T
e
LY.
Lol

¥;
&5

il

o

m”“’m

TTIFATI P TR TN L iy oy

I
i
!
%

\'?“ .n"l
A T g M R T N I T M

M. AL gy B =y 2w oy S

NPT T e friry iR o TR T T et o T A T AL TP O T

R R

e,

VRIJE UNIVERSITEIT TE A}

A PARALLEL OBJECT-ORIENTED LANGUAGE:
DESIGN AND SEMANTIC FOUNDATIONS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit te Amsterdam,
op gezag van de rector magnificus
dr. C. Datema,
hoogleraar aan de faculteit der letteren.,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie

van de faculteit der wiskunde en informatica
op woensdag 17 mei 1989
in het hoofdgebouw van de universiteit, De Boelelaan 1105

om 13.30 uur door

Petrus Hubertus Maria America
geboren te Kerkrade

en
om 15.00 uur door

Johannes Josephus Martinus Matheus Rutten
geboren te Tilburg

Centrum voor Wiskunde en Informatica
1989

Promotor: prof. dr. J. W. de Bakker
Referent: prof. dr. G. D. Plotkin

The work by P. H. M. America as described in this thesis has been carried out at the
Philips Research Laboratories Eindhoven as part of the Philips Research programme.

The work by J. J. M. M. Rutten as described in this thesis has been carried out at the
Centre for Mathematics and Computer Science (CWI) in Amsterdam.

The work of both authors has taken place in the context of ESPRIT Project 415:

Parallel Architectures and Languages for Advanced Information Processing:
A VLSI-directed Approach.

The first person to thank at this place is of course Jaco de Bakker. He did not only
play an important role in the research described in this thesis, but also in introducing
me to the national and international scientific community.

The Philips Research Laboratories in Eindhoven, in particular the group Computer
Architecture, have been an extremely stimulating environment, in which a broad range
of disciplines within computer science work together closely and fruitfully. In Henk
Bosma, Loek Nijman, and Eddy Odijk, I would like to thank the management for
making this possible.

Working in an international research project is a very special experience. I thank all
the people involved in ESPRIT project 415 for making this experience such a positive
one that [am looking forward to repeat it.

Numerous people have contributed to useful discussions about the design of the
languages in the POOL family. Especially the members of the DOOM (ESPRIT 415-
A) and PRISMA projects, who have been working very hard to implement POOL and
to write programs in it, deserve my deep gratitude.

Frans Kruseman Aretz and Willem-Paul de Roever have helped me by comments,
suggestions, and discussions at a high scientific level.

My thanks also extend to Gordon Plotkin, who has refereed this thesis.

Finally I would like to thank my parents, who, with their love and support, have
always stimulated me to pursue very ambitious goals, and Twan en Mieke, whose

friendship and hospitality over the last years has meant more to me than they might
think. '

First of all, I would like to thank Jaco de Bakker, who was my supervisor during the last
four years. He taught me many things; in particular, I was inspired by his systematic
approach to problems in general, which is always directed towards the isolation of their
kernel. Moreover, I have enjoyed his presence as a colleague, here at the CWI and in
the context of ESPRIT project 415 activities (ranging from technical discussions to
visiting the opera).

[am grateful to Gordon Plotkin for his kind willingness to referee this thesis.

I thank all my collegues at the CWI. Thanks to them it is an inspiring and pleasant
place to work. Two of them [would like to thank in particular: Frank de Boer and
Joost Kok. Gradually they changed from colleagues to friends and it has given me
great pleasure to be in their company, both on scientific and on less serious occasions.

[thank the members of the Amsterdam Concurrency Group: Jaco de Bakker, Frank
de Boer, Arie de Bruin, Joost Kok, John-Jules Meyer and Erik de Vink, for a fruitful
and enjoyable exchange of ideas.

[thank the members of the Working Group on Semantics of ESPRIT project 415, in
which much of the material of this thesis has been discussed. My thanks is in particular
due to Frank van der Linden, who has participated in many discussions at Philips on
chapters 3 and 4 of this thesis.

[thank Jeff Zucker for an inspiring period of joint work on the problems of fairness,
of which the last chapter of this thesis bears witness.

Finally, I am grateful to my parents, Jan Rutten and Corry Rutten-Leys, who have
supported and encouraged me, always and in many different ways.

8

Introduction

Issues in the design of a parallel object-oriented language

Solving reflexive domain equations in a category of complete metric

spaces

Denotational semantics of a parallel object-oriented lang:

Designing equivalent semantic models for process creation

Contractions in comparing concurrency semantics

Semantic correctness for a parallel object-oriented language

A semantic approach to fairness

Samenvatting

Curricula vitae

97

139

207

247

291

317

319

The work described in this thesis has been inspired by the parallel object-oriented
language POOL. The thesis describes the design of the language itself and the tech-
niques that have been used to give it a formal semantics. The language POOL, or
more precisely, this family of languages, has been developed as a vehicle for writing
application programs for a parallel computer. Programming such a parallel machine
is considerably more difficult than programming a sequential machine, but if it works,
a parallel machine can do the job faster and cheaper than a sequential one.

POOL 1s directed towards symbolic applications, in contrast to numerical ones. Due

to their irregularity, symbolic applications are more difficult to implement correctly and
efficiently on a parallel machine. POOL tries to alleviate these problems by supporting
an object-oriented programming style, which is currently the best available technique
to structure large and complex software systems. In an object, pieces of data are
closely integrated with the operations that can be applied to them and together they
are protected from the outside world by an explicit interface: The internals of an object
can only be reached by sending it messages of a precisely determined kind. In POOL,
such an object also contains a local process, so that it can operate in parallel with the

other objects in the system. The same message interface protects the sequential inside
of an object against the parallel outside world.

This thesis consists of a collection of papers, several of which have been published
separately before:

e Pilerre America.

Issues in the design of a parallel object-oriented language.

ESPRIT Project 415 Document 452, Philips Research Laboratories, Eindhoven,
March 1989.

e Pierre America and Jan Rutten.

Solving reflexive dornain equations in a category of complete metric spaces.
In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical
Foundations of Programming Language Semantics, pp. 254-288, Lecture Notes in

Computer Science 298, Springer-Verlag, 1988. To appear in Journal of Computer
and System Sciences.

e Plerre America and Jaco de Bakker and Joost Kok and Jan Rutten.
Denotational semantics of a parallel object-oriented language.
Report CS-R8626, Centre for Mathematics and Computer Science, Amsterdam,
the Netherlands, August 1986. The present thesis contains a significantly revised
version, which is to appear in Information and Computation.

e Pierre America and Jaco de Bakker.
Designing equivalent semantic models for process creation.
Theoretical Computer Science, Vol. 60, No. 2, September 1988, pp. 109-176.

e Joost Kok and Jan Rutten.

Contractions in comparing concurrency sermantics.
Report CS-R8755, Centre for Mathematics and Computer Science, Amsterdam,
the Netherlands, November 1987. An extended abstract appeared in T. Lepisto

and A. Salomaa, editors, Proceedings of the 15th International Colloquium on

Automata, Languages and Programming, pp. 317-332, Lecture Notes in Com-
puter Science 317, Springer-Verlag, 1988.

¢ Jan Rutten.

Semantic correctness for a parallel object-oriented language.

