

Cwi BIBLIOTHEEK

i

3 0054 00062 7639

|

‘ |
H

[
L

E. o =)
LRI O |
LN EN & L-%5dt
1 &

-

.'i. " ..H ¢ o
e TS

47
LA

CWI
Amsterdam, 1996

kditor: joﬁhn P
Cover: Tobias Baanders
Layout: Jaap-Henk Hoepman

Printing & binding: CWI, Amsterdam

Little did I suspect, when volunteering to take on the role of editor of this
Liber Amicorum celebrating Paul Vitanyi's .012 century (that's 25 years for
the binary challenged) employment at the CWI, how refreshing it is to have 26
co-authors contribute to the compilation of no less than 144 pages in a matter
of weeks. My prior ‘editorial’ experience, which is limited to the writing of my
thesis, supervised by none other than Paul, brings back memories of quite a
bit more perspiration.

Paul makes a grateful subject of such a volume, being an prolific, inspiring
scientist as well as a colorful character in everyday life.

The title is stolen literally from a psychological report aimed at helping
Paul choose among the different types of high school available in Holland. It
mentions “ ... een dynamisch en snelwerkend intellect” in addition to some
less flattery remarks best omited here (I have it on good authority that poking
fun at the subject is OK:-)

The photos in this Liber show the many faces of Paul through the vears,
while the last page features a photo of his parents.

Many people have helped to make this Liber see the light of day. I would

like to extend my gratitude to all contributing authors, to Jaap-Henk Hoepman

for the slick layout, to Peter van Emde Boas for generously contributing a
Foreword as well as access to his large photo collection, to Tobias Baanders

for the cover design, to Jan Schipper for the timely printing, and to Paul’s
loving wife, Pauline van de Ven, for the colorful aguarelle much of whose

beauty unfortunately went lost in the transformation to a greyscale image.

Also a big thanks to the CWI for making this all possible.
Finally, no thanks to fileserver ‘zeus’ which insisted on a few dozen

annoyingly slow reboots during the course of editing.

John Tromp, October 1996

Paul Vitanyi at the CWI for 25 years. The most surprising part of this message
is obtained by extending its linguistic form: After 25 vyears, Paul Vitanyi is
still working at the CWI. Given the fact that CWI is the well known breeding

_ Paul did go somewhere else in the mean time. He obtained a

professorate at the University of Amsterdam when that institute decided that
that was the appropriate way of both providing Paul with the Ius Promovendi
he would need eventually, and the University with the enhanced prestige by
having this internationally renowned Computer Scientist on its Faculty. Had
he really wanted, he could easily have become full professor, either abroad or
in the Netherlands, but why bother and subject yourself to the inconvenient

aspects of this job like teaching basic material and administrative junk? He

be a researcher in the first place.
With Jan van Leeuwen and Peter van Emde Boas, Paul is one of the founders
of Al s and Complexity in the Netherlands. From these three founders,

\lgorithn
Paul in some sense kept closest to this topic. He was also given the right

sooner
ssorate u

or f@

£
2
2y
bt
-
gy
At

%

. ; E;!E;-..z e -] J
.:i ' ! -% . 3 :r'
| ui-;.. N " - |

. byad things would
ng other than theorems (needless to state
p position in the
- - to dmsoive the existing peer evaluation

her regards Paul represents the professor from a past
d shows it, knowing more about Dutch history and
; He drives a car thi

ough Amsterdam at a time
He 1S notorious
his interaction with lower University administrators, particular ly to those
which either fail to provide him the required services (like an entry pass to
' King garage) or have the bad taste of bringing him the bad news that
wants can’'t be done under the administrative rules. His office is
ith huge piles of papers and manuscripts. His bookshelves hardly
how more order; below these papers there must be a treasure of unpublished
results u manuscripts like the book on counting. For years he has lived
ight in the Cemer of Amsterdam on one of the canals, accepting the risk
Is visitors (and occasionally he himself) get mugged by the omnipresent

Ch 18 OWH g
| seems to have become crazy. Both qualities seem to indicate that
even when everything else (including those who have been so

another 25 years of health, interaction with fine colleagues and marvelous
results.

Grzegorz Rozenberg

rieliooo Boys

PaY s - | e Neve I‘-E NG 1n .
bsolete? Peter van Emde Boas

Harry Buhrman, Peter Griinwald, Jaap-Henk Hoepman,

Barbara Terhal, John Tromp

Abstrac ti N ana

Jan van Eijck
omplexity Anton Eliéns

d Bags Kai Engelhardt , Willem-Paul de Roever

Frederic Gruau
and 2 by 2 Squares Evangelos Kranakis
n Automobile Leslie Lamport

81 On the Effectiveness of Search Engines Jan van Leeuwen

97 A new lower boun he period of 3x+1 cycles Lambert Meertens

109 A Contribution to th mputational Th eory o f B g Game Huntin
Steven Pemberton

113 Beste Paul Herman te Riele

115 For Paul Vitanyi Carl Smith

117 As simple as possible, but no simpler John Tromp

127 Husband Dreaming Pauline van de Ven

129 Don’t even dare to think, let alone say, anything about A Woman’s Logic
Vladimir Uspensky

I think I met Paul for the first time on Friday, September 8, 1975. Namely,
I joined the Mathematical Centre on September 1, 1975 and got a desk in
a room on the second floor. Another person in the room was Jophien van
Waalen. The third desk belonged to Paul who was at that time on vacation.
Paul returned to work one week later and after brief introductions we started
exchanging puzzles. As we were brought up in different parts of Europe, we
happened to know mostly different ones. So not surprisingly, the day quickly
passed before we concluded the exchange.

