3. EXAMPLE:

We derive -———— for any atomic test ye ¥ by the following application of the consequence rule:
{oy{ony)

o> (Y= (aAy))  (y—=(oay)ly{oay)
{oJy{ony)

(i) Define: if y then p else q := yp+—yq
{oay)p{B} (an—w)q{B}
{a}if y then p else q{B)

We derive the Hoare rule for if then else:

as follows

{a}ylony}  (oaylp(B}  {o)—wy{onwy} (on—wlq{B}

{oJyp(B) {o)—ya(B)
{oJyp—ya (B}
{a}if y then p else q{B}

(def)
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5.4. TRANSLATION THEOREM. For Hoare logic of closed process expressions in BPT(A,'¥):
(i) IfT is a set of partial correctness formulas and/or implications, then
I+r{a}p(B) = I+-{a}p(B).
(ii)) If T is a set of formulas in the assertion language, then

- {a)p(B} = Th(DFE{a}p{B}.

PROOF.
(i) This follows by induction on the structure of the proof of I“-g{a}p(B} using the lemmas (5.1) and (4.5).
(i) By induction on the structure of the process p:
e case p, where pe AUYU{¢,8}: We transform a derivation I~ {a}p(B} into a derivation of I-o—w(p,B).
Consider the following proof in E:

2oVeD epinE

{(a)p(B)

By definition a—w(p,B)e Th(I') for pe AUW¥{8}. Hence for all p in AUWU{e} we have
- {a)p{B) = Th(£(a}p(B).

e case p+q: Note that I+ {a}p+q{B} implies both I'-{a}p{B} and I'-{a}q({PB}. By induction we now have
derivations T+pr{a)p(B} and I'r{a}q(B)}. From these we get a derivation for I'-g{a}p+q{p} by applying +-
introduction.

e case pq: Assume I'- (o) pq(B}. Hence It-{a}p{w(q,B)} and - {w(g,B)}q(B}.

By induction hypothesis we now have proofs

N-pla)p{w(g.p)}.
and

-p(w@B)la(B}
Now apply sequential composition introduction to get a derivation for '~r{a}pq(B].

5.5. COROLLARY: Completeness for Hoare logic of closed process expressions in BPT(A,¥):
(i) (soundness) If I is a set of partial correctness formulas and/or implications, then

I+r(ogp(B) = N={a)p(B}.
(ii) (adequacy) If T" is a countable set of formulas in the assertion language, then

DN={o}p(B} = Th(+F(a)p(B),
where Th(I):={a—B | N-Vs(a(s)—B(s)) ]

PROOF.
Combine the translation theorem (5.4) with the completeness theorem (3.6) of the infinitary assertion logic.
o
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6. HOARE LOGICS FOR PROCESSES WITH RECURSION

We will present two reasonable ways of extending the previous Hoare logic for processes with rules for recursion.
Surprisingly enough the different extensions are not equivalent: they are complete for different classes of processes.
We will consider generalized versions of the rules:

{o}t"(8){B) forallne N
(o] X*=U0(B)

infinitary induction rule for one variable
{o}x{B)]

m_}t(_;o_{p_}_ Scott's induction rule for one variable (cf. [dBS] or [dB]).
(o) X*=UX)(B)
Comments on the natural deduction style notation in Scott's induction rule (cf. for more explanation a textbook of
logic, e.g. [vD]):
e the square brackets [ ] indicate that {o}p{B} is a canceled hypothesis
¢ ‘'linear reformulation: if T, (o} x (B} {a}t(x){B}. then N-g{o X=X (B))

In the style of the previous section it is not difficult to prove a completeness theorem for Hoare logic with the
infinitary induction rule, where the partial correctness formulas deal with closed process expressions p in BPTrec(A,').

Scott's induction rule introduces open process expressions in the Hoare calculus, which we avoided carefully in the
previous section. We can deal with process variables if we interpret the proof scheme {a)x{B}+n{a}t(x){B} which
occurs as hypothesis in Scott's induction rule as an abbreviation for: {a}p{B}+n{a}t(p){B]} for all closed process
expressions p, i.e., "taking the universal closure of {at}x {B}+H{a)t(x){B}". Then Hoare logic with Scott's induction
rule is not complete for processes involving arbitrary recursive specifications: the solution of the non-linear equation
X = axa+aa is a counter example, as we will show.

As in the previous section we first look at what the assertion logic suggests us for recursion:

6.1 LEMMA.
(@) F{c)@)(P) forallneN & - {a)XX=X){B]},
(if) For a set of m specifying equations {xj=tj(X1,....Xm) | 1<i<m} define t(; := & and tn?l =t i(t Il‘ yeuel
Ifl-{ai}tin {B;} forallneN, all 1<j<m, then I~ {0} Xk {Bxk} for all 1<k<m.

m-

PROOF.
@) F{o}@){B) forallne N & @3)
FAne N e Panse@y 41O (B)
FA e, yPatsey (41 1B) € (2.2.2)&(4.3)

(o) X*=U0(B).

