A MODEL FOR A SECURE
PROGRAMMING ENVIRONMENT

MARTIN L. KERSTEN

e ————————

Promotor : Prof. Dr. R.P. van de Riet
Copromotor : Prof. Dr. A.l. Wasserman

Referent : Prof. Dr. I.S. Herschberg

3i heek
Centrumvoor Wisiunda eninformatica
Amsterdam

to Fernande and Joost

Iru?.llr[.”..l.. -

TABLE OF CONTENTS

CONTENTS
SUMMARY
SAMENVATTING
ACKNOWLEDGEMENTS
CURRICULUM VITAE
L. INTRODUCTION

1.1. Concepts and terminology

1.2. Subject of this thesis
L.3. Outline of thesis

2. ATAXONOMY OF ACCESS CONTROL MODELS

2.1. Historical overview
2.2. A framework for comparison
2.3. System models
2.3.1. Multi-level securily systems
2.3.2. The formulary model
2.3.3. The functional model
2.3.4. Capability systems
2.3.5. Remarks on system models
2.4. Data-independcent models
2.4.1. The Harrison-Ruzzo-Uliman model
2.4.2. The Take-Grant mode]
2.4.3. The grammatical models
2.5. Datz-dependent models
2.5.1. The Hartson model

vi

viii

xi

[SA BN, I N

10
12
12
12

14
14
15
16
16
18
20
22
22

2.5.2. CODASYL based models
2.5.3. The relational data model
2.5.3.1. Query modification for authorization
2.5.3.2. The Griffiths-Wade model
2.5.3.3. The Wood-Fernandez-Summers model
2.5.3.4. The Bussolati-Martella model
2.5.4. Remarks on data-dependent models
2.6. Data-flow models
2.6.1. Multi-level security
2.6.2. The lattice model of secure information flow
2.6.3. Language-based protection
2.7. Goals for the Secure Programming Environment

3. A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT
3.1. Introduction of the SPE model
3.2. The SPE abstract machine
3.2.1. The siate-analysis instructions
3.2.2. The state-modifying instructions
3.3. Security axioms and properties
3.4. SPE security analysis
3.4.1. Revocation
3.4.2. Derivable secure states
3.4.3. SPE programs
3.4.4. Comparison with existing models
3.4.5. Architecture of an SPE machine
3.4.6. Protection in a programming environment
3.5. Example use of the model
3.5.1. SPE slates and sequences
3.5.2. A project management environment
3.6. Variations on a theme
3.7. Summary

4. FORMALIZATION OF SPE
4.1. The SPE states
4.1.1. Consistent states
4.1.2. Acceplable states
4.1.3. Valid states
4.1.4. Class relations
4.1.4.1. Consistent and acceptable states
4.1.4.2. Consistent and valid states
4.1.4.3. Acceptable and valid states
4.1.5. Secure states
4.2. SPE induced graphs

ii

22
23
24
24
25
25
26

26
26

27
28
29

32
36
36
37
38
41
41
41
42
44
44
44
45
45
47
50
52

54
55
56
57
59
60
61
61
61
62

iid

4.2.1. The ownership graph 62
4.2.2. The structure graph 63
4.2.3. The import/export graphs 65
4.2.4. Algorithmic costs 69
4.3. State transformations 70
4.3.1. Classes of state transformations 71
4.3.2. Incremenial state transformations 72
4.3.2.1. Counsistent incremenial state transformations 73
4.3.2.2. Acceptable incremental siaie transformations 73
4.3.2.3. Valid incremental state transformations . 74
4.3.3. Decremental state transformations 76
4.3.3.1. Consistent decremental state transformations 76
4.3.3.2. Acceptable decremental state transformations 78
4.3.3.3. Valid decremental state transformaiions 80
4.3.4. Constraint variations 83
4.4. Authorization 84
4.4.1. Authorized state transformations 84
4.4.2. Authorization policies 85
4.4.3. SPE authorization policy 86
4.5. SPE instruction sels 88
4.5.1. Well-defined insiruction seis 89
4.5.2. Complefeness crilerion 89
4.5.3. Compensation criterion 91
4.5.4. Minimality criterion 93
4.6. Summary 94
5. AN SPE INSTRUCTION SET

5.1. An SPE instruction set 96
5.1.1. Incremental instructions 96
5.1.2. Decremental instructions - 100
5.2. Well-definedness of the SPE insiruction set 104
5.2.1. Compensation criterion 104
5.2.2. Minimality criterion 106
5.2.3. Completeness 106
5.3. Reducing the cost for decremental instructions 107
5.4. Revocation 109
5.4.1. The history of a protection state 109
5.4.2. A definition of revocation 110
5.4.3. The revocation scquence 111
5.4.4. Limitations of revocation 112
5.4.5. The role of activators 113
5.4.6. Revocation algorithm classification 114

5.4.7. Example revocation policies 116

5.4.8. SPE revocation policies
5.4.8.1. SPE chronological revocation

5.4.8.2. Characteristics of revocation sequences
5.4.8.3. SPE goal-seeking revocation
5.5. SPE state predictions
5.5.1. Connected regions
5.5.2. Sharing access between regions
5.5.3. Sharing access by users
5.5.4. Stealing
5.5.5. Kernel, import, and export areas
5.6. SPE programs
5.6.1. A model for SPE programs
5.6.2. Simulation of HRU with SPE
5.6.3. Simulation of SPE with HRU .
5.6.4. Semantics of rights
5.6.5. A three-dimensional access matrix

5.6.6. Mapping the three-dimensional matrix to SPE concepts

5.6.7. The Take-Grant model
5.7. Summary -

6. AN SPE PROGRAMMING ENVIRONMENT
6.1. The architecture of an SPE machine
6.1.1. Region managers as basic building block
6.1.2. A naming problem
6.1.3. The network processor
6.1.4. The type manager
6.1.5. The SPE kernel
6.1.5.1. Procedure execution
6.1.5.2. Remote execution
6.1.5.3. Mapping names
6.1.6. Changing the protection state
6.1.7. Authentication in the SPE machine
6.1.8. Summary 177
6.2. Visibility in high-level programming languages
6.2.1. Relation between access control and visibility
6.2.2. Scope rules in PLAIN
6.2.2.1. Pervasiveness
6.2.2.2. Visibility restrictions
6.2.3. SPL as a framework for PLAIN object visibility
6.2.4. Summary
6.3. Building information systems with PLAIN
6.3.1. Module interconnection languages
6.3.2. Module interconnection and project management

118
118

122
126
131
131
133
136
137
140
144

145
147
151
155
156

157
159

162

165
165
167
168
169
170

170
171

171
172
173
174
175
176
177
178
178

179
182

183
184
185

6.3.3. A PLAIN Programming Environment
6.3.4. Object sharing
6.3.5. Summary
6.4. Dynamic behavior
6.4.1. Procedure invocation
6.4.2. Caller/callee based access control
6.4.3. Third-party procedure invocation
6.4.4. Variable declarations
6.4.5. VYariable usage
6.4.6. Extended access control
6.4.7. Summary

7. SUMMARY AND FUTURE RESEARCH
7.1. Summary
7.2. Future research
7.2.1. Theoretical issues
7.2.2. Machine architecture issues
7.2.3. Software issues
7.2.4. The future of access control

REFERENCES

186
187
191
152
192
194
198
200
203
205
207

209
211
211
212
213
214

214

vi

SUMMARY

In this thesis a model for a secure programming environment (SPE) is developed
to study access control concepts in high-level programming languages, the
compilation and linkage of such programs, and their embedding in a supportive
operating system. The motivation for this research originated in the design of a
high-level programming language for the construction of interactive information
systems where a secure implementation is a necessity for guaranteeing privacy to
the users. In particular, one should ensure that a system contains both accurate
information and that system usage is in accordance with an access control (flow)
policy. The SPE model developed in this thesis addresses both the formal
aspects of the protection philosophy for such an environment and its
consequences for a verifiable implementation.

The SPE model components encompass the entity classes users, objecis, and
regions; a collection of protection state mappings; and a mapping composition
and abstraction facility. The users represent the persons or their agents
responsible for triggering protection state modifications. The objects represent the
entities manipulated by the (automated) information processing system. Their
semantics are largely ignored during the formalization of SPE model. The
regions represent protection domains, a grouping mechanism for objects and users
considered equivalent under a given access control policy.

The access control policy associated with the SPE model is administered by
five relations:

- A relation between users and regions representing ownership;

_ A relation between objects and regions representing object definition;

_ A relation between regions representing access flow constraints;

_ A relation between regions and objects representing acquisition of access
rights;

_ A relation between regions and objects representing granting of access rights.

Instances of the entity classes and relations define three overlapping sets of
protection states; the consistent states, the acceptable states, and the valid states. A
state is considered consistent when the elements used in the construction of the

vii

five relations mentioned above are declared as entities. The acceptable states
satisfy an elementary protection scheme; each region is associated with a user
held responsible for it; each user owns at least on region; and each object is
defined in precisely one region. Valid states model proper sharing of access
rights on objects, that is, those in accordance with a given flow constraint.

In Chapter 4 it is shown that these state constraints can be used as invariants
to characterize secure state transformations. The analysis shows that the
algorithmic cost of guaranteeing access control security for state transformations
extending the protection state is negligible. The corresponding cost for state
transformations reducing the protection state is limited by the size of the state
representation.

In Chapter 5 a set of state transformations and an authorization policy
formally define an SPE instruction set, which is shown to be well-defined, i.e. it is
minimal, each secure state is derivable, and the effects of each instruction can be
undone. The protection range obtained by this instruction set is analyzed,
leading to conditions for sharing and stealing access rights. Moreover, the model
and its instruction set are used to simulate two existing theoretical protection
models to illustrate and to emphasize the differences in approach taken. It shows
that SPE is equally powerful in answering the security questions posed by these
models, but differs by providing access flow constraints and a general abstraction
mechanism to construct multi-level protection systems.

In Chapter 6 the SPE model as a unifying protection model for secure systemns
implementations is illustrated. First, a sketch of a secure distributed computer
system architecture is given where the central role of SPE lends itself to a
kernelized implementation and verification. Second, the knowledge obtained
from the theoretical analysis is used to evaluate protection issues in the
programming language PLAIN. Third, the SPE model indicates a secure
infrastructure for a project development environment, thereby providing a
formal basis for existing module definition languages. Finally, static and
dynamic aspects of PLAIN programs are revisited to sketch a verifiable secure
implementation.,

As a result the SPE model provides both a formal framework for studying
access control and an implementation direction for a secure programming
environment,

viii

SAMENVATTING

Dit proefschrift beschijft een model voor een veilige programmeeromgeving
(SPE) waarmee het gebruik van objecten in hogere programmeertalen, de
vertaling en bundeling van programmas, cn de integratie met het bedrijfssysteem
kunnen worden beheerd en geanalyseerd. Het SPE model is een uitvloeisel van
het ontwerp van een hogere programmeertaal voor het bouwen van interactieve
informatiesystemen, waarin de privacy van de gebruikers controleerbaar moct
kunnen worden gewaarborgd. In het bijzonder moet de toegang en het gebruik
van gegevens in een informatiesystemen kunnen worden gereglementeerd. In dit
proefschrift wordt zowel aandacht geschonken aan de theoretische aspecten van
de beveiliging in een programmeeromgeving als aan de implicaties van het SPE
model op de realisatie van zo’n omgeving.

Het SPE model omvat de verzamelingen entiteiten gebrutkers, objecten en regionen;
een verzameling toestandsovergangen; en cen compositie mechanisme voor
toestandsovergangen. De gebruikers corresponderen met personen, of hun
representanten, verantwoordelijk voor het wijzigen van de gebruiksrechten. De
objecten representeren de entiteiten die door het informatiesysteem kunnen worden
gemanipuleerd. Tijdens de formalisering van het beveiligingsmodel is geen
rekening gehouden met de semantische eigenschappen van deze objecten. De
regionen modelleren beveiligings-domeinen, waarin gebruikers en objecten aan
elkaar worden gerelateerd wanneer zij vanuit het oogpunt van beveiliging een
identieke rol vervullen. De distributie van gebruiksrechten wordt in het SPE
model beschreven door vijf relaties:

- Een relatie tussen gebruikers en regionen om het begrip eigenaar te
modelleren;

- Een relatie tussen objecten en regionen om objectdefinitie te modelleren;

- FEen relatie tussen regionen onderling om transport van gebruiksrechten te
modelleren;

- Een relatie tussen regionen en objecten om acquisitie van gebruiksrechten te
modelleren;

- Een relatie tussen regionen en objecten om verlening van gebruiksrechten te
modelleren.

De mogelijke beveiligingstoestanden vormen drie overlappende verzamelingen;
de consistente toestanden, de acceptabele toestanden, en de valide toestanden. Een
toestand is consistent als de entiteiten genoemd in de relaties ook als zodanig zijn
gedefinieerd. De acceptabele toestanden voldoen aan het volgende criteria; bij
elke regio hoort een gebruiker die verantwoordelijk is voor de beveiliging;
omgekeerd heeft elke gebruiker tenminste een regio; en elk object is in precies
een regio gedefinicerd. Valide toestanden modelleren het veilig verspreiden en
verkrijgen van de gebruiksrechten.

In hoofdstuk 4 wordt aangetoond dat de eigenschappen van SPE
toestandsbeschrijvingen kunnen worden gebruikt als invarianten voor veilige
toestandsovergangen. De algorithmische kosten voor het garanderen van veilige
transport van gebruiksrechten is verwaarloosbaar, terwijl de algorithmische
kosten bij toestandsovergangen die gegevens uit de SPE toestandsbeschrijving
verwijderen beperkt blijft tot de omvang van de toestandsbeschrijving.

Een verzameling toestandsovergangen en een autorisaticbeleid definieren
tezamen een SPE instructieset, een voorbeeld hiervan wordt in hoofstuk 5
ingevoerd. Er wordt aangetoond dat deze instructieset welgedefinieerd is, dat is,
minimaal in aantal instructies, elke veilige toestand is afleidbaar, en de effecten
van de toestandsovergangen kunnen ongedaan gemaakt worden. Vervolgens
worden aan de hand van deze instructie set een aantal beveiligingsvraagstukken
besproken, zoals onder welke voorwaarden gebruiksrechten kunnen worden
gestolen. Het SPE model wordt vergeleken met twee bestaande theoretische
modellen, het Take-Grant model en het Harrison-Ruzzo-Ullman model. Beide
modellen kunnen met SPE nagebootst worden, waardoor het SPE model
tenminste de beveiligings mogelijkheden van beide biedt. Het is echter niet
mogelijk het SPE model na te bootsen in beide modellen, omdat SPE meer
mogelijkheden biedt voor het construeren van gelaagde beveiligingssystemen.

In hoofdstuk 6 wordt aangetoond dat het SPE model als overkoepelend
theoretisch model fungesrt voor verschillende praktische toepassingen. Dit
wordt op vier manieren geillustreerd. Allereerst wordt een schets gegeven van
een veilig gespreid bedrijfssysteem waarin het SPE model de basis vormt voor de
nucleus en voor het bewijzen van een correcte implementatie. Ten tweede, de
theoretische analyse wordt gebruikt om een aantal tekortkomingen van de
programmeertaal PLAIN te belichten en op te lossen. Vervolgens wordt het
SPE model gebruikt als basis voor een indicatic van een veilige PLAIN
programmeeromgeving. Ten slotte worden de SPE machine- en
programmeertaal PLAIN in samenhang bekeken, waarbij de statische en
dynamische aspecten in termen van SPE worden gedefinieerd.

Hiermee is aangetoond dat het SPE model dienst kan doen als theoretisch
kader voor beveiligingsanalyses en voor de constructie van veilige
prommeeromgevingen.

ACKNOWLEDGEMENTS

The research reported in this thesis reflects my involvement in the area of
computer security over the last six years under the direction of prof. R.P. van
de Riet. He pointed out the need of a formal model to unify access control
protection in information systems and he put a lot of effort in keeping me
focussed on that target. Prof. A.L. Wasserman stimulated my research in the
area of information systems, especially the design and implementation of tools
for their contruction, such as PLAIN, Troll/USE, TBE/USE and Trump
which are reported elsewhere. Under his guidance my English prose and the
applicability of the SPE model have been improved considerable.