One of the puzzles Paul told me then was: divide a square into eight acute
triangles. I recall spending part of the next day, Saturday, trying to solve the
puzzle. On Monday I proudly presented the solution to Paul.

Two years later, in 1977, I met Michael Rabin at a conference in Aalborg
in Denmark. During the concert we were sitting next to each other and I told
him this puzzle. A vear later, or so, I met Rabin at another conference. As
soon as he noticed me in a crowd, he rushed towards me and after a brief
“Hello” told me that not only he quickly solved this puzzle, but also his wife,

]

who is a lawyer.
Some ten years later, while working in Austin, Texas, I suggested to solve

the above puzzle to Edsger W. Dijkstra. I guess it must have been on Monday,
because a day later Edsger emerged in my office informing me in his usual

solemn voice that “we solved this puzzle during our afternoon club”. I am

not sure, but think that at the same time an invitation to join the “Tuesday

Afternoon Club” was extended to me.

During the 1989-1990 academic year Paul visited me in Austin (for the
second time in three years ...) and gave a survey talk on Kolmogorov Com-
plexity. During the talk he mentioned the following problem due to John von
Neumann: implement a fair coin using a biased coin. Among those present
in the audience was Dijkstra. Soon after Paul’s talk Dijkstra presented to him
a solution. This problem intrigued Dijkstra so much that shortly after Paul’s
visit he wrote a note entitled “Making a fair roulette from a possibly biased
coin”, eventually published in Information Processing Letters, 36(4), page 193,
1990.

The association with Austin brings me to the following puzzle which I
believe I have invented myself but for some reason forgot to pose to Paul. To
test the knowledge of first-order logic I used to ask the students in Austin the
following problem during an exam: “Is infertility hereditary”? Somehow this
problem always led to heated discussions, so I started to pose it also to my
colleagues. The most brilliant answer was given to me by the logician Andreas
Blass from Ann Arbor University in Michigan. He immediately replied: “It
depends. If heredity means that some child inherits the property, then the
answer is “No”, but if it means that all children inherit the property, then the
answer is “Yes”.”

Sometime during 1976 Professor Igarashi from Japan visited the Mathemat-
ical Centre and Paul and I went out for a drink with him. During the evening,
after yet another round of beers, we started discussing the puzzles about the
muddy children and about forty unfaithful wives. Somehow, the discussion
turned into the topic of how to reason formally about such puzzles. None of
us pursued the topic but we all felt that it should be possible.

Ten years later both Paul and myself witnessed the meteoric rise of the
theory of knowledge, initiated by Daniel Lehman, Joe Halpern and others.
The theory was developed precisely in order to reason formally about such
puzzles and quickly turned out to be useful for reasoning about distributed

Z

processes and network protocols, as well. Since then hundreds of papers on
this subject were written and recently a book has appeared (R. Fagin et al.,
Reasoning about Knowledge, The MIT Press, 1995). A couple of years ago Paul
and myself wondered how shortsighted we were that we did not pursue this
topic in 1976.

Paul is often puzzled why I don’t work on more interesting topics like, say,
Kolmogorov Complexity. So let me explain the flavour of the problems I
study by means of a ... puzzle. Our goal is to analyze in detail the following
well-known crypt-arithmetic problem.

Replace different letters by different digits, so that

SEND
+ MORE

forms a correct sum.

As immediately noticed by Olga Troelstra, M has to be 1, so S has to be 8
or 9. Continuing along these lines we can actually conclude that S has to be
in fact 9 etc.

But does there exist some more systematic way of analyzing such puzzles?
The answer is yes, by means of constraint propagation.

By a linear expression we mean a term of the form

a1x1 + ...+ a.nx;q + a-n 1

where n = O, a;,...,an are non-zero integers, xi,...,x, are different
variables and a, .1 is an integer.

By an inequality constraint we mean a formula of the form

s <t

here s and t are linear expressions and by an equality constraint we 1mearn a
formula of the form

Further, we call x = 7, for variables x, v, an inequation constraint. By an
interval we mean an expression of the form

la..b]

where a and b are integers. [a..b] denotes the set of all integers between 4
and b. Finally, by a range we mean an expression of the form

x €1

where x is a variable and I is an interval. Given the interval [a..b], we
abbreviate x € [a..b]tox =a if a = b and to false if a > b.
We introduce here propagation rules of the form

constraint,ranges,
ranges,

where constraint is a constraint which involves wn variables, ranges; is a

sequence of n ranges, each involving a different variable of constraint and

similarly for ranges,.