(ii) Similar as (i). o
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6.2 DEFINITION. We extend the Hoare logic of (5.2) to closed process expressions in BPTrec(A,W) with the following
rules (we extend the notation kg to this first extension of - of the previous section 5):

{a}t"(8){B) forallne N
(o) X=X (B)

(viii) infinitary induction rule for one variable

(ix) For a set of equations {x;=t;j(X1,....Xm) | 1<i<m}:

[ai}t?[Bi} for all ne N, all 1<i<m

{ouc} X (B}

for all 1<k<m infinitary induction rule for m variables

(U n+l n n
wheret;:=8and; ~:= ti(tl,...tm).

6.3. EXAMPLE.
Define: while y do p od := X*=(X), where t(x) = ypx+—y.
Then we can derive the corresponding Hoare rule

{ony)pla}
{a} while y do p od{aA—Vy]

as follows: We have the axiom {0}8{ca—y} and we also have {o}t"(8){oA—y }- (o} "+1(8) {oa—y} by the following
argument using example (5.3.i):

(5.3.i)  {oay]p{a} [{a}t"@®){or—y]]

{o}wloay} {oAy] pth(8) {on—y} (5.3.1)
{0} ypt"(@) { oy} {o}—w{or—wy)
{a}+1(§) {on—y)

Hence by an induction argument we get G {a}t"(8){aa—y} for all ne N, from which {0} X X*=WPX+—W{ga—y}
follows by application of the infinitary induction rule. So we have shown {aAy]}p{al-g{a)while v do p
od{oA—-y)}. We will come back to this example when we have introduced Scott's induction rule (6.7).

6.4. TRANSLATION THEOREM. For Hoare logic of closed process expressions in BPTrec(A,'V):
(i) IfT is a set of partial correctness formulas and/or implications, then
I+g(ajp(B) = I+ (alp(B).
(if) If T is a countable set of formulas in the assertion language, then
I+ {a}p(B} = Th(DFg{a)p(B},
where as in (5.2) Th(I):={a—p | N+Vs(a(s)—B(s)) }.

PROOF. We only have to add the induction steps concerning recursion to the proof of the translation theorem (5.4) for
non-recursive processes.
(ii) case X*=UX) (one variable only).
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Assume we have a proof I-{a}X{B}. Then by A-elimination we have a proof of I't-{a} 6 {B} for all ce Paths(X). By
induction hypothesis we have I+g{a}o{B) for any path o€ Paths(X)=\_pe yPaths(t(5)). Hence using A-introduction
we get g {a}t(8){B) for all ne N. By the recursion rule we derive N-g{a) X{B}.

The general case can be proved similar.

6.5. COROLLARY. Strong completeness theorem for Hoare logic of closed process expressions in BPTrec(A,'F):
(i) (soundness) If I is a set of partial correctness formulas and/or implications, then

I+g{a)p(B) = I={a}p{B}.

(i) (adequacy) If " is a countable set of formulas in the assertion language, then
D={a)p{B} = Th(+g{alp{B),
where Th(I):={0—B | N+Vs(a(s)—B(s) ).

PROOF. Combine the completeness theorem for infinitary logic (3.6) with the translation theorem (6.4).

6.6. LEMMA. The following rule is a derived rule in the proof system G:

[{o}p{BN

{a}.t(p) {B} for all closed processes p
(o) X=X (B}

cp-induction rule .

PROOF. Straightforward, by induction. To load the induction process we recall that the axiom {a}8{B}. Hence, if
{0}p(B)g(alt(p){B} for any closed p, then we find {c}t™(8){B) for all natural numbers n. Application of the
infinitary induction rule gives us the desired conclusion {o}X*=t)(B].

o

6.7. DEFINITION. We extend the Hoare logic of (5.2) to open process expressions in BPT}inrec(A,¥) and we add the
following rules (we extend the notation J to this second extension of -F of the previous section 5):

[{a}x{B}

{ot(x) (B}
(o)X=t (B}

(viii) Scott's induction rule for one variable.