Prof. Dr. LS. Herschberg owes my gratitude for the time spent on reading
preliminary versions of this manuscript and for the many constructive
comments which improved its readability and the consistent use of terminology.
Drs. S. Mullender was instrumental in preparing the material for the
phototypesetter.

The present work has been made possible by a stipendium granted by the
Netherlands Organization for the Advancement of Pure Research (Z.W.O.)
from September 1979 up to August 1983. I am endebted to the Centrum voor
Wiskunde en Informatica in Amsterdam for using their text processing
facilities.

CURRICULUM VITAE
Naam: Kersten, Martin L.
Geboren: 25 oktober 1953 te Amsterdam
1972: Diploma HBS-B, Pascal Scholengemeenschap te Amsterdam
1976: Kandidaatsexamen Wiskunde, Vrije Universiteit te Amsterdam
1979: Doctoraalexamen Wiskunde, Vrije Universiteit te Amsterdam
1979-1983: Promotie medewerker, ZWO

1983-heden: Wetenschappelijk medewerker, Vrije Universiteit te Amsterdam

Current address of the author:

Subfaculteit Wiskunde en Informatica
Vrije Universiteit

De Boelelaan 1081

1081 HV Amsterdam

INTRODUCTION

Many computer systems currently in use contain and manipulate large
quantities of information concerning individuals and organizations. Although
the storage and processing of this information can be traced back many
centuries, its potential impact on one’s daily life is becoming more apparent. Its
interference with our lives imparts a feeling of danger, triggered by the
seemingly unrestricted capabilities of modern information processing systems. In
the past we could rely on both the shortcomings of communication and
information storage media, as on the fragmentation and distribution of
information such that “Nobody knows enough of me to significantly influence
my daily life”. We are now faced by the technical feasibility of its integration to
complete the picture on one’s behavior, i.e. “Big brother is watching you” is a
real threat.

Similarly, organizations nowadays heavily rely on the proper working of their
information processing systems. The last decade has shown that such a reliance
may turn out to be costly if not based on proper certification of the system
software [Herschberg84]. Many cases of computer fraud, to cover up
embezzlement or theft of information, have been reported in the literature
[Parker76, Chambers 78, Krauss79].

These effects have triggered much research centered around the topic of
‘privacy and security in computer systems’ over the last decades. Privacy in this
context is understood as the right of individuals, groups, or organizations to
control the collection, use, and dissemination of information about them. As
such, its issues are primarily social-political, rather than technological. The
question of how far to go in computer-based record keeping on people is a
political-social question in which the rights, needs, and interests of the individual
should be weighted against that of the institutions (companies, organizations,
government). Since the early 1970’s, privacy protection laws and regulations

1

antrim P o i P
Cantrumveor n informatica

2 INTRODUCTION 1.

have been enacted in several industrialized countries to control the collection,
use and (transborder) dissemination of personal data about individuals [Turn80].
Yet, the continual change in hardware and software systems, the impact of
computerized communications, the widespread distribution of inexpensive home
computers and communication equipment, and changes in attitude towards
information processing complicates the further development and enforcement of
such laws [Kamer82, Kuitenbrouwer79, Leerkamp 82, Turn80].

Although the threat to privacy primarily requires legal and regulatory
remedies, technology is required to enforce them. This is where the term
computer security comes into play. Computer security is the protection of
computer resources against the unauthorized use, access, and modification. This
pertains to both data files and software. Due to the variety of computer systems,
hardware devices, software systems, programming languages, etc., the security
problem is a multi-facetted problem. Solutions are required for each facet and
they must be combined in an effective way. One important facet of computer
security, called access control, is the focus of this thesis.

1.1. Concepts and terminology

A basic aspect of all secure systems is the regulation of activities of persons on
computer systems. This poses the problem how a system recognizes or identifies a
person, iec. authenticates its users. A fairly standard mechanism used for this
purpose is some kind of a password scheme, which requires the user to enter a
user name, or account number, and a password. If the user name is valid and
the password matches the one associated with the user name, the user is given
access to the computer system. The major threat to security in this context is
masquerading, an intruder gains access to the system by using another user’s
account number and password. Numerous recent newspaper stories illustrate
these threats.

Password schemes are not only used to authenticate users on a single
computer system, but they can also be used to authenticate users from other
computers linked together in a computer network. If there were no
authentication in a communication network, it might be possible for a person to
interlope on the communication line and thereby steal the permissions granted to
the legitimate user. An illustration of the vulnerabilities of computer networks is
reproduced from [Hoffman77] in Figure 1.1.

Ample techniques have been designed over the last decades to reduce the risk
associated with masquerading and interloping [Hoffman77] and therefore these
topics are not further analyzed in this thesis. We assume that a mechanism
exists such that a legitimate user can gain access to the (distributed) system.

1.1. CONCEPTS AND TERMINOLOGY 3

RADIATION
TAPS

RADIATION E
Ram.f'rrow TAPS RADTHON I

RADIATION j CHDSTTALK CROSSTALK
Fat

—

@ — COMMUNICATION
: LINES SWITCHING
. | PROCESSOR CENTER

e N1
v

IMPROPER CONNECTIONS \
CROSS COUPLING E

COPYING
UNAUTHORIZED
PERESS QPERATOR
REPLACE SUPERVISOR SYSTEMS PROGRAMMER
HARDWARE REVEAL PROTECTIVE DISABLE PROTECTIVE FEATURES REMOTE
FAILURE OF MEASURES PROVIDE “INS"” CONSOLES
Pr':?_';ecnon:rgmcuns REVEAL PROTECTIVE MEASURES
CONTRIBUTE
MAINTENANCE MAN USER
SOFTWARE FAILURES DISABLE HARDWARE DEVICES IDENTIFICATION
USE STAND-ALONE UTILITY PROGRAMS AUTHENTICATION
SUBTLE SOFTWARE
FAILURE OF PROTECTION FEATURES ATTACHMEﬁ?%ﬁFS%iECOHDEHS HMODIEIERTION
ACCESS CONTROL At
BOUNDS CONTROL
ETC.

Figure 1.1 Computer network vulnerabilities

The different aspects of computer security shown in Figure 1.1 can be further
classified according to their nature into physical, data, operational and organizational
sccurity. Physical security deals with the physical threats to computer system
hardware and environment, such as fire, attacks, malicious entrance, bombing
etc. A classic work on physical security is [Martin73].

4 INTRODUCTION 1.

faulty overwriling modifying

B
- i
Fd replaying

browsing

inserting

*
confidential
data \‘

statistic

i 7 | deleting
\.-/t JH_—_—___

inference L]caking

1b ‘
unclassified
user

Figure 1.2 Threats to data stored in computer systems

Data security deals with the protection of data stored within a computer system
and communicated between systems. Its major threats are illustrated in Figure
1.2 after [Denning82]. Browsing refers to searching (confidential, proprietary)
data within a system. Programs may threaten to overwrite data by accident
(faulty programs). Leakage refers to the transmission of data to unauthorized
users by processes having legitimate access. Inference refers to the deduction of
confidential information about an individual by correlating released statistical
data. Operations such as insertion, deletion, and modification by unauthorized
users threaten the integrity of the data stored.

Operational security deals with the organizational policies and techniques to limit
and control access to the computer systems. User authentication and
communication networks fall into this category and they are dealt with to avoid
masquerading, piggy-backing, and interloping. Techniques for proper
operational use of the computer systems can be found in textbooks such as
[Martin73, Hoffman77]

Organizational security deals with the way computerized data is acquired, stored,
manipulated, and flows in the organization. It differs from the previous security
dimensions by emphasizing the organizational structure rather than the
computer system. Its methods for security provisions are mostly taken from the
auditing world, dealing with personnel practices and policies, physical access
regulations, documentation standards, change control for applications and

1.2, SuUBJECT OF THIS THESIS 5

system software, etc. A thorough discussion of these topics is given in
[Krauss79].

Although no computer system can be considered secure without providing
methods and techniques in each of the four major security problem areas, it is
data security that can be considered the nucleus of computer system protection.
The basis for data security is formed by an access control model and an
authorization scheme. The former describes how data objects and relations
between data objects are administered in a computer system and how they may
change over time. The latter controls the use of access rights by users or
processes, that is, it regulates the use of the computer system.

1.2. Subject of this thesis

Despite the large body of literature dealing with access control mechanisms
and authorization schemes, very little of this work abstracts from the semantics
of the underlying objects, machine architecture, and system software layer. We
feel that more work is needed on access control, emphasizing the secure,
manageable flow of access rights, for we consider such a prerequisite for the
implementation of specific authorization policies.

In this thesis, we define an access control model, focusing primarily on
interactive information systems, an important application domain. They provide
users of a computer system interactive access to data files and databases, possibly
using customized programs to ensure database integrity and implementing
domain specific data manipulations functions.

The data security problems are manifested differently in an information
system, because they make use of the protection properties of the hardware, the
operating system, and the programming language. In particular, user
authentication and access control as provided by the operating system are often
insufficient to guard information systems against data security breaches. For one
thing, data security depends as much on the value of the data in a specific
environment as on the name or location of its representation

A second important protection objective in information systems is selective
sharing of access rights. That is, access rights are granted and revoked by users.
The dominant problem is how to guarantee proper access usage and foresee the
impact of one’s access decisions.

A third protection objective in information systems is to safeguard confidential
or derivable information from data being stored. Although this problem can not
completely be solved by an access control policy, such a policy is a necessary
prerequisite. The access control model defined in this thesis shows that the
problems sketched can be formalized and thereby become attainable for
theoretical analysis. Using a formal model rather than English text serves the
following purposes. '

6 INTRODUCTION 1.

- A formal model provides a framework for discussion and improved
understanding by concentrating on the salient features of a problem
without considering the details involved in specific implementations.

- A formal model provides a basis for theoretical studies of security and
allows security properties to be proved.

- A formal model abstracts from the peculiarities of specific machines and
programming environments and therefore can be used as a standard or
reference model for actual implementations.

- A formal model makes it easier to compare different secure system
implementations.

A formal model by itself is not a panacea for underlying real world security
problems. A formal model has shortcomings as well:

- The formalism used for definitions, theorems and proofs is often hard to
read, while the proofs are not necessarily error free.

- A small fraction of the protection problems can be effectively translated
into a formal model.

- A formal model mostly does not guide an efficient implementation.

1.3. Outline of thesis

Chapter two introduces the various approaches described in the literature
dealing with access control. A framework is presented to illustrate the
approaches taken over the last two decades. In chapter three we informally
introduce the SPE model, expand on the motives for its choice, and indicate the
results of a formal analysis. The SPE model 1s formally defined in chapter four,
where the behavior of a secure abstract machine is cast into a series of theorems
and conditions for a well-defined protection system instruction set. Chapter five
starts with the formal definition of a particular instruction set, which is used
thereafter to analyze alternative granting/ revocation policies. Moreover, the
instruction set in combination with an abstraction mechanism is used to compare
our model with some existing theoretical access control models. Chapter six
interprets the model to direct the design of a distributed operating system,
programming language, and programming environment. Chapter seven
concludes with a summary and indication of future research issues related to the
SPE model, both regarding its formal specification and how the results may
direct future investigations in this area.

2

A TAXONOMY OF ACCESS
CONTROL MODELS

2.1. Historical overview

Protection in computer systems has been studied during the last two decades

from many angles and a staggering amount of literature exists covering the
aspects of access control, authorization policies and confidentiality. Example
surveys are [Hoffman69, Anderson79, Linden?76, Landwehr81, Landwehr83,
Cheheyl81]. Maturing of this field is observed from the lecture books currently
available, both surveying the field and providing general background
[Hoffman 77, Martin73, Hsiao79, Fernandez81, Denning82] as books on special
topics, such as computer fraud and abuse [Parker76, Krauss79]. Conferences
on these topics are organized on a regular basis by International Federation of
Information Processing (IFIP/Sec) [Fak83] and Technical Committee on
Security and Privacy of the IEEE Computer Society [Davida80], while a
session is dedicated to the issue in many international conferences. Hardware
support for secure systems is available in the form of general purpose capability-
based processors [Pollack82], fault-tolerant systems [Borr81], and
encryption/decryption hardware for secure communication [DES77].
Although research activities and influences cannot be pinpointed to exact dates
and therefore a survey on these activities can not be complete no: unwbiased, it is
possible to indicate the shifting interest over the last two decades in this area of
computer science,

Access control in the sixties was simplified by the batch oriented nature and
single instruction stream in most computer systems. Files and programs resided

7

8 A TAXONOMY OF ACCESS CONTROL MODELS 2.

for a short period of time in the machine and access rights were determined
primarily by handing the proper card decks to the desk clerk. Research
activities concentrated on the architecture of multiprogramming systems to
achieve a better system utilization. Segmented memory was invented to
safeguard the programs concurrently occupying main store and memory tags
were used to safeguard individual programs against unintended use of the
memory locations [Iliffe62]. In combination with the introduction of multiple
operating states of the machine, such as user state and supervisory state, it
became possible better to control the multi-programmed system behavior. A
generalization of the concept of supervisor state resulted in the MULTICS
operating system [Graham68, Organick72]. These descriptor-based machines
are forerunners of capability-based systems, where addresses of all objects are
replaced by codewords which include an encoding of the access permissions. A
conceptual design for a capability supervisor appeared in 1966 [Dennis66],
while the first industrial capability hardware and software system appeared in
1969 [England72]. In the same period many of the basic threats to security in
computers were discovered, classified, and cast into a system penetration
methodology [Ware67].

The early seventies show increased activity in the formalization of protection
problems and practices. The multi-level security in military environments led to
the design of the Bell-LaPadula [Bell74] model (See also [McLean85] for a
fundamental critique on this model), which was seminal for the development of
many prototype implementations using 2 security kernel [Schroeder77,
Berson79]. Capability-based protection and the access matrix model
[Lampson69] led to the Take-Grant model [Jones76] and the operational
model of Minsky [Minsky 78b, Minsky77]. These are analytical models used to
describe and investigate the protection system properties and do not impose an
implementation technique. The theoretical limits of safety analysis were
uncovered by Harrison-Ruzzo-Ullman [Harrison76] using the access matrix
framework.

This period also shows increased awareness on the different aspects of
protection. Access control is recognized as one dimension of the problem;
equally important aspects are the authorization policy, information flow control,
and inference control. The intricate role of information flow in relation to
protection issues is first recognized and described by Lampson [Lampson73,
Fenton74].

Access control within operating systems based on the access matrix is limited
to data-independent access. By contrast, in database management Syst€ms
access control takes into account the granularity of the objects being protected,
the level at which information is manipulated, and the semantics of the
information being stored. Moreover, an authorization policy to regulate the
sharing of permissions is required. Formal approaches in that field include
[Hartson76, Fernandez75], pragmatics are found in [Stonebraker74,

2.1. HISTORICAL OVERVIEW 9

CODASYL78].

Access control is transferred to the programming language arena by Conway
[Conway72a] , who addresses protection issues in information systems, and
Morris [Morris73], who translates capability protection to programming
language primitives. This work is extended by Liskov and Jones in [Liskov78]
to provide full capability-based protection in typed high-level programming
languages and analyzed formally on its information flow characteristics by
D.Denning [Denning 76].

During the late seventies, it was recognized that simple protection models
alone are not sufficient to describe and analyze the behavior of complex systems.
The design of a secure software system depends as much on the reliability of the
code, i.e. absence of software bugs, as on the protection policy. Therefore, work
in the area of operating system security resulted in increased interest in the
practicality of formal program specification and verification techniques
[Cheheyl81, Levitt79, Thompson8l, Egge80]. This influence is notable in the
design, verification and implementation of secure operating systems like KSOS
[McCauley79] , PSOS [Feiertag79], and Secure Unix [Popek80] and a secure
implementation of INGRES [Downs80].