Report CS-R8843, Centre for Mathematics and Computer Science, Amsterdam,
the Netherlands, October 1988.

¢ Jan Rutten and Jeffery Zucker.
A semantic approach to fairness.

Report CS-R8759, Centre for Mathematics and Computer Science, Amsterdam,
the Netherlands, November 1987.

The first paper, “Issues in the design of a parallel object-oriented language”, gives
a more extensive introduction to the language POOL2, the member of the POOL
family that is currently being used in subproject A of ESPRIT Project 415. It also
discusses the factors that have influenced the most important decisions in the design
of this language. Among others, it presents the basic principles of object-oriented
programming, 1t compares several alternative ways of integrating parallelism into an
object-oriented language, and it explains the viewpoint taken in POOL towards typing
and inheritance. It also gives an overview of the studies on formal aspects of POOL.

The rest of the papers are concerned with formal semantic models for parallel lan-
guages, In particular POOL. Object-oriented programming has grown out of an in-
tuitive understanding of what are the important issues in the organization of large
software systems. The development of a formal basis for this programming style has
been somewhat neglected for a long time. Recently it has become clearer and clearer
that such a formal understanding is indispensable in order to make the right choices in
the complex process of designing object-oriented systems. This is even more important
in parallel systems, where we can rely even less on our intuition.

In this thesis we discuss two styles of formal semantics that have been developed for
POOL: operational semantics and denotational semantics. The operational formalism
describes the execution of a POOL program in terms of a sequence of transitions
between states. The possible transitions are described by a transition relation, which
is defined inductively by axioms and rules, corresponding to the syntactic structure of
the language. For POOL, an operational semantics along these lines was first described
in the paper “Operational Semantics of a Parallel Object-Oriented Language”, by
Plerre America, Jaco de Bakker, Joost Kok, and Jan Rutten, which appeared in the
Conference Record of the 13th Symposium on Principles of Programming Languages,

St. Petersburg, Florida, January 13-15, 1986, pp. 194-208. Chapter 7 of this thesis
also defines such an operational semantics for POOL.

The denotational semantics works by defining for each syntactic category (e.g.,
statements, expressions) a meaning function that maps a syntactic construct to an
element of some mathematical domain. Here the main point is the principle of compo-
sitionality: the meaning of a composite construct only depends on the meaning of its
constituent parts, not on their actual form. This denotational semantics is described
in the third paper included here, “Denotational semantics of a parallel object-oriented
language”. The mathematical domain used here is a complete metric space, which is ob-
tained as a solution of a reflexive domain equation. The second paper in this collection,
“Solving reflexive domain equations in a category of complete metric spaces”, develops
a category-theoretic technique by which a large class of these domain equations can be
solved (uniquely up to isomorphism).

The next three papers are devoted to establishing the relationship between operational
and denotational semantics. The paper entitled “Designing equivalent semantic mod-
els for process creation” investigates this relationship in the context of four languages,
ranging from a very simple language with uninterpreted atomic action and a static pro-
cess structure to a language where the individual processes can store and communicate
data and where new processes can be created dynamically. For each of these languages
it 1s proved that the operational semantics and the denotational semantics are equiv-
alent, or in other words, that the denotational semantics is correct with respect to
the operational semantics. This means that there exists an abstraction operator that
takes the denotational semantics of a program and, by stripping away the structure
necessary for compositionality, produces exactly the operational semantics.

The technique used to prove this is essentially based on the introduction of semantic
operators that replace the so-called continuations used in the denotational semantics.
Unfortunately this leads to long and complicated proofs. Therefore, in the next paper,
“Contractions in comparing concurrency semantics”, a different technique is developed,
which defines the semantic functions themselves as fixed point of some higher-order
operators and relates these operators to each other. In the sixth paper, “Semantic
correctness for a parallel object-oriented language”, this technique is applied to the
language POOL, with all its semantically essential constructs, thereby establishing the
correctness of the denotational semantics with respect to the operational semantics.

The last paper in this collection, “A semantic approach to fairness”, deals with
fair processes and fair operations on processes, in the same context of complete metric
spaces as the preceding papers. For a simple semantic model, which can be used for the
denotational semantics of languages with uninterpreted atomic actions, it is shown how
to derive from any process a fair version, which does not postpone certain alternatives
forever when repeatly choices must be made. Moreover, it shows how a fair version of
the infinite iteration of a single process can be constructed.

Pierre America

Abstract

This document discusses the considerations that have played a role in the de-
sign of the language POOL2. This language integrates the structuring techniques
of object-oriented programming with mechanisms for expressing parallelism. We
introduce the basic principles of object-oriented programming and its significance
for program development methodologies. Several approaches for integrating ob-
jects and parallelism are compared and arguments for the choices made i1n POOL2
are presented. We also explain why inheritance is not yet included in POOLZ.
A brief overview of the research in formal aspects of POOL is given. Finally we
indicate some directions for future developments.

7
f
i

F R PP RS WL W) CERE .

Ty TR TITC TP

Azt

e Pt

e Gl o Gt P o

AT,

i b U b W PR Sk,

P

It is generally accepted that the speed of computers that are organized according to
the traditional Von Neumann model is approaching its physical limits. In this model,
instructions and data are transported back and forth between processor and memory
through the famous “Von Neumann bottleneck” and as memories become larger and
processors faster, we come closer and closer to the limit that the speed of light imposes
on the bandwidth of this bottleneck. A large number of solutions to this problem
have been proposed, ranging in radicality from caches [Smi82|, which serve as a kind
of “impedance adapters” between a fast processor and a slow memory, to completely
different computer organizations that are to be combined with revoluiionary models
of computations (see, e.g., [FFGL88, TBHS82}).

An approach in between these extremes proposes the use of a number of traditional
processors, each with its own private memory and connected together by a network
by which they can exchange information. Provided the network is designed carefully,
this organization is scalable to a very large number (several thousands) of processors.
Several concrete architectures are based on this general principle |H 1185,0di87,Sei85].

A problem at least as difficult as designing such parallel machines is how to prograin
them. Traditional programming languages such as Foriran and Pascal are closely
related to the von Neumann architecture: they describe a single sequence of actions that
the computer should perform. It is not at all an easy task to transform such a program
automatically to an equivalent program that makes efficient use of the opportunities
for parallelism provided by the hardware. Only for numeric applications, which often
have a simple control structure that is largely independent of the actual values of the

data, attempts in this direction have been successful, first for vector computers [K en80|

and more recently also for MIMD computers [ACK87|. For symbolic computations,
with their more irregular and data-dependent structure, the automatic exploitation of
parallelism in traditional programming languages is much more difficult and it has not
yet lead to results that are useful in practice.

_ A drastic approach to this on is to use pure functional {Bac7 8, Tur85]| or logic
|Kow79| programming languages. The idea is that a program in these languages only

expressas what mfmm&.twn pmgrammer wa.nts not how this shouid be obtained.

