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Abstract—Demand response is a crucial mechanism for
flattening of peak loads. For its implementation, we not only re-
quire consumers who react to price changes, but also intelligent
strategies to select prices. We propose a parametrised meta-
strategy for dynamic pricing and identify suitable strategies for
given scenarios through offline optimisation using a population
model. We also model an important and novel constraint: a
price cap (a maximal unit price) for consumer protection. We
show in computational simulations that the maximal unit price
influences the peak reduction potential of dynamic pricing.
We compare our dynamic pricing approach with a constant
pricing approach and show that our approach, used by a profit-
optimising seller, is both peak-reducing and equally profitable.

I. INTRODUCTION

The future technology mix in energy systems will contain
more powerful electricity-consuming devices, e.g. electric
vehicles and heat pumps. However, the existing infrastruc-
ture (e.g. distribution cables) has not been designed for
carrying such large loads. It is crucial that our energy infras-
tructure can support the transition to a modern energy future,
but major updates are very expensive. Dynamic pricing (DP)
is a technique that can flatten demand over time and thereby
enable peak shaving. Thus, otherwise necessary upgrades to
network components like cables can be postponed, which
can save millions in societal investments. In the so-called
smart grids vision, where many more decision makers can
react to prices than today, e.g. domestic consumers and small
businesses, dynamic pricing is a promising route.

However, consumers are used to constant prices and
are in general not welcoming prices that can vary freely
and unpredictably. Therefore, promising an upper bound on
prices is both of interest to retailers (to attract consumers)
and government policy (to protect consumers). Then again,
limiting the possible range of prices reduces the effect of
dynamic pricing. Thus, we are dealing with a trade-off in
this market design problem. To the best of our knowledge,
we are the first to introduce a maximal price into market
systems for energy in smart grids.

In our model, consumer agents have stochastically ar-
riving jobs with deadlines for which they need to buy
electricity supply (e.g. to charge a car or to run some factory
equipment). A price-setting agent (the PSA) buys on the
wholesale market and selects prices for consumers before

each time step. The PSA has to pay fines when peaks occur.
This represents a stochastic and distributed online scheduling
problem under scarcity conditions (i.e. the cable capacity)
and with limitations on the range of control signals (by
introducing a maximal price). Finding good dynamic pricing
strategies for this problem is a complex task.

This paper contributes to the state of the art in the
following ways: We offer a formalised model for the dis-
tributed online scheduling problem described above, which
includes the novel aspect of a maximal price. We then
propose a novel, parametrisable meta strategy to set prices
dynamically, based on available knowledge about currently
running jobs. Instances of this meta strategy are specified by
assigning values to its parameters. Preferable parametrisation
can be found if a suitable model of the population and the
distribution of jobs exists. In this work, we find settings
through offline optimisation, for which we use an evo-
lutionary algorithm. We simulate computational scenarios
and illustrate the peak reduction potential of this dynamic
pricing (DP) strategy. We show that the maximal price has
an influence on the peak reduction potential of dynamic
pricing. Furthermore, we show that the PSA does not prefer
a constant price (CP) strategy over our (DP) strategy. Finally,
we show that employing a DP strategy reduces peaks, even
if it is optimised for profits.

II. BACKGROUND

Demand currently represents the least elastic part of
electricity markets, on the household level even more so
than on the industrial level. Several reports (e.g. [1], [2])
suggest that dynamic pricing has substantial potential to
balance power in future grids, especially if more devices
with significant consumption demand capacity are placed in
the households (e.g. electric cars and heat pumps). Usually,
this function is referred to as “Demand Response”.

Dynamic Pricing (DP) is a form of optimising revenues
for a seller which involves changing the price of goods or
services over time. Traditionally, it involves application areas
where the capacity is fixed in the short-term and perishable
[3], and thus it is a good fit for electricity retail. A dynamic
pricing strategy aims at selecting the best price for a good,
given a specific setting. Prices can be selected on short
notice, based on conditions found in the current situation, or



a constant price is selected for a certain period. Especially
when settings are complex to predict or analyse, the latter
is sometimes the profit-maximising strategy [4].