And, more generally:
(ix) For a set of equations {x{=t;(X1,....Xxm) | 1<i<m}:
[{o}x1{B1}ss{Om}xXm{Bm)]

(oI te(X1,ee0Xm) {Bx)
{ouc} Xk (B}

for 1<k<m, Scott's rule for m variables
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6.8. EXAMPLE.
Define: while y do p od := XE, where E is the linear equation x = ypx+—\. Then we can derive the corresponding

{onyp{od
{a}while y do p od{oA—y])

Hoare rule as follows (we use example (5.3.1)):

(53.)  {aaylp{a} [{a)x{or—y]]

{o)yl{ony} {oay]px{oa—y} (5.3.0)
{oJwpx {on—wy) (o) wlon—y)
{a)ypx+—y{on—y)

(o) XX=YPX VW oa—y)
, (o) while y do p od[a/\ﬂ\y}\

We have to give a new interpretation to I'={a}p{B} in case p and correctness formulas in I" contain free process
variables:

6.9. DEFINITION. We define N={c}p{B) to mean that for all substitutions & of closed process expressions for all free
process variables in 'U{at}p{B} we have I'°={at}p®{B].

The following lemma contains some properties for derivations in the Hoare calculus -y. The properties will be used in
the proof of the translation theorem for the present Hoare calculus.

6.10. LEMMA.
(i) If there are derivations of -y {a}p+q(y} and Dy {o}pq {7y}, then there are derivations of these formulas
where the last rule is an instance of an introduction rule and not an instance of the consequence rule.
Let I" be some set of partial correctness formulas.
(i) If Th@*+H{o}p{B) and Th(DH-H{o}p(7} for a closed process term p in BPT(A,¥) then Th(I}- {o}p{BAY)
(iii) Lettand t' be linear terms with free variables x1,...,xp such that BPT(A,¥) t=t'. Then
Th(D),{a1}x1{B1}....{0n)%n(Bn} FH (a}t(B)
if and only if
Th(M),{a1}x1{B1} ... (0n)%n (B} FH (a)t'{B)
(iv) Let E={xj=t; | 1<i<n} and E'={x;=t'; | 1<i<n} be sets of linear equations with free variables x1,...,x, such that
BPT(A,W)-t=t'; for all 1<i<n. Then ‘
T+ (X1 (B) & ThI -k ()] (B).

PROOF.
(i) Trivial.

(i) By induction to the structure of the proof of the closed process expression p. The atomic case is crucial:
Suppose we have Th(I')H {a}a(B} and Th(Iy{o}a(y). By definition of Th(T") this implies that I'~ {a}a(B} and
I'-{a}a{y}. But in the assertion logic one easily verifies that now I~ {a}a{BAy}. Hence by the translation theorem for
G (we are working recursion free) we now get Th(D-H{a}a{BAy).
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(iii) It is easy to prove by induction using distributivity that any linear term t(x1,...,Xxn) is equivalent to a term in
normal linear form:
t(X1,....Xn) = q+ 2.G;X{, where q and q; are closed processes.

Example: 1isn

q(qx1+p)r+rx) = (qP++QQ+xy
It suffices to assume that t' is in normal linear form. A normal form can be found by repeated use of the axioms:
x(y+z)=xy+xz and (x+y)z=xz+yz. A formal proof goes by induction to the structure of t. We present the essential step
of the proof for one variable: Th(I'),{o} x{B} FH {0} p(t; (X)+t2(x)) (B} < ThIT),{a}x{B} FH {a)pti(x)+pt2(x){B).
Assume Th(I),{a)x{B) FH {a}pti(x)+t2(x)) (B}, then we can construct a proof of the form:

Th() f{a)x{B} Th(I) ({o}x{B)

Th(I") {Yiux) (B} {v}t2(x){B}
{(oJp(y) (¥}t CH+2(x) (B)
{o)p(ti(x)+a(x)) (B}

which we can transform into a derivation of Th(I),{a}x{B} -y (o} pti (x)+pta(x){B)

Th@)  Th(I) (o}x{B) Th@)  Th() {a)x{B)
{oJp(y} yux)(B) {a)p{y) (Yo (B}
{o)pt1 (%) {B} {0} ptax)(B)

{a)pty (x)+pta(x) (B}

Hence Th(T),{a}x{B} FH {o}pt1(x)+pta(x){B}. The transformation in the other direction is more of interest:

Assume Th(D),{a)x{B) FH (a)}pti(x)+pta(x){B]. then we can find a derivation of the form:

Thd) ThI') {a}x{B) Th() Th(I') {o)x{B]
{a)p(y) {Vux){B) {ogp(Y') {¥'}1t2) (B}
{a)ptix)(B) {o)ptax)(B)
{a)pt1(x)+pta(x) (B}

Using (i) we can transform this proof into:

Th() (o}x{B} ' ThT) {a)x(B}
AT DY (Mux)(B} AT Y (Y1) {B)
Th@) (y'1u){B) {(~y'112() (B}
{odp{ynY'} {yny" 1 ()+2(x) (B}
{a pti(x+t2()) (B}

(iv) corollary of (iii)

6.11. TRANSLATION THEOREM. For Hoare logic with Scott's induction rule of process terms in BPTjinrec(A,¥):
(i) IfT is a set of partial correctness formulas and/or implications, then

