A. VAN WIINGAARDEN

University of Amsterdam

MR 50

In switching theory, much attention has been paid to the analysis and
simplification of circuits and systems and to properties of networks. The
objective has been to provide network structures using rather simple com-
ponents (e.g., relays and diodes in series or parallel). In the programs for
automatic computers, similar structures are found, although on another scale.
These programs consist of sequences of statements performing certain opera-
tions and connected by transters of control into a complicated network.
Executing the statements means moving along the paths of the network and
setting conditions (assigning values to Boolean expressions to determine which
transfers shall take place, 1.e., which route to take at each node of the net).
Just as in the case of switching circuits, seemingly completely different struc-
tures may be more or less the same functionally, and the problem of simplifi-
cation arises immediately.

Of course, there is the question which of two equivalent programs is the
simplest. There will be little doubt that replacing x v ~x by true constitutes a
simplification, but in more complicated cases the answer to this question
depends on the type of logical building blocks assumed to be available.

Measuring the complexity of a switching circuit 1n diodes or relays in some
prescribed way produces a norm for comparison of different forms, although
other criteria, such as equal loading of elements, may prevail under certain
circumstances. In programs one would normally use criteria of length or
duration, although other criteria, such as generality or provision for easier
ways of checking, might be important. Or some building blocks of more
complex structure may be available at the same cost as more elementary blocks,
simply because they have already been made. Thus, availability of a five-input
AND-circuit at the same cost as two single diodes may change the optimum
form of a circuit considerably. Also, if a procedure 1s available to compute a
function of two arguments, then it may be advantageous to use that procedure,
even 1f the second argument is always zero, rather than to write a new and
simpler procedure. In the following we shall mainly use the length of the text
as the criterion for simplicity.

Of course the structure of a program 1s much more complicated than that of
a binary switching circuit, and here we can only point out some problems,
instead of giving definite rules for simplifying programs. But even a minimal
attempt such as this can be justified, because the subject 1s becoming more and
more interesting from the standpoint of automatic programming.

275

Reprinted from SWITCHIMNMG THEDORY IN SPACE
TECHNOLOGY edited by Alken and Main,
Published by Stantord University Press.

1963 by the Board of Trustees of the
Lelond Stanford Junior University,

T

276 A. VAN WIINGAARDEN

As our language for expressing the program elements, we choose ALGOL 60
[2]. The generality of its expressions permits us to deal concisely with general
situations, and guarantees absolute machine independence. Moreover, we can

give a precise meaning to some concepts that are difficult to describe in any
other way.

implification of Identities

If we take the length of the text literally as the criterion of simplicity of a
program, we can simplify many programs directly by replacing long identifiers
with short ones. This is true but so obvious that we shall assume it has been
done already, and we can then focus on those parts of the text which convey
information.

It is natural to start by investigating the simplification of Boolean expressions
that may occur in the program. These may occur as constituents of more
complicated Boolean expressions, such as the right-hand side of an assignment
statement whose left-hand side contains only Boolean variables, in an if clause,
or as actual parameters in a procedure statement or function designator. For
instance, the relation x = y might occur in x =yvy >z, b:=x=y; if
x = y then u else v; P(u, v, x =).

As long as these Boolean expressions contain only logical values, logical
operators, and identifiers of variables of type Boolean, we can apply all the
techniques that have been developed in logic or switching theory for their
simplification. When they contain relations, however, the situation demands a
more careful investigation.

Let us start with the simplest possible expression containing a relation of
that type, namely the relation x = x, and ask whether this might be simplified
by replacing it with true. This now holds true only under certain restrictions
on the meaning and interpretation of x. First of all, the truth of x = x does
not by itself imply the truth of y = y, since properties associated with the letter
x are not necessarily associated with the letter y.