In our complex setting, we need to identify suitable
solutions (that can be expected to perform well) from a
parameter space with several dimensions. To this end, we
have chosen to use evolutionary algorithms (EAs). We use
a particular type of EA, namely Estimation-of-Distribution
Algorithms (EDAs). EDAs differ from EAs in that to gener-
ate new solutions, a probability distribution in the space of
solutions is first estimated from the selected solutions, from
which then new solutions are drawn via random sampling.
In particular, we use the iMAMaLGaM-X+, a version of
EDAs for multi-objective problems [5], for which EAs have
shown to be highly effective [6]. It uses mixture distributions
by clustering the selected solutions, spreading the search
intensity along the Pareto front in an effective manner.

III. MODEL

Several agents a ∈ A are consumers of electricity who
have jobs to run. Each job has a distinct arrival time and
a deadline. We assume that all consumers are connected
to the electricity grid via one shared cable. We measure
performance over one day at a time, and thus consider a
set of days D ∈ T . Each day is partitioned in time steps
t ∈ N of 15 minutes, so one day has 24∗4 = 96 time steps.

The price-setting agent PSA buys electricity at current
wholesale market prices ρtw and has to pay penalties if the
cable is overloaded. He sets local unit prices ρt for each time
step, and the consumer agents decide before each time step
whether to purchase electricity for their job. If a contracted
power for a time step, a consumes 1 kW (0.25 kWh) and
pays ρt to the PSA. Otherwise, the job is delayed, which is
unwanted, as consumers would prefer to finish their jobs as
fast as possible. We assume that all jobs have to be supplied
until they are done and that supply is limitless.

A. Price-setting dispatch agent (PSA)

The PSA sells electricity to consumers, which he buys
on the wholesale market. For each time step t, the PSA
announces a unit price ρt for the supply of electricity. If a
consumer a buys in time step t, we denote this by Qt

a = 1;
if he does not buy, we denote this by Qt

a = 0. We assume
that unit prices are bound by the maximal unit price ρmax.

We assume for simplicity of our mechanism, that ρtw,
the unit price on the wholesale market for time step t, is
constant, so we can from now on refer to ρw. Furthermore,
let Qt denote the supply that the PSA has to buy on the
wholesale market for time step t and let Qmax be the

maximal capacity, above which the cable is overheated1.
The PSA is aware of a cost function heat(t) → R, which
calculates the costs for overheating the cable. This cost has
to be paid by the PSA. In particular, the damage to a
cable through overheating at time t is simply heat(t) =
max(0, Qt −Qmax).

B. Consumers

We model a population of consumer agents a ∈ A (we
denote the size of the population with |A|), who all aim to
minimise the costs of running their job. They differ in two
aspects: the arrival times of their jobs and their reluctance to
react to a price difference, i.e. to shift job execution away
from their preferred slots. This reluctance is modelled as
a delay cost δa ∈ [0, δmax] per consumer. The delay costs
directly influence the magnitude of price differences that a
successful strategy needs to employ to be effective.

1) Jobs: Because each consumer agent a ∈ A has exactly
one job, we will use the subscript a when we denote
properties of the consumer’s job. Each job can start after
a unique arrival time tsa ∈ [0, 96 − L], where L is the
maximal length of time (measured in time steps) for which
a job can remain unfinished after it started (thus, each job
has a mandatory deadline tea = tsa + L). Start times tsa are
drawn anew every day from a Gaussian probability function.
This probability function is used for all jobs and remains
the same over all days D ∈ T . In contrast to the PSA,
consumers know in the beginning of the day when their job
will start. The number of time steps for which a job needs
to be supplied in order to be finished is denoted as W ≤ L.

For simplicity of our mechanism, we make the assumption
that if a job is supplied during time step t, it requires and
receives the exact, constant input of 1 kW for the duration
of t. We thus assume that physically, both consumption and
delivery can, within one time step, be constant over time.

To describe the state of a’s job in a time step t, we denote
with rmng : a, t → N the amount of electricity which a
still needs to buy (see also the previous section) before t.
Initially, rmng(a, tsa) =W . If Qt

a = 1, then rmng(a, t+1)
is reduced by one. If tea > t+ rmng(a, t), then a’s job has
flexibility of when to buy electricity: a can choose not to
supply the job for up to tea − t− rmng(a, t) time steps by
delaying it. Note that all jobs have (the same) flexibility
on arrival, as for all a, it holds that tea − tsa = L and
rmng(a, tsa) =W . So,

rmng(a, t) = 4−
t−1∑
i=tsa

Qi
a (1)

1In today’s reality, there exists a second threshold Qcut > Qmax, above
which supply has to be cut off. Penalties have to be paid only for cutoffs.
We assume that Qcut is not breached in our scenarios and that there will
be some negative response for the PSA to not preventing a peak (i.e.
for overheating and thus limiting the lifetime of the cable or because spot
market prices increase during a peak).