Enot fredom ~ ‘the 1mp§m&mmwn to detect a.nd explmt the pa.ra.ﬂehsm automat-
imﬂy An d in Ea.ct the ﬂetectien of potentiaj pa.ra,Helism in these Eanguages ‘is quite

advances m&de in the last years, the use of 1mphc1t
gic languages is not vet understood well enough
-exdusiveiy on this kind of languages. Therefore

hat provide explicit mechanisms for expressing

problem in programming symbolic appli-
. The organiza tmn of the software itself, data structures,
d comp Em{: r ications is often a very difficult matter,

where reliability, flexibility, and user-friendliness are important issues. This establishes
a real challenge for software technology. A promising approach to meet this challenge is
object-oriented programming {Cox86,Mey88]. Object-oriented programming languages
offer excellent support for modularity and encapsulation. Object-oriented software
development methods provide a relatively high degree of flexibility and reusability.

In this paper we discuss the most important issues that have played a role in the
design of the programming language POOL2 |Ame88a|. This language integrates the
structuring principles of object-oriented programming with mechanisms for expressing
parallelism. It is intended for formulating applications in the area of symbolic comput-
ing such that they can be executed on a parallel machine called DOOM (Decentralized
Object-Oriented Machine) [{Odi87|. The language POOL2 is developed from earlier
languages in the POOL family, in particular POOL-T [Ame85b,Ame87al.

Section 2 explains the basic principles of object-oriented programming and briefly
discusses its impact on software technology. In section 3 we introduce and compare
several different ways in which object-oriented programming can be integrated with
mechanisms for expressing parallelism. Section 4 then gives an overview of several
new language concepts in POOL2 and section 5 explains why inheritance is not one of
them. Then in section 6 an overview is given of the formal studies related to POOL.

Finally, section 7 presents some conclusions and indicates some possible directions for
future developments.

In the object-oriented programming style a system is described as a collection of objects
(see figure 1). An object is best defined as an integrated unit of data and procedures
acting on these data. One can think of it as a box that stores some data and has the
possibility to act on these data. The data in an object are stored in variables. The
contents of a variable can be changed by executing an assignment statement.

Figure 1: A POOL object

A very important principle is that one object’s variables are not accessible to other
objects: they are strictly private. In other words, the box has a thick wall around
it, which separates the inside from the outside. The only way in which objects can
interact is by sending messages to each other (see figure 2). Such a message 1s 1n
fact a request from the sender for the receiver to execute a procedure. This kind of
procedures, which are executed in response to messages, are called methods in POOL.
The receiver decides whether and when it executes such a method, and in some cases it
even depends on the receiver which method is executed (see section 5). In general, the
sender of the message can include some parameters to be passed to the method and the

method can return a result, which is passed back to the receiver. In this way objects

can cooperate and communicate. It is important to note that this interaction between
objects can o

only occur according to this precisely determined message interface. Thus

every object has the possibility and the responsibility to maintain its own local data
1n a. consistent state.

Objects are entities of a dynamic nature. At any point in the execution of a program
a new object can be created, so that an arbitrarily large number of objects can come
into existence. (Objects are never destroyed explicitly. However, they can be removed
by garbage collection if it is certain that this will not influence the correct execution
of the program.) In order to describe such systems with many objects, the objects are
grouped in classes. All the elements (the instances) of a class have the same names
and types for their variables (although each object has its own set of variables) and
they all execute the same code for their methods. In this way, a class can serve as a
blueprint for the creation of its instances.

Several object-oriented programming languages use different mechanisms to de-

Parameters

Sender Receiver

Figure 2: Sending a message

scribe object creation. In general it is agreed upon that creating new objects is not a
natural task for the existing instances of the same class (where would the first instance
come from?) but rather for the class itself. In Smalltalk-80 [GR83] classes are con-
sidered to be objects themselves: they can also be created and changed dynamically.
Therefore it is natural to describe object creation in class methods: a new object can
be created by sending an appropriate message to the class. In POOL it is not natural
to consider classes as objects, because we do not want them to change during program
execution (see also section 5). Therefore in POOL the creation of new objects is done
by routines, a kind of procedures different from methods. Routines are not associated
with certain objects and they do not have direct access to any object’s variables. In-
stead, in general (but see section 4.1) a routine is associated with a class, and it can
be executed by any object that knows it. By encapsulating the creation of new ob jects
in routines, it can be ensured that such a new object is properly initialized before it is
used.

It is interesting to discuss the nature of the data that is stored and manipulated
in the objects. In general, a variable contains a reference to some object. Also in
parameters and results of methods, references are transferred. Some languages, like
Objective-C [Cox86| and Eiffel [Mey87], in addition have some other built-in data
types, like integers and characters, that can be manipulated by the objects. These
languages are sometimes called hybrid object-oriented languages. By contrast, in pure
object-oriented languages, like Smalltalk-80 'GR83| and POOL, every data item is
represented by (a reference to) an object. In these languages, even very simple things
like integers are conceptually modelled as objects. For example the addition 3-+4 is
performed by sending to the object 3 a message mentioning the method add and having
(a reference to) the object 4 as a parameter. In response to this message, the object 3
somehow knows how to add itself to the parameter object and it returns the result,
a reference to the object 7, to the sender of this message. Of course, this is just

10

the conceptual view: in an actual implementation some optimizations will take place

so that these operations can be performed much more efficiently using the hardware
facilities for integer addition.

2.2 A simple example

nosition
SiZe

Contents H

50 100 150 200

Figure 3: A few objects

Let us illustrate the concepts mentioned above by means of an example. Figure 3 shows
a few objects in a certain state during the execution of a program. We see an instance
of the class Window, which has three variables, contents, position, and size. The
variable contents refers to an unspecified other object (drawn as a “black box”). The
variables position and size each refer to an object of the class Vector. Instances of
the class Vector have two variables, x and y. Both x and y refer to integers, which
are also objects, instances of the class Integer. Integers are drawn as small “black™
boxes. Note that these small black boxes do not represent objects in which integers
are stored. Rather, they themselves are the integers. This is also illustrated by the
fact that whenever two different variables, possibly in different objects, have the same
integer value (e.g., 50) then they refer to the same integer object, instead of storing
each a separate copy of the integer or referring to different objects that store the same

LT e AT e T TR T

el S e T | VR L LY

integer. .
In this section we shall concentrate on the class
POOL2 code sketches how it could be described.

indow. The following piece of

CLASS Window

VAR contents . Object
position, size : Vector

METHOD move (to : Vector) : Window

BEGIN
position := to;
display_contents (); %% a method call
RESULT SELF

END move

METHOD display_contents () :

%% only for internal use!
BEGIN

.. % actual text not relevant here
RESULT SELF

END display_contents

METHOD where () : Vector
BEGIN

RESULT position
END where

ROUTINE create (cont : Object, pos, s8iz : Vector) : Window

TEMP w : Window

BEGIN
W

L B

= Window.new (); %% the standard routine new
w ! init (cont, pos, siz);
RESULT w

END create

METHOD init (cont : Object, pos, siz : Vector) : Window

%% for internal use only!

BEGIN
contents := cont;
position := pos;
gsize = 81iz;
display_contents ();
RESULT SELF

END init

i

12

END Window

A little explanation is appropriate here. First the variables are declared, each with its
type. A variable may only refer to instances of the class that is indicated by the type of
this variable. Then the methods and routines are defined. In the method move another
method, display_contents, is called directly (without sending a message). In some
other object-oriented languages this is done by sending a message to the expression
SELF, which always indicates the object executing this expression.