"The availability of large quantities of information on individuals in (statistical)
databases increased concern for the threat to privacy. Unfortunately, it is
relatively easy to disclose information about individuals from a statistical
database using limited outside knowledge. Placing restrictions on the
application of the statistical operators does not solve the problem, for a general
scheme exists to breach privacy [Denning80, Jonge83]. The schemes ensuring
some privacy are database partitioning and sampling [Denning82]. However,
these methods can be used in very large databases only, because partitioning
and sampling may lead to loss of statistical properties subject to investigation.

The focus of protection research in the eighties is shifting towards distributed
systems. This makes access control even more involved, since a distributed
system can not rely so much on hardware support as a centralized system. To
alleviate these problems, either probabilistic protection [Tanenbaum81] or a
combination of insecure sites with restrictions on inter-site transfers [Rushby83] is
assumed. Moreover, the secure transfer of messages in distributed systems
requires new solutions to the authentication problem [Lampson81] and
encryption of messages [Jonge85]

The practice of access control and authentication is getting more substance
now the information society is within reach. For example, lawyers search ways
to transfer and integrate computer-based methods of access control with
legislation, so as to protect the investments made in software development.
International banks automate their transfer of monetary values, which require,
due to the potential losses, extreme sensitivity of the computer security problems,

10 A TAXONOMY OF ACCESS CONTROL MODELS 2.

2.2. A framework for comparison

The design of a new access control model for an integrated secure
programming environment is necessarily rooted in the past. Therefore, we first
define a framework for these protection models and review the significant
approaches taken. This framework for comparison is general and does not fully
represent all existing models perfectly. Yet it focusses on the problems at hand
and it aids in the comparison of the approaches discussed.

A protection model minimally consists of four components:

1) A model of the real world.

2) A finite set of operators.

3) A finite set of security constraints.
4) An abstraction mechanism.

The most important component of a protection model is its notion of the real
world, such as what real world objects it considers and what relations exist
between these objects. Although one can imagine protection Ssystems, ie.
implementations of protection models, in which users do not play any role, nor
interact with the system, such systems primarily regulate human actions.
Therefore, each protection model recognizes active entities, as opposed to passive
entities. Active entities can initiate actions, while passive entities are the object
of manipulation only. This distinction is often used to associate active entities
with the users of the system and to associate passive entities with files.

For regulatory purposes active entities are normally represented in a system
just like passive entities. However, they differ by the way they are used. For
example, when the passive entity represents a UuSser, its representation contains
information about the identity of the person. This information is used at log-on
to distinguish users and to authorize individual requests. Authentication
mechanisms are not dealt with in this thesis; it is assumed that proper
mechanisms exist, such as a password scheme [Wood77, Morris 79, Needham 78]
and physical identifiers [Martin73].

The access relations among the passive and active entities can be subdivided into
five classes [Denning82] ;

- Data-independent access relations, where access authorization takes place
without consideration of the objects’ semantics.

. Data-dependent access relations, where the semantics of the object is used for
authorization decisions.

. Data-flow relations, where data-flow access relations regulate the flow of
information and the flow of access permissions.

2.2. A FRAMEWORK FOR COMPARISON 11

- Time/history relations, where time relations regulate access on the basis of
past events.

- Context relations, where access is regulated on the basis of the combined use
of requests.

The objects and relations of a protection system can be considered as defining
a state of an abstract machine. States can be either used solely for deriving
authorization permissions, i.e. the protection state is static, or can be subject to
change, ie. they are dynamic. In both cases we need operators or state
transformation rules. For a static state the set of operators return derived
information only. The state itself is never changed after it has been set up. In
case of dynamic states the set of operators can be considered the instruction set
of the implied abstract machine. For simplicity we assume that each operator is
atomic, i.c. non-interruptible by any other request, and transforms the protection
state in some meaningful way.

A protection system is of limited use if the protection policy it implements is
not spelled out precisely by a set of security constraints. One way to formalize
these constraints, is to introduce predicates describing secure protection states
and operator invariants. The former describe the properties of users, objects and
their relationships administered by the protection system. Operator invariants
describe the security policy enforced for state modifications, i.e. the integrity of
the protection state.

An instruction set alone is not sufficient to support the construction of secure
systems. There should be a means to integrate these protection instructions with
normal data processing instructions. Moreover, there should be means to
encapsulate such sequences into parameterized commands or programs. The
advantage of such an abstraction mechanism is that it enables the construction
of multi-level machines supporting alternative authorization policies using the
protection properties inherited from the underlying model.

In the subsequent sections some of the more influential models and system
approaches concerned with access control are reviewed. The models discussed
are classified by their prime orientation into:

- System models, which emphasize the architectural structure of the protection
system and its integration with the processing environment

- Data-independent models, which abstract from implementation aspects of the
protection system.

- Data-dependent models, which emphasize the intertwining of access control
with the object semantics.

- Data-flow models, which emphasize the flow of access rights and data.

12 A TAXONOMY OF ACCESS CONTROL MODELS 2.

2.3. System models

2.3.1. Multi-level security systems

The ADEPT-50 time-sharing systems developed at the System Development
Corporation was one of the first systems to implement multi-level security by
software controls [Weissman73]. In a multi-level security system the information
is classified following the organizational structure of a military environment.
That is, each object is assigned to a hierarchically ordered security level, Le.
Unclassified, Confidential, Secret and Top Secret, and is assigned to a category,
like Nuclear and Windmills. Moreover, a list of users is attached to an object,
called the franchise, together with the mode of access being permitted, like Read
Data and Append Data. The franchise sets are used to implement discretionary
need-to-know controls.

In the ADEPT-50 system four objects types are recognized: users, jobs,
terminals, and files. Upon system log-on the job serving the user’s terminal is
given the minimum of the security levels assigned to the user and the terminal,
the category is set to the intersection of the categories accessible to the user and
terminal respectively. The security policy implemented is called a high-water-
mark approach, because each object (file) created is assigned the security level
and categories of the existing environment and session history. Moreover,
actions on objects are permitted when the user’s, job, and terminal security
exceed the properties of the object. The system provides hooks for the
enforcement of extended protection policies.

Although the system has been implemented and used at various sites, full scale
use was impossible due to the authorized "downward” flow, i.e. a user can copy
classified information into a (preexisting) file that is unclassified. Moreover,
automatic classification of new files suffered from overclassification of data, since
the history mechanism did not allow the high-water-mark to decrease during a
single session.

2.3.2. The formulary model

The formulary model for protection has been introduced by Lance Hoffman
in his Ph.D. thesis in 1970 [Hoffman70]. The model provides a general method
for describing access control routines and enforcement procedures. The basic
observation Hoffman made is that the simplicity and rather static properties of
the protection mechanisms for file systems and the passwords schemes in use
permit only a small number of specific access types to be associated with the
data files. He notes that the assumption underlying the file protection schemes
using passwords is false. The underlying assumption is that all components of a
file have the same security properties. The real world does not conform to this
assumption. Problems arise when parts of a file should be made available to
users from different authorization groups. For example, password protection of

2.3. SYSTEM MODELS 13

files is acceptable in limited cases only. There is a need for a more dynamic
approach to access control.

The formulary model proposed provides both the freedom of choosing the
access control policy and claims to be efficient by checking all accesses at run-
time. The scheme basically works as follows. The user at the terminal talks to
the machine in some language TALK. The language TALK can be anything
from programming language to interactive or menu-driven conversation. The
primary task of the TALK interpreter is to perform syntax checking and to
relate the resource names provided by the user to internal names. The access
control takes place in an access-control routine ACCESS, which uses a
formulary’ to authorize the access request. The formulary consists of a set of
four procedures:

Control procedure
Virtual procedure
Scramble procedure
Unscramble procedure

Parameters to these procedures are the internal name of the datum requested
along with the internal name of the user responsible for the request. The virtual
procedure transforms the internal name of the datum into a virtual address.
The control procedure contains the algorithm to decide for access and performs
the requested action, which is either a fetch or store of the datum. The scramble
and unscramble procedures are used for data encryption purposes. Upon
entering the system a user is paired with a single formulary, of which the
procedure entry points are copied to the user control block.

‘The most interesting feature of the formulary model is the simplicity of the
approach coupled with the flexibility provided for access control. Both data-
dependent and data-independent protection can be supported using the control
procedure. The major shortcoming of the model is the lack of a formal model to
describe the access decisions and to analyze the interrelationships between
collections of formularies. Moreover, the notion of granting rights to others is
not provided at a general level.

Relating the formulary model to our framework, the model recognizes users
and words in a virtual memory as components of the real world. The
relationships between the users and objects are described in the form of the
formularies, which can be thought of as the primitive operators in the model
states. 'The single general security constraint is that all access is funneled
through the procedure ACCESS. No provisions are made for composition of
formularies into parameterized commands.

14 A TAXONOMY OF ACCESS CONTROL MODELS 2.

2.3.3. The functional model

A generalization of the formulary model is given by Conway, Maxwell, and
Morgan in [Conway72a] and called a functional model. They examine the
potential of an access control matrix approach to support integral protection in
programming languages, operating systems, and database systems using
controlled read and write functions as operators. They claim that a cost-
effective implementation scheme exists based on the combined use of a trusted
compiler and secure run-time system.

The functional model’s notion of the real world is untyped objects and users.
No formalized relationships are maintained between objects. Instead, four basic
security functions to reflect elements of the access matrix are presented to
guarantee data security in a wide class of situations; F, and S, the translation
time fetch and store functions, and F, and S, the run-time fetch and store
functions. Each of these functions has two arguments: a user identification and a
data item. When a fetch reference is made to a data item, i.e. in the right-hand
side of an assignment statement or its appearance in an output statement, F(u,d)
interrogates the specified element of the matrix and either generate conventional
code when the user is permitted data-independent access, aborts the compilation
when the user is denied data-independent access, or generates a call to F (u,d) to
check access permission at run-time. Similarly, S, and S are used for storage
requests.

Guaranteeing security constraints as embedded in the four functions depends
on a secure integration of the compiler and object libraries. It should be
impossible to alter the object code generated by the compiler. Abstraction
primitives are not considered in this model, but as the approach easily blends
with high-level programming languages, multi-level security policies are
attainable. For example, the access routines can be included in an abstract data
type declaration. The cost effectiveness of this model is illustrated by
comparison with existing approaches, like Hoffman’s formularies, MULTICS
[Graham68], and their own file management system ASAP [Conway 72b].

2.3.4. Capability systems

Over the last several decades, the computer industry and universities have
been searching for alternative architectures better to support selective
information sharing and the construction of reliable and complex systems. An
important class of said machine architectures use capability-based addressing
[Fabry74]. Capabilities are protected addresses, which can be freely copied,
passed as parameters, and transmitted from domain to domain, but cannot be
forged or modified by user programs. Capabilities are context-independent and
address the same object regardless of where the capability is used. One can
think of capabilities as tickets containing an object identifier and access
permissions to that object. A detailed ontology of the capability systems has

2.3. SYSTEM MODELS 15

been written by Levy [Levy84], their history is illustrated in Figure 2.1.

System Developer Year Antributes
Rice University Rice University 1959 segmented memory
Computer with “codeword™
addressing
Burroughs BS0M0 Burroughs Corp. 1961 stack machine wih
descriptor addressing
Basic Language International 1964 high-level machine with
Machine Computers Lid., UK, codeword addressing
Dennis and Van MIT 1966 conceptual design for
Homn Supervisor capability supervisor
FDP-1 Time- MIT 1967 capability supervisor
sharing System
Multicomputer! University of 1967 first capability
Magic Number Chicago Institute hardware system
Machine for Computer Research design
CAL-TSS U.C. Berkeley 1968 capability operating
Computer Center system for CDC 6400
System 250 Flessey Corp., UK. 1969 first industrial
capability hardware
and software system
CAP Computer University of 1970 capability hardware
Cambridge, UK. with microcode support
Hydra Camegie-Mcllon 1971 object-based mulri-
University processor 0.5,
STAROS Carnegie-Mellon 1975 object-based multi-
University processor (.5,
System/38 IBM, Rochester, MN. 1978 first major commercial
capability system,
wgged capabilities
iAPX 432 Intel, Aloha, OR. 1981 highly-integrated

object-based micro-
processor system

Figure 2.1 [Levy 84] Major Descriptor and Capability Systems

Capability-based systems take a simplistic view of the real world. The entities
considered are objects with read/write/exec permissions, users in the sense of the
previous models are not recognized. Instead, processes with capability lists or
assigned a protection domain are the equivalents of users.

A consequence is that capability systems use a simple authorization rule; a
process can gain access to an object if it can supply a matching capability for it.
Other primitive operations on capabilities are transport and copying. The latter
may be controlled by an access right, the copy flag, which is part of the
capability representation. Moreover, the access permissions in the derived
capability form a subset of the source. The abstraction mechanism for capability
systems lies in the environment of its use where abstract data types can be used
to control the use of object classes.

2.3.5. Remarks on system models

The prime issue addressed by the system models is read/write protection. As
such it safeguards the information stores against malicious use. However, the
approaches fall short in providing operations to control the use of the access
control information, i.e. selective granting and revocation of access rights. Most
of the data-dependent access control decisions in the formulary and functional

16 A TAXONOMY OF ACCESS CONTROL MODELS 2.

approach are encoded in programs and thus allow a wide class of security
policies to be implemented, but they rely on a proper programming
environment. Moreover, enforcement of the policy should be proved secure
using program-verification techniques. Capability-based protection differs from
the other approaches by its lack of a policy; instead it is a technique to
implement and subsequently enforce a wide range of protection policies,
guaranteeing that only accesses permitted by the policy take place [Jones75]. In
Chapter 6 we show how the philosophy of formularies or access functions can be
beneficially used to supplement the access control schemes to arrive at a secure
implementation of information systems.

2.4. Data-independent models

2.4.1. The Harrison-Ruzzo-Ullman model

In recent years models have been developed to formalize access control in a
computer system and to analyze and predict their behavior [Harrison76,
Jones76, Minsky78b]. Of these models the Harrison-Ruzzo-Ullman model
(HRU) is of prime interest because of its simplicity and far reaching theoretical
results. The model of the real world is an access matrix P containing elements
from a set of generic rights R. The matrix is manipulated by the following
primitive operations:

enter r into (X;,X,)
delete r from (X, ,X,)
create subject X;
destroy subject X
create object X,
destroy object X,

An abstraction mechanism forms an integral part of the protection model. All
operations are assumed to be encapsulated in a finite set commands of the form

command a(Xrlz")Xsm :Xol)"vXon)
if r(in (X1,X01) and
ro in (X;2:X52) and
10 (X Kon)
begin
op

end

2.4, DATA-INDEPENDENT MODELS 17

The condition is optional and describes the required properties of the access
matrix before the sequence of actions is applied. The elements X; are the formal
parameters of the command a. Each ¢p; is one of the primitive operations.
Subjects are denoted by s;, objects by o;. A configuration of a protection system is
defined as the triple (S,0,P), where S is the set of current subjects, O is the set of
current objects (which include S), and P is an access matrix. Every subject is
associated with a row in P and every object is associated with a column in P.
An element of the matrix, P[s,0], contains a subset of the generic rights, like read,
wrile, or execute. An sample of such a matrix is shown in Figure 2.2.

Sop | e | Sim 0, - 0,
Ss1 read
read
write
Serm exec

Figure 2.2 An access matrix

For this model the general safety question “Can a command pass a right to an
element of the access matrix where it did not occur previously to the call?” is
considered. They assume that the authorized or "trustworthy” subjects are
removed from the access matrix, because in that situation passing a right can be
considered as a safety breach. Unfortunately, the following theorem can be
proved [Harrison 76).

‘Theorem: It is undecidable whether a given configuration of a given protection
system (access matrix, collection of commands and rights) is safe for a
given generic right,

This result should not discourage the design of access-matrix based protection
systems, because the result obtained does not rule out particular systems where
the safety question is decidable at reasonable cost. For example, the Take-Grant
model, to be discussed shortly, has a simple decision procedure. Moreover,
within the HRU framework, placing restrictions on the form of the commands
makes the safety problem tractable. For example, if the protection system is
mono-operational, that is each command’s interpretation is a single primitive
operation, then the safety question can be answered for a generic right r and an
initial state. Removal of the deletion and destroy primitives turns the protection
system into a monofonic system, but for monotonic systemns with at most two
operations per command the safety question is also undecidable.