Such a rule is called sound if for all integer values of the involved variables,
the truth of the constraint and the ranges in its premise implies the truth
of the ranges in its conclusion. So a rule is sound if each solution of the
constraint in the premise that satisfies the ranges in the premise also satisfies
the ranges in the conclusion. Informally, a rule is sound if the replacement of

the old ranges by the new ones does not lead to the loss of any solution. For
example, the rule

x = 3,x €0..5]
x € [0..3]

4

us is that the rule

s sounda.

3x -5y =4, x € [0.9],yv € [1..8]

b ek AL oY
AR AT Y - T T

x € [3.8],¥ €[1.4]

h inequ &E_“Y constraint can be equwaﬁenﬂ y written in the form

Soaix;i— > aix;<b (3.1)

L Los
1€ POS 1€ NEG

where a; is a positive integer for i € POS U NEG and b is an integer. Assume
v the ranges

X & izi..}li]

for i € POS U NEG.
Choose now some j € POS. Rewriting (3.1) as

“@A;jX; = b — Z Ai X+ Z aiXi

1€ POS—1{ 7} 1€ NEG

and by subsequently computing the maximum of the expression on the

hand side w.r.t. the ranges of the involved variables we get

Xj = (Xj

b= 2icpos-yji aili + 2iene Aihi
ﬁxj S . Ci') ,
]

S0, since the variables assume integer values,

Xj=|logl.

We conclude that
Xj & [lj..min(hj, [O(,J)]

By symmetry we get analogous conditions for x j with j € NEG. This
brings us to the following propagation rule for Inequality constraints

2.ieP0s AiXi ~ 2ieNEG AiXi S b, X1 € [l h1],... , xn € [ln..hy]

x1 € [11..h,], ..., xn € [l h]

(3.2)

where for j € POS
=1, h',

and for j € NEG

L

l; = max(l;,[Bj1), h; = h;.

with

(see E. Davis, “Constraint Propagation with Interval Labels”, Artificial Intelli-
gence 32(2), pp. 281-331, 1987.

5

By combining the corresponding propagation rules for these two inequality

constraints we obtain the following propagation rule for an equality con-
straint.

x1 € [11..h],...,xn € [Ln.. l,]

2.ieP0S AiXi — 2.ieNEG AiXi = D, x1 € [Li..hy],... , Xn € [ln..hy]

(3.3)
where for j € POS

Ui =max(L;,[y;1), h' =min(h;, | «;))

b o E..!t;p()ﬁ*— !i d hf + T H """"" Ng(r i‘z!l

angd

e
) 4y dj

" = max(;,[B;), h, = min(h;,|15;])

2

—b + Yicpos aili = Zieneg -1y Aili
A j '

xample of the use of the above constraint propagation rule recon-

sider he constraint 3x — 5y = 4 with the ranges x € [0..9] and v € [1..8].
ghtforward calculation shows that x € [3..9], v € [1..4] is the con-

ion of rule (3 3} Another apphcaﬂon of the rule vyields x € [3..8] and
1..4] upon which the process stabilizes. In fact, both x = 3,y = 1 and
8, v = 4 are bomnons of the equauon 3x — 5y =4, so the ranges cannot

X#*y, xela.bl,y=a
xela+1. b]

x;«:v.,xe[a b]v b
xe€la.b-1]

nd similarly with x = v replaced by vy + x.

Recall that ¥ = a is a shorthand for v € [a..a]. In the above rules we
opped v = a (respectively y = b) from their conclusions. It is clear that

> rules are sound.

N

Formally, this puzzle calls for a solution of the equality constraint

10008 + 100E + 10N + D + 1000M + 1000 + 10R + E
= 10000M + 10000 + 10ON + 10E + Y

and 28 inequation constraints x = y for x,y € {S,E,N,D,M,O,R, Y} with,
say, x preceding v in the alphabetic ordering, with the range [1..9] for § and
M and the range [0..9] for the other variables.

By rewriting the above equality as

9000M + 9000 + 9ON +Y — (Q1E+ D + 1000S + 10R) =0

and applying the propagation rule (3.3) with the ranges as given above we
obtain the following sequence of new ranges:

§=9,E€[0.9],Ne€[0.9],De[0.9],M=1,0€[0..1],R €[0..9],Y € [0..9].

At this stage a repeated use of the same rule yields no new outcome. However,
by virtue of the fact that M = 1 we can now apply the propagation rule for the
Inequation constraint M = O to conclude that O = 0. Using now the facts that
M=1,0=0,5 =9, the propagation rules for disequalities can be repeatedly

applied to shrink the ranges of the other variables. This yields the following
new sequence of ranges:

S5=9,E€[2.8],Ne€[2.8],De[2.8],M=1,0=0,Re[2..8],Y € [2..8].

Now five successive iterations of rule (3.3) yield the following sequences of
shrinking ranges of E and N with other ranges unchanged:

Ee[2.7],N € [3.8],

Ee[3..7],N € [3..8],

Ee[3..7],N € [4..8],
Ee€l[4..7],N € [4..8],
Eel4..7],N € [5..8]

upon which the constraint propagation process stabilizes. In particular, the
inequation propagation rules are not applicable either.