We see that for every access to the internal variables of an object, a method is
needed: the method where simply reads the value of the variable position, whereas
the method move essentially assigns a new value to this variable. In the latter case the
method also ensures that the internal consistency is maintained, which here means that
the window is actually displayed at the point indicated by the variable position. This
illustrates how methods can be used to provide the outside world with a controlled
access to the internal variables of an object. -

Note that methods and routines can have temporary variables, which only exist
during the invocation of the method/routine. To distinguish them from the variables
that exist from the object’s creation onward, the latter are also called snstance variables.
Within a method or routine, the parameters can also occur as expressions, just like
the temporary and instance variables, but parameters are not allowed as the left-hand
side of an assignment.

This example also illustrates the typical use of routines for the creation and initial-
ization of new objects. The routine create takes care of this. The creation of a new
object is done by calling the routine new, which is automatically provided for the class
Window by the language. Then the routine create immediately sends an initializing

message to the newly created object. In our example this is indicated by a so-called
send statement:

w ! init (cont, pos, 8iz)

which sends a message to the object referred to by the variable w, specifying the method
init and as parameters the values of the expressions cont, pos, and siz. In response
to this message, the object initializes its variables with the information contained in
these parameters and brings itself into a consistent state (by executing the method
display.contents). Only then the routine create returns the new object to its caller.
(In fact, the language POOL2 provides a more convenient notation to make sure that
newly created objects are properly initialized. We have not used this here in order to
illustrate clearly the basic principles.)

Let us finally give a small example of code that uses this class Window. This code
could appear, for instance, in the definition of another class. We assume that w is a
variable of type Window and that v, vi, and v2 are variables of type Vector that have
already been initialized. Finally something should refer to an arbitrary object that
can be displayed in our window. In these circumstances, the following piece of code
creates a new window, moves it around and asks its new position:

13

Window.create (something, vi, v2);
w ! move (v):
vi := w ! where ()

Note that to the users of the class Window we would like to grant only the routine
create and the methods move and where, and to hide the routine new and the methods

init and display_contents. In POOL, this is made possible by the unit mechanism,
explained in section 3.3.

Relat

One may argue that object-oriented programming as introduced above is just a formu-
lation of well-known principles in new terminology: One can compare an object with
a record and sending a message with a procedure call (in fact, this comes very close
to the way in which many object-oriented languages are implemented). For structur-
ing software there are already concepts like modules and abstract data types. Let
us therefore first look at the relationship between modules, abstract data types, and
objects.

First we consider the notion of modules, as it appears in, e.g., Modula-2 and
Ada [ANS83| (where the name package is used). Such a module is nothing more than
a collection of declarations of data types, variables, procedures, etc., provided with
an interface that specifies which of these declarations can be used outside the module.
The programmer has a large amount of freedom in choosing what to put in one module
and where to place the boundaries between modules. It is intended that the grouping
of declarations into modules is a meaningful one [Mey82], but the language does not
enforce this in any way. It only enforces that the interfaces, once made explicit, are
observed.

In programming with abstract data types, as exemplified by the notions of ‘cluster’
in CLU [LAB*81| and ‘form’ in Alphard [Sha81], there is a clear notion of what is
contained in a “module”, a data type definition, and what it is about: Such a definition
should describe one data type, its internal representation and the operations that can
be performed on its instances. The interface with the outside world consists of the
names of those operations that are to be available outside the data type definition,
together with some specification of their behaviour (which is mostly limited to the
types of the parameters and results). The internal representation is not accessible from
outside the data type definition. With respect to modular programming, abstract data
types are much more restrictive in the choice of the boundaries between program units,
but on the other hand they offer a much clearer conceptual view of the meaning of
these units.

Note that both modules and abstract data types only offer the guarantee that
the facilities defined in a program unit are used correctly (that the interfaces are
observed) in a statically typed language (a language where for every expression it is
possible to determine the type of the object it denotes from the program text alone,
see section 5.2). In other languages, the use of medules and abstract data types is not

14

completely useless, because it ¢an give a clearer structure to the program, but it does
not offer such a high degree of security as in statically typed languages.

Object-oriented programming is even more restrictive than abstract data types
about the allowed constructs in a class definition. In the definition of an abstract data
type A, the operations performed on the type can access the internal details of all their
arguments that are of type A, and there may be more than one of these. In object-
oriented programming, however, a method can only access the variables of the object
it is associated with (the destination of the corresponding message). So the internal
details of only one object at a time can be accessed.

Let us illustrate this with an example. Below is the definition of an abstract data
type of complex numbers with addition as its only operation (we use an imaginary

syntax):
TYPE Complex
VAR re, im : Float

OP add (x, y : Complex) : Complex
TEMP z : Complex
BEGIN z := Complex.new ();
| Z.re := X.re + y.re,;
Z.im = x.im + y.im;
RESULT z
END add

We see that the code of the operation add has access to the re and im variables of
both its arguments plus the new object that is to be the result. The difference will be
clear with the following corresponding class definition in an object-oriented style:
CLASS Complex

VAR re, im : Float

'METHOD add (y : Complex) : Complex
%% the first operand is the destination of the message
TEMP z : Complex ‘
BEGIN z : Complex.new ():;
oz) put_re (re + y ! get_re ()):
z ! put_im (im + y ! get_im ());
RESULT z - '

15

BEGIN RESULT re
END get_re

METHOD put_im (new_im : Float) : Complex

BEGIN im := new im:
RESULT SELF
END put_im

METHOD get_im () : Float
BEGIN RESULT im
END get_im

Here the code of the method add only has direct access to the variables re and im of
its destination object. Messages must be sent to obtain the real and imaginary part of
the second operand y and to fill the variables of the resulting object z.

One can express this difference between modules and abstract data types on the one
hand and object-oriented programming on the other hand by saying that with modules
and abstract data types, protection takes place at a syntactic level (each module is
protected against the other modules), whereas with object-oriented programming the
protection is at a semantic level (each object is protected against the other objects).
This results in a finer granularity, because different object are protected against each
other even if they are described by the same class definition.

The most important contribution of object-oriented programming in the direction of
better software development methods stems from the fact that it is a refinement of
programming with abstract data types: It encourages the grouping together of all the
information pertinent to a certain kind of entities and it enforces the encapsulation of
this information according to an explicit interface with the outside world. For the user
of a certain class, the set of available methods and routines, together with a description
of their behaviour (including at least the types of the parameters and results), is all
that is relevant. The inside of the objects, the variables and the code of methods and
routines, is completely inaccessible to him.

T'wo important quality aspects of software are addressed by this technique: The
first one is adaptability: If a piece of software must be modified (a frequently occurring
phenomenon), it is very often the case that many of the relevant pieces of code are
inside one class definition instead of spread out over the whole program. M oreover, if
the interface of such a class is unchanged or only extended (new methods are added,
but the old ones retain their functionality), it is clear that the rest of the program
will not be affected by the change. Another aspect is reusabslity: A class that is well-
designed and validated by testing or verification can be used over and over again in
different programs. In order to be able to use a class, one need only consider the
external interface; the internal details are irrelevant.

It is true that modules already provide the possibility of encapsulating pieces of

16

software. However, they do not give guidelines about which definition should be placed
together in a module. By choosing a wrong subdivision of a system into modules, it
is very well possible to arrive at a collection of modules that not easily adaptable or
reusable. The extra value of abstract data types and object-oriented programming is
that in addition these techniques give an idea about what belongs in one “module”: A
class definition describes one class of entities, together with all the operations that can
be performed on them. It has turned out in practice that this indeed leads to a better
system structure.