Let us then describe more carefully what we want to know by asking whether
an identity, as defined by

(identity) ::= (expression 1) = (expression 1) ,

can be replaced by true. Here, as in the ALGOL 60 report [2], sequences of
characters in the bracket () represent metalinguistic variables whose values
are sequences of symbols. The extension is that of the numbered metalinguistic
variable, namely

((letterstring) — (unsigned integer)) ,

representing a metalinguistic variable, which occurs in metalinguistic formulas
and which is denoted by the same letterstring in the brackets () but without
the minus sign and the unsigned integer (under the condition, however, that
whenever in a metalinguistic formula the numbered metalinguistic variable
occurs more than once, it stands for the same [albeit arbitrary] value of the

SWITCHING AND PROGRAMMING 277

corresponding metalinguistic variable). Examples of an identity are then
X=x, y=y, x+y=x++y, read = read.

Such an identity cannot be replaced by true without more information. Con-
sider, for example, the following partial program:

begin procedure P(z); string 7; (code expressing that the basic symbols
of the string without ‘and’ are printed);

re ((7); string ¢; {code expressing that the number of
basic symbols of the string without ‘and’ is the value
of Q);

Q(‘x s x,) > 2 ther P(‘x = X

This ought to print: x = x, but if x = x were replaced by true under P, it
would print true instead, and if in addition x = x were replaced by true under
Q, 1t would print nothing at all.

Of course, when an expression occurs inside a string, it is usually not its
value but the sequence of its constituent basic symbols that is important.

Let us then describe more carefully what we want to know by asking whether
an 1dentity not occurring inside a string can be replaced by true.

This 1s certainly not the case 1in general. Indeed, if the expressions occurring
within the identity are Boolean expressions or designational expressions, the

identity 1tself 1s not an expression, since the only meaningful occurrence of the
relational operator = 1s that in a relation, defined by

(relation) .= (arithmetic expression)(relational operator)
(arithmetic expression) ,

which 1s a special case of a Boolean expression. In the cases mentioned above,
the value of the identity is therefore undefined and hence it cannot be replaced
by true without more information. Let us introduce the concept of a proper
1identity by
(proper identity) ::= (arithmetic expression —1)
= (arithmetic expression —1) .

Then we can describe more carefully what we want to know by asking whether
a proper 1dentity not occurring inside a string can be replaced by true.

This 1s not the case 1n general. One has to realize that the expression may
contain a function designator, and that in the evaluation of that function
designator a go to statement may be executed that defines 1ts successor as a
statement outside the procedure body so that the evaluation of the expression
remains unfinished forever. For instance, the partial program

begin integer k;
integer procedure x; if Xk < O then go to end else x := 1;
procedure print (t); integer t; (code expressing that the value
of t is printed); k := —1; if x = x then k£ := 1;

end: print (k)
end

ought to print —1, but if x = x were replaced by true, 1t would print 1.

278 A. VAN WIINGAARDEN

Let us call an expression evaluable 1f 1t contains no function designator
whose procedure declaration includes a go to statement leading out therefrom.
Then we can describe more carefully what we want to know by asking whether
a proper identity that does not occur inside a string and that compares two
identical evaluable expressions can be replaced by true.

Again, however, this is not the case in general. The arithmetic expression
may contain a function designator whose corresponding procedure depends for

its operation on values which are altered by its own evaluation. For instance,
the following useful procedure is of that type:

integer procedure al/tsign 1 (b); Boolean b;
begin altsign 1 :=if b then 1 else —1; b6 := ~b end .

Its value is in turn equal to 1 and to —1 1if at least the value of the actual
variable corresponding to b6 (say, B) 1s not changed between two occurrences
of its identifier. In this example the variable b 1s the cause of this abnormal
behavior, and one might think that by assessing the effect of the procedure
upon its formal parameters, one could see whether the function designator 1s
of this class. However, the variable 6 does not need to appear 1n the parameter
list at all. It may be a non-local variable, as 1n the following procedure:

integer procedure altsign 2;
begin altsign 2 : = if b then

| else —1; 6 :=~bend.

Or it may be an own local variable, as in the following:

integer procedure altsign 3;
begin own Boolean b ;
altsign 3 :=if b then 1 else —1; b := ~b

end .

