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A Note on Bootstrapping the Local Time of the Empirical Process
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Abstract
In this note we prove that Efron’s bootstrap is asymptotically consistent in estimating the distribution of the
local time of the empirical process, provided the underlying distribution of the observations is continuous. We
employ the classical method of moments. It appears that our result is not easy to obtain from the general
theory of bootstrapping (functionals of) empirical processes.

1. INTRODUCTION AND MAIN RESULT

Let X, X3,... be independent random variables, defined on a single probability space (12,.4, P),
with common distribution function (df)F on the real line. Let F,, denote the empirical df based on
X1y, Xn; e, Fp(z) = n718%, I(X; < 2),—00 < = < co. Conditionally given X,,..., X, let

Xt,..., X denote a random sample of size n, drawn from F,,. Let F; denote the empirical df based
on X{,...,X. Define the empirical process
Un(z) = n% (Fo(z) — F(z)), —00 < 7 < 00 (1.1)

and the bootstrapped empirical process
Un(z) = n¥ (Fi(z) = Fa(2)), ~00 <z < 00 (1.2)

It is well-known that U, 2 B(F) (cf. Billingsley [2]) in the space (D,d), and, in addition, that
Uy - B(F), with P-probability 1 (i.e., for almost all sequences X, X, ...) (cf. Bickel and Freedman
[1]). Here B denotes the Brownian bridge process, and ?indicates convergence in distribution. A
beautiful and farreaching extension of this result was obtained by Giné and Zinn [4].

The local time of U, at zero up to ‘time’ zp = sup{z : F(z) < 1} is given by

LY, (Un) =n"% 3" I1)(Un(x)) (1.3)

z<zp

Note that, if F' is strictly increasing, then L?,F(Un) is nothing but n~% times the number of zero-
crossings of the Up-process. If U,(z) happens to be zero for all z, which belong to a ‘flat part’ of F,
then we simply count this as a single zero crossing. It is well-known that L‘;F(Un) is distributionfree
when F'is continuous. In this case, we may as well take F equal to the uniform df on (0, 1) and write
LY(U,) for the local time of the uniform empirical process.
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1t is already known for more than 30 years (cf. Dwass [3]) that,
lim P(LO(U,) <z)=1-€"%* 23>0 (1.4)

i.e. the local time of the uniform empirical process possesses asymptotically (n — oo) a Rayleigh
distribution. Dwass [3] proved (1.4) by showing that all the moments of LI(U,) converges to those
of the Rayleigh distribution. Because the Rayleigh distribution is determined by its moments, this of
course yields (1.4). At this point one should note that the limiting df in (1.4) can be identified with
the df of the local time L{(B) of a Brownian bridge process B. In fact Révész [6] has shown that,
with P-probability 1, LI(B) is properly defined by:

: <
LY(B) = lim Ms:0<s<1,|B(s)| < €}
€0 2¢

(1.5)

where A denotes Lebesgue measure on (0,1). In addition, Révész [6] also showed that, on a suitable
probability space (Q, A, P), there exists a sequence of Brownian bridges {Bn}n>1, and a sequence of
uniform empirical processes {Un}n>1, such that, for any € > 0,

|L3(Un) — LY(Bn)| = O(n~1+9) (1.6)

as n — o0, as. [P).
As a simple consequence of all this the assertion (1.4) can now be replaced by

L8(U) - L3(B) (1.7)

This fact was also recognized by Khoshnevisan [5], who gave ‘process versions’ of (1.6) and (1.7). At
the same time Khoshnevisan [5] was able to sharpen the a.s. order bound O(n~%+¢) of Révész (cf.
(1.6)) slightly to o(n=% log n§+‘), for any € > 0.

The aim of this note is to investigate whether LI(U,) can be bootstrapped. L.e. we want to know
whether L?(U;)—‘!—L?(B), with P-probability 1, as n — co? Our interest in this question comes from the
fact that LI(-) viewed as function of the uniform empirical process and of the Brownian bridge process
is not at all continuous. So it appears that our problem cannot be settled easily by an application of an
‘extended continuous mapping’ theorem. Neither finding a suitable ‘strong approximation’ argument,
like the one (cf. (1.6)) leading to (1.7), seems to be an easy task to perform. However, a direct
approach - quite in the spirit of Dwass’s 1961- paper - turns out to be feasible for the problem at
hand. We shall in fact apply the classical method of moments to prove the following result:

THEOREM 1. As n — oo, we have with P-probability 1, that
LYU;) - L(B) (1.8)

We refer to Shorack and Wellner (7], p. 398-400 for a short introduction to local time for empirical
processes and to Wellner [9] for an excellent recent survey on bootstrapping empirical processes.