D-p{alp{B} = - {a}p(B).
(ii) If T is a countable set of formulas in the assertion language, then

N-{a)p(B) = Th(DFp{c)p(B).
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PROOF, Again, we only have to add the induction steps concerning recursion to the completeness proof (5.4) for non-
recursive processes.
(i) Lemma (6.5) and the soundness of g with respect to - deal with the soundness of Scott's rule.
(ii) We consider the case with one variable. Suppose we have n—{a]X":‘("){B}, and we want to prove Th(I")
Fh{o) X*=)(B)
By axioms x(y+z)=xy+xz and (x+y)z=xz+yz we can find an equation of the form x=qx+r, where q and r are closed
process expressions in BPT(A,¥) equivalent to the linear equation x=t(x). In terms of weakest preconditions
N (o) XX=UX){B) is equivalent to D-Vs[a(s)—Ane NW((5),B)(s)]. Let us abbreviate Vs[Ane nw(t(5),)] by 7. So we
have I-Vs[o(s)—>Y¥(s)].
Since N-Vs[Y(s)>Ane NWET1(8).8)] = D-Vs[Hs)>W(T,B)AAne NW(@.W(I(8).B)]
= N+ Vs[Y(s)-w(r,)] and N-Vs[(s)-w(q,Ane NW(I(D),B)]
=T+ (y)r(B) and I+ {Y}q(Ane nW((S),]})}

= ThOFu(Y}r(B} and Th¥n(vlqly} (ind. hyp.)
Th(l)
(Maly  [vIx(BN D
{¥)gx(B} {v}r(B}
Th@™ (Vgx+r(B}
- a—Y {lex=qx+r[B}
(o) XX=ax+ (B}

we see that N~ (o} XX=X) (B} implies Th(I)y{ o) X*=9%+1 (B} and also Th(Dp {0} X*=X) (B} by lemma (6.10).
]

6.12. COROLLARY. Completeness theorem for Hoare logic with Scott's induction rule of process expressions in
BPTlinrec(A,¥):
(i) (soundness) If I is a set of partial correctness formulas and/or implications, then
I-H{a)p(B} = I={o]p(B}.
(ii) (adequacy) If I' is a countable set of formulas in the assertion language, then

DNe{o)p(B} = Th(Du{a)p(B).

PROOF. Combine the completeness theorem for infinitary logic (3.6) with the above translation theorem (6.11).
(n]

If we compare the present proof system H with the related proof system discussed in [Po], we note a number of
differences in the chosen assertion logic and semantics, but the main difference is the nature of the completeness result.
[Po] gives a completeness theorem relative to one model only. His argument that linearity is necessary in order to
obtain a completeness result for Hoare logic with Scott's induction rule carries over to the present situation:

6.13. COUNTER EXAMPLE.
The restriction to processes of BPTjinrec(A,¥) is necessary, as the following example shows.
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Consider the non-linear equation x=t(x) where t(x)=axa+aa in a process language with A={a} and ¥={,B}. Take
I'={{a}a{B}.{B}a{c}}. Then for all ne N we can show by simultaneous induction: I'-{ct) t(8){ ot} and I {B}t™(3) ().
The induction steps are respectively T, {a)t%(8){o)i {B}t"*1(8){B) and T, {B}t*(8) (B} {c}t**1(8){ct). The first can be
proved as follows:

r
{B)a{o} {a}@){at} ThD) r r
{B}a"®){c} {o}a{B} {Bla{a} {o}a{B}
{B}at"(3)a(B} {B)aa{p}
(BY+1(3)(B)

The proof of the second induction step goes similar. So we conclude that I { o) XX=aXa+ad{ g}

By analysing the form of derivations Th(I )}y (o) X*=2Xa+aa{y} we will show that the existence of such a derivation
implies I'{c}aa{o} and I'+{a}aaa{a}. This we can show to be contradictory by means of a countermodel. Therefore
Th(D#y{o)XX—axa+taa{q} despite I (o} XX~=axa+aaf{g},

Assume now that there is a derivation of Th(ID#-g {a} X*=axa+aa(qy} The rules of Hoare logic dictate its form: if we
push the applications of the consequence rule upwards as far as possible, there are two possible proofs, of which we
show one:

Th(I") Th(T)
ThD) B—p  [(BIx{¥]] gy
{Bla{B" {B"}x{y" Th()
{Blax{y" {¥lalyl _Th{)
_(B)axafy) {B)aafy)
Th) {B)axa+aa(y} Th(I')
a—-p {B)Xx=axataa(y) Yoo

{o)x¥=axa+aafq)

The other proof is characterized by the following subproof of {B}axafy}.