Furthermore, dlyd : a, t→ {0, 1} (short for delayed) is 1
if the job is not finished but also does not run during t. So,

dlyd(a, t) =

{
1 if rmng(a, t) > 0 ∧Qt

a = 0

0 otherwise
(2)

2) The consumer’s cost minimisation problem: Each con-
sumer a needs to make an informed decision whether to buy
or not in each time step t ∈ [tsa, t

e
a] if rmng(a, t) > 0. For

this, he needs some kind of expectation over future costs.
Consumers learn which prices are to be expected in which
time step based on experience in previous days.

In this section, we provide a simple algorithm for a to
make this decision in a rational way. This algorithm should
be performed in polynomial time, to keep computation time
within acceptable bounds. We therefore provide a greedy
algorithm to solve the minimisation problem given in 3.

argmin
Qt

a

[
Qt

aρ
t + dlyd(a, t)δa + EC(a, t,Qt

a)

]
s.t. Qt

a ∈ {0, 1}; Qt
a = 1 if t+ rmng(t, a) ≥ tea

(3)

where ρt ∈ [0, ρmax] is the announced unit price and
EC(a, t,Qt

a) is a function to estimate costs of future time
steps i ∈ [t+1, tea], given Qt

a. EC is given by Algorithm 1.
The algorithm estimates purchasing costs based on ~ρE , a
vector of expected prices. ~ρE contains, for each time slot
of the current day, a weighted running average of the prices
that were announced in previous days for this time slot. We
denote with E[ρi] ∈ ~ρE the local price that a expects in
time step i. The outcomes of the state functions rmng and
dlyd for any future time steps i > t are based on purchasing
decisions Qj

a which the algorithm already assumed for time
steps j ∈ [t+ 1, i− 1].

Algorithm 1 For a given t, a estimates ECt
a, the costs of

completing his job in future time steps.
ECt

a = 0
for all i ∈ [t+ 1, tea] do

// If job needs supply:
if rmng(a, i) > 0 and tsa ≤ i ≤ tea then

// If necessary or cheaper than waiting, buy now.
if i+ rmng(a, i) ≥ tea

or E[ρi] < dlyd(a, i)δa + E[ρi+1] then
ECt

a+=E[ρi]
// Otherwise do not buy now.

else
ECt

a+=dlyd(a, i)δa
end if

end if
end for

IV. PRICING STRATEGIES

In this section, we propose a meta strategy for dynamic
pricing (DP). This work deals with uniform prices, i.e. a unit
price is set for the following time step which is valid for all
consumers. Furthermore, we make two design choices:

1) Dynamic pricing: The price in each time step is a
function of the state of active jobs (only jobs with
tsa ≤ t ≤ tea are known to the PSA). We suppose the
PSA can assess how much work each active jobs still
has to do and when its deadline is.

2) Offline optimisation: Given that designing success-
ful strategies is hard in a complex setting like this,
we optimise their parametrisation offline, given some
knowledge about distribution of job arrivals. A pric-
ing strategy, once chosen, is employed by the PSA
unchanged for a number of days.

We are interested in formulating pricing strategies that
compute the price ρt for the current time step t and achieve
good values (over a range of days D ∈ T ) on an objective
function O given by

argmin
~x

∑
D∈T

O(D) (4)

where ~x is a vector of parameters which is optimised
offline. We discuss possible implementations of O below.