Object-oriented programming also leads to a different way of designing software.
The common technique of top-down functional design starts from the required end-to-
end functionality of a complete program and divides this iteratively into subfunctions
until basic language primitives are obtained. The resulting software is not very adapt-
able to changing requirements, because in practice the changes mostly pertain exactly
to this end-to-end functionality. Moreover it is very unlikely that the subfunctions into
which the program is divided coincide precisely with subfunctions in another program,
which would allow reuse of software, because these subfunctions are obtained in an
ad hoc way for each program separately. By contrast, object-oriented design initially
focuses on the basic entities {(objects) manipulated by the program and it grows to-
wards the required end-to-end functionality in a rather bottom-up way. The resulting
software is often easier to adapt to changing circumstances, because these basic entities
are not very likely to change. Moreover, this way of designing software leads more often

to meaningful software components that can be re-used. (A more extensive discussion
of these issues can be found in [Mey88|.)

In a strongly typed, sequential environment the extra protection offered by object-
oriented programming when compared with abstract data types does not seem very
important. Indeed, it may even be a nuisance, as in the above example about complex
numbers. One of the reasons nevertheless to choose an object-oriented language in this
situation might be that good object-oriented languages are available [Mey87,Str86),
whereas languages that directly support abstract data types are not so widely available.

However, as soon as we leave this safe environment, the extra protection becomes
really useful. As an example we mention dynamically typed languages, i.e., languages
in which every data item has a well-defined type but where it is in general not possible
to determine this type from the program text only. A well-known example is Lisp
IMAE*80,Ste84]. This kind of languages are often used for rapid prototyping, a tech-
nique where a “quick and dirty” preliminary version of a program is produced in order
to experiment with certain aspects, in particular the user interface. Since the resulting
prototype program will not be used for production purposes (it is to be hoped!), relia-
bility is not such an important issue, but flexibility ¢s important, because a prototype
program must be changed often and quickly. Therefore the use of a dynamically typed
language is justified.

Some of the problems with programming in such a language are that it is in general
not very well possible to make the structure of the data explicit (everything is coded

in lists) and that errors are detected too late and at too low a level (2 common error
message 1n Lisp says that you have tried to extract the first element of an empty

list). Object-oriented programming can help here: A class describes the or
of a certain kind of data very clearly: it gives the internal representation and the
avallable operations. Furthermore the object-against-object protection mechanism,
unlike the type-against-type protection of abstract data types, also functions in a
dynamically typed situation. Therefore errors can be caught earlier: the most common
error message In a dynamically typed object-oriented language is that a message has
been sent to an object that does not have an appropriate method, which occurs as soon
as a data entity is being used in a wrong way.

Object-oriented programming in dynamically typed languages does not stand in
the way of flexibility, but it can help in making the structure of a system explicit.
This is probably an important reason why object-oriented languages like Smalltalk-
80 |GR83| and object-oriented extensions of Lisp [WMB80,BDG*87] are so popular for
rapid prototyping. Another reason is the support for reusability: If a prototype must
be made from scratch, the amount of work this costs can be prohibitive. however
one can make use of a good collection of well-organized software for recurring tasks (for
example, handling windows and menus on a bit-mapped display) then sophisticated
systems can be constructed very quickly because one only has to take care of the
essentials.

Another area in which an object-oriented approach has proved to be valuable is
operating systems [Jon78 MT86, WLHS81]. Here, again, it is impossible to check stati-
cally whether certain operations are permitted and the object-oriented approach gives
a good model along which the dynamic checks can be organized. In these syste
the object-oriented principles are often complemented by using capabslities instead of
Just object references. Such a capability not only indicates the identity of an object,
but it also explicitly determines the set of operations that may be performed on the
object by the holder of the capability. This set may be smaller that the set of all the
operations that the object itself admits. It must be admitted that the techniques used
in these kinds of operating systems are often quite expensive, so that objects should be
fairly large and message should not be sent too often in order to maintain a reasonable
performance. Often traditional mechanisms are used to describe the actions of the
system on a lower level.

Apart from dynamically typed systems, also parallel progra. ng constitutes an
area where the more fine-grained protection of ob Ject-oriented programming presents
a clear advantage above abstract data. types. This is the subject of section 3. Further-
more, even in statically typed systems, there is a structuring mechanism, inheritance,
which can be used with object-oriented programming but not in general with abstract
data types. This mechanism is discussed in detail in section 5.1.

Parallelism

in an ol

3.1 Integrating parallelism

bject-oriented

Despite the terminology of “message passing”, most existing object-oriented languages

are sequential in nature. This can be explained by the fact that they observe the
following restrictions:

1. Execution starts with exactly one object being active.

2. Whenever an object sends a message, it does not do anything before the result
of that message has arrived.

3. An object is only active when it is executing a method in response to an incoming
message.

Under these conditions we can see that at any moment there is exactly one active
object, although control is transferred very often from one object to another.

Now one can think of several ways to introduce parallelism to object-oriented lan-
guages. One possibility is to add processes as an orthogonal concept to the language.
In some sense this can be seen as eliminating restriction 1. Several processes can be
active at the same time, each one executing an object-oriented program in the way de-
scribed in section 2.1. These processes act on the same collection of objects; it is even
possible that they are executing the same method in the same object at the same time.
This way of dealing with parallelism has been adopted by some languages that were
initially meant to be purely sequential, such as Smalltalk-80 [GR83] and Trellis/Owl
ISCB*86,MK87|.

While this approach seems appealing theoretically, it is not so attractive in practice.
The point is that it does not at all solve the problems associated with parallelism (we
shall come back to this point later). There are still extra facilities needed for synchro-
nization and mutual exclusion. To that end, the above languages provide some built-in
classes, for example, semaphores. Even then, the facilities for parallel programming
remain rather primitive. |

The second approach can be clearly described as relaxing restriction 2 above: In-
stead of letting an object wait for the result after sending a message, one allows the
sender to go on immediately with its own activities. This is called asynchronous com-
munication. In this way the sender can execute in parallel with the receiver of the
message. It is possible to obtain a large degree of parallelism after a number of mes-
sages have been sent. This scheme has been adopted most notably by the family of
actor languages |Hew77,Lie81,The83,Agh86] but also in [Lan82].

A quite different scheme can be obtained by relaxing the last restriction. Now an
object does not always wait quietly until it receives a message, but has an activity of its
own, which we shall call its body. Execution of the body is started as soon as the object
is created, and it takes place in parallel with the other objects in the system. At certain
explicitly indicated points the body can be interrupted in order to answer a message.
This takes place in the form of a rendez-vous: the sender and the recejver synchronize

19

(the one that is first willing to communicate waits until the other is ready, too), the
parameters are passed to the receiver’s method, which is then executed, and finally the
result i1s passed back to the sender (not necessarily at the end of the method execution),
after which both objects again pursue their own computations independently. This is
called synchronous communication. In this approach, too, a large degree of parallelism
can be obtained, by creating a sufficient number of objects whose bodies can execute
in parallel. The languages from the POOL family use bodies as their main mechanism

to describe parallelism.