Th(T) Th(T)
B'-p  [BIx{¥)] yoy' ThD)
Th{) (B Ix{vy'} {¥afy)
{B)a(B"} {B"}xafy)
(Blaxa{y}

Rearranging some of the information in these derivations we obtain Th(ID)-g{ct)aa{a) and Th(C)-y{o)aaa{a} as
follows:

Th@) Th(I)
{Blaly] v=Y" Th()
Th@) _Th@) Th() Th(I) {Blaa(y") {¥'laly} Th(I)
o—f  (Blaaly) oo a—-B {B)aaa(y) Yoo
{o)aa{o) {o)aza{a)

We will present a model M and assertions ¢ such that
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MET and Mi= { o) X*=2Xa+33( o} and M= {o.}aa{ o)
but

not: M={o}aaa{a}.
Consider a model M, consisting of three states, o, B and L. Define eff,(ct)=B and eff,(B)=0.. Let o (B) be the assertion
that is true only for state o (B):

Clearly w(a,a)=B and w(a,)=c.. Hence Mi=I" and also w(t%(3),0)=w((aa)™...+aa,00)=ct.
Therefore Mi={a} XX=2Xa+23{q} and Mi={o}aa{o). However, Mi={0}aaa( o} implies MeVszL(0(s)—B(s)), and so
Mi=false. Hence M {o}aaa(a).

ul

In the next section we will apply these results to some programming languages.

We end this section with a short discussion of semantics for regular processes induced by the Hoare logic -y (cf. [M]
and [BK1]. The discussion will hold verbatim (replace -y by -G and BPTjjnrec by BPTrec) for the other Hoare logic
G with respect to the more general contextfree processes.

Consider process equivalence p=yq defined by Th@¥-p{}p{B) < Th(@)-H{ct}q{P} for all assertions c, and B.

The following argument shows that p=yq is equivalent to Fp=q and hence by the completeness theorem for process
algebra p=yq is also equivalent to BPTjjprec(A, ¥)}-p=q. This means that the semantics induced by the Hoare logic -y
of partial correctness is axiomatized by the axioms BPT: linrec(A,¥) of process algebra.

P=Hq < Th@}H{a)p{B} < Th@}H{o}q{B) for all assertions a, and B (by definition)
< Th@)-{a}p(B} <> Th@}-{a}q{B} for all assertions a, and B ((6.11)+Th(@)=Th(Th(2))
<+ {a)p(B) <+ (a)q(B) for all assertions o, and B
" FVs,s2L(p(s,8)q(s,s") (see explanantion)
S Ep (definition (2.2.4))
< BPTjinrec(A,¥Hp=q (completeness theorem for process algebra (2.2.5))

(=%*) is the non-trivial step. Fix sg#Ll. Consider the assertions o(s):=true and B(s)=q(sg.s).
Clearly I {true}p{q(s0.5)} = Vs'£L(p(s,5)—q(sp,5").
Then from I {true}p(p(sp.s)} <= + {true}q{p(sp.s)} we derive that FVs"£L(p(so.s")—q(sp.s") for this fixed sg=L.
Hence V's,s'#L(p(s,s")—q(s.s")). Similarly one proves FVs,8%1(q(s,s)—p(s.s)).
o
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7. HOARE LOGICS FOR (NON-)DETERMINISTIC PROGRAMS

Up until now we were concerned with languages for processes involving the constructs: atomic actions, atomic tests,
sequential composition, alternative composition, (linear) recursive specifications, if then else, while statements.

Traditionally Hoare logic (cf. [A1], [dB] and [TZ]) is a theory about the partial correctness of programs instead of
processes. A programming language usually is a process language which atomic actions are assignments x:=t, where x
is a program variable and t is a term in the (finitary, many-sorted) first order predicate logic based on some given
signature Z. The variables that occur in assertions in traditional Hoare logic are program or assertion variables in
contrast to our global "state"-variables.

It is not difficult to see that a model in the traditional theory (for each sort a domain etc. (cf. [A1], [TZ])) can be
transformed into a state semantics model by taking the valuations of values in the respective sorts to the variables as
states. Let us call this a valuation model. The present approach to the old models is useful: the explicit use of effect
functions prevents us to step in a well-known pitfall: in imperative programming languages the main atomic action is
the assignment x:=t. In the present setting the Hoare axiom for assignment becomes: {ou(effy.—(s))}x:=t{a(s)}, where,
if s is such a valuation

s(y) if y#x
t[x1/s(x1),... Xn/s(xn)] if y=x

effx.=i(s)=yH> {
How does our theory apply to imperative programming languages? Suppose we have some signature  as in [dB] or
[TZ]. We now consider the programming language that is the process language with assignments x:=t as atomic
actions and equations x=t as atomic tests, where t is a open term over the signature £ and x some programming
variable of the appropriate sort.

The completeness theorems ((5.5), (6.5) and (6.12)) for processes provide us with completeness theorems for possible
Hoare logics of partial correctness of this programming language.