If we want a sequence of results to start with 1, the sequence of occurrences
of the function designator may be preceded by B := true or 0 := true or if
altsign 3 = 1 then altsign 3.

In all these cases we might still find out what the procedure does by inspecting
its body. This would, however, present difficulty in a case like

integer procedure altsign 4; {(code)

in which the body is expressed in some non-ALGOL language, although for
its action altsign 4 might be equivalent to altsign 3.

Even if we were able to interpret the code, there might be a last source of
values upon which the value of the function designator would depend, some
outside source of information. For instance, read might be a function desig-
nator whose value is that of the next number read from a tape; this value
would of course change after each reading of the tape.

An extreme case is provided at last by the function designator random, whose
value 1s by definition unpredictable.

SWITCHING AND PROGRAMMING 279

[t 1s obvious that if these so-called function designators with side effects
occur, 1n general our identity cannot be replaced by true. It must be emphasized
that checking for the absence of side effects is often very difficult and can
sometimes only be done during run time, so that perhaps the easiest way to
find out whether or not the identity can be replaced by true is to evaluate it.
Obviously, this does not help very much.

There is, however, an important class of expressions compared by an identity
that can be replaced by true; these are to be called stable expressions, and are
all those expressions whose value does not depend on the order of evaluation,
provided they occur within one basic statement. These expressions include
numbers, logical values, simple variables, subscripted variables if the subscript
expressions are stable expressions, relations whose arithmetic expressions are
stable expressions, and all expressions that can be generated with those as
primaries, i.e., all expressions that can be generated without using a function
designator. This subset of stable expressions is easily recognizable in the text.
It 1s, however, unduly limited. We can distinguish in a procedure four cate-
gories of parameters: input parameters, output parameters, dummy parameters,
and mixed parameters.

Input parameters are those non-local identifiers, and the actual parameters
corresponding to those formal parameters, which appear only (1) in the value
list or within the procedure body as variables in the right-hand expression of
assignment statements, (2) in subscript expressions not within a function
designator, or (3) as input parameters of function designators and procedure
statements.

Output parameters are those non-local identifiers, and the actual parameters
corresponding to those formal parameters, which occur only within the pro-
cedure body in the left-hand list of assignment statements or as output param-
eters of function designators and procedure statements.

Dummy parameters are those non-local identifiers, and the actual parameters
corresponding to those formal parameters, which either do not appear in the
value list and procedure body at all or appear only as designational expressions,
procedure 1dentifiers, or dummy parameters of function designators and pro-
cedure statements.

Mixed parameters are those non-local identifiers, and the actual parameters

corresponding to those formal parameters, which do not belong to one of the
three categories mentioned above.

It the function designators in an expression have no output and no mixed
parameters, then the expression is stable. Also, if within a basic statement its
output parameters and the two sets of the input parameters and the output
parameters of itselt and all function designators contained within it, and the
mixed parameters one-by-one are disjunct, then all expressions contained with-
in it are stable. Obviously, in this order it becomes more difficult but still
possible to check whether the conditions are satisfied.

We can now define more carefully what we want to know by asking whether
a proper 1dentity that does not occur inside a string and that compares two
1dentical, evaluable, stable expressions can be replaced by true.

280 A. VAN WIINGAARDEN

There is still some difficulty in answering yes to this question. If the arith-
metic expressions in the identity are of type integer, then the answer is yes. If
they are of type real, however, it 1s a question of interpretation. Indeed the
ALGOL 60 report [2] gives the following definition of the arithmetic of real
quantities:

Numbers and variables of type real must be interpreted in the sense of
numerical analysis, i.e., as entities defined inherently with only a finite
accuracy. Similarly, the possibility of the occurrence of a finite deviation from
the mathematically defined result in any arithmetic expression is explicitly
understood. No exact arithmetic will be specified, however, and it 1s indeed
understood that different hardware representations may evaluate arithmetic
expressions differently.