Alternatively one might conceive that placing constraints on the commands’ pre-
condition makes the safety question decidable. Again this is true when the
protection system is both mono-conditional, that is, each commands’ pre-condition

18 A TAXONOMY OF ACCESS CONTROL MODELS 2.

has at most one term, and monotonic, that is, deletion and destroy primitives are
forbidden. It is unknown whether the safety problem is solvable for mono-
conditional systems in general.

The HRU model is generally taken as a reference model. It has not been
used as an implementation guideline. An extension of the HRU model with
state transition flow constraints is discussed in [Kreissig 80].

9.42. The Take-Grant model

One of the formal protection models for which a safety question can be
answered is the Take-Grant model [Jones76] , which, like HRU, is used to
model capability-based protection systems. The central concept in this model is
the description of the protection state as a labeled directed graph. Nodes come in
two types, denoting subjects (active entities) and objects, respectively. The
access type is used to label arcs, like read, write, execute. Two right labels play
a special role: take (abbreviated ¢) and grant (abbreviated g). If a subject S has
the right ¢ for an object X, then it can take any of X’s rights; if it has the right ¢
for X, then it can share any of its rights with X. As such the Take-Grant model
describes the transfer of authority and can be used to answer questions of the
form ”Can a given user obtain & access to a particular object.”

The dynamics of the protection model, its primitive operations, are cast into
four graph-rewriting rules.

Take Let S be a subject such that tE(S,X) (t belongs to the labels associated
with the arc (8,X)) and 7€ (X,Y) for some right r and nodes X and Y.
Then the command
S take r for Y from X
adds 7 to (S,Y). Graphically,

R

o £y oy = mo
S X y S X Y

where the symbol o denotes vertices that may be either subjects or
objects.

2.4. DATA-INDEPENDENT MODELS 19

Grant Let S be a subject such that £€(S,X) and r€(S,Y) for some right r and
nodes X and Y. Then the command
S grant r for Y to X
adds r to (X,Y). Graphically,

R

3 R
of © Po ——> oe—32—] o

X 5 Y X 5 Y

Create Let S be a subject and R a set of rights. The command
S create R for new {subject|object} X

adds a new node X and the set R. Graphically.

o — o

S 3 X

RemoveLet S be a subject and X a node. The command
S remove R from X
deletes R from (S,X). Graphically.

R R-R

o ' — o > o

S X S X

The safety problem is formulated as follows. Let G be a graph and S, X, and
P nodes of G such that r&(S,X) and r& (P,X) then G is called safe for the right
r for X if and only if r&(P,X) in every graph derivable from G. This property
can be analyzed both from the standpoint of cooperative users, denoted by the
predicate can.share, and by considering stealing the right by users, denoted by
can.steal. For both cases it has been shown that the existence of an undirected
path in the graph with each edge labeled with either take or grant suffices to
decide safety in linear time in the size of the protection graph [Snyder81]. A
variation of can.steal is counting the number of conspirators needed to acquire the
right. Upper bounds on this number can be derived with algorithms of the same
time complexity as the safety question [Budd 77].

The Take-Grant model does not provide abstraction primitives for the
construction of multi-level protection systems. This led Jones in [Jones78] to
extend the model with a procedure mechanism. In her extension, ’property sets’
are associated with both subjects and procedures and serve as templates for
subject creation. That is, the execution of a procedure results in a subject with

20 A TAXONOMY OF ACCESS CONTROL MODELS 2.

rights defined by the template.

The Take-Grant model has been the focus of much research. The relationship
between this model and HRU is described in [Snyder8l), the complementary
relationship is addressed in [Weyuker78]. She shows how to simulate the
Take-Grant model in terms of the HRU model and vise versa. Consequently the
HRU safety question turns out to be undecidable for the Take-Grant model.
The role of the take and grant rights as opposed to read and write rights has been
addressed by Bishop and Snyder [Bishop79] , who call them de jure and de facto
rights, respectively. A hierarchical version of the model to simulate multi-level
discretionary protection is described in [Bishop81]. The global flow of
privileges is addressed in [Lockman8l]. A commentary on the model and its
applicability can be found in [Hilhorst83].

2.4.3. The grammatical models

The formal access control models discussed so far raise the following two
general questions.

The safety question
Given a protection system G and two objects X and Y in that system, if
we introduce the right of X to alpha Y, what other objects can thereby
obtain the rights to alpha Y?

The extended safety question
Given a protection system G and two objects X and Y in that system, if
we introduce the right of X to alpha Y, what potential changes will this
produce in the entire system?

The HRU model indicates that for arbitrary protection systems these
problems are undecidable. However, restricted classes, like the mono-operational
systems, can be analyzed in polynomial time. For the Take-Grant model a
linear time algorithm exists to answer both questions. In [Lipton78] it is shown
that access control can be mapped into a language parsing problem.
Consequently, the extended safety question translates to the problem of finding
derivable sentences from a given grammar. For example, consider a protection
system with transition rules of the following form

o

BTy ¢ 1= 1T T

where T;, T; and T} denote types drawn from the set T and «, B and ¥ indicate
the rights from the set R. A grammar can be derived for such rewriting rules by

2.4. DATA-INDEPENDENT MODELS 21

defining a production for each rule as follows. If they do not already exist,
introduce three nonterminals, AB, and C € TXRXT such that A corresponds
to an arc labeled a between vertices 7, and 7;. Similarly, B and C are defined,
which gives the production A — BC. A terminal counterpart 'a’ is defined for
each nonterminal A and the production A—a (B—b, C—c) is added.

A protection system is called grammatical if for each right « €R there is a
grammar L and a start symbol S such that given two vertices X and Y, Ccan a
Y iff X and Y are connected by a path such that the concatenation of the right
symbols on that path form a word in L(S). For grammatical protection systems
the following observations are proved.

Theorem Given two vertices P and Q of type 7, and T , respectively, P can «
YPe £, q P Y
Q yff there exists a path between P and Q in L((7,,a,T})).

Theorem The extended safety question can be answered for a general arc
moving protection system in O(| ¥ | 28!y where V is the set of vertices.

If it happens that the grammar derived for a protection system is regular, it is
called a regular grammatical system, the safety question for which can be
answered in linear time in the size of the protection graph. Another class of
protection systems which seem to arise quite frequently are the non-discriminating
grammars where all rules are of the form “If X and Y are connected by an arc
with some right y, and Y has any right to Z, then X can obtain that right to Z”.
The name implies that no distinction is made between the rights. Non-
discriminating grammatical systems are proved to be regular too.

Not all protection systems can be classified as grammatical. For example the
MULTICS protection and the Bell-LaPadula models are not, because they do
not constrain the flow of privileges and are therefore considered “loose”
protection systems. If for each right « there is some regular expression £, such
that a necessary condition for a vertex X to a a vertex Y is that they be
connected by a path with word in E, then the system is called near-grammatical.
When the global conditions imposed by the protection system can be checked
independently of the vertices involved in a transfer and they can be verified in
constant time, then the safety question for near-grammatical systems can be
answered in linear time in the size of the protection graph as well.

Variations on the Take-Grant model using the grammatical approach for
safety analysis are discussed in [Budd80]. He shows that the safety questions for
most of the extensions proposed in the literature can be answered using this
framework. For example, limiting the power of Take-Grant by combining it
with the right being transferred leads to a polynomial safety question. A similar
result holds when multiple capabilities are required for transfer [Graham72].
The safety question for systems with unbounded create and non-monotonic rules,
e.g. when rights are added and removed within a single rewrite operation,
remain undecidable.

22 A TAXONOMY OF ACCESS CONTROL MODELS 2.

2.5. Data-dependent models

The data-independent models are characterized by an apparent lack of
concern about practical use and efficient implementation. However, they are of
interest in the analysis of the protection to be gained within a given context and
highlight the semantics of access rights and the effects of the authorization policy
chosen.

The class of data-dependent authorization models distinguishes itself from the
previous approaches in addressing the problems from a database point of view.
Although much of the work in this area is influenced by the access matrix in
operating systems, database protection emphasizes different aspects. For
example, there are often more objects in a database than in an operating system.
Moreover, database security is concerned with different levels of granularity (like
file, record, and field), the semantics of the data, as well as its physical
representation.

2.5.1. The Hartson model

The multi-level security in ADEPT50 and the formularies of Hoffman are
integrated and extended to obtain the five-dimensional security space of Hartson
[Hartson75, Hartson76] The security space is defined as AXUXEXRXS,
where A is the set of authorizers, U is the set of individual users, E is the set of
operations, R the set of resources,and S the set of states. Each database access 1s
considered a series of requests by an individual user u for an operation ¢ on
resources r CR at a time when the system is in state s. Thus, each access request
can be represented by a 4-tuple q=(u,¢,R,s) where both u and s are supplied by
the system in an “non-forgeable” way.

The authorization process is split in two phases. The first phase is
conventionally executed at system logon and establishes the users’ access profile.
In particular, the franchise for the user, operations, and resources are looked up,
the intersection of which determines the access permissions. The second phase is
executed upon each access request, where it is matched against the access profile
to permit or deny access. Access requests denote a subspace of a four-
dimensional projection of the security space and a request is authorized when it
is contained within this projection.

The model does not provide an abstraction mechanism, but contains hooks to
execute pre-decision, post-decision, and history procedures for additional
protection enforcement and threat monitoring.

2.5.2. CODASYL based models

One of the most influential works on database standardization is done by the
CODASYL Data Base Task Group (DBTG) [CODASYL78]. The CODASYL
data model supports both the logical description of the database (the schema) and

2.5. DATA-DEPENDENT MODELS 23

derived descriptions (subschemas) to support user views. Each user can interact
with the database through a subschema only and the schema forms the nucleus
for information integration, administrative control, and the optimization of the
entire database. This schema/subschema architecture has important data
security ramifications since it can be used to conceal from the user information
in the database which he is not allowed to access.

The model of the real world considered in the DBTG reports primarily deals
with data, its relationships, and primitive data manipulations. The concept of
users is not explicitly defined in the data model. Users are implicitly defined by
the organizational structure and the knowledge of passwords for selective
(sub)schema access. For details on the model we refer to the books on database
models [Date77, Ullman80].

The languages specified in the DBTG reports [CODASYL78] contain
facilities for data security such as the ability to define password protection and to
invoke procedures defined by the database administrator (DBA) for security
checking. The protection model is rather static, as it does not provide primitives
for the dynamic dissemination and change of access information. The two
abstraction mechanisms are the subschema and the database procedure. The
subschema provides a mechanism for selective access to parts of the database.
The database procedure is a piece of software triggered by the use of database
manipulation primitives and specified in the ACCESS CONTROL clauses for
data items, records, sets, areas, and (sub)schemas.

In [Manola75] it is pointed out that the required control on the internal use
of data in applications places trust on the proper working of the language
compiler and run-time environment. It is shown that little security is possible if
an untyped, untrustworthy programming language is used for their construction.
They suggest extension of the CODASYL primitives for data security along the
following lines. First, the DBA should be able to administer, by declaration,
more precisely the use of various operators defined for the subschema. In
particular, there is a need for additional syntax to allow more precise
declarations of security constraints for a subschema in terms of legal operations
on the data defined in the schema. For example, the ability to declare the result
of a compiler as trustworthy for certain constraints, that the DBMS is to do the
checking, or that the DBA supplies a routine which takes care of the access
constraints. Second, the ability to define more complex schema/subschema
transformations is required, so that data objects and their operations tailored to
the user’s application may be defined.

2.5.3. The relational data model

24 A TAXONOMY OF ACCESS CONTROL MODELS 2.

2.5.3.1. Query modification for authorization

The relation between query processing in a relational database management
system and access control is indicated by Stonebraker [Stonebraker74] and is
applied in the relational system INGRES [INGRES]. The real world
administered consists of the relations and attributes in the database. System data
such as time of day, date, terminal, and user information are inherited from the
operating system environment. Access control protection is provided through the
view mechanism and two-level grouping. The users of a database are divided
into the database owner and the rest. All relations defined by the database
owner can be accessed by the other users, provided they have been given access
permission. These access permissions are coupled with the primitive database
operations, such as RETRIEVE, APPEND, etc. Tables defined by users other
than the database administrator are considered local tables and cannot under
any circumstances be accessed by other users, except the database administrator.
To provide access control on table partitions, based on their content, table views
can be defined to which access is given on a selective base as well. Data security
is guaranteed by merging all queries with the access constraints for a user before
database processing starts. The view mechanism can be considered the
abstraction mechanism provided within this system.

2.5.3.2. The Griffiths-Wade model

A more conventional translation of the access matrix into database access
control is found in the relational database management system developed in San
Jose [Astrahan76]. The protection model defined by Griffiths-Wade
[Griffiths 76] controls access of users to objects stored in the database only. User
identities are obtained from the environment, i.e. the operating system. The
protected data objects in System R consist of relations, divided into base
relations, a physical table stored in memory, and views, which are a logical
subset, summary, or join of other relations. The access rights associated with
relations are read, insert, delete, update and drop. The protection system primitives
allow the creation of new entries and the transfer of right subsets when such
transfer is permitted by the presence of the right to copy. The creator of a table
receives all rights, including the right to grant these rights to others.

A system relation AUTHSYS is used to administer the permissions of users with
respect to the relations and whether these rights can be granted to other users.
A time stamp is included to infer the dependencies among the grants during
revocation. That is, the authorization relation is an encoding of a directed
graph in which the nodes represents users and the arcs are labeled by object
being granted access, mode and time the grant was issued. This graph is used to
drive the revocation algorithm, which removes all grants solely depending on the
grant being revoked. That is, revocation may result in a domino effect, a series
of grants are undone. Fagin improves the algorithm and proves its correctness

2.5. DATA-DEPENDENT MODELS 25

in [Fagin77]

This protection model does not provide abstraction facilities beyond the view
mechanism, which makes the construction of alternative access policies and
access rights infeasible.

2.5.3.3. The Wood-Fernandez-Summers model

In [Wood79] it is pointed out that the concept of ownership for access control
is not always viable in a database environment. With many shared databases it
is difficult to identify the owner uniquely and once identified the ownership may
be valid for a short period only. Therefore, Wood proposes to place access
control in the hands of one or more database administrators, such that
transparency of administrative control to the users of the database is provided.
That is, unlike the previous schemes, a change in administrative control does not
result in a cascade of revocations.

The model recognizes users and database object types, also called data classes.
A subclass is defined as a subset of the occurrences in a data class satisfying a
given predicate. Classes (and subclasses) are the units of delegation.
Authorization is described in this model by the 5-tuple (s,0,t,p,f), which states
that subject s has access right t to those occurrences of data class O for which
the predicate p is true. A user can grant this right (or its derivations) to others
when the copy parameter f is true only. The access rights are separated into two
groups, one denoting the normal database manipulation operations, and the
second controlling the dissemination of the former to users. However, the
difference is visible from the value of the copy parameter only. Revocation in
this model is simplified by the rule that a class is delegated once and by
propagating all grants based on the revoked action to the revoker.

2.5.3.4. The Bussolati-Martella model

In [Bussolati80, Bussolati8la, Bussolati81b] protection is modeled along the
lines introduced by Wood-Summers-Fernandez in combination with the three
level ANSI-SPARC database architecture. In particular, security is described at
three levels: the conceptual security schema, the external security schemma and
the internal security schema. The prime advantage of this separation is
independence of the users’ security requirements from constraints on system
resource security requirements.

The real-world model of this approach consists of binary relations and
applications. The set of operators consist of read, delete, update, insert, which
are used in three different modes: as access right, as administration (delegation)
right, and as property right. The access rights permit a user to perform the
corresponding action on the object associated with the right. Administration
rights permit granting and revocation of access rights. Property rights denote
ownership. Moreover, each right can be extended by a predicate to control

26 A TAXONOMY OF ACCESS CONTROL MODELS 2.

data-dependent access.