As an example we consider a non-deterministic variant of the deterministic programming language in the book [TZ] by
Tucker and Zucker. Features of this language are among others: arrays, and array assignments.

7.1. STRONG COMPLETENESS THEOREM for a Hoare logic with Scott's induction rule based on a programming
language (compare with the (weak) completeness theorem in (3.7) of [TZ]).
Let = be a signature like in [TZ] defining sorts (including sorts for natural numbers and booleans) and functions
(relations are functions into the sort of booleans). Let the programming language PLy be the process language
BPTlinrec(Ay,¥s) constructed from:

e program variables of sort i€ X are either variables over i (notation vi) or variables over arrays of i (notation al)

e program terms of sort i (notation _ti) are given by the grammar
tl = vi| <aln> [vN] IFi(til,...t;“).

¢ the set Ay containing atomic actions: all assignments of forms vi:=ti and al[tN]:=tl

e the set W5 containing atomic tests: all formulas of the finitary predicate language based on the signature Z.
Then for the infinitary assertion logic and Hoare logic based on Plg as in sections (3) and (6) it holds that:

(i) (soundness) If I is a set of partial correctness formulas and/or implications, then
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I-n{alp{B} = I={alp(B).
(i) (adequacy) If " is a countable set of formulas in the assertion language, then

I={a}p{B)} = Th(+y(a}p(B).

PROOF.
Apply (6.12). o

In a number of aspects this result differs from from the completeness theorem for the Hoare Logic of the language
Proglang;,(Z) in section (3.7) of the Tucker and Zucker's book [TZ], in short;
(i) there are some changes in notation
(i) the programming language: we have added nondeterminism and in order to arrive at a Hoare calculus
with Scott’s induction rule restricted recursion to linear recursion.
(iii) the assertion logic: we have global state variables instead of program variables and assertion variables.
(iv) our Hoare logic doesn't have invariance axioms, substitution rules and conjunction rules.
(v) the semantics for the programming language
(vi) we prove strong completeness, instead of relative completeness with respect to a certain standard model.
(vii) in the proof we don't have the problems of expressibility for the completeness theorem.
(viii) the present theory does not treat total correctness.

More detailed commentary:
(adi) The role of the error and error state in [TZ] seems to be similar to the interplay of 8 and L in our case.

(adii) This causes that our theorem (7.1) does not immediately compare with the theorem in [TZ]. However, we can
rebuild the theory developed in this paper in order to treat prove (7.1) for the language without non-deterministic choice
but including the constructs if-then-else and while-do-. This involves a reconsideration of the proofs of the
completeness theorems in sections 5 and 6. It is not difficult to check that the proofs can be adapted. Moreover, since
without non-deterministic choice minimal solutions of non-linear equations are also minimal solutions of related linear
equations (in case of one variable: replace in the specification x=t(x) each subterm of the form p(x)q by p(x), where p(x)
does contain x, and q may contain x) the restriction on Scott's induction rule is no longer relevant!

(ad iii) It requires only a different reading to see traditional Hoare clauses as Hoare clauses for a suitable process
language together with an infinitary assertion logic. Traditional Hoare clauses for the language of theorem (7.1) are of
the form {$}P{wy}, where P is a program and ¢, y are formulas of the finitary first order predicate calculus based the
signature I of the programming language. Observe that such formulas contain variables that also may occur in the
program, i.e., variables ranging over the sorts in the signature of the programming language. We interpret such
formulas v as tests <y>(s), which are unary predicates over the states. Note that this is in accordance with the
interpretation of assertions in [dB] and [TZ]. Although we do not make the explicit distinction of [TZ] (cf. (1.3.10))
between assertion variables and programming variables, implicitly it is present. Our interpretation of {¢p}P{y} ina
valuation model M is Mi=Vs#L(¢(s)—>Vs#L(P(s,s)>y(s"))) where s and s' range over valuations. The programming
variables in {¢}P{y} are the variables that occur on the left in an assignment in the program P: those variables are the
only variables which value can be changed by P.

(ad iv) The reason why we have no employ in our Hoare calculi for the invariance axiom and the substitution rules in
contrast to for instance [dB] and [TZ] should be better understood: regarding the latter this seems to stem from our use
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of state variables (cf. our previous remark ad (iii)). Note that the status of the extra axioms and rules is unsettled also
in the literature: compare [TZ] (p. 107) with [dB]. It seems that we circumvent the use of the full conjunction rule by
the analysis of Hoare logic proofs resulting in lemma (6.10).