So using the constraint propagation rules we reduced the original ranges
t{o

S$=9,Ee€|[4.7],Ne[5.8],De€[2.8],M=1,0=0,R[2.8],Y €[2.8].

From now backtracking, again coupled with a constraint propagation,
yields effortlessly the following unique solution:

S=9,E=5N=6,D=7M=1,0=0,R=8,Y = 2.
All this looks like an elaborate procedure, but in constraint logic pro-

gramming languages, like CHIP or ECLIPSE this algorithmic behaviour can be
achieved by the following, almost self-explanatory program:

- 11b(fd).

send(List) : -
List = [S,E,N,D,M,0,R,Y],
List :: 0..9,
alldistinct(List), % a built-in that generates
% the i1nequality constraints
1000*S + 100*E + 10*N + D +
1000*M + 100*0 + 10*R + E
#= 10000*M + 1000%0 + 100*N + 10*E + Y,
M ## O,
S ## 0,

labeling(List). % a built-in that generates the successive
% possible values for all variables in List.

@

Another problem Paul and I discussed in those early days was the following
one. Suppose that you solved a famous problem, say Fermat’'s Last Theorem
and want to keep it secret but still want to have a proof that you solved the
problem before a given date (for example, earlier than another scientist who
eventually publishes the solution). First we wanted to use as the only means
a stamp machine at a post office by means of which you can put a time stamp
on your piece of paper. But then there is no satisfactory solution — it suffice g
to go to a post office, put a time stamp on a blank sheet of paper and then to
write the relevant proof on this sheet of paper any time later.

But with the additional help of a copying machine there is a satisfactory
solution. Can you see why? We assume here that there is a way to distinguish
between an original and a photocopy and also that there is a way to certify
that a photocopy is indeed a copy of the original (for example, by using
handwriting).

First note that the following scheme does not work: you write your solution
down, then go to the post office, time stamp it, and then photocopy it. Indeed ,
you can again go to the post office with a blank sheet of paper and time stamp
it. Several years later you impudently copy the proof from a journal onto this
sheet of paper, photocopy it and subsequently claim that this is your proof
written down several years ago.

The right solution is: you write your solution down, photocopy it and the #1
you put a stamp on the original. Namely, this proves that you put the stamp
after you photocopied the original (the photocopy shows no trace of a time
stamp), and you photocopied the original after you wrote your proof. So thhe
proof was written before the date of the time stamp.

Again, we did not pursue the matter how to formalize these arguments.
Paul, perhaps after all we should?

From July 1978 till the summer of 1980 Paul Vitanyi and I shared an office at
Mathematical Centre (former name of C.W.1.), located at Tweede Boerhaave-
straat 49 in the Oosterpark-neighborhood of Amsterdam. A couple of weeks
after I arrived, Paul and I moved together with Arie de Bruin to a freshly
painted room which happened to be the half of a former class room, like
many offices in that old school building, separated from its companion by a
rather thin wall. Without difficulty or any intention we could hear at least 50%
of our neighbors’ conversations as they could from ours. And the view from
our room was something special too: a 19th century part of the former Amstel
brewery which happened to be of too little interest to industrial archaeology
in order to survive in later days.

Another well-known feature of the old Mathematical Centre was its library:

famous for its outstanding collection of books, journals and reports on

U Department of Computer Science, Twente University of Technology, P.O. Box 217, 7500
AE Enschede, the Netherlands (infprja@cs.utwente.nl)

I

mathematics and computer science, and remarkable for the dishes of rat
poison on the floors, inviting the nightly intruders to commit suicide rather
than nibbling at the precious volumes.

In 1978 both Paul and I finished our Ph.D. work on parallel rewriting,
although our theses have very little in common; cf. [1, 7]. But we both
had the intention to change our subject into the direction of computational
complexity: a subject in which Paul achieved much more than I did; see e.g.

(4], which also gives me the opportunity to turn to a more serious matter that
is related to the title of this note.

As we all know from [4], Kolmogorov complexity deals with short and efficient
descriptions of objects, e.g., descriptions of strings over the alphabet {0, 1}.
But in some cases there is a long, involved way to go before we arrive at the
object to be described even in a context that looks anything but complex.

To be more precise, we will show in this note that it is possible to describe
a very simple object (viz. the empty string) by means of a simple method (viz.
a well-known elementary instance of Post’s tag system) in a very complicated
way. To illustrate this point we need a few definitions and some notation.

Definitions, Exan

Post’s tag system is a rewriting system T = (2, d, P, wg) which consists of an
alphabet 2, a natural number d, a function P : £ — X* and an initial string
wo over 2. We obtain the string w;,; from w; —denoted by w; = w;.1— for
1 =0,1,... as follows. If w; equals the empty word A, then w;.; = A. If 0 is
the first symbol of a nonempty word w;, then we append P(¢o) to the right
end of w; and we delete the first d symbols from w;P (o); this yields w;.1.

As an example—to which we will restrict our attention in the sequel—
consider Ty (10, 1}, 3, Py, wo) with Py(0) = 00 and Po(1) = 1101. This
instance Tp has originally been introduced by Post in [5, 6], but there are still
a lot of open questions in connection with Ty; cf. e.g. [8, 2, 3].