Security in this model has two flavors. First, it is guaranteed that each user
access satisfies the external security schema. Second, definition of each external
schema is checked against the conceptual schema for inconsistencies.

The abstraction capabilities within the model are restricted by the constraints
placed in the conceptual security model; subset constraints can be used to model
more restrictive policies. The link provided with an application programming
language provides the options to implement multi-level protection policies. The
application of this model to a distributed database environment is presented in
[Bussolati80]. A variation on this theme in a specific application environment is
given in [Ardity78].

2.5.4. Remarks on data-dependent models

The data-dependent access models discussed all aim at providing data security
in a data base environment. The starting point is protection practice in
operating systems, i.e. the access matrix, which is merged with the data model
supported by the system. However, it is currently understood that most data
models are too weak to support an application environment. The same holds for
incorporating access protection. A better approach is to strive for an integration
of access control with the application programming language semantics. For
example, the database is described by a complex of abstract data types, using
part of a formulary approach to enforce data security. Necessarily, such an
approach requires integration and consistency with the access control model in
the operating system and programming language.

2.6. Data-flow models

2.6.1. Multi-level security

The access control models discussed so far focuses on access regulations to
objects. However, access control covers only part of the data security problem,
since information flow as a result of exercising one’s rights may threaten security
as well [Lampson73]. One of the earliest models to describe and analyze the
threat of information leakage was developed by Bell and LaPadula in the design
of a secure operating system kernel [Bell 74].

The entities considered in the Bell-LaPadula model are subjects and objects in
a multi-level security environment. That is, each object is assigned a security
level (secret, confidential,public) and a category. Each subject has a clearance,
which enables him to access objects at a certain security level and category. For
a system to be secure, two properties must hold

2.6. DATA-FLOW MODELS 27

(1) the simple security property: no subject has read access to any object that has a
classification greater than the clearance of the subject; and

(2) the *-property: no subject has append-access to an object whose security level
is not at least the current security level of the subject; no subject has read-
write access to an object whose level is not equal to the current security
level; and no subject has read access to an object whose security level is not
at most the current security level of the subject.

Additional properties to be satisfied are the tranquility principle and
nonaccessibility of inactive objects. The former means that a subject can not
change the security level of an object. The latter means that a subject cannot
read the contents of inactive objects and each newly activated object has an
initial state independent of any previous activation.

The usual operators for object creation and modification are supported. The
operators governing the transition from one state to another are formally defined
and proved to satisfy the security constraints. Abstraction to hierarchical objects
and integrity has been studied by [Goldsmith81]. A fundamental critique on
aspects of the Bell-LaPadula model is given in [McLean85]

A variation of this model is developed by Feiertag et al. [Feiertag79], where
cach function reference and state variable is assigned a security level, so that the
security level of each data item in a specification can be compared to the level of
the function reference, which makes it more amenable to automated proofs of
security. This version of the model has been the basis of the PSOS [Feiertag 79]
and KSOS [McCauley 79] design efforts of a provably secure operating system,

2.6.2. The lattice model of secure information flow

The Bell-LaPadula model controls the flow of information by a series of
conditions and properties to be maintained when a state transformation takes
place. Denning [Denning76, Denning77] has shown that information-flow in
multilevel protection systems can be treated in a more general way as follows.
The information-flow model of the real world is defined by five components:

- aset of objects

- a set of processes

- a set of security classes

- a class combining operator
- a flow relation.

The class and the object categories in the previous model are combined to form
security classes. A process can be thought of as the Interpretation of a program.
The class-combining operator @ specifies the class of the result of any operation
triggered by the process. The flow relation specifies the permissible information
flow among security classes. The three components of the model (classes, @, flow

28 A TAXONOMY OF ACCESS CONTROL MODELS 2.

relation) form a lattice structure and play an important role in multi-level
systems. Maintaining secure information flow in the modeled system corresponds
with ensuring that actual information flows between objects do not violate the
specified flow relation.

Extension of the model to axiomatize the information-flow semantics of
assignment, composition, modification, and procedure invocation has been
developed by Andrews and Reitman [Andrews80]. An extensive treatment of
the flow model is given in [Denning82]

2.6.3. Language-based protection

The general information-flow model of Denning has a counterpart for
capability-based protection in high-level programming languages. In [Liskov76]
an access control technique is introduced based on an augmented concept of
data type. Entities in that model consist of reference variables and their type in
high-level programming languages like Pascal. They require the declarative
specification of access restrictions as soon as variables are declared. In essence, a
variable declaration is extended with a list of access rights which represents
operations defined for the type. The resulting program is considered access-correct
f the accesses actually used do not go beyond those stated in the declarations.
The mechanism is a compiler-based check of the access correctness, which,
according to the authors, results in enhanced software reliability.

The flow relation, i.e. the flow of access rights, is associated with the
assignment statement and with procedure invocation. An assignment is allowed
when the rights available to the recipient of the object are a subset of those of
the source object. Right amplification is permitted to occur at only one point:
at the entry to a procedure implementing a primitive operation of the type. An
abstraction mechanism is defined in [Liskov78] to handle the access right
intricacies of hierarchically structured objects. The abstraction mechanism can
be considered a generic procedure-declaration mechanism, the access rights and
constraints on variables control the procedure instance. An extension to
accommodate a larger class of access-correct programs to be written is given in
[Stepoway81]

Similar to the capability-based approach to security, this model provides a
protection mechanism to implement a class of protection policies. The
orientation on programming language constructs and compile-time access
enforcement is claimed to be sufficient; “the effect of a program execution
should be clear when the program text is considered only.”

The models discussed in this section primarily aim at the regulation of
information flow. As such they deal with the reading and writing of information,
while access control is considered a secondary issue.

2.7. GOALS FOR THE SECURE PROGRAMMING ENVIRONMENT 29

2.7. Goals for the Secure Programming Environment

The taxonomy presented in the previous sections shows that security objectives
and primitives are highly influenced by the perception level of the protection
problems considered. In an information system we can distinguish at least four
levels:

User view of protection;

Programming language view of protection;
Database management system view of protection;
Operating system view of protection;

At the top level we find the user view of the information system where the
system is considered as an information source and manipulation system. As far
as the implementation is concerned, messages are received from the user and
scrutinized by protection filters like the ones proposed by Hartson [Hartson76].
The prime protection requirement is the ability to exercise one’s access rights
and to share one’s rights with other users.

This orientation becomes more significant in the context of database
management systems, where protection concentrates on the value-dependent
access of information and the dissemination of access rights among users of the
system. Specific models for access control have been proposed by [Griffiths 76,
Fernandez75, Stonebraker74, Manola 75, Bussolati81b]. Verifiable
implementation of security constraints in a DBMS is addressed by Downs
[Downs77] relying on the secure Unix implementation of UCLA [Popek80].

The protection concepts at the programming language level are related to the
construction of reliable, portable and maintainable software. Within this area
we can distinguish two classes of protection tools, those related to programming
language constructs and those to maintain large collections of application
programs. The former include typing, scopes, and procedural abstraction, which
provide the programmer protection against his own mistakes. The latter is
centered around program modules, which hide the module implementation
details from its environment and control the generation of system versions.
Sample systems in this area are the module specification method of DeRemer
[DeRemer76] , module definition facility of Tichy [Tichy79] and the Module
Control System [Riet81]. A survey covering these aspects in detail is [Pietro-
Diaz83].

In the operating system view of protection, the semantics of the objects are
limited and are directly related to the objects defined by the operating system
kernel, like files and sequences of bytes in main memory. The rights to perform

30 A TAXONOMY OF ACCESS CONTROL MODELS 2.

elementary operations (read, write or execute) on an object are represented by
capabilities, also called tickets, and are best supplied by the hardware or
operating system kernel as protected data objects [Fabry74].

The major shortcoming of the protection tools provided at each level is the
apparent lack of integration with other levels. Protection concepts available at
the programming language level are not related to the users running the
programs or using object classes. Instead protection is mostly handled by the
underlying operating system. For example, the notion of (closed) scopes as a
protection mechanism within programming languages is not reflected in the
operating system protection mechanisms. The notion of a protected memory
segment in an operating system, with (read,write,execute) capabilities, as a
protection domain, does not carry all the protection features of scopes in a
programming language. Furthermore, the protection provided by strong typing
in programming languages does not provide the necessary protection required at
the user level. The typing mechanism provides static protection only. Often it
does not allow alternative views to be defined on the same set of objects, the
latter being a prerequisite in a database system and the design of an information
system. At the other end of the spectrum, no tools are provided at the O/S level
for the description of the relationships among the memory segments.

These statements do less than justice to the work being done by others in
attempts to integrate the protection issues of the four layers. The problems
pointed out were already described by Minsky in [Minsky76] , who not only
suggests that data security requires the ability to form abstractions and to define
appropriate operators on them, but stipulates that data security cannot be
enforced without the ability to control the internal working of the user’s
program, ie. integration of DBMS and application language is required.
Capability-based protection is applied to programming languages by Jones and
Liskov [Liskov78]. In their paper protection specifications are associated with
the object type, the procedure parameters, and the assignment statement. Part
of the protection enforcement can be done at compile time, the other part
requires run-time support (parameter matching). The Hartson model provides
many primitives for bridging the gap between the user level view of protection
and the operating level view, but its formal basis is narrow. Most protection
objects are introduced informally and no results are known, which predict the
behavior of the model under a specific class of operations.

The Secure Programming Environment system developed in this thesis is an
attempt to provide the basis for a unified approach to protection. In this respect
it concentrates on access control problems in each view, largely ignoring the
semantics of the objects involved. First, an access control model is defined, in
which the notion of access to objects and the propagation of access is formally
defined. Second, the model is used as a basis for defining a distributed machine
architecture implementing the protection model. It is shown that the protection
provided at the machine level carries over to the programming language

2.7. GOALS FOR THE SECURE PROGRAMMING ENVIRONMENT 31

environment. In particular, scope and visibility protection is inherited from the
underlying machine architecture. The gap between programming view and user
view of protection is bridged using Abstract Data Types enhanced with user
oriented protection rules, details of which are published in [Riet81,
Wasserman82a, Kersten8la).

We conclude this introduction with a list of wishes for protection models being
defined, so that when the task is finished it is possible to make some assessment
of the validity of the design and implementation. These rules and suggestions
are based on the work of Saltzer and Schroeder [Saltzer75]

- Least privilege. Every user and process should have the least set of access
rights necessary to perform its task.

- Dynamic system. The protection system should provide primitives for the
introduction, removal, and activation of the objects and users, as well as for
the relationships between users and objects.

- Fail-safe defaults. Rights should be acquired by explicit permission.

- Completeness of mediation. Every access should be checked for
authorization.

- Economy of mechanism. The protection system should be simple, efficient
and must involve a limited amount of software for its proper functioning,

- Support for distribution. The protection system should support
decentralized authorization and authentication.

- Minimal semantics. Access control protection should be described as much
as possible independently of the semantics of the objects and users involved.

- Openness. The protection system should provide primitives for the analysis
of the protection state, which should be available to all users.

- Integration requirement. The model should reflect the scope and control
flow protection found in high-level programming languages.

- Formality. The model should be formalized such that it lends itself for sound
mathematical reasoning.

3

A MODEL FOR A SECURE
PROGRAMMING ENVIRONMENT

3.1. Introduction of the SPE model

The framework for a secure programming environment (SPE) developed in
this thesis consists of four components: the SPE model, a set of security
constraints, an abstract machine, and an abstraction mechanism. The SPE
model defines the entity world considered for protection. The security
constraints define the protection properties to be guaranteed for the state
instances of the SPE model. The SPE abstract machine provides the procedural
interpretation of the protection model and forms the basis for actual machine
architectures. The SPE abstraction mechanism facilitates program definition
and interpretation to support different protection policies.

In this chapter these topics are addressed informally, aimed at providing an
overall picture of the model, its interpretation, its assumptions, and its
capabilities. Detailed and more rigorous definitions are presented in the
subsequent chapters. We start with a description of the SPE model.

The SPE model is designed to model access control in a programming
environment, in which active entities, the set of users U, passive entities, the set of
objects O, and mediator entities, the set of regions R, are distinguished. An active
entity differs from a passie entity in the ability to initiate a state change under a
procedural interpretation of the model.

For the moment, only the relationships between the entities are considered.
The semantic properties of passive objects, like file read- and write- semantics, are
ignored. The only right associated with an object relevant for the definition and

32

3.1. INTrRODUCTION OF THE SPE MODEL 33

analysis of the protection model is its visibility: "a user u sees the object o within
the region r”. Visibility models the right to access an object and it is a
prerequisite for a user to manipulate the object using any of the type specific
functions. The extension of the objects with semantics is deferred to Chapter 6
where an architecture of a SPE machine and programming environment is
given.

Similarly we assume that no information, such as name and password, 1is
associated with active entities. The active entity represents a real-world person
only, presumably in the form of a process running on an SPE machine. Binding
the person with a process is performed at some point in time through an
authentication mechanism, examples of which are described in the context of the
SPE induced machine architecture in Section 6.1.7.

The meduator entities are artificial objects, introduced to represent protection
domains; they associates a set of active entities with a set of passive entities. Users
and objects are bound to a mediator, called a region, when they fall under the
same security requirements or exhibit the same protection relations. They can
be compared to the elements of an access matrix [Harrison76].

The entity types participate in five relationships and define an SPE protection
state by the tuple:

SPE=<U,R,0,0WN,STR,,DEF,IMP,EXP>>
with

UR,0 C NAMES

OWN,STR,DEF,IMP,EXP C NAMES X NAMES

UR, and O are finite subsets of the unbounded name space NAMES. The
component U denotes the set of “active entities”, R the set of “mediators” and O
the set of “passive objects”. The DEF relation describes the association between
an object and the region in which it is defined. The component OWN describes
the relation between users and regions and models the co-owner relationship.

The STR, IMP and EXP relations administer and regulate the transfer of
access rights between regions. STR is an asymmetric relation between regions
and defines a partial order among regions. Granting and obtaining access to
objects is expressed by the relations EXP and IMP, IMP administers the fact
that a particular object available within the environment of a region is made
accessible within the region itself. EXP administers the complementary fact,
making an object accessible within a region available to the regions in its
environment,

The security concepts such as owners of regions and objects, visibility of
objects, granting and obtaining access rights, structure of an environment, can
now be given more precisely in terms of the SPE model.

34

e ¢ o O

A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

Each user is represented within the SPE model by an element u € U.
A user u is called an owner of a region r iff (ur) € OWN.
An object o is defined in a region r iff (o,r) € DEF.

A user u is called an owner of an object o iff there exists a region r such that:
(ur) EOWN and (o) € DEF

An object o is exported from region r to a region s iff (o,r) EEXP and
(r,s) ESTR.
An object o is imported from a region s into region r iff (o,r) €EIMP and
(r;s) ESTR.

An object o is accessible in a region r iff either
- o is defined in region r, or
- o is accessible in a region s and o is imported from s into r, or
- 0 is accessible in a region s and o is exported from s Lo r.

An object o is called visible to a user u iff there exists a region r such that:
(u,r) EOWN and o is accessible in r.

The environment of the region r is the set of regions {s:(r;s) ESTR}
The contents of the region r is the set of regions {s:(rs) €STR}

A user u frusts v in the context of region r iff there are regions r and s such
that (u,r) € OWN and (v,s) € OWN and (s,r) ESTR.

User u and v are co-owners of region r iff both (ur) EOWN and
(v,r) EOWN.

A region r is shared if [{u: (4,r) €O0OWN}| >1.
An object r is shared if |{r: 0 is accessible in r}| >1.