First of all, we might evaluate the left-hand expression by means of some
hardware representation other than that of the right-hand side, since 1n a large
computing system one might very well take advantage of the evaluability and
stability of the expressions and evaluate them simultaneously on different com-
ponent computers, which might work with different degrees of precision. But
even if this 1s not the case, one might interpret the freedom specified above as
including the possibility that performing the same computation twice, or even
calling the same variable twice, might yield different results, or that the com-
parison of two values is an operation involving arithmetic and hence subject
to inaccuracy (possibilities that are not excluded by the wording). Actually
computation on an analog computer has these features. We might even write
a program like the following:

in x := random:
p 1 until

x = xthenj := /] + 1 end,;
1000 — j do {(computation)

The assumption 1s made that a computation is repeated a number of times
depending upon the quality of the computer used, which is determined by the

program 1itself. This program would be spoiled completely if x = x were
replaced by true.

If digital computation is understood, we have
(1) if E1 and E2 are results of two identical computations, then El1 = E2;

(11) a variable is a quantity that does not vary unless another value is assigned
to 1t.

After these preliminaries, we can state that a proper identity that does not occur
inside a string and that compares two 1dentical evaluable stable expressions of

type integer—or of type real if digital computation is assumed—can be simpli-
fied to true.

2. Simplification of Relations

Betfore we go on we shall assume, in order to avoid the same cumbersome
wording over and over again, that from now on we are dealing with expressions

SWITCHING AND PROGRAMMING 281

not occurring inside a string; that they are proper, evaluable, and stable;
and that digital arithmetic 1s understood. We shall denote arithmetic expres-
sions by el, e2, €3.

Thus far we have dealt only with the relation operator = and now we widen
our relations by introducing the operators < and >. If el = €2, can el < €2
be simplified to false ? This cannot be said without more information. Actually,
in one well-known computer system, both the relation — 0.0 = 0.0 and the
relation —0.0 < 0.0 hold. Disregarding those slips, we define as proper arith-
metic an arithmetic in which the set of real numbers—i.e., numbers of type
real or type integer—1is ordered, so that exactly one of the relations el < e2,
el = e2, el > e2 holds. This does not imply that —0.0 = 0.0, but 1t excludes
such a case as the one mentioned above. We assume the arithmetic to be
proper, and postulate the following axioms and definitions:

Al: el =el ,

A2: +el =el,

A3: (el) = el ,

Ad: el =e2 = e2 = el ,

AS: el # e2 = ~el = e2,

Ab6: el 22 = el >e2Vel <€e2,
AT7:. ~(el > e2Ael <e2),

A8: el >e2 = e2 < el ,

A9: el = e2 = ~el < e2,

AlQ: el < e2 = ~el > e2,
All: el >e2Ae2 >e3 2 el > e3.

This 1s as far as one can go without specifying the type of the expressions. One
might think, for instance, that

el =e2Ane2 >e3 2 el > e3

might hold. This is certainly not the case. Indeed there 1s no objection to an

arithmetic in which a relation like erl = eil can hold. Here the letters r or ¢

specify the type of the expression to be real or integer, respectively. For

instance, 1.00103 = 1001 and 1.00103 = 1002 could very well hold and, since

integers are dealt with exactly, certainly 1002 > 1001. One would, however,

find 1.00103 = 1002 A 1002 > 1001 = 1.0010 3> 1001 against the supposition.
Actually the formulas with one or two equals signs run as follows:

Al2: el =er2 ner2 >e3 2 el > e3,
Al3: el =er2ner2 <e3 D el <e€3,
Ald: el =er2 ner2 =er3 2 el = er3,
AlS: el >ei2 Aei2 =eid D el > eil,
Al6: el <ei2 Aei2 = eid D el < ei3,
Al7: el = ei2 Aei2 = ei3 D el = ei3.