Let us first compare the above approaches with respect to the criterion of how they help
to solve the problems of parallel programming. The key to parallel programming is
handling the nondeterminism that results from the unknown relative execution speed
of the processes: This nondeterminism should be reduced as much as possible, but
a certain amount of it is necessary to make effective use of the parallelism. Now
the degree of nondeterminism is increasing very quickly not only with the number of
processes, but also with the number of atomic actions in each process, or otherwise
stated, with the number of places in each process where it may interact with other
processes!.

Now the disadvantages of the first approach (processes as orthogonal concepts)
become very clear: In this approach, a process must expect interaction (perhaps we
should call it interference here) from other processes at every point of its execution.
Theretore the number of different execution sequences of which the programmer has
to take care is very large. The extra mechanisms [K87] added in order to restrict
this nondeterminism, for example semaphores, require a disciplined use, which is not
enforced by the language. Therefore it is clear that this approach is not suitable for
extensive parallel programming.

In fact this issue also plays a role in the traditional dichotomy in parallel program-
ming between shared variables and message passing (see also [AS83]). How cumber-
some it is to work with shared variables, when compared with message passing, can
also be seen by considering the formalisms for verifying such programs: The classical
system to formally verify shared-variable programs |OG76] requires that every asser-
tion in any of the processes is left invariant by every action in every other process. For
n processes having each m actions with m + 1 assertions around them, this requires
n(m + 1)m™! checks. Reducing n would reduce the degree of parallelism. Reducing
m could be done by increasing the size of atomic actions, and this is precisely what
happens with message passing. Moreover, because the communication partner is often
indicated explicitly, the checks can be restricted to the set of pairs of corresponding

communication statements, which in general leads to a much smaller number of checks.
This has been formalized in [AFR80].

'For example, if we have m processes that do not influence each other’s behaviour, and the sth
process has n; atomic actions, then the number of possible interleavings is equal to the multinomial
coeficient (n;n;,...,n,,) =n!/(n,!-. ‘nym!) wheren=n; +... 4+ n,,.

20

Of course, the choice between shared variables and message passing is also influ-
ence by the underlying machine architecture. In machines with a shared memory
between processors {(or sequential machines, where the parallelism 1is virtual) imple-
menting shared variables is trivial, while message passing requires some work. On
the other hand, in machines without a shared memory, where the processors exchange
information over a communication network, message passing can be mapped directly
to the architecture. In these machines it is possible, but very cumbersome and inefhi-
cient to implement shared variables. This seems to indicate that even if the machine
architecture is not fixed in advanced, it is best to choose message passing instead of
shared variables. (DOOM [0di87], the machine for which POOL2 was developed, does
not have shared memory between processors; they communicate via a packet-switching
network.)

All these arguments imply that for integrating parallelism in object-oriented lan-
guages the two other approaches (asynchronous communication or bodies) are superior:
Here the concepts of object and process are effectively unified into one concept, so that
the terms ‘object’ and ‘process’ have become synonymous. Processes now only interact
at clearly defined points: only where messages are sent or answered. Moreover, the
possible ways of interaction are limited: only parameters or results may be passed.
The variables of each object are protected from access by other objects. If a certain
piece of data must be shared among different processes, it can be put in an object of
its own. The way in which it can be accessed is then clearly defined by the available
methods (and possibly its own body). The language supports to a large degree the
discipline necessary in using these mechanisms. Note that inside an object everything
happens sequentially. This sequential, deterministic inside is protected from the paral-
lel, nondeterministic outside world by the message interface. Allowing multiple parallel

processes to be active inside the same object (as is done, e.g., in Emerald [BHJ*87])

would spoil this comfortable situation.

The choice between asynchronous message passing and the use of bodies for achieving
parallelism is much less obvious than the choice against the first approach. Asyn-
chronous communication leads to more flexibility, because the sender does not need
to synchronize with the receiver in order to communicate. In this way it is easier in
certain cases to keep the available processors in a system busy. On the other hand,
asynchronous communication has certain problems associated with it:

For the programmer it is important to realize that the lack of synchronization with
asynchronous communication not only increases the system’s flexibility in exploiting its

resources, but it also increases the degree of nondeterminism: there are more possible
executions of such a program than for synchronous communication, and the program-
mer must ensure that all of these lead to a correct result. Furthermore, the set of
messages that have been sent but not yet received constitutes a component of the
system’s state that does not occur explicitly in the program but is nevertheless very
important. (Most formal techniques for asynchronous communication, e.g. IBKT84]
explicitly represent these travelling messages; the notable exception is temporal logic
[(KVR83].)

The most important problem for the implementation is the buffering of messages

21

that have been sent but not yet received. In principle, it is not admissible just to
reserve a fixed buffer space and to block a sender if it tries to send more messages than
fit in this buffer, because it would lead to deadlock in programs that are semantically
correct. For example, if the sender transmits n messages labelled a and then a message
labelled b whereas the receiver first wants to get a b message before answering the
a messages, then a deadlock will occur if n is larger than the number of messages that
fits in the buffer. On the other hand, in most cases the communication pattern is
simpler that this (the receiver does not require such a peculiar order of messages) and
in these circumstances one would like to slow down the sender when it gets too far
ahead of the receiver. It does not seem possible to solve this problem in general.

Another issue is whether to guarantee that messages travelling from the same sender
to the same receiver should arrive in the order in which they were sent. This can be
ensured by either using an end-to-end protocol, or by employing a fixed routing between
every palr of nodes in a network and making sure that messages are kept in order at
each stage of their transmission. In both cases this decreases the performance of the
communication system and this penalty would have to be paid even by programs that
do not need order preservation.

Let us remark here that it is easy to implement asynchronous communication in
a language that has only bodies and synchronous communication: For every message
that is to be sent asynchronously, a buffer object is created. The message is sent
(synchronously) to the buffer and later the buffer will send it (again synchronously)
to the destination. The other way around, implementing synchronous communication
with asynchronous communication is also possible, but in certain systems, including
actor languages, this is quite cumbersome. The problem is here that an actor cannot
selectively wait for messages of a certain kind. Therefore, after a message has been
sent and the sender is waiting for the result, it must accept every message that arrives
and determine whether it is indeed the expected answer. I not, the message must be
stored for later use, or the actor can send it to itself (which would result in some kind
of busy waiting).

In POOL we have chosen to use bodies and synchronous communication as the
basic mechanism to express parallelism. In most cases, this turns out to be the most
natural way to program an application. If the programmer does not explicitly indicate
a body, a default body is taken, which continuously answers one message after the
other in the order in which they arrive. A method may return its result to the sender
of the message before it actually terminates. In this way parallelism can arise with
synchronous communication and the default body (this is illustrated by the example
in section 3.3). However, in some case an explicit body is needed because it allows to
answer messages selectively, indicating the specific kind of messages that are welcome.
For example, a buffer might wish to answer only insert messages while it is empty, only
extract messages if it is full, and both kinds of messages otherwise. In other cases, the
use of a body is not strictly necessary but just more natural, especially in objects that
are really active and not just waiting for a request to arrive.