A pictorial representation is used to visualize and highlight aspects of SPE

protection states. An SPE state is graphically displayed as a labeled directed
graph with the following graphical conventions being used:

stands for the user u

r stands for the region r

@ stands for the object o

3.2. THE SPE ABSTRACT MACHINE

e

/ (r,s) is a structure relation
I

r

; ;} the object o is defined in region r

5

; ;) the object o is imported into region r

v

A the object o is exported from region r

Figure 3.1 Graphical representation primitives

35

Graphs and algorithms on graphs play an important role in the formal
analysis of SPE. Therefore, a few basic graph concepts are introduced here for

convenience.

A digraph G=(V,E) consists of a finite, nonempty set of vertices (nodes) V and a
set of edges E. The edges are ordered pairs (v,w), where v is called the tail and w
the head of the edge. A path between vertices A and B in the graph G is a set
of edges (r, r;, ;) €E (i=0..n-1) such that r,=Aand r, = B. The length of a
path is the number of different edges making up the path. A cycle is a path
between a vertex and itself. A digraph G is called a Directed Acyclic Graph
(DAG) if the graph does not contain cycles. A textbook providing additional

information on the concepts is [Robinson80].

36 A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

3.2. The SPE abstract machine

The real world modeled by SPE is dynamic. Users and objects are created
and destroyed, access permissions are granted and revoked. These dynamics are
not represented by the SPE protection state. Rather 1t describes the
relationships between the entities at a given time only. To incorporate and
analyze the protection dynamics, the SPE tuples can be considered state
representations of an abstract machine, similar to the approach taken by Popek
and Farber [Popek78] for data-secure operating systems. Following their
approach the SPE machine would be defined by:

SPE_ .. = <Z0,1,T>

'machine

with = the set of SPE states; the machine is in one state at any given time,
represented by a single SPE protection state; and starts in the state o, The
instruction set I causes the machine to move from one state to another, as
expressed by the partial function:

TIXZ=>2

The instructions are not always total functions, because security properties will
prohibit the class of insecure states transformations, to be characterized shortly.
The set of instructions is further divided into two categories: the state-analysis
instructions and the state-modifying instructions.

3.2.1. The state-analysis instructions

The state-analysis instructions extract information from the SPE protection
state and present it to the caller, the user, or they are used as parameters to a
program. Applying an analysis instruction never changes the protection state.
It behaves like a no-op operation in the abstract machine. The set of state-
analysis instructions used in this thesis is shown in Figure 3.2. The instructions
in the first group return a set of SPE names. The instructions in the second
group are protection predicates yielding a Boolean result. The latter are
extensively used in the description and analysis of the SPE instruction set. They
are also being used as Boolean functions in the description of SPE programs,
where the protection state indicator o is omitted and the function is written in
the Roman font.

3.2. Tue SPE ABSTRAGT MACHINE

usr reg(r) users associated with the region r
reg usr(u) regions associated with the user u
reg own(r) some owner of the region r
obj:reg(r) objects defined within the region r
reg obj(o) region where the object o is defined
reg exp(r) objects exported from the region r
reg imp(r) objects imported into region r

reg con(r) regions in the context of region r
reg env(r) regions in the environment of region r
Owner(o,u,r) u is the owner of the region r
Defines(o,0,r) o is defined in the region r
Aceess(o,0,r) 0 is accessible in region r
Visible(o,0,u) o is visible to user u

37

Figure 3.2 SPE state-analysis instructions.

3.2.2. The state-modifying instructions

The state-modifying instructions either extend or remove entities and
relationships. Figure 3.3 shows the list of state modifiers used. They are
separated into incremental and decremental instructions. Unlike the analysis
instructions, each invocation of a state modifier is associated with an active
entity, called its activator. The activator is held responsible for the call and is the
focus of the security constraints to be discussed shortly. A region which
participates in the change of the protection state is called an affected region. For
example, the regions r and t in the list below are affected regions. The user u is an
actwalor.

38 A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

add_region(u,r) u introduces a new region s and becomes its owner
add_object(u,r,0) u creates a new object o within the region r
add_owncr(u,r,v) u introduces user v as a co-owner of r
add_struct(u,r,s) u introduces a structure between regions r and s
add import(u,r,0) u imports the object o into the region r
add:export(u,r,o) u exports the object o from the region r

del region(u,r) undoes add region(u,r)

del object(u,r,0) undoes add:objcct(u,r,o)

del owner(u,r,v) undoes add_owner(u,r,v)

del struct(u,r;s) undoes add_str(u,r,s)

del import(u,r,0) undoes add import(u,r,0)

del export(u,r,0) undoes add:expon(u,r,o)

Figure 3.3 SPE state-modifying instructions.

3.3. Security axioms and properties

The SPE model as presented above allows a rich class of complex SPE
instruction sets to be defined, of which the instruction set introduced so far is one
As the SPE model is aimed at the description and regulation of security
problems in programming environments, the definition of instruction sets is
restricted by the following seven axioms. The first four axioms should be
guaranteed by any protection system. The last three are specific to the SPE
model.

AXIOM 1 The initial state of the machine is secure.
AXIOM 2 Access control security is a state transformation invariant
property.

Given a secure initial state of the abstract machine, security violation can only
occur as an effect of applying an SPE state-modifying instruction. Therefore,
association of security with the actions provides a more flexible means to extend
or alter the protection policy. When security is associated solely with properties
of the protection state, for example by using an access matrix to represent the
relation between users and objects, the authorization policy is too tightly coupled
with the representation. Moreover, in general, it is easier to inspect the changes
made by an action for undesirable effects, than to check the full protection state

for violation of the security propertes. Therefore, emphasis is placed on
guaranteeing proper behavior of these instructions (Sec 4.3).

3.3. SECURITY AXIOMS AND PROPERTIES 39

AXIOM 3 The use of state-analysis instructions is unrestricted.

"This axiom embodies the worst-case assumption necessary to reveal the scope of
protection provided by the protection system. This way each user of a
protection system is able to analyze the impact of his access control decisions.
Therefore, in the SPE model the contents of a protection state can be inspected
by all users.

Note that this axiom may in practice reveal confidential information on the
access rights available to individual users, who thereby may become the target of
bribery or blackmail. However, the usage and control of that information is
outside the scope of the protection model and its implementation.

AXIOM 4 All co-owners are considered equally powerful.

Users with the same security properties can be grouped together within a single
region. Unlike in some older models and methods, objects created by any
member of the group can be deleted by any member of the group. Moreover,
users may introduce co-owners at any time and remove any of the co-owners as
well.

AXIOM 5 Each user owns at least one region.

Each user recognized within the protection state should be associated with a
protection domain and all actions on the protection state involve manipulation
of a protection domain. Therefore, making provisions for users without a
protection domain is considered an insecure state of affairs.

AXIOM 6 Each region has at least one owner.

Users (or processes) are the only entities to bring about a change in the
protection state. Therefore, they should be related with those parts of the
protection state, ie. regions, for which they are held responsible. This way
multiple users can be associated with a single region; this models the common
situation where a group of users share resources under the same protection
requirements.

AXIOM 7 Each object is defined in exactly one region.

This axiom implies that object sharing is established through co-ownership and
access permission grants only. It avoids the situation where an SPE
implementation should take into account duplicate or remote information during
the protection analysis and should guarantee consistency between the copies.
Together with the former axiom it ensures that at least one user is responsible for
each object during its life.

The axioms for the protection model can be refined to security properties for a
particular SPE instruction set. They differ from axioms by specifying the
behavior, or security policy, of a particular implementation. The policy
considered in this thesis for SPE implementations is expressed by the following
security properties (SP):

40 A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

SP-1 A state of the SPE machine should be consistent and acceptable.

Consistency is a weak constraint on the information represented by the
protection state. In particular, consistency requires that each region used within
the relations OWN, DEF, STR, IMP, and EXP is a member of R, each object
used within DEF, IMP, and EXP is a member of O, and each user mentioned
in OWN is a member of U. A protection state is considered acceptable when it
obeys the axioms A5 to A7.

SP-2 A state of the SPE machine should be valid.

A state of SPE is considered valid if the accessibility of objects, as modeled by
DEF, STR, IMP and EXP, is consistent. This means that an object is granted
to (or obtained from) a region only if it is accessible in the region from which it
is granted (or obtained).

SP-3 A state transformation of the SPE machine is permissible if the activator of
the transformation is an owner of the affected regions.

Intuitively this means that the state of SPE can only change by an action of an
activator, i.e. an active entity. Moreover, an activator can only change those
parts of the protection state for which he is held responsible.

SP-4 The flow of access rights in the SPE machine is bounded by the existence
of a path in the undirected graph induced by STR.

The undirected graph induced by the STR relation plays the role of a map.
Information can flow along paths defined by this map in either direction
through proper use of import and export instructions. In fact, the STR relation
describes the permissible flow of access to objects within the model, while
instances of IMP and EXP represent the actual flow.

The constraints SP-1 to SP-4 impose restrictions on the states and state
transformations. SP-1 and SP-2 are static constraints that define the notion of a
secure state, while SP-3 and SP-4 are dynamic constraints that restrict the class
of state changes. The axioms and properties can now be used to define security
for an SPE implementation more precisely as follows:

Definition 3.1
An SPE abstract machine is secure if each instruction can be proved to
guarantee axioms 1 to 7 and security properties SP-1 to SP-4.

The instruction set shown in Figure 3.2 and 3.3 is one of many possible sets
defined with these axioms and properties in mind. The question arises as to
what in general should be considered a good instruction set, that is well-defined.
In the context of protection systems an instruction set can be considered well-

defined if it satisfies the following constraints:

. For each sequence of state-modifying instructions applied to a state, a
sequence can be given which undoes all the changes made,

3.4. SPE SECURITY ANALYSIS 4]

- An instruction can not be simulated by a sequence of other instructions taken
from the same set, and

- All secure states can be generated from a given initial secure state.

Well-definedness of SPE instruction sets is discussed in Section 4.5, while the
instruction set introduced above is shown to exhibit this property in Section 5.2,

3.4. SPE security analysis

3.4.1. Revocation

The sample SPE instruction set is used to study various related protection
issues in Chapter 5. First, we consider the problem of revocation, i.e. under what
conditions an action once performed can be undone. This problem is studied
using sample approaches found in the literature, which show that there exist
semantic limitations on undoing actions in general. For example, incremental
instructions can be undone only and in that case the role of the revocation
activator is a limiting factor.

A formal definition of two SPE revocation policies is given: chronological
revocation and goal-seeking revocation. Chronological revocation uses the
sequence of actions applied to a protection state to undo an action. The
technique applied is basically a simulation scheme and of limited use in practice.
However, its analysis results in a better understanding of the dependencies
among the SPE instructions. The goal-seeking scheme takes as a target the
successful execution of the decremental counterpart of the instruction being
revoked. Unsuccessful execution of the counterpart is followed by an analysis
and revocation of the obstructing instructions first. Thereafter the target action is
tried again. The prime advantage over the previous method is that the
algorithm does not require exclusive access to the protection state.

3.4.2, Derivable secure states

To bridge the gap between initial and desirable protection states, part of the
instruction set should be available to the user and the desired state should be
derivable. To find out if this gap can be bridged, the SPE predicates indicated
below are introduced and analyzed in Section 5.4.

Can.connect(o,r,s,P)
Can.share(o,r 5,0,P)
Can.obtain(o,u,0,P)
Can.steal(a,r,5,P,Csp)

These predicates give a handle on protection properties in an early stage of the
design of a protection system. The predicate Can.connect is true when the two

42 A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

regions r and s can be connected by a structure path using the instruction set P.
Can.share tells if it is possible to pass access to the object o from region r to s.
Can.obtain extends the latter to incorporate users, can the user obtain access to
the object? The last predicate, Can.steal, is useful for the analysis of access
stealing. It requires both an instruction set and a set of potential conspirators.
In particular, the analysis shows that the two most dangerous SPE instructions
for stealing access rights are add owner and add import. These instructions,
therefore, should be precluded from general use in practice. Moreover, it is
shown that answering Can.steal does not require the construction of the class of
reachable states. Simple properties of the initial state and knowledge of
instructions available suffice to obtain the answer at marginal cost.

3.4.3. SPE programs

To improve the usability of the SPE model as a framework for application-
specific access control, commands or SPE programs are introduced in Section
52. A set of commands defines a new abstract machine with extended
constraints on the applicability of the SPE machine instructions. Such a derived
machine is called an SPE configuration P(0,C) and is characterized by an initial
state o of the SPE machine and a (finite) set of commands C, defined in the
following form:

command alpha (X, , .., X;,)
pre state condition

begin
SPE instructions,
SPE commands, or
general-purpose instructions
end

post state condition

The command body consists of a sequence of SPE instructions such as were
defined in Figure 3.2 and Figure 3.3. The parameters of the SPE instructions
are either constants or the command parameters X.. Recursion of commands is
allowed, making the construction of realistic programs more attainable. The
general-purpose instructions denote instructions provided by the machine
hardware, such as arithmetic and flow-of-control instructions. These instructions
are ignored, because their impact on the security properties requires a precise
specification of their semantics, as in [Feiertag79]. In this thesis we restrict
ourselves primarily to access control and assume that general-processing
instructions do not interfere with the protection model.

The pre (post) condition prescribes the validity of the SPE machine state upon
command invocation (termination). That is, a command is executed when the

3.4. SPE SECURITY ANALYSIS 43

pre-condition holds, all statements can be executed successfully, and the final
state has the properties implied by the post-condition. Naturally the post-
condition is a consequence of the pre-condition and statement semantics when
one assumes that there exists only one instruction stream. That is, commands are
not executed concurrently, which we assume in this thesis. Therefore, when the
result of the command can be derived from the pre-condition and the behavior of
the command body we leave out the post-condition. The command structure
resembles the definition given in [Harrison76] but deviates from their definition
by allowing recursive SPE command calls. Furthermore, the pre-condition will
be used to augment the authorization constraints defined for the model.
Commands are represented in the SPE protection state as SPE objects,
making them subject to the SPE protection rules. However, assigning
commands to SPE objects adds semantics. In particular, the SPE machine
should be able to interpret such an object. The SPE instructions associated with
commands are shown in Figure 3.4. The most important instruction is exec(),
which takes the name of an SPE object and a parameter list and interprets the
command body with the actual parameters replacing the formal parameters. In
addition to the analysis instructions of Figure 3.2, the process enquiry instruction
usr() and reg() can be used within a command to construct a dynarnic
protection system. They return information on the run-time environment of the
call. The usr() operation returns the user responsible for the activation of the
command, i.e. the command activator. The reg() operator returns the name of
the region in which the command was activated. Note that the instructions reg()
and usr() are merely a convenience for two mandatory command parameters.

exec(o,parm 1,.parm n) execute a command

reg() region where the command was activated
usr() user who activated the command

Figure 3.4 SPE command instructions.

The SPE configuration and the SPE instruction set can be considered as
defining a two-level machine. The SPE instructions form the kernel of the
machine, while the collection of commands defines the user interface to the
machine. This separation between the kernel and user interface does not limit
the modeling abilities of SPE, because one can construct a user interface where
each SPE instruction is represented by a single command. However, this
separation of levels allows for the definition of SPE configurations in which the
security policy to be enforced differs from the policy of the security kernel. For
example, the invocation of a command can be restricted to a particular user or
user group, while the command object itself is globally accessible.

The generalization of SPE security to include configurations gives:

44 A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

Definition 3.2
An SPE configuration P(0,C) is secure if each command in C can be
proved to guarantee the protection axioms 1 to 7 and constraints SP-1 to
SP-4 given an initial secure state o.

3.4.4. Comparison with existing models

The SPE model and its instruction set are onc in a series of well-documented
theoretical models on access control. Two other well-known models are the
Take-Grant and the Harrison-Ruzzo-Ullman (HRU) models. The SPE
command mechanism is used in Chapter 5 to simulate both models. The prime
conclusion from this exercise is that both models can be simulated without loss of
semantics. This means that the protection properties of an SPE implementation
can provide a secure basis for both other approaches. Moreover, the simulation
shows that indeed the semantics of operations such as read and write form a
second level of protection problems, mappable into access control.