From a dynamical system point of view!, there are three possibilities for

1

1 : O ‘ +1 y -~ . J - . . . R
It is legitimate to consider Ty as a non-linear discrete deterministic dynamical system:

|2

*h even natural number there exists an initia] string
that ends in such a cycle; cf. [3]).

As examples of (2) we mention that each string wq of the form 0% re-
n k steps to A: since 0% = 0X-! we have 0K =k A. Less trivially,
wo = 000100000 yields in 13 steps A because 000100000 = 10000000 =

000001101 = 00110100 = 1010000 = 00001101 = 0110100 = 010000 =

JJJJJ

Conjecture 1 For each initial string wq over 10, 1}, the ultimate behaviour of
Post’s tag system Ty is either (2) or (3).

There are a few sim

problem<; see [3]. But apart from the validity of Conjecture 1, it is clear that

the only string that we can describe in terms of ultimate behaviour of Ty is
Ty's single fixed point: the empty string A.

for quite a number of rewriting steps. A few years ago some people reported in
the appropriate news groups of Internet that, according to their simulations,
I'v would probably explode for wq = (100)!10 or, equivalently, for wg = 1330,

cf. [3] for an explanation.
= Also known as Ulam’s problem, Collatz’s problem, or Syracuse problem.

I3

y tt he very end shows a different pic-
13 328 040 672 rewriting steps Ty reaches the empty string.

| length of intermediate strings is 31 299 218; it occurs after
3 412 264 rewriting steps. Of course, the first 110 steps are trivial:
110 we have w; = (100)119-1(1101)?, whereas the end of the

rewriting process looks like

)40600 (E.. 1 m 11 0 E UOOUUOOOOO 1 HH 0000 1101110 l 00 l 1 01
--% ﬂ E 0 E E 0111010000000000110100001101110100110100
28040602 011101000000000011010000110111010011010000
8040603 10100000000001101000011011101001101000000
28040604 000000000011010000110111010011010000001101
8040605 00000001101000011011101001101000000110100
8040606 0000110100001101110100110100000011010000
28040607 011010000110111010011010000001101000000
28040608 01000011011101001101000000110100000000
8040609 0001101110100110100000011010000000000
28040610 110111010011010000001101000000000000

28040611 1110100110100000011010000000000001101

8040012 01001101000000110100000000000011011101
8040013 0110100000011010000000000001101110100
8 (MOEH 4 010000001101000000000000110111010000
8040615 00000110100000000000011011101000000
328040616 001101 OOUOOOOOOOOM 101110100000000

28040617 101000000000000110111010000000000

o I I Y S T i“y m P IO m IS ;* S I o o IO

o

X9

ﬁm

&u&@éw&w@mw

&m

= o
bt
w

. o] . : _

3 2 80406}3 {»E 000000000 i 101 1 1 0 1 00000000001 1 0] 00

328040620 00000011011101000000000011010000
)40621 0001101110100000000001101000000

8040622 1101110100000000001 10100000000

3040623 1110100000000001101000000001101

s
St
oL
P
g’
. ¥
-
o)
prncsad
oo
-
=
B
-
P
Npmm
P
gt
L
.
=
S’
P
W
Q
S
s
Joocraunk
-
ﬁm
-
Po—
-
Pomedd
L
Sy,
L
-
-
-
-
-
P
=
N
ey
L—
po—
wrncnd
o
L
vt

oC
o
o’

pmd pemst | poand poed peesd e m e ook poesd pamek pumed poend et e
£
|-
E

wwfm;w

Pe PO IS

14

i Lo Lo Lo Lo Ly Lo Lo
NIRRT

o PO I

040631 00011011101000000001101110100
1328040632 1101110100000000110111010000

s

1328040636 0000110111010000110111010000
1328040637 011011101000011011101000000
1328040638 01110100001101110100000000
1328040639 1010000110111010000000000
40640 00001101110100000000001101
1328040641 0110111010000000000110100
1328040642 011101000000000011010000
1328040643 10100000000001101000000
1328040644 000000000011010000001101
1328040645 00000001101000000110100
1328040646 0000110100000011010000
1328040647 011010000001101000000
1328040648 01000000110100000000
1328040649 0000011010000000000
1328040650 001101000000000000
1328040651 10100000000000000
1328040652 000000000000001101
1328040653 00000000000110100
1328040654 0000000011010000

1328040655 000001101000000

1328040656 00110100000000

1328040657 1010000000000

1328040658 00000000001101

1328040659 0000000110100

F .= # 0 = # % F .= F % F = - Foo Fo.0® oo FoooE FoL Foox
JW_ ’W --EEW ¥ ‘:%M -"..g %ﬁ' h:a ﬁ‘ ﬁ" 'ﬂ:i ﬁﬁi % ﬁ o n RE & S ﬁ g 5 ﬁ] ..,_,.- éﬂ & o ﬁi_ -

fe o Bo IO PO [0 Te T2 FC Bo Io 10 Io

of which the last 9 steps are again trivial. The first column in this table shows
i mod (2 - 10Y). An overview of the string length as function of the discrete
time parameter 1 is depicted in Figure 1.