2. ProOF OF THEOREM 1. To establish (1.8) we employ the method of moments; i.e. we shall prove
that, with P-probability 1,
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Jim EL(LYUN) =2i0(] +1) 21

for any fixed positive integer r. Here EZ of course denotes conditional expectation wor ot the hootstrap
resampling. Note that the expression on the r hs. of (2.1 s precisely equal to the rth moment of
LY(B). The following simple identity (cf. Titchmarsh 8], p. 63, example 18) will facilitate our
computations: If a > 0,3 > 0, then

v )
/ (y — Z)a-‘l(: _ I)‘j"ld: _ I‘(n)I’(J)(y _ I’)““*i"

= 29

e+ 3) (2.2)

Let Xi., < ... < X,., denote the order statistics corresponding to X;.. .. X, Because F is the

uniform df on (0,1) there are - with P— probability 1 - no ties among the X; ,, and Fou(Xen) = %
for k=1,...,n. Set Xy., = 0.

First we verify (2.1) for r = 1,2 and 3. Subsequently we shall treat (2.1) for general r. To begin with
the case r = 1 we note that, with P— probability 1,

LU = N e k
EZLAUY) =n "8 Y ELI(F(Xin) = o)
k=0
—1 - ./ o k
=78y PHF(Xkn) = )
k=0 n
= "'% - n k - k n—k
= (1) (2) -
k=0
n—1 4
i1 k k]2
~(27)"In Z[n(l—;)]
k=1
"“(27")_%/1‘"—1(1(1—.r))“ﬂld:r~ (1)’5 (2.3)
n-1 2 .

Here we have used Stirling’s formula and the well-known fact that fol(.r(l ) ddr =1 (a special
case of (2.2)).

Next we compute the second moment of L(U?) in a similar fashion:

EL(LY(U))? =
=n! Z > Er(I(Fi(Xkn) = S) A(F}N(Xpa) = %))

n n k l
— -l (Y _k vy b
=n7t >0 D PN (Xkn) = ~ AF(X1n) = -)
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s & ! koo d—kop . Lo
~oamTt S S k!(z_k;(n—k)!(ﬁ)k(—n_)l EC

k=1 l=k+1

n—1 n-1

~rTtn Ty N [5(’;—’”(1—7’—1)]_%

k=1 l=k+1

1 1

1-n~ 1-n"
vt [ e [ e a- g e

1—n~
= / z7idz ~ 2 (2.4)

where we have applied identity (2.2), with o = 8 = 1, to find that f:—n—l (y—z)" (1 —y)"idy ~,
as n — oo.

The computation of the higher moments of LY(U) is somewhat more involved. Let us first look at
the case r = 3:

EL(LYU)* =

=n S S Y B (Xin) = 2) A (S (Xin) = ) ATFE (Xin) = )

n n

k=0 l=0 m=0
S B Ke) = E A B () = S A F () = ™)
- n\in kin —_TL n lin _TL n m:n) — n
k=0 (=0 m=0
e - n! ko dl—kg_pom—=1_, Mo
Y D Y mrmm o hi i) ) T =)
k=1l=k+1 m=I+1

n—-1 n—-1 n-1

~3rtrhs Y YOY B0 By~

k=11=k+1 m=1+1 "

o

1-n" 1-n~t! 1—-n"
~3‘2"§7r_%/ z_%(y—z)_ (z—y)"%(l—z)_%dzdydz

1-n
=s.2—%w-%/ 23 (1= 2)bdz ~3- 274 x} (2.5)
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where we have applied (2.2) once more, now with o = %,[3 = % Note that the asymptotic values

(-’25)% ,2and 3-27 %7} obtained for lin;oE'(L?(U,:))’ for r = 1,2, 3 respectively, indeed coincide with
n

the r.h.s. of (2.1).

It remains to check (2.1) for r > 4. To do this, note that - similarly as in the case r = 3 - one easily
deduces that

EL(LIUR)) ~

. 1—-n 1-n~
~7rl(2r)7 % / /
n-1! x

1-n"?t 1-n"! T
-1
/ f zl2(:1:2—xl)_%...(m,—mr_l)_%(l—z,)_%nd:ti

i=1
. 1~ 1-n"1t 1-n~ . lr—2

~r! (271' _5+1/ / / 2:2—331) 3 . .(:l:.,-_.z —wr_3)~2(1—$,._2)2 Hd:c,‘
n-?t i=1
. 1-n~ 1-n~! 1-n~ N r—3

~ ! 2”51r_2+2/ / / (z2 — 1)~ H ...(z,,3—zr_4)'2(l—x,_g)Hdzi

i=]

N (£ 500 1n” ;
~rl 27T TR A z, Mz —z1) 2. (L= 2ryq) ]:[da:1
F(E) n=}

1 2-E 552 LT@ THITE) _._P(%)F(g) _
NOENYE) r(=)
rl2= 5k T
- F(ﬁ?tl) -22F(§+1)

where we have used the well-known ‘duplication formula’ for the I-function (cf., e.g., Titchmarsh [8],
p. 57) in the last line. O
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