The reverse process has been applied as well. It is shown that the SPE model
and instruction set can be simulated using the HRU model, provided that the
formalism of the latter is extended to simplify the mapping. For the Take-Grant
model it is not possible to simulate the SPE model, because the former model is
devoid of a proper abstraction mechanism.

3.4.5. Architecture of an SPE machine

In Chapter 6 the SPE model is applied to the design of a distributed
computer system, a sketch of such a machine based on loosely coupled processors
is given. In that context we are not aiming at presenting a totally new
approach to distributed systems architectures, but concentrate on the issue how
the SPE model fits into approaches published elsewhere. One of the outcomes is
that the SPE model provides a formal framework for a machine architecture
centered around abstract data types. Moreover, the security kernel, necessary to
implement a secure distributed system, can be associated with the SPE regions,
because they are the focal point of access decisions. It is also shown that to
control the flow of access rights in a distributed systems a description of the
possible flows is required, which is naturally covered by the structure
relationship in the model.

3.4.6. Protection in a programming environment

In Section 6.2 it is shown that visibility rules in high level programming
language can be considered special cases of access control. The visibility rules in
the programming language PLAIN are used to illustrate this. Application of the
SPE concepts show some weak points in the language definition. In particular,
the specification of exception identifiers and visibility in nested module

3.5. EXAMPLE USE OF THE MODEL 45

definitions need some adjustment.

‘The access protection found in high-level programming languages have a
natural extension to include the environment of the Language. A good example
of such an approach is the development of Ada. and the User Software
Engincering environment [Wasserman79a]. In Section 6.3 the relation between
protection model and structure of such an environment is exemplified. In
particular, we illustrate how module interconnection relates to access control.
Finally, the SPE machine architecture and PLAIN language semantics are
combined to indicate the architecture of a secure environment in Section 6.4.

3.5. Example use of the model

3.5.1. SPE states and sequences

In this section the functioning of the SPE protection model and the command
facility are illustrated by a few examples. We start with an initial state of two
users u and v, the owners of two regions r and s, respectively. Within the region
s an object o is defined. Thus v is the owner of s and o. The situation is
illustrated in Figure 3.5.

Figure 3.5 Initial situation.

This picture shows that the state satisfies both security properties SP-1 and SP-2,
that is, the state is consistent, acceptable, and valid. The predicates defined in
Figure 3.2 evaluate to:

Ouwner(o,u,r) = true,
Defines(6,0,8) = true,
Access(o,0,r) = false,
Aceess(0,05) = true;

Ouwner and Defines obtain their value from the state as shown. Access(o,0,5) is
true, because the object is defined in region s only. Can.connect(o,r;s,P) is true
when P includes the operator add owner only. The same is true for

* Ada is a trademark of US Department of Defense.

46 A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

Can.share(o,x s,P). Can.steal(o,u,0,P,Csp) is true when v can act as a conspirator
(vECsp) and access can be shared between regions r and s. More details on
these properties are given in Section 5.4.

Consider the case where v wants to share access to the object o with user u.
One solution is to add u as a co-owner of the region s with the operation:

add owner(v,r,u)

which satisfies property SP-3. In the context of the SPE model this is a bad
solution, because a side effect is that it makes u and v co-owners of the region r,
which allows u to remove v as owner of s and thus remove v as the owner of the
object. This effect is a result of axiom 4, which states that all users associated
with a region are considered equally powerful, both with respect to the objects
defined within the region and with respect to the addition and removal of co-
owners of the region.

An alternative solution is to construct an STR relation between r and s as
shown in Figure 3.6. This situation is interpreted in SPE as follows. The region
¢ is defined in the context of region s. When access rights are imported, it is
checked that the object is already accessible in the environment of the affected
region. If this is the case then the import action succeeds and access is obtained.
In this example u can gain access to the object by issuing the instruction:

add import(u,r,0)
The drawback of this approach is that all objects defined within s can be
accessed in r through an import command.

1]

Figure 3.6 Second situation.

In case of suspicion, that is v does not want this to happen, a dummy region,
like a mailbox, can be used. First user v creates a new region, say t, builds a
structure relation from s to t, exports accessibility to the object, and introduces u
as co-owner of t with the sequence of instructions:

add_region(v,t)
add struct(vs;t)
add:export(v,o,s)
add__owner(v,t,u)

The result is illustrated in Figure 3.7. In that situation u can connect to the
region t (he owns it too) and use import operations to make the object o

3.5. EXAMPLE USE OF THE MODEL 47

accessible within region r using the sequence:

add struct(u,t,r)
add_import(u,o,r)

Note that in the final situation user u can gain access to those objects exported
from region s by v only. Moreover, it illustrates the use of structure relations to
bind and limit flow of access rights.

s

Figure 3.7 Final state

The introduction of user u as a co-owner of t is not dangerous any more, because
v keeps control of the object and export operation. In particular, v can remove
(s,t) from STR and, as long as v is still an owner of t, remove (r,t) from STR.
Breaking the structure path implies revoking access to o within r. More details
on this topic are given in Section 5.3.

3.5.2. A project management environment

The examples in the previous section demonstrate the modeling capabilities of
SPE without concern about the real-world environment being modeled. A
translation of SPE and its operations to a real world example is illustrated by
modeling a project management organization. Therefore, assume that a system
is needed in which a single system manager, called Boss, is allowed to introduce
new projects and to designate its project leaders. Each newly introduced project
should be allowed to use a number of system resources, such as a filing system
(F) and a compiler (C). Moreover, each user should be given some privacy in
manipulating objects. Access to objects may be passed freely between the
members of a project team, while objects can be passed between projects with
consent of the project leaders or Boss only.

Such an environment can be described in SPE using a systemn region, Office,
containing the system resources F and C. The Agenda should be inaccessible to
anyone except its owner, Boss, and therefore is stored within a separate region
Boss private. The creation of projects, programmers, and object sharing is

48 A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

specified by three commands: newproject (P), newprogrammer (N), and share
(S). Newproject allows Boss to define a new project at the same time
designating a project leader. The project region is owned by both Boss and the
project leader. The project leader (and Boss) can assign programmers to the
project using newprogrammer. All system resources are imported into the
program’s region, thereby establishing its working environment. The protection
state is constructed such that free sharing of objects and resources among the
project team members within the same project is possible using the import and
export facility in SPE. One command, Share, is specified to illustrate the
transfer of an object to the project leader. Interproject sharing is controlled by
the leaders (using Office region as a mailbox).

command newproject(pjname, leader: NAMES)

pre usr() = Boss

begin
add region(Boss, pjname);
add struct(Boss, pjname, Office);
add owner(Boss, pjname, leader);
add import(Boss, pjname, C);
add import(Boss, pjname, F);
add import(Boss, pjname, N);
add:import(Boss, pjname, S);

end

command newprogrammer(directory,friend: NAMES)
pre Owner(usr(),reg()) (reg(),Office) € STR
begin

add_region(usr(), directory);

add_struct(usr(), directory, reg());

add owner(usr(), directory, friend);

add import(usr(), directory, C);

add import(usr(), directory, F);

add import(usr(), directory, S)
end B
command share(object: NAMES)
pre Owner(usr(),reg()) N Access(object,reg())
begin

add export(usr(),reg(),object)

end -

3.5. EXAMPLE USE OF THE MODEL 49

Figure 3.8 Initial situation

Figure 3.9 shows the situation after the definition of the database project team
headed by Jones. Two programmers Smith and Black are assigned to this team
and have been given access to the file system and compiler. As soon as an object
is exported from the programmer’s private region to the project region it can be
accessed by the other members using add import. Note that not all access flow
is shown. Figure 3.10 shows the situation after the definition of the second
project B. When transfer of objects is restricted to the existing hierarchical
structure relation, project teams can only share work through cooperation of the
project leaders or Boss.

In practice more commands are required to model the envisaged project
organization. For example, one would make a provision to administer the last
approved version and provide access to this version of the system only. In
addition one might consider keeping a log of the actions for management control
and accounting.

Oﬁice

e/ ©Q 90

Agcnda i b

DBNIIS_prOJ{x:t Bt 0

Sy

Figure 3.9 Example project organization

50 A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

[Bos: |

Office

o] | B OBO
NE
G ®

Boss| [Blondie
DBMS project B

h

-~
ones \ Black [Blondie] [Clark|
[| I

Figure 3.10 Example project organization

3.6. Variations on a theme

As mentioned before, the SPE model components and properties are
influenced by the envisioned application domain: a programming environment
for a high-level language which supports the construction of interactive
information systems. Variations of the SPE model are possible, but are, as we
will demonstrate, unattractive under this objective. For example, removing the
STR relation yields a model in which all regions can be considered as boxes
within a universe U. Each region contains the object definitions and has owners
associated with it, as in the SPE model. The notion of export in the derived
model implies making an object accessible in the universe U, while import
implies obtaining an object accessible within U. The major restriction of this
model is the unbounded flow of access control information.

A second model can be obtained by dropping either the IMP or EXP
relationship. First, consider the removal of EXP, then each export operation can
be simulated by an appropriate sequence of primitive operations. In Figure 3.11
an export of o is shown in the SPE model, in Figure 3.12 shows the simulation of
this situation without using EXP. This sequence can be encapsulated in a
command definition to handle any export operation. Observe the complexity of
the simulation, as opposed to the situation of Figure 3.11 where v is actively
involved in the transfer. Moreover, the region t’ is needed to shield the existence
of p. (Such a region is called a filter region)

3.6. VARIATIONS ON A THEME 51

Figure 3.11 Export of o.

add region(u,t’)
add:struct(u,t’,l)
add import(u,o,t’)
adcl_rcgion(u,s)
add_struct(u,s,t’)
add_'import(u,o,s)
add owner(u,s,v)
add:struct(v,r,s)

Figure 3.12 Simulation of export.

A third variation of the SPE model is obtained by merging the IMP and EXP
information into one visibility relation VIS € OXR. That is, in VIS we
administer all the regions in which the corresponding object is accessible. Upon
an import or export operation on an object o, the regions defining the
environment, say EC R, are collected and VIS is extended with {o}*E. The

52 A MODEL FOR A SECURE PROGRAMMING ENVIRONMENT 3.

contents of VIS is based on the actual environment at the time of the activation
of the operation. Thus, changing the structure of the protection state will imply
changes to VIS too, but from VIS we can not determine the import/export
operations performed. This problem also applies to the revocation of the access
rights. For example, consider the system in Figure 3.13 in which user u has
obtained access to o via both user v and w. In the third model these two grants
cannot be distinguished and revocation by either user v or w of their export
operation results in the withdrawal of the visibility of 0. In SPE revocation by w
(or v) does not affect the visibility of o, because revocation does not affect the
grant of v (or w).

Figure 3.13 Multiple grants for o.

3.7. Summary

In this chapter we have given an overview of the SPE protection model. The
motives for choosing the SPE 8-tuple and the semantics of the protection system
were influenced heavily by the systems and models discussed in Chapter 2 and
may be summarized by the following principles:

. SPE is protection domain oriented. Each access control decision is taken in a
local environment, the affected region. This agrees with the approach taken
in capability-based machine architectures [England 72, Wulf74, Pollack82].

- SPE supports restricted flow of access rights. Unlike the capability-based systems,
the flow of access rights is bounded by the requirement of STR relationships
between the protection domains involved. This feature was borrowed from
Denning’s approach in restricting the flow of information within programs
[Denning77].

. SPE models scopes in programming languages. The role played by the regions,
structure, import and export relations closely resembles the structure of
scopes in modern high-level programming languages. This feature was
influenced by the early work of Conway in considering access protection to

3.7. SumMMARrY 53

be a software problem [Conway72a].

- SPE assumes non-symmetric trust. Non-symmetric trust better represents reality.
A user must not necessarily accept the access rights given, nor should a user
be forced to remain responsible for access rights once obtained and therefore
should be able to revoke his actions. A similar observation has been made
by Minsky for the Take-Grant model [Minsky81].

- An SPE implementation is an extensible system. The command construction
facility allows complex security policies to be defined and enforced.

- Securily is an invariant property of a dynamic system. This principle means that in
the design of any secure system we should not stop considering the security
problems after authorization of a request has taken place, but that the effects
of the actions are equally important.

- A protection system should supply an abstraction mechanism. This principle means
that in general one can not define the semantics of all objects involved in
advance. Rather, one should be able to parameterize sequences and this
way build multi-level protection systems. An example how this may affect
the construction of interactive systems is given in [Rict83, Wasserman82al.

The combination of these principles into a new protection model sheds some
light on the potentials and limitations of access control in actual computer
systems, especially the intermingling of this in machine architecture, operating
system, programming language, and program development environment.
However, the resulting SPE model is not the final answer to all security
problems, since, as will be stated repeatedly, many real-world policy decisions
shape the architecture and behavior of such systems.

4

FORMALIZATION OF SPE

In this chapter the SPE model is given a formal basis. A formal description of
the model provides the means to study and analyze the behavior of the model
under different circumstances. Moreover, a formal and precise definition
provides a sound basis for contemplated implementation of the model.

The formalisms applied in this chapter are the theory of sets, graphs, and
functions, which we assume to be more comprehensible than any of the
formalisms designed during the last decade in the area of programming
semantics such as [Stoy77].

This chapter is divided into three parts. First, the states of the SPE abstract
machine are characterized formally and the class of secure states is defined.
Second, the transformations on SPE states are defined by their mapping
characteristics, which results in a characterization of potential SPE machine
instructions. Finally, we formalize general security requirements for SPE
instruction sets. The concepts introduced are used in the next chapter to design
a particular instruction set and to study its behavior.

4.1. The SPE states

Within the SPE model we consider three finite entity sets: the users called
USERS, the objects called OBJECTS, and the regions called REGIONS. These
sets are abstract representations of corresponding real-world entities with the
elements drawn from an unbounded name space NAMES. For convenience, we
assume that the three sets are mutually disjoint and not empty. Thus, the type
of the entity can be derived from its name. In particular, we will use the
following notational convention:

54

4.1. THE SPE sTATES 55

u,v,wu’,v’,w,.. € USERS
0,p,q,0”,p’,q’,.. € OBJECTS
r5tr’ s’ t,.. € REGIONS

The entity sets define five binary relations in the protection model:
- OWN for ownership,
- DEF for defining context,
- STR for environment structure,
- IMP for object importation and
- EXP for object exportation.
These sets model part of the relationships between entities found in reality, that
is, subject to the problem area addressed within this thesis. Using the SPE
model as a framework for the description of an abstract machine leads to the
notion of SPE machine states, which are characterized by instances of the entity
sets and the binary relations. Thus, an SPE (machine) state is a set of names
and relations between names, which refer to entities and relations in the real
world at a particular moment.
Definition 4.3
A state o of the abstract SPE machine is a tuple
<U,R,0,0WN,STR,DEF,IMP,EXP>
such that:
U C USERS
R C REGIONS
O C OBJECTS
OWN C USERS X REGIONS
STR C REGIONS X REGIONS
DEF C OBJECTS X REGIONS
IMP C OBJECTS X REGIONS
EXP C OBJECTS X REGIONS
where USERS, REGIONS, and OBJECTS are mutually disjoint subsets
of the name space NAMES. X is the set of SPE machines states.

4.1.1. Consistent states

We are not interested in all possible SPE machine states, but rather in
subclasses with properties relevant for access control. A first subclass of SPE
states comes to mind immediately, namely those states which are at least
internally consistent, That is, the binary relations OWN, DEF, STR, IMP and
EXP are defined between elements of the entity sets U, R and O in the same
state. For example, a state where an object o is defined in region r, ie.
(o,r) EDEF, while either 00O or r&R is not considered consistent. This
requirement was introduced in section 3.3 as security assertion SP-1 and is
formally defined by:

56 FORMALIZATION OF SPE 4.

Definition 4.4
A state 6E3 is a consistent state, denoted by Consistent(c), if the following
properties hold
¢;) OWN C UXR
c,) STR C RXR
¢c;) DEF C OXR
c,) IMP C OXR
c;) EXP C OXR

The class of consistent states is denoted by C and is a proper subset of the
universe 3. The finiteness of the state components ensures that state consistency
can be checked using any of the well-known set representations and set
membership algorithms. As a notational convention, a state component is
subscripted with the name of the state when it is not clear from the context
which state is meant, e.q. OWN_.