Prices are computed online with a stylised mathematical
function. Its general form allows the offline optimisation
algorithm to explore a large variety of possible functions
through parametrisation. However, its online application
requires no extensive computation and our strategy is thus
able to be executed fast. We try out two meta strategies, the
first being quadratic functions (denoted by ρtquad) and the
second being exponential functions (denoted by ρtexp):

ρtquad(ω
t) = x0 + x1ω

t + (x2ω
t)2

ρtexp(ω
t) = x0 + (x1ω

t)x2
(5)

where the parametrisation vector is ~x = {x0, x1, x2} and
ωt describes the likelihood of consumers with active jobs to
buy in t, given the state of their job:

ωt =
∑
a∈A

rmng(t, a)

tea − t
(6)

The term rmng(t,a)
tea−t

is initially W
L for all jobs and can

increase up to 1 if a has no more time to delay his job.
Thus, ωt ∈ [0, |A|]. Note that ωt does not include values of
δa, which is private information about delay costs of each
consumer. The parametrisation vector ~x is optimised offline,
using an accurate model of the population (including the
local scheduling procedure EC from Algorithm 1 and the
statistical distribution of tsa and δa values). In the online
setting, the PSA uses only the optimised pricing functions



Table I: Experimental settings

Parameter Description Setting
|A| number of agents 20
T number of days 20
L length of time window for a job 8 (2 hours)
W workload of a job 4 (1 hour)
ρw wholesale market price e .1 / kWh

Qmax cable threshold {8, 4, 2}
δmax max. delay cost factor e 0.05/15 min

Jmean, Jstd mean and st. dev. of tsa (job arrival) 20, 2

(which require only the current state ωt) and does not need
to know δa. With ρmax given, ρt is given by

ρt = min(ρmax, ρ
t
quad(ω

t)) or ρt = min(ρmax, ρ
t
exp(ω

t))
(7)

We are interested in lowering the maximal price ρmax,
in order to offer a consumer-friendly operation. However,
ρmax should remain higher than ρw, in order to give room
for price differences such that the pricing can lower peaks
and at the same time avoid losses for the PSA.

There are two possible implementations for the objective
function O. Both form a trade-off with ρmax, as the DP
strategy depends on a range in which to vary prices. First,
we are interested in reducing peaks by dynamic pricing:

O(D) =
∑
t∈D

heat(t) (8)

Alternatively, we can maximise the profit of the PSA:

O(D) =
∑
t∈D

∑
a∈A

Qt
a(ρ

t − ρw)− heat(t) (9)

V. SIMULATIONS

This section describes computational experiments. We
model three scenarios which differ in the scarcity of cable
capacity. In each scenario, we test two strategies - a constant
pricing (CP) strategy and our dynamic pricing (DP) strategy
described in Section IV. We report on differences between
quadratic and exponential DP meta-strategies in the end. The
detailed parameter settings can be read from Table I.

A. Scenarios

We now propose a simple indicator β for the scenario-
specific scarcity of the cable capacity. We describe β as the
ratio between needed time steps and available time steps.
The overall number of time steps needed to run all jobs is
|A| ∗W . Furthermore, we estimate the number of available
time steps by computing the maximal number of time steps
in which consumers could be supplied without overheating
the cable, which is (6Jstd + L)Qmax. Here, 6Jstd covers
99.7% of the distribution of job starting times and we also
add one job length L to cover jobs that possibly start on the

last time step. Let us now insert values to formulate β in
dependence of Qmax:

β =
needed

available
=

|A| ∗W
(6Jstd + L)Qmax

=
4

Qmax
(10)

If β = 1 (and thus Qmax = 4), the available time steps
could theoretically suffice to solve the allocation problem
without causing overheating, given that the needed redistri-
bution of consumption were achievable. We note that the
normal distribution of job starting times and delay costs
limit the solvability of this problem. However, the given
formulation of β allows us to anchor a scenario at the
theoretically solvable setting. If β is increased (and thus
Qmax is lowered), the scenario becomes more scarce. If
β is decreased (and thus Qmax is increased), the scenario
becomes less scarce. We run three scenarios, with β ∈
{.5, 1, 1.5}, thus Qmax ∈ {8, 4, 2}.

B. Evaluation

In each scenario, we optimise a set of strategy instances
of the DP meta strategy using the evolutionary algorithm
(EA), with the minimisation of ρmax as first objective.
We optimise each scenario twice - once with the second
objective being peak reduction (see Equation 8), and once
with the second objective being profit maximisation for the
PSA (see Equation 9).

The EA is parametrised according to guidelines from liter-
ature, among others populations size and maximum number
of subsequent generations without an improvement. We run
each market in each scenario for 1000 generations, using 5
clusters of solution populations (which the algorithm uses to
model the pareto front). We evaluated that the performance
of the multi-objective EA as a means to find good solutions
is suitable by comparing it to a brute-force approach which
evaluated 300,000 data points for one scenario.