(adv) Our models differ, as we have global state variables, and not a model that consists of a domain for each sort of
the signature. It is easy to see that the soundness theorem includes the valuation models. Given a traditional model,
that provides a some set valued structure for each sort in Z, the corresponding valuation model can be seen as a state
semantics model: e.g. the definition of the effect function in case of a[t]:=t"

(sHY if k=(t)Y

[0.n-1]>Ak= i[k] otherwise

' o provided that 0<(t))V<n-1
effect(<al,n>[tN]:=s!,v)(<al,n>) =

1 otherwise

Let effect(<al,n>[tN]:=sl,v) be the identity on the other (array-)variables.
Example (this is a test example in [dB], p. 109): Define v(a)(1)=2, v(a)(2)=2 Then effect(a[a[2]]:=1,v)(a)(1) = 1 and
effect(ala[2]]:=1,v)(@)}2) = 2.
It can be checked that the models now validate the following Hoare axiom (in simplified notation) for assignment for
array variables:

(aeffa[r.=r(v))}altl:=t' (a(v)}, where v ranges over valuations.
By this construction, and the rewriting trick for traditional assertions as in (iii} above, plus the remark in (ii) we obtain
the theorem (3.7) at page 126 of [TZ] as corollary because:

(ad vi) Strong completeness implies relative completeness. Given ones favourite model K (if traditional take the
corresponding valuation model) define
I'K):={ {a}p{B} | Ki={c}p{B], for all o, B and closed process expressions p}.
Since clearly
I'(Kx={o}p{B} = Ki={oJp{B}
and
Ke={a)p(B) = (a}p{B}eNK) = I'K)={a}p{B}
we get
IK)={o)p(B} <> K={ap{B}
and so by (6.11) and (3.6) (we have to be sure that Th(I'(K)) is indeed countable, which is the case if the signature
where the programming language is based on contains at most countable many symbols...)
ThTK)*H{o}p{B) < Ki=(a}p{B} for pe BPTiinrec(A,'¥).
Similarly:
ThT'K)-G(a}p{B} <> Ki={a}p{PB} for pe BPTrec(A,'¥).

(ad vii) That we don't encounter the traditional difficulties with the expressibility of weakest preconditions in the
assertion logic comes from our choice of an infinitary assertion language. The question of expressibility is just the
question whether there exists finitary equivalents of weakest preconditions and is irrelevant for the question of
completeness! One can imagine that finitary equivalents of weakest preconditions exist if the finitary part of the
assertion logic has sufficient coding properties, corresponding to the coding properties of the natural numbers. See
beside [TZ] also Harel's analysis in [Ha] and Zucker's appendix in [dB].
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8. RELATIONS TO OTHER WORK

In this section we briefly compare our results and methods with literature on Hoare logic. Since the subject is
relatively old and well established and literature is vast, we can only hope not to have made serious omissions with
respect to the present work.

Section 2

We have taken the formalism of process algebra, i.e., atomic actions, sequential composition, non-deterministic choice
and recursion to which we have added the feature of tests, including & and €. Tests, however, are one of the traditional
features considered in the programming languages whose Hoare logics have been studied (cf. [dB]). The treatment of
recursion is notationally a bit different, but essentially the same as in [dB].

The processes in BPTjjprec(A,¥) are regular processes over AUY, in contrast to processes that are context-free over
AUY in BPTrec(A,¥) (cf. (HU] for the notions regular and context-free, [BBK] for the relation with process algebra).
The regular programs and processes are usually defined with help of the Kleene star operation (cf. the literature on
dynamic logic, e.g. [Ha), algorithmic logic e.g. [MS]) and not with regular/linear recursion as in process algebra.

The process algebra approach with tests implies the well-known fact that conditionals and while statements are features
of regular processes: the recursive specification of the while statement is linear/regular,

Dynamic logic has a variant that defines context free programs: Context-free Dynamic Logic (cf. (Ha]) which has full
recursion in a style related to process algebra.

In the school of algorithmic logic such context-free extensions seem not to have been considered (cf. [MS]).

Section 3
A first full account of infinitary logic is given by Karp (cf. [Ka]). References to literature can be found in [Kel.
The use of infinitary languages (not to be confused with proof systems for finitary languages that make use of
infinitary rules) in the field of semantics for programming languages dates back to Engeler (cf. [E]), who proves with
help of an infinitary language that a (regular) program p terminates for all inputs in some model M if and only if for
some appropriate infinitary formula ¢ the model M satisfies ¢.
Back ([Bac1] and [Bac2]) has used infinitary languages to express weakest preconditions for regular programs and to
prove soundness of their Hoare logic: "infinitary logic is the most appropriate formal system for expressing weakest
preconditions of programs and reasoning” (quote from [Bacl]).
We have used our infinitary assertion logic for the same reason for which dynamic logic (cf. [Ha]) and algorithmic
logic (cf. [MS]) have been introduced: to provide a general framework in which it is possible to express a wide variety
of notions and concepts...(cf. [Ha)).
Pratt's dynamic logic can be expressed in infinitary assertion logic as shown by Meyer and Parikh (cf. [MP]): the
language elements of infinitary assertion logic are of a more elementary character (one could make a comparison:
<models, infinitary assertion logic, dynamic logic, Hoare logic> versus <machines, machine language, assembler,
higher order language>). With help of our notation we can translate dynamic logic as follows:

(<p>B)(s) :=if there exists a (proper) state reachable from s via p , which satisfies B (cf. [Ha])

= 35" L (p(s,s)AB(s))
([PIBXs)  := every (proper) state reachable from s via p satisfies B (cf. [Ha))
= Vs'£L(p(s,s)-B(s?)