The simulation of Ty for wg = (100)!11Y is no simple task; it takes about
80 MIPSvyears. Clearly, this number depends on the way the sim
coded but, as far as I can see, there is not much to be gained. Note that, due
to the sequential character of the rewriting process, parallelism is of no use
cither. Storing all intermediate strings is out of the question, since this would
take about 214 - 10” Gb. And still you want to store some useful information
for making snapshots like Figure 1, and for the unlucky moments that your
system crashes.

evVer.

[1] Asveld, P.R.J.: Iterated Context-Independent Rewriting - An Algebraic Ap-

proach to Families of Languages (1978), Twente University of Technology,

fe

string length oscillations

Enschede.

[2] Asveld, P.R.J.: On a Post’s system of tag, Bull. Europ. Assoc. Theor. Com-
put. Sci. No. 36 (1988) 96-102.

[3] Asveld, P.R.]J.: Post’s system of tag—A simple discrete nonlinear sys-
tem, pp. 26-31 in: J.P. van der Weele (ed.): Proceedings of Nonlinear
Dynamics—Twente 91 (1992), Center for Theoretical Physics, University
of Twente, Enschede, The Netherlands.

[4] Li, M. & Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its
Applications (1993), Springer-Verlag, New York, Berlin, Heidelberg, etc.

5] Post, EZM.: Formal reductions of the general combinatorial decision prob-
lem, Amer. J. Math. 65 (1943) 197-215.

6] Post, EXM.: Absolutely unsolvable problems and relatively undecidable
propositions—An account of an anticipation, pp. 340-433 in: M. Davis
(ed.): The Undecidable—Basic Papers on Undecidable Propositions, Unsolv-
able Problems and Computable Functions (1965) Raven, New York.

[7] Vitanyi, P.M.B.: Lindenmayer Systems—Structure, Languages, and Growth
Functions (1978), Free University, Amsterdam.

[8] Wanatabe, S.: Periodicity of Post’s normal process of tag, pp. 83-99 in:

Proc. Symp. on Math. Theory of Automata 1962 (1963), Polytechnic Press,
Brooklyn, N.Y.

The very best wishes on the occasion of the “25th anniversary”. 1 still
remember the L-days when your scientific interest was “on the cellular level”
in biology. Since then you have achieved amazingly much! Now you went back
to nature to study quantum computing. With my interest in DNA computing I
may now be your neighbour in the world of natural computing. Perhaps one
day our research interests will cross again—if so, then I look forward to it.

All the best, Grzegorz

Mijn broer leert Judo, uit een boekje. "Geef me je pols 'ns”, zei hi
me. In vol vertrouwen stak ik hem m’n pols toe. |
en zei:. "Zie je, als ik even doordraai is hij gebroken”. Toen pakte hij mij
te draaien. Daarna probeerde hij of hij me kon wur
ig, ik vloog met gebalde vuisten op hem af.

_ | hij, "dacht je soms dat je tegen me op kon?” Ik haalde goed uit,
met een diepe kniebuiging, zoals je dat in boeken leest. Maar voor ik hem
kon raken, kreeg ik een klap tegen m’n kin. Ik verloor nu alle voorzichtigheid
uit het oog en liep met maaiende vuisten op hem af. "Wacht even”, riep m’n
oroertje, in 't nauw gedreven: "even m'n boekje pakken”

j laatst tegen
[ij draaide er eens flink

05 Gymnasium

This booklet celebrates Paul Vitanyi’s 25 years of employment at CWI. But
my connection with him concerns what may be just a footnote in his life.
Around 1990, Paul diversified, staying 80% of his working life as a key CWI
researcher, while becoming a UvA professor, and hence a colleague of mine,
for the remaining 20%. This puts me in the position of a mistress being invited
to contribute a speech to a silver wedding anniversary. Unabashed by all of
this, I will go on to say that Paul is one of the stars of our ILLC. His research
is profound, productive, and highly original. His silver book with Ming Li on
Kolmogorov complexity documents an amazing research program, shedding
new light on an impressive range of algorithmic and logical topics, down
to things I thought settled once and for all (such as basic formal language
theory). Among his many other interests, I was impressed by his rapid
mastery of quantum computing, resulting in the first joint research project

between an FWI and an FNS professor in the emerging ftaculty WINS, which

O Institute for Logic, Language & Computation, Universiteit van Amsterdam

23

landed on the desk of our provisional board, far ahead of any established
procedures. (This un-Dutch panache was then matched by our granting the

project straightaway...) *

My offering is a small observation, testifying to the overlap in research at
ILLC and CWL It concerns a result from my 1976 dissertation which seems
the earliest connection between modal logic and what is now the central
process equivalence of bisimulation. Consider a first-order language making
assertions about, in UvA-speak, poly-modal Kripke models (in CWI-speak,
‘labeled transition systems’).

Theorem 1 (Modal Invariance Theorem) For first-order formulas ¢(x), the fol-

lowing are equivalent:

1. ¢p(x) is invariant under bisimulations
2. p(x) is definable by a modal formula.