Receiving a message is done in an answer statement, which contains a list of method

names. This indicates that exactly one message is to be answered, in principle the first

22

mentions a method occurring in the list. Note that the sender is not
lereas in sending a message the destination is given explicitly). This

rering object to react flexibly on the supply of messages, taking the one
omes first without having to commit itself to a specific communication partner.
' mmitment is nevertheless desired, it is often possible to revert the roles

, ides a conditional answer statement, that specifies that a message
ANSW a af a suitable one has already arrived. If no such message is available

at the moment tha conditional answer statement will not wait for one but terminate
mediately. Again this mmnbutes to an object’s flexibility in reacting on the other
yuld . possible to increase this flexibility even more by allowing an
ate a collection of send and receive actions with the intention that one
of these ac % Ions is pm’fm rmed, preferably the first that can take place. This could be
* 1 by a generalization of an Ada-like select statement FY85]. A mechanism to

his in a PO OL context has been developed [Wou88|. Whether this will be

d in a future version of the languages will depend on actual performance

4 '1]
I_-_;-'J_ . elalaliicy N T
i . i ‘i 9 B H flgr
o 1 S II 4 ._.'-{..}'
LB H M , i i I
-. s h - 1 :

ommunication is provided in addition to synchronous
nunication. . it is consadered as an abbreviation for the mechanism
aites a2 buffer oh This also means that
L of 1 _ ing is not guaranteed because the buffer objects may
eed w , unknow n relative speed. Of course , an implementation is encouraged to
e efficient mechanisms, as long as they have the same semantics. In principle,

. 15 res, 5ib Be to ensure that a sender of asynchronous messages does
O [ar ahea o u e receiver.

. traditional parallel programming languages [AS83] we can
' . to cnter 12 like the f ollaw Ing:

g7 (POOL: message passing)

, or remote procedure call? (POOL: remote procedure call.)

. Sy nc hﬁ” GnOUs Or ASYnch nre Nous messa o

mmunication partner? (P
g of sender by receiver.)

: . The most obvious way in which POOL dlstmgmshes

g languages is b y unifying data structures

mnc@pt of object. This gives rise to a typical style of pro-
IS] by the example in the next section.

23

Finally, let us make some remarks on another issue that is always important in
concurrent systems: fairness. In POOL there are two requirements on the execution
of a program that ensure a certain kind of fairness: The first is the fact that the
execution “speed” of any object is arbitrary, but positive. This means that whenever
an object can proceed with its execution without having to wait for a message or a
message result, it will eventually do so. Clearly this is a very natural and necessary
requirement to be imposed on the implementation of a concurrent language. Requiring
more precise guarantees about the relative execution speeds of different objects would
necessitate a way of measuring those speeds, and even in languages specifically meant
for real-time applications (for example Ada |ANS83]) those guarantees are considered
too involved to be included in a language definition.

The second requirement on the execution of a POOL program is the condition
that all messages sent to a certain object will be stored there in one queue in the
order in which they arrive. When that object executes an answer statement, the first
appropriate message in the queue will be answered (here ‘appropriate’ means that the
message mentions a method occurring in the answer statement). This condition ensures
that it is impossible that an object is sent a message and it executes infinitely many
answer statements in which the message could have been answered, without answering
this one message. In fact, it is not difficult to see that the latter condition (a message
will eventually be answered) is exactly equivalent to the first one (messages are stored
In a queue), when one takes the arbitrary but positive speed of the sending object into
account.

Note the contrast here with the situation in, e.g., Ada. In Ada, each entry (in this
situation corresponding with a method name in POOL) has its own queue, and fairness
1s not guaranteed between different queues. Then it is possible that infinitely many
messages with one name are answered without answering a message with another name,
even when these messages are answered in a select statement where there is always
another open branch for answering the second message. VVe consider this situation
definitely undesirable. In POOL, it may be a little more difficult to implement the
de-queuing operation efficiently, but the mechanism is much more convenient for the
programmer.

Of course, fairness is only a worst-case guarantee from the language, in a situation
where better, quantitative guarantees cannot be given. In practice, it is intended that
an object that does not have to wait for another one proceeds as quickly as possible,
that messages travel as fast as possible from the sender to the receiver, and that they
are answered in an order that approximates as well as possible the first-come-first-
serve principle. This is also the reason why message-answering fairness in the language
definition is formulated in terms of queues instead of infinite neglection.

&
-

3.3

In this section we present a small programming example that shows a typical way of
programming in POOL. In this example we implement a parallel version of a symbol
table, a data structure that can associate keys with other pieces of information. We

24

also illustrate the use of a few other elements of the language POOL2, units and generic
classes.

Units are the largest pieces of a POOL2 program. They come in two kinds: tmple-
mentation units and specification units. An implementation unit contains a collection
of class definitions, giving the full details of each class. The corresponding specification
unit indicates the interface it other units: it lists the classes that can be used outside
of the current unit and for each of these it gives the headers of the available methods
and routines. Another unit can import these facilities by mentioning the first unit in
1ts so-called use [1st.

Below is a specification unit that describes the class ST, each instance of which
represents a symbol table.

SPEC UNIT Symbol_Table

CLASS ST (Info)

%k Each instance is a symbol table containing
hh pairs of a string and an instance of the class Info.

ROUTINE new () : ST (Info)
h% Delivers a new, empty symbol table

METHOD insert (key : String, i : Info) : ST (Info)
#% Inserts a new pair into the destination symbol table.
%% key must not be NIL.

4% If the key is already present, the old Info is overwritten.

ROUTINE search (st : ST (Info), key : String) : Info
hh Retrieves the info stored with this key.

Ak If this key is not present in the symbol table, NIL is returned.

class can be filled in when the class ST is used. This allows us to define the class in such
a general way that it can be used in many different circumstances without modifying
the text. (It would also be possible to make the type of the key a parameter of the
class definition. However, in the implementation unit we shall need the fact that keys
are ordered. In section 4.1 it is explained how the ordering on keys can be made known
to the symbol tables, such that the type of the keys can indeed become a parameter
of the class ST.)

The class ST provides its users with two routines and a method. The routine new
creates and returns a new symbol table object, which is empty initially. The method
insert adds a new piece of information to the symbol table, consisting of a key, which
is an object of type String, and an instance of the class Info. Finally we have the
routine search, which tries to look up the Info associated with a given key in a symbol
table. We shall see below why search is a routine instead of a method.

23

Now here is the first part of the corresponding implementation unit:

IMPL UNIT Symbol_Table

CLASS ST (Info)

VAR my_key : String %% key stored here
my_info : Info 4% Info stored here
left : ST (Info) %% all pairs with key < my_key
right : ST (Info) kh all pairs with key > my_key

LY new is a standard routine

METHOD insert (key : String, i : Info) : ST (Info)
BEGIN
RESULT SELF; A% rendez-vous ends here
IF my_key == NIL hh I am empty
THEN my_key := key; my_info := i;
left := new (); right := new ()
ELSIF key = my_key %% the key is stored here
THEN ny_info := 1
ELSIF key < my_key
THEN left ! insert (key, i)
ELSE right ! insert (key, i)
FI
END insert

Now we see that a symbol table is internally organized as a tree. Each node in
the tree can contain a single key and its associated Info. Furthermore it contains
references to the left and right subtrees, which contain the other symbol table entries.
The routine new need not be described explicitly. A routine with this name is supplied
automatically by the language. It creates and delivers a new object of the associated
class, with all the variables initialized to NIL (a reference to no object). In our example,
this is exactly what an empty symbol table looks like.