We added proper, as in dynamic logic the error/failure state 1 is not considered. By working in dynamic logic one is
syntactically not aware of the underlying infinitary assertion logic, only semantically. This translation is very similar
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to the translation of finite test dynamic logic in to the infinitary language Lffm by Meyer and Parikh (cf. [MP]), who
use the translation to show that the expressive power of some variant of Dynamic Logic is equal to Lmlm.

In a similar way algorithmic logic of Salwicki and Mirkowska (cf. [MS]) can be expressed in the infinitary assertion
language, as the essential difference of algorithmic logic and dynamic logic lies in the (infinite respectively finite)
proof rules and axioms, not in the language.

Our semantics for the assertion logic is straightforward. The semantics of the above interpretation of dynamic logic in
infinitary assertion logic is the usual semantics for dynamic logic (cf. [Ha]). Similar for the algorithmic logics (cf.
[MS]). It should be noted that the infinitary assertion logic is simple and straightforward to axiomatize, and does not
need a list of axioms concerning <p> and [p] as in dynamic logic or algorithmic logic: these axioms become derivable.

Section 4.

In [Bacl] Back gives an inductive definition of weakest preconditions for guarded commands, a class of regular
programs. In contrast we give a general definition from which Back's definition follows as lemmas (4.5) and (4.3). In
[Bac2] Back shows that non-deterministic assignments can be expressed in £, , and not in £, , .

Section 5 and 6
Axiomatization: we strive for strong completeness of Hoare logic, and base our (therefore relatively simple) proof on
the well-known strong completeness of the infinitary assertion logic (cf. [Ka]), a stronger goal then weak completeness
of algorithmic logic. Dynamic logic (cf. [Pr] and [Ha]) seems to search only for relative completeness in the context-
free case, and refers to algorithmic logic for weak completeness.
For clarity we recall the definition of these notions of completeness:
e strong completeness for Hoare logic:
n‘Hoa.reLogic{a}p{B} = DN={a}p{B} together with N={a}p(B} = Th(I)FHoareLogic{}p (B}
e weak completeness:
Th(@)HoareLogic{@} (B} < ={a}p{B} (usually Th(@) is not mentioned, but hidden as oracle rule, cf. [Ha])
e relative completeness
Th(M}HoareLogic(#}P{B} < M{a}p{B}, where Th(M) stands for the formulas true in M.

The Hoare logic for the recursion free processes is standard (cf. [A1&2]).

The infinitary induction rule is the rule the Polish school should have used if they had considered it (cf. [MS]).

Scott's induction rule is the usual one in the context of programs with procedures (cf. [dBS] and [dB]).

The Polish school of algorithmic logic proves weak completeness theorems for Hoare logic from which weak
completeness theorems for Hoare logic of bounded non-deterministic, iterative programs, cf. [MS]. Harel uses this
method to prove weak completeness for the Hoare logic corresponding to this regular programming language (cf. [Ha]).
Dynamic logic itself provides only relative (often arithmetical) completeness results for regular and context-free
programs in dynamic logic (cf. [Ha]).

De Bakker, Tucker & Zucker treat relative completeness for various deterministic programming languages ([dB], [TZ]).
For the non-deterministic case de Bakker refers to [Ha].

In [A2] Apt does not treat full recursion for Hoare logic of non-deterministic programs. He treats recursion in the form
of while statements only.

In [Bac1] Back uses infinitary logic to show that = {o} p{B} if and only if T+nf10g0t—>w(p,B) for any countable set
I of sentences in the infinitary logic Lmlm , and he proves soundness for the Hoare logic of total correctness of
guarded command programs.

In [Po] Ponse proves relative completeness for the Hoare logic of a process language that allows for linear, guarded
recursive specifications. His assertion language is finitary first order predicate logic, build with predicate symbols
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corresponding to the subsets of the underlying set of the model one proves relative completeness for. His Hoare logic
resembles the present proof system Iy but for the assertion language.

The incompleteness of Scott's induction rule with respect to BPTr..(A,'¥) seems not to have been observed before. To
our knowledge it is noticed in the context of relative completeness for the first time by Ponse (cf. [Po)).
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