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Abstract 

In this note we prove that Efron's bootstrap is asymptotically consistent in estimating the distribution of the 

local time of the empirical process, provided the underlying distribution of the observations is continuous. We 

employ the classical method of moments. It appears that our result is not easy to obtain from the general 
theory of bootstrapping (functionals of) empirical processes. 

l. INTRODUCTION AND MAIN RESULT 

Let X 1 , X2, ... be independent random variables, defined on a single probability space (n, A, P), 
with common distribution function (dj)F on the real line. Let Fn denote the empirical df based on 
X1, ... ,Xn; i.e. Fn(x) = n- 1 z::7= 1 l(X;:::; x),-oo < x < oo. Conditionally given X 1 , .•. ,Xn, let 
Xi, ... , X~ denote a random sample of size n, drawn from Fn. Let F~ denote the empirical dj based 
on Xi, ... , X~. Define the empirical process 

Un(x) = n~(Fn(x) - F(x)), -oo < x < 00 (1.1) 

and the bootstrapped empirical process 

U~(x) = nt(F~(x) - Fn(x)), -oo < x < oo ( 1.2) 

It is well-known that Un 7 B(F) (cf. Billingsley [2]) in the space (D,d), and, in addition, that 
U~ 7 B(F), with P-probability 1 (i.e., for almost all sequences X 1,X2, ... ) (cf. Bickel and Freedman 
[1]). Here B denotes the Brownian bridge process, and 7indicates convergence in distribution. A 
beautiful and farreaching extension of this result was obtained by Gine and Zinn [4]. 

The local time of Un at zero up to 'time' XF = sup{x: F(x) < 1} is given by 

L~F(Un) = n-t I: J{o}(Un(x)) (1.3) 
x:SxF 

Note that, if F is strictly increasing, then L~,.(Un) is nothing but n-t times the number of zero
crossings of the Un-process. If Un(x) happens to be zero for all x, which belong to a 'flat part' of F, 
then we simply count this as a single zero crossing. It is well-known that L~F(Un) is distributionfree 
when Fis continuous. In this case, we may as well take F equal to the uniform df on (0, 1) and write 
L?(Un) for the local time of the uniform empirical process. 
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It is already known for more than 30 years (cf. Dwass [3]) that, 

lim P(L?(Un) :::; x) = 1 - e-tz2
, x ~ 0 n-= (1.4) 

i.e. the local time of the uniform empirical process possesses asymptotically (n -> oo) a Rayleigh 
distribution. Dwass [3] proved (1.4) by showing that all the moments of LY(Un) converges to those 
of the Rayleigh distribution. Because the Rayleigh distribution is determined by its moments, this of 
course yields (1.4). At this point one should note that the limiting df in (1.4) can be identified with 
the df of the local time LY(B) of a Brownian bridge process B. In fact Revesz [6] has shown that, 
with ?-probability 1, LY(B) is properly defined by: 

L?(B) = lim ,\{s: 0 < s < 1, IB(s)I:::; <} 
•-o 2c 

(1.5) 

where,\ denotes Lebesgue measure on (0, 1). In addition, Revesz [6] also showed that, on a suitable 
probability space (!\A, P), there exists a sequence of Brownian bridges {Bn}n;::1, and a sequence of 
uniform empirical processes {Un}n;::1, such that, for any c > 0, 

(1.6) 

as n--+ oo, a.s. [fa]. 
As a simple consequence of all this the assertion (1.4) can now be replaced by 

(1. 7) 

This fact was also recognized by Khoshnevisan [5], who gave 'process versions' of (1.6) and (1.7). At 
the same time Khoshnevisan [5] was able to sharpen the a.s. order bound O(n-H') of Revesz (cf. 
(1.6)) slightly to o(n-t lognH•), for any c > 0. 

The aim of this note is to investigate whether LY(Un) can be bootstrapped. I.e. we want to know 
whether L?(U~)-;f?(B), with ?-probability 1, as n--+ oo? Our interest in this question comes from the 

fact that LY ( ·) viewed as function of the uniform empirical process and of the Brownian bridge process 
is not at all continuous. So it appears that our problem cannot be settled easily by an application of an 
'extended continuous mapping' theorem. Neither finding a suitable 'strong approximation' argument, 
like the one (cf. (1.6)) leading to (1.7), seems to be an easy task to perform. However, a direct 
approach - quite in the spirit of Dwass's 1961- paper - turns out to be feasible for the problem at 
hand. We shall in fact apply the classical method of moments to prove the following result: 

THEOREM 1. As n --+ oo, we have with ?-probability 1, that 

(1.8) 

We refer to Shorack and Wellner [7], p. 398-400 for a short introduction to local time for empirical 
processes and to Wellner [9] for an excellent recent survey on bootstrapping empirical processes. 