Strategy instances are judged on outcomes averaged over
ten runs per instance. For every instance, these ten runs
are performed with the same set of ten seeds, used for the
randomisation of δa and tsa values. An outcome is computed
as the average over the last T

2 days of a simulation.
As a benchmark for the DP meta strategy, we implement

a simple constant price strategy (CP). If the PSA charges
a constant price, the amount of peaks will be the same, no
matter what that price is. This is because there are no price
differences, and consumers will all supply their jobs directly
upon arrival, in order to avoid delay costs. If the CP strategy
is optimised for profit of the PSA, the PSA always chooses
ρmax. Note that the DP strategy can also model the CP
strategy, as the mathematical formalisation allows to charge
any constant price, as well.

As benchmark for the peak reduction potential, an optimal
lower bound of peaks would be useful, but the computational
effort to compute it is too high. For every time step, each



consumer has
(
L
W

)
possible schedules, thus the solutions

space in our setting has the size 96 ·T
(
L
W

)|A|
= 96 ·20

(
8
4

)20
.

Figure 1: Average daily overheating costs against maximal
prices ρmax when employing the CP strategy or the DP
strategy with either profit-maximising (DP-PR) or peak-
reduction (DP-PK) objectives.

Implementing the first optimisation goal (peak reduction)
in the DP strategy, we can show the peak reduction
potential of the DP strategy, given ρmax. There is clearly
a trade-off between the price range in which DP can operate
(limited by ρmax) and the peak reduction it can achieve. The
plots labelled DP-PK in Figure 1 show that the outcomes
form a pareto front. It also becomes clear that if ρmax ≤
e 0.5, the possibilities to reduce peaks decrease. If ρmax ≥
e 0.5, the peak reduction potential does not increase further.

Implementing the second optimisation goal (profit max-
imisation) in the DP strategy, we can compare the revenue
optimisation potential for the PSA of CP and DP. It turns
out that with the DP strategy, profits are not significantly
different as with the CP strategy. In both cases, profits
increase linearly with ρmax. From the results, we can also
estimate which is the minimal ρmax, below which the PSA
should expect to be making losses. In addition, we can show
how much peaks occur if the PSA is optimising profits (as he
realistically would do). The plots labelled DP-PR in Figure 1
make clear that if the PSA optimises the DP strategy to
maximise revenues, peaks are still considerably lower
than with the CP strategy (but of course higher than when
the DP strategy is optimised for peak reduction). The PSA is
not charging ρmax constantly, but prefers to actually charge
dynamic prices in order to avoid some peak costs.

An important consideration is how the ratio between peak
costs and revenues from selling electricity influences the
performance of our DP strategy. A straightforward analysis

shows that this ratio affects how much the PSA consid-
ers peak reduction as a priority when choosing a profit-
maximising strategy. We have so far simply accumulated the
magnitude of the total peaks (see Section III-A) and taken
these sums as pure peak costs. Assume there exists a factor
φ, with which peaks can be multiplied, in order to get their
true costs. So far, we have used φ = 1. It is straightforward
to assume that, if φ = 0, the PSA would assume the CP
strategy and always charge ρmax. If φ =∞, the PSA would
resort to make peak reduction its sole objective, which would
result in the outcomes of our peak-optimised optimisations.

Finally, we compared two mathematical classes of DP
meta strategies that the EA could explore (see Equation 5).
Both the quadratic and exponential classes result in out-
comes that are not significantly different.

VI. CONCLUSIONS

Dynamic pricing is an important tool for reducing peaks
in future electricity grids, where scheduling decisions are
made online by independent actors. Mandating an upper
constraint on unit prices is an important ingredient for
consumer protection. We offer a formalised model for such
a distributed online scheduling problem and propose a
meta strategy for dynamic pricing. We show how to find
suitable strategies through offline optimisation. We show in
computational simulations that the peak reduction potential
of our strategy depends on the maximal price. Furthermore,
we show that the PSA does not prefer a constant price (CP)
strategy over our dynamic price (DP) strategy. Finally, we
show that employing a DP strategy reduces peaks, even if
it is optimised for profits.
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