A key proof step for the MIT replaces the ‘linguistic’ relationship of
‘modal equivalence’ between two Kripke models by a ‘structural’ one of
bisimulation, among elementarily equivalent models (satisfying the same first-

order sentences). Thus, we can pass back-and-forth between the CWIworld of
bisimulation and the UvA-world of modal equivalence:

Lemma 2 (First Switching Lemma) For rooted models M, x and N , Vv, the follow-
Ing are equivalent: '

1.M,x and N, iy satisfy the same modal formulas

2.M,x and N, y have elementary extensions M*,x and N+, v, respectively,
which bisimulate (with x connected to y).

In a picture, this observation gives us the following square of related
notions:

24

M, x modal equivalence N,y

first-order equivalence first-order equivalence
M™, x bisimulation N7*, vy

Maarten de Rijke’s 1993 dissertation used walks through this diagram for
a systematic comparison between modal logic and first-order logic. Even so, I

do not think we have the full picture vyet: further UvA-CWI ‘Gestalt switches’
are useful. Here is a new one.

The expressive power of a language may sometimes be ‘boosted’ to that of

a normally richer one. Here is another CWI-UVA square, from A
Benthem & Néemeti 1996.

dréka, val

lowing are equivalent:

mma) For rooted models M X U nd N y Vs the f ol-

1. M, x and N, y satisfy the same modal formulas

2. M,x and N,y have bisimilar models M*,x and N*, vy, respectively, which
are elementarily (i.e., first-order) equivalent.

This time, the picture has turned around—allowing us different back-and-
forth trips:

M, x modal equivalence N,y
bisimulation bisimulation
M* x first-order equivalence N*, vy

One application of this new style of thinking is my constructive thought
for this occasion:

25

3.1 A Quick New Proof of the Modal Invariance Theorem

Let ¢(x) be a first-order formula which is invariant for bisimulation, and
define mod(¢) to be the set of all modal consequences of ¢. We show
that mod(¢) = ¢, from which fact a modal equivalent for ¢ follows by
Compactness (namely, as the conjunction of some finite subset of mod(g)).
S50, let M, x = mod(¢). By standard reasoning, the full modal type of M, x
together with ¢(x) is finitely satisfiable. Compactness then gives a model
N,y for ¢ which is modally equivalent to M, x. Now consider the two models
M*,x, N*, y given by clause (ii) in our Lemma. As N *, is bisimilar to N, vy,
¢ holds there (by its bisimulation invariance). Hence, ¢ (being first-order)
holds in the elementarily equivalent model M *, x, too, and thus also M, x = ¢
(again by ¢’s bisimulation invariance). m

3.2 Coda

If we analyze the proof of the last Lemma more precisely, we can find out
more. The models M* N* are what are often called 'tree unravelings’ of
Kripke models or LTSs (cf. Bergstra & Klop 1989), with duplication of nodes.
Let an extended modal formula be any modal formula constructed using also
the “universal modality’ of truth “in all worlds”. Then we get a reduction
between first-order logic and modal logic of the following type.

Fact 4 There exists an effective translation taking first-order formulas & to
extended modal formulas m(¢) such that, for all models M, x and their dupli-
cated tree unravelings M*, x, M, x = m(¢) iff M*, x = b . '

This suggests an intriguing generalization of the relevant notion of ’logical
translation’. The MIT presupposes a well-known effective translation taking
modal formulas to first-order formulas equivalent to them on the class of
Kripke models. There is no effective converse, however—as this would reduce
first-order logic (undecidable) to modal logic (decidable). But this situation
changes when we broaden the notion of translation, allowing equivalences

across different models. Then, as we have just seen, the game becomes wide
open again.

26

I conclude with a reflection on my title, and obliquely also on Paul Vitanyi’s
double career. Dear Reader, there is more between CWI and UVA than is
dreamt of in your philosophy...

[1] H. Andréka, J. van Benthem & I. Németi, Modal Logics and Bounded First-
Order Fragments, 1996. To appear in the Journal of Philosophical Logic.

[2] J. van Benthem, Exploring Logical Dynamics, CSLI Publications, Stanford,
1996. Distributed by Cambridge University Press, Cambridge.

[3] J.A. Bergstra & J-W Klop, Process Theory Based on Bisimulation Seman-
tics, in J.W. de Bakker, W-P de Roever & G. Rozenberg, eds., Linear Time,
Branching Time and Partial order in Logics and Models for Concurrency,
Springer, Berlin, Lecture Notes in Computer Science 354, 50-122, 1989.

[4] M. de Rijke, 1993, Extending Modal Logics, Ph.D. dissertation, Institute for
Logic, Language & Computation, University of Amsterdam.

2/

For readers of this contribution who are involved with a profession which
requires regular presentations of technical material I bring some bad news: in
the near future the efforts and time required for preparing such a presentation
will be multiplied by a substantial constant factor, assun ing that you are
sufficiently trendy. New technologies in audio-visual tools provide you with
completely new possibilities and at the same time increase the volun e of
non-subject related decisions to make while preparing a talk.

As Paul certainly will remember there was a time that a lecturer would
prepare a class and give it using just two basic tools: a blackboard and a
piece of chalk. If you were very careful you might even use colored chalk: this
Improvement was, however, at some time prohibited at the Math department
of the University of Amsterdam on behalf of the cleaning ladies who had
problems wiping the colored dust from the floor.