The method insert returns its result to the sender of the message right at the
beginning. In this way, the sender and the receiver are synchronized, but the sender
need not wait until the execution of the method is completed. Instead, the rest of
the method can execute in parallel with the sender. The actual value returned by
the method is not important. Therefore the convention is followed that the object
executing the method returns a reference to itself. This is indicated by the expression
SELF, which denotes the object that is executing the expression.

After having returned the result, the method insert determines what to do with
the new piece of information. If the symbol table is empty, the new information is
stored locally. Otherwise, if the new key happens to be the same as the key already
stored here, the local Info is simply overwritten. In all other cases, the new key/Info

26

pair 1s sent to one of the subtrees. In the program text, the operators ‘=’ and ‘<’ are
a short-hand notation for message sending operations. For example, key < my_key is
an abbreviation for the send expression key ! less (my_key), which sends a message
to the object referred to by key, requesting the execution of the method less with
parameter my key. The operator ‘==’, however, is an abbreviation for a call of the
routine id, which is available for every class. This routine checks whether its two
parameters refer to the same object.

One can now ask where the parallelism comes into this example. We have already
seen that the sender of an insert message does not have to wait until the new infor-
mation is actually stored in the symbol table. The sender can proceed with its own
activities after having handed over the information to the symbol table, and the symbol
table will process it in parallel with the sender’s activities. The same holds, of course,
for a symbol table object that inserts a key /Info pair into one of its subtrees; again it
can proceed with a new request immediately after it has given the pair to the subtree.
This means that every node in the tree, in particular the top node, needs only a fixed
amount of time to process an insertion, independent of the actual size of the symbol
table. By contrast, in a sequential system such an insertion would cost an amount of
time that in the best case increases logarithmically with the size of the symbol table.
To put it otherwise, our parallel symbol table is able to process insertion requests
with a constant throughput, whereas in a corresponding sequential symbol table, the
throughput rate would decrease as the symbol tables grows.

We would like to maintain this advantage even when look-up requests are sent to
the symbol table. However, here it is not possible just to hand over some information
to the symbol table, but a reply is desired. Determining this reply will cost an amount
of time that increases with the size of the symbol table. So an individual user of the
symbol table will inevitably have to wait longer for a reply to his look-up request.
What we can do, however, is to maintain the constant throughput rate of the symbol
table when there are several, parallel users. This is done as follows: A look-up request
is sent to the top node of the tree. This top node returns a result, which just indicates
that the request is received. The actual reply will be sent later. If the top node does
not store the requested information itself, it delegates the request to one of its subtrees,
and so on. When finally the information is found, it is sent directly to the sender of
the initial request, without passing via the higher nodes in the tree. In this way we
can retain the constant throughput property of the symbol table.

There is one problem here: The reply must be sent to the object that sent the
initial look-up request to the top node, and it cannot be the result of this request
message. Therefore it must be sent in a separate message from some node in the tree
to the requesting object. However, we want to make our symbol table available to an
object of any arbitrary class, and we cannot make sure that such an object has an
appropriate method to handle the message. To solve this, we introduce a new class,
called Searcher (this class is hidden from the users of the unit Symbol_Table). The
instances of the class Searcher serve as intermediaries to help other objects in doing
look-ups in symbol tables. For each look-up request, a dedicated Searcher object is
created, it is sent a message (with method go) specifying the symbol table and the key

27

of the requested information. The method go in the Searcher object sends a request

to the symbol table and starts waiting for the reply.

When this reply has arrived, the

requested information can be passed back to the requesting object as a result of the

method go.
Here 1s the code:

ROUTINE search (st : ST (Info), key : String) : Info
TEMP 8 : Searcher (Info)

BEGIN
8 := Searcher(Info).new ();
RESULT 8 ! go (st, key)
END search

METHOD look_up (key : String, client : Searcher (Info))
h% Not in SPEC UNIT; used by class Searcher
BEGIN

RESULT SELF; 4% rendez-vous ends here

IF my_key == NIL

THEN client !! reply (NIL)

ELSIF key = my_key

THEN client !! reply (my_info)

ELSIF key < my_key

THEN left ! look_up (key, client)

ELSE right ! look_up (key, client)

FI
END look_up

A4 Class ST needs no explicit body:

%% Incoming messages are anwered in order of arrival
hh by the default body.

END ST

CLASS Searcher (Info) %% Note: not in SPEC UNIT!

VAR info : Info

%% new is standard routine

METHOD go (st : ST (Info), key : String) : Info
BEGIN
st ! look_up (key, SELF);
ANSWER (reply); %% now the result is in info
RESULT info
END go

: ST (Info)

28

METHOD reply (new_info : Info)
44 invoked asynchronously

BEGIN info := new_info

END reply

BODY ANSWER (go) hh each Searcher is used only once!
YDOB

END Searcher

What we see in this example is a programming style that is different from tradi
parallel programming: We do not have a collection of processes on the one hand
a collection of data structures on the other hand, such that the processes act o
data structure, and where we must ensure that it will not happen that two pro
are accessing the same data structure at the same time. Instead, the processe
data structures are closely integrated. One could say that each data structure per
the necessary operations on itself. In this way, synchronization and mutual excl

are much easier to handle. In addition, the advantages of sequential object-ori
programming (section 2.4) are maintained.

29

The language POOL2 is based on the principles explained in sections 2 and 3. Briefly
summarized, these principles amount to describing a system as a collection of objects,
each having variables, methods, and a body, where the objects can be created dy-
namically, are grouped in classes, and interact exclusively by sending messages to each
other. However, POOL2 is not the simplest possible language based on these principles
(this predicate would be more appropriate for POOL-T [Ame85b| or even better for
POOL-S [Ame85al, an early language that was never implemented). While such a sim-
ple language has a surprising expressive power, it is nevertheless more convenient for
a language used for complex and realistic applications to provide some more facilities.

E. 1 S pe ci al la [gudage e lements

The additional language constructs of POOL2 are all based on the idea of “syntactic
sugar”, a special notation, intended to be more convenient and more natural, for
something that is already expressible in the language by other means. As an example, in
section 3.3 we have already seen how operators in expressions can be used to abbreviate
send expressions. E.g., the expression 3+4 is an abbreviation for 3tadd(4). POOL2
takes this idea rather far. For some kinds of syntactic sugar the language definition
states explicitly into which more primitive form the sugared notation is expanded.
In this way the programmer can make the new notation available for one of his own
classes by defining a suitable method for this class. For example, the operator + can
be used for any class that has a synchronous method add with one parameter. Let us
call this ezxplicit syntactic sugar. In other cases the actual expansion is hidden from
the programmer, so that he can only access these features using the special notation

(smplicit syntactic sugar). This applies, for example, to the notions of globals and
routine objects, which are discussed below.

The extra facilities provided by POOL2 in addition to the basic primitives of parallel
object-oriented programming include the following:

o a lot of explicit syntactic sugar

o implementation and specification units
e generic classes

e asynchronous communication

e new-parameters

e global names for objects

e routines being considered as objects

e enumeration classes

e a collection of standard classes and standard units

30

We have already encountered several of these constructs in the previous sections.
The others are briefly discussed below. A more extensive discussion can be found
in [Ame88d|, where it is also indicated how the functionality of the constructs can be
obtained using only the basic primitives.

For the creation and initialization of new objects, POOL2 provides the built-
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>