2. PROOF OF THEOREM 1. To establish (1.8) we employ the method of moments; i.e. we shall prove 
that, with ?-probability 1, 
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for any fixed pusitivP integer r. HPrt' E~ of .:i1ur~•· dt·au:i·~ ,-~ 
resampling. Note that tlw expression on th" r lt.' 
L?(B). The following simpl•• id<·ntit} Id TitcLmars!: 
computations: If o > 0. 3 > 0, then 

l y <>-I J-1 f(n)I'(.i! 
. (y- z) (: - .r) dz = --·-w 

, f(o+.ll 

Let X1·n < ... < Xn·n denote the order statistic,; rorr<'sp011ding t.1 .\,. .X" Ben'11'<' F ;, !h" 
uniform df on (O. l) there are - with P- probability l - nn ti1•s amung tb· X," and F;,(.\"k I ~ ~
fork= 1, . .. ,n. Set X 0"' = 0. 

First we verify (2.1) for r = 1.2 and 3. Subsc•4u•,ntly ''°"shall treat 12.li f.,r !(<'ll<'r•d r T,-, lwgrn \\ith 
the case r = 1 we note that, with P- probabilit!· L 

111·-n-• l (Jr)t ~(27r)-, (x(l-.rW'dx~ -
n-1 2 

(2.3) 

Here we have used Stirling's formula and the well-known fact that J~1 (.r(I - .r)l· ~d; = 7r (a special 
case of (2.2)). 

Next we compute the second moment of L?(C,:l in a similar fashiou: 

k=O l=O 



298 R. Helmers 

-1 -2~ ~ [k(l-k)( l)]-t ~ 7r n L., L., --- 1 - -
n n n 

k=l l=k+l 

(2.4) 

where we have applied identity (2.2), with a= f3 =~,to find that J:-n-' (y-x)-t(I-y)-tdy ~ 7r, 

as n-+ oo. 

The computation of the higher moments of L~(U~) is somewhat more involved. Let us first look at 
the case r = 3: 

n-1 n-1 n-1 k l - k m - l m 
~ 3. rt'lr-!n- 3 L L L [-(-)(-)(1- -wt~ 

n n n n 
k=l l=k+I m=l+l 

l-n- 1 

6 2-l _l 1 _l(l )ld 3 2-l l = . 27r 2 x 2 - x 'l x......, . 21[2 

n-1 
(2.5) 
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where we have applied (2.2) once more, now with°' = ~,.6 = ~· Note that the asymptotic values 
( f)}, 2 and 3 · 2-t 7rt obtained for lim E* (L~ (U~)t for r = l, 2, 3 respectively, indeed coincide with 

n-oo 
the r.h.s. of (2.1). 

It remains to check ( 2.1) for r 2'.: 4. To do this, note that - similarly as in the case r = 3 - one easily 
deduces that 

1-n-l 1-n- 1 1-n- 1 r-2 

~ r! (27r)-I+l j_, 1 . ·· 1 x;t(x2 - x1)-t ... (xr-2 - Xr-3)-t(l - Xr-2)! IT dx; 
n X1 Xr-3 i:::::l 

l-n- 1 l-n- 1 1-n- 1 r-3 

~r!T¥7r-¥+2 { 1 ... { x;t(x2-xi)-t ... (xr_3-xr_ 4 )-i(I-xr-3)IIdx; ln- 1 x1 }Xr-4 i:::::l 

• • r(l)r(2) 11-n- 1 11-n- 1 _l r-4 
I 2- - - - +2 2 ' ( )- l ( 1 ) '- II d ~r. 2 7r ' (§.) ... X1 X2 -x1 2 ... -Xr-4 2 Xi 

r 2 n.-l Xr-5 i::::l 

where we have used the well-known 'duplication formula' for the r-function ( cf., e.g., Titchrnarsh [8], 
p. 57) in the last line. D 
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