282 A. VAN WIINGAARDEN

This system enables us to simplify relations. For instance, it x, y, z are of
type real and 7 and j of type integer, then

X <yAYy >xVy > 2z)
X <JYVAY<ZAzZz=X
but x = iAXx =jAi > jcannot be simplified.

x <Yy,
false ,

i

3. Simplification of Relations Containing Arithmetical Operations

The next step consists of introducing actual arithmetic operations. Again,
proper arithmetic is supposed to satisfy a set of axioms, some of which are

el +e2 =e2 + el ,
el >e2 2 e3 +el =Ze3 + €2,

e3 +el >e3 +e2>el >e2.
These three axioms can be used to simplity, for instance,

if x + y > y + z then (if x > z then 1 else 2)
else if x > z then 3 else 4
into
if x + y > y + z then 1 else if x > z then 3 else 4.

4. Simplification of Statements

Next we turn our attention to syntactical units of a higher level than expres-
sions, 1.e., to statements.

The separator := which is actually partly an arithmetic operator deserves
special attention. Indeed there is no reason to assume that the evaluation of
expressions of type real is performed with the same precision as that with which
the results are remembered. Usually the expressions are evaluated 1n higher
precision than that of the variables, so that the assignment usually includes a
round-off (or chopping in more primitive machines).

This means that the sequence

x:=y xz; i:=ifx =y X zthen] else 2

cannot be simplified into
X 1=y X Zz, | =].
On the contrary, i := 2 1s a much better guess.
However, proper arithmetic is supposed to include the requirement that

assignment be well defined and idempotent, so that when vl and v2 are
variables of the same type, the two axioms hold true:

Al8: vl :=v2 :=¢l 2 vl =02,
Al9: vl:=1v2 > vl =0v2.
They enable us, for 1nstance, to simplify
x:=ypy:=z Xz; [:=Iifx = ythenl else 2

into
Xi=y:=2z Xz; i:=1.

SWITCHING AND PROGRAMMING 283

At last we turn our attention to the bigger portions of a program, such as
procedures. Obviously the possible gain by simplification is greatest here, but
it seems difficult to point out any substantial recognizable points of attack.
Although something can be said about passing on parameters from one pro-
cedure to the next, which is again a somewhat simply ordered structure, really
important simplification is dealt with by mathematical rather than logical
methods. Also, the requirement of absolute equality of results may become
academic. Also, it is not obvious whether it 1s improper to treat the assignment
to the procedure identifier of a function designator inside the procedure body
like assignment to a variable, 1.e., including a possible loss of precision. In
many classical programming schemes the function designator would be handled
by means of a subroutine that included round-off. On the other hand, in the
ALGOL 60 compiler made by E. W. Dykstra and J. A. Zonneveld for the
ELECTROLOGICA X1 computer [1] the function designator does not include
the loss of precision. However, 1n neither case 1s this logically conditioned,
and one may have subroutines that compute a double-length result or modern
procedures that round off, but it does make a difference. Consider, for instance,
the following two procedures for computing the sum for k& from a to b of the
expression fk:

real procedure sum (k, a, b, fk); value b;
integer k, a, b; real fk;
real s;
s :=0; k := a;
L: if Kk =b then begin s := s + fk; kK := k 4+ 1; go to
L end;
SUm = s

iplification of Procedures

and
real

lure sum (k, a, b, fk); value a, b;
integer &, a, b; real fk;
if a < b then begin k := a; sum = fk + sum (k,a + 1,

else sum := 0.

Formally, we ought to say that the first procedure cannot be simplified into
the second one, since the arithmetic result 1s not necessarily equal. But since
this difference would presumably also be to the advantage of the second pro-
cedure, it can hardly be said to be a reasonable objection.

REFERENCES

[1] Dukstra, E. W., Ein ALGOL 60 Uebersetzer fiir die X1, Mathematik-Technik-
Wirtschaft, 1961, 8(2, 3).

[2] NAUR, P., ed., Report on the algorithmic language ALGOL 60, Numerische Mathe-
matik, 1960, 2, 106-37; Acta Polytechnica Scandinavica (Math. and Comp. Mach.
Ser. No. 5), No. 284, 1960. Comm. Assoc. Comp. Mach., 1960, 3, 299-314.