It was during the time (early 70-ies) of my move to Computer Science
that I discovered that there existed such a marvelous device as an overhead

O dedicated to Paul Vitanyi on the occasion of his 25th Anniversary at the CWI. ILLC,
FWINS, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam.

29

projector. The Computer Scientists were giving great talks and presentations
using clear hand written slides in several colors. Quality of the presentations
was evidently enhanced by the fact that the work of designing the proper
lay-out of information was off-loaded from the actual presentation to the
preparation stage. Hence preparing a talk became more work than just
understanding the material and designing an outline on what you wanted to
present; the actual visual part of the talk was prepa:red entirely off-line.

Mathematicians would consistently use chalk and blackboards and Computer
Scientists would use the projector. Other scientists, if .using a projection
screen at all, would primarily prepare dias. There were other differences as
well. For a mathematician it was evident that the public was motivated for the
subject, knew the basic backgrounds in advance and was interested in proofs.
The computer scientists typically would provide motivation, introduce the
hearer to the field and rarely give more than proof outlines in the presentation.
Contrary to Mathematics, selling the result was more iImportant than proving
1t.

[f a mathematician would use transparencies at all he would typically use
it as a blackboard, writing his formulas with the same density of symbols.
The backbenchers in the classroom could never read what was written on the
screen. However the speed of presentation would be much faster since the
mathematician no longer had to write these formulas on the blackboard.

I myself made the complete switch from blackboard to slides in the
late seventies. Occasionally this would cause problems, for example when
traveling to Eastern conferences where the unique overhead projector was a
scarcely available object and a blown lamp was fatal. I also remember the trip
In 1981 to Israel where I gave four talks at four different locations, provoking
a blown fuse everywhere.

The next stage in the development was the invention of the word processor
and the laser printer. At some point the evident discovery was made that these
devices could not just generate papers but also slides for a presentation.
But basically the lecturers would prepare the same lay-out they used when
preparing their slides by hand. Most WYSIWYG word processors had the
option to increase the font size from 12 to 18 or 24 (never use fontsize below
18 tor slides), making use of this option become the discriminator between

30

Mathematical and Computer Science use of this tool. Some Mathematicians
even today seem not to have discovered this option. For the tag based
wordprocessors like TgX and KIEX (or the Script product at IBM where I
prepared my first Computer Generated slides back in 1985) special formats
and style files for slides were invented.

Evidently the slides became cleaner, clearer but also more sterile. The
time for presentation on the other hand became dependent on how effective
the lecturer was in manipulating the computer tools connected to the word
processor (editors, shells and operating systems). Personally I never reached
a stage where preparing slides on a computer went faster than preparing the
same slides by hand.

One feature these computer generated slides were missing was the use of
color. The color printer still had to be invented or be sufficiently reduced
In price to become available as a tool for preparing a presentation. Some
impoverished locations like the ILLC department in the Fuclid building even
today don’t have access to a colour printer on which slides can be prepared.
You could in principle always print a slide in black and enhance it by adding
colour by hand.

However, in the meantime even this technology seems to have become
obsolete. The new breakthrough is caused by two devices: laptop computers,
and reliable transviewers and/or the video projectors generating a full color
image on a large screen.

Technology is unstoppable. I still remember the evening presentation
during the 1991 LICS conference at the Aula Major of my university where
a rather new piece of technology was used: an overhead projector where
the image was captured by a camera in order to be subsequently projected
by video projector. This forward and backward transformation from optical
to electronic signal caused sufficient loss to make the densely hand written
slides unreadable, which, in combination with a defective audio system,
sufficed to cause disaster. The speaker involved is a well known elder Dutch
Mathematician and Computer Scientist.

Another typical example was the opening plenary talk at the 1994 OOPSLA
in Portland, where the organisers had the great idea of sharing this talk with
another conference in North Carolina. It happened to be the case that the
speaker was at the east coast and we were faced with the video presentation.
The sound installation was rather weak, and the computer screens on which

31

the software system described in the talk was being demonstrated involved

an unlucky choice of colours which were completely invisible by the time they
appeared on our projection screen. I have been told that the poor speaker was
never informed about the true nature of this disastrous failure of technology.

Originally the transviewers were monochromatic but rather sharp, whereas
the video projectors always succeeded in blurring the images and misaligning
the colours. However these devices today seem to work OK. At the 1996
OOPSLA in San Jose this October both the Audio and Video equipment worked
and the various computer screens could be read throughout the room (which
as usual housed over 2400 people). Since about four years LCD screens and
transviewers provide clear colors and their resolution has increased to the
level where you hardly notice that the pixels are coarser than a corresponding
monitor screen.

Which brings me to the conclusion of the history and to the present. So far
people preparing talks at a laptop seemed to use this device for generating
coloured slides as before, bypassing the process of printing the slides and/or
xeroxing them on plastic sheets. The laptops were used also to present
demo’s of computer programs discussed in the talk. The screens produced by
these programs show dynamic visualisations of systems, but that depended
on the application at hand. The only dynamic feat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>