4.1.2. Acceptable states

The second subclass of the universe = considered within the SPE model is the
class of acceptable states. The acceptability property of a state models the
ownership policy. Informally, in an acceptable state each user is associated with
at least one region and each region is associated with at least one user, who is
considered the owner of the region. Furthermore, we restrict the class of
acceptable states to those where the objects are defined within a single region
only. These constraints prohibit sharing of objects through the DEF, ie.
definition, relation. Sharing of objects is provided for within the model using a
different strategy, the import-export mechanism defined in the next section.

Definition 4.5
A state 0€S is called acceptable, denoted by Accepi(o), if it has the
following properties:
a,)VueU:3Ire R:(u,r) EOWN
a,) v reR: 3ueU:(ur) EOWN |
ag) v 0€0: 3! r eR:(o,r) EDEF

The class of acceptable states A={0EZ:Accept(o)} is a proper subset of the
universe . Acceptable states can be thought of as modeling the concept of an
access matrix [Harrison76] using the three entity sets and the relations OWN
and DEF. In a sense, regions can be considered as representations of the non-
empty elements of the access matrix. The constraints enforce that no matrix
element exists without a corresponding row indicator, the user, and that for each
object at most one column exists. Thus, acceptable states model the situation
where multiple users are associated with the same row in an access matrix

-
3! indicates “there exists a unique.”

4.1. Tue SPE staTES 57

model.

In the sequel, two predicates Owner(o,u,r) and Defines(o,0,r) are used, which are
true in the state ¢ when the user u is an owner of region r and the object o is
defined in the region r, respectively (See Section 3.1).

4.1.3. Valid states

In the definition of an acceptable state we formulated constraints on the
relations OWN and DEF. Together, these constraints relate users with objects
using the region as an intermediate. This leads us to the situation that we can
define the concept of object accessibility for the SPE model.

Access control is the basic policy used in computer systems to regulate the use
of objects by users. Moreover, a system is defined secure if one can guarantee
that all usages of objects are authorized, ie. covered by access control
information. Translated to the concepts defined so far, an object is said to be
accessible to a user if the user is owner of the region where the object is defined.
The authorization question, or access control policy, in this context is translated
to the assurance that object usage is limited to its owners.

Protection models aimed at the regulation of the relationship between objects
and their owners only are of little interest. The model should also include
mechanisms for the selective sharing of access rights among users. Within the
SPE model this is realized using the three binary relations STR, IMP, and EXP,
which model the concept of an access control flow graph. The structure relation
defines the permissible paths along which the access rights can flow, while the
import and export relations describe the actual access control flow at some point
in time,

‘Two state analysis predicates, Access(o,0,r) and Visible(o,0,u), are introduced to
define the notions of accessibility and visibility more precisely. The state
predicate Access is defined over an object 0 and a region r denoting the ability to
"use o within the region r” or “to perform an operation on o within the
protection domain defined by region r”. The predicate Visible extends the
predicate Access to users. That is, as a first definition, an object o is visible to a
user u if the object is accessible within a region owned by u. Thus, given the
predicate Defines and Owner,

Defines(o,0,r) — Access(a,0,r)
(Defines(o,0,t) /\ Owner(o,u,r)) — Visible(s,0,u)

The general definition of the predicates Access and Visible require the
introduction of two additional predicates to represent (part of) the actual access
control flow, namely Exported and Imported. The predicate Exported(0,0,5,r) says
that o is exported from s to r. The predicate Imported models the reverse flow.
Imported(o,0,r,5) is true when the object o is imported from s into r.

58 FORMALIZATION OF SPE 4.

Definition 4.6
Exported(0,0,5,r) = (s,;r) ESTR A (0s)EEXP,
Imported(o,0,r,8) = (1,5) €STR, /\ (o)) €IMP

The terms grantor and grantee are used frequently in the literature in this
context. Transferred to the SPE context, a grantee is a region (or one of its
owners) receiving access right on an object. The region r mentioned in Jmported
and Exported is a grantee. A grantor is a region from which an access right is
coming (region s in Imported and Exported). Grantees and grantors can be either
active or passive. An active grantee in SPE is the region mentioned in an IMP
tuple. That is, an import action is administered by the grantee. Contrary, a
passive grantee is characterized by an EXP tuple associated with a region in the
contents of the grantee. Note that access rights are given to the grantee without
active participation of the latter’s. The access permission is, 50 to say, enforced
upon the grantee. A similar distinction between passive and active entities can
be found in the Take-Grant model.

The predicates Exported and Imported alone are not sufficient to fully define
accessibility of objects, because they describe local flow of access rights only. For
example, when Exported(0,0,5,r) is true, it does not necessarily mean that the
object o was properly accessible in s. Similarly, if Imported(0,0,r,5) is true we
know that the environment of r is not empty. Whether the object can be
rightfully accessed within the environment remains to be seen. An adequate
definition of Access can now be given in terms of flow of access rights through a
series of regions connected by structure relations, starting at the defining region
of the object up to the region for which access permission is checked.

Definition 4.7
In a state 6ES an object o is accesstble n a region r, denoted by
Access(o,0,r), if there exists regions r; (i=1..n, r,=r) such that Defines(0,0,8)
and
Exported(0,0,x, ,x;) O Imported(a,0,r,; ;)
The concept of visible objects as objects which are accessible in regions owned
by a user is defined formally by:

Definition 4.8
In a state 0 EX an object o is vistble to a user u, denoted by Visible(o,0,u),
if Ir:(u,r) EOWN A Access(0,0,r)

The actual flow of access rights as described by a state leads to the notion of
valid and invalid states. Informally, a state is valid if the information about
granted and obtained rights as implied by IMP and EXP is in accordance with
the structure and definition relations, STR and DEF. Its formal definition is
given in two steps. First, we define state validity for a single object, 1. partial
validity. Second, a state is defined valid when it is partially valid for all objects.

4.1. THE SPE sTATES 59

Definition 4.9
A state 0 €2 is partially valid with respect to object o, i.e. Poahd(o,0),
if V (o,r) EIMP :3s (r,s) ESTR A Access(o,0,5) and
iV (o,r) EEXP : Access(a,0,r).

Note that in this definition no problems are raised by the existence of cycles in
the structure relation, nor by multiple paths of grants to the object definition,
since the definition of Aecess requires that one structure path exist between the
region under consideration and the region where the object is defined such that
each structure relation is correctly used for import or export.

Definition 4.10
A state ¢ is valid, denoted by Valid(o), if Yo € O:Pualid(a,0).

The predicate Valid defines a new subspace, the class of valid states
V={ 6 €Z: Valid(o)}.

4.1.4. Class relations

In this section we compare the state classes defined above and show that the
class definitions are independent in the sense that little information is gained by
knowing one class membership only. Thus, the three static security concepts,
consistency, ownership, and flow of access rights, are reflected in the model in a
clear, separable way. This provides a means to consider alternative definitions
of each class so as to arrive at different variations of the SPE model. In this
thesis, though, we concentrate on the definitions given and, in particular,
concentrate on the class of secure states obtained by taking the intersection of the
three classes. Before we investigate the class relationships a few sample SPE
states are introduced,

Example 1. The empty state EEX is the SPE state < z.2.,8,8,8,8,8,8 >.
Example 2. The class of trivial states T7C 3 characterized by:

O = STR = DEF = IMP = EXP = @; OWN = UXR.
A trivial state contains only relations between users and regions. In particular,
each user is an owner of all the existing regions. This state typically reflects the
situation found at the start of an actual computer system, in which a group of
users is introduced and associated with yet empty file system directories.
Observe that the empty state E is a trivial state too. The trivial states are, by
definition, consistent, acceptable, and valid.
Example 3. The class of regular states R CS is characterized by

VreR: 3'ueU A (ur) EOWN
The regular states are characterized by regions with one owner only, that is, no
co-owners are allowed. Regular states can be used to analyze systems where the
co-ownership supplied by the SPE primitives is not restrictive enough (SPE
considers all co-owners as equals). In particular, the regular states can be used
to model situations found in file systems where each directory has a single owner
attached to it,

60 FORMALIZATION OF SPE 4.

Example 4. An SPE state is called a DAG state when the structure relation
describes a directed acyclic graph. A subclass of the DAG states form the
hierarchical states, where the structure relation describes a tree. DAG and
hierarchical states can be used to describe and analyze the protection issues of
hierarchical file systems, like the UNIX file system, and scope protection issues
found in block structured languages, like PLAIN.

4.1.4.1. Consistent and acceptable states

The class of consistent states and the class of acceptable states are proper
subsets of the SPE state universe 2. Their intersection includes the empty and
trivial states. However, consistent and acceptable states are not proper subsets of
one another. One can perceive an acceptable state 0 in which some user
mentioned in the OWN relation is not reflected in the set U and thus the state is
inconsistent. Conversely, the state may be consistent but not acceptable due to
violation of the rule that each object is defined in one region only.

The fact that a state is consistent does not guarantee that it is acceptable as
well. State consistency implies that all the binary relations are in accordance
with the basic entity sets. Thus, for example, we know that the users mentioned
in the OWN relation also belong to U. However, to be an acceptable state all
users mentioned in U must be reflected in OWN by a tuple, which need not be
the case. A similar argument holds for the rule that each region has a user
attached to it. The last constraint requires checking the existence of a defining
region for each object and the assurance that each object is defined in one region
only. Note that, in general, knowledge about the consistency of the state does not
reduce the work to check acceptability of the state significantly, for an
exhaustive check is required.

Conversely, how should one check for consistency of the state with the
knowledge that it is acceptable? State acceptability relates the OWN relation to
the members of U and R. Thus, part of the consistency constraints are enforced,
that is, for those user, regions, and objects mentioned. However, consistency
requires more; it requires that all elements of OWN are based on U and R. As
there may be a tuple (u,r) in OWN for which both u and r do not belong to the
basic entity sets, we are forced to check all elements of OWN and DEF.
Moreover, consistency requires that the information in IMP and EXP is
consistent as well, which is not implied by any of the acceptability constraints.
These must be checked separately. In summary, knowledge about the
acceptability of a state does not reduce the work to check for consistency. Thus,
the consistency and acceptability properties of a state are independent.

4.1. THE SPE sTATEs 61

4.1.4.2. Consistent and valid states

The intersection of the class of valid states with the class of consistent states is
not empty either, for the trivial states are both consistent and valid by definition.

Similarly to the analysis above, we can consider the question whether the
concepts of consistency and validity are independent, and whether knowledge
about one of the predicates reveals much information about the other.
Obviously, a consistent state need not be valid, because consistency does not
enforce any constraint on the flow of access rights as Valid{o) does. This means
that we are forced to check the partial validity of all objects to ensure validity of
the state,

Conversely, a valid state need not be consistent. For example, consider a valid
state with a single region r not belonging to the basic entity set R; thus the state
is inconsistent by definition. Then, if this region is not used to transfer access
rights, the state remains valid. So, even when the state is valid, checking
consistency requires all consistency constraints to be evaluated, which makes
consistency and validity independent aspects of the SPE states.

4.1.4.3. Acceptable and valid states

The definition of acceptable states immediately shows that acceptability alone
is not sufficient to guarantee validity of a state, because the acceptability
predicates do not enforce any constraint on the flow of access rights. Validity of
the state is not sufficient for acceptability either, because the constraints are
associated with the flow of access rights only. If a region r is not used for this
transfer and does not have any owner attached to it, then the state is not
acceptable. Therefore, the properties consistency and validity describe a non-
empty subclass of the SPE states, it includes the trivial states, and the properties
are independent.

4.1.5. Secure states

So far we have introduced three subclasses of the SPE state universe S using
the notion of acceptability, consistency and validity. The consistency predicate
defines the intuitive notion of a consistent state, the acceptability predicate
models the entity administration policy for the SPE model and, finally, the
validity predicate defines what is meant by consistent administration of the
access information in a state so as to enforce an access flow policy.

The pairwise intersections of the classes are not empty, since they include the
empty state and the set of trivial states. The trivial states satisfy all three state
properties; thus, the intersection of all classes is also non-empty. Furthermore,
the analysis of the relationships between the three classes revealed that the
predicates defining the three classes are independent. Knowledge about
membership of a state in one particular class does not imply membership in any

62 FORMALIZATION OF SPE 4.

of the others. As such, the predicates associated with the classes 4, C and V are
independent. This naturally leads to the definition of secure SPE states, 1ec.,
states which are both acceptable, consistent, and valid.

Definition 4.11
The set of secure states, SCZ, is defined by $= 4 N cnv

The set of securc states is used later on to define classes of secure state
transformations, that is, operators defined on the domain of secure states and
preserving the security properties. First, however, we derive alternative notations
for secure states and use them to indicate the cost involved in checking the
security property for any given state.

4.2. SPE induced graphs

Each of the binary relationships in the SPE tuple can be used to define a
(directed) graph; the vertices are obtained from the entity sets (U,R,0); edges
from the binary relations. Subsequently we will look at three different graphs:
the ownership, the structure, and the import/export graphs. The construction of
these graphs provides a handle on the algorithmic complexity of checking the
state security properties.

4.2.1. The ownership graph

The ownership graph is obtained by taking the union of the sets U and R as
vertices and by using OWN to define undirected dges. The ownership graph
obtained for the trivial states forms a fully bipartite graph, with cach vertex inU
connected to all vertices in R and vice versa. For secure states we can observe
the following behavior:

Theorem 4.1
Let o be a secure state. Then for each vertex v in the ownership graph
derived from the state o, 1 <=d(v)<=max(|U|,|R]|), where d(v) is the
degree of the vertex v.

Proof An acceptable secure state means that each user is associated with at least
one region and each region with at least one user. This means that at least one

edge emanates from each vertex, i.e. d(v)>=1. Moreover, a user is associated
with at most all regions and each region is owned at most by all users.[]

Corollary If the ownership graph derived from the state ¢ contains isolated
points then the state is not secure.

Proof The isolated points invalidate acceptability constraints 2, and a, of
Definition 4.3.0

4.2. SPE INDUCED GRAPHS 63

In the informal introduction of the SPE instruction set, we indicated that the
construction of new structure relations requires the invoker of the command to
be owner of both regions involved. This requirement can be translated to the
owners-graph as follows. Let N(v), called the neighbors function, be the set of
vertices incident with v. Then a structure relation can be constructed between
rl and r2 iff N(rl)NN(r2)£@.

4.2.2. The structure graph

The sccond graph to be considered is the graph obtained by using the
structure relation and the object definition relation. This graph is called the
structure graph or SG(o). A sample SPE state with its corresponding structure
graph is illustrated in Figure 4.1a and 4.1b. This graph is formally defined by:

Definition 4.12
The structure graph SG(o)=(V,E) for a state 6 €3 is a directed graph
defined by
V= {r:3s(rs)ESTR V (s5r) ESTR)
E= STR

73
s

Figure 4.1a An SPE state.

64 FORMALIZATION OF SPE 4.

Figure 4.1b The structure graph.

The structure graph visualizes the concept of the environment and the contents
of a region. Both are represented by state predicates for the following analysis.
The predicates are defined on a structure relation (r,s) in the state 0. We say
that r belongs to the contents of s or that region s belongs to the environment r.

Definition 4.13
Contents(o,r,s) if (r,s) € STR then true, false otherwise
Environment(o,r.s) if (s,r) € STR then true, false otherwise

The Exported and Imported predicates defined in a previous section relate to these
predicates as follows:

Exported(0,0,r,5) — Contents(o,r.s)

Imported(c,0,r,5) — Environment(0,5,r)

Contents(0,5,r) <——> Environment(o,r,s)
The definition of secure states allows arbitrary structure relations to be defined,
which makes the structure graph a directed graph, which may contain cycles. A
side effect is that it is possible to construct a protection state with a region s,
which paradoxically belongs both to the environment and the contents of itself.
Cycles in the structure graph do not affect the predicate Access, because in that
case an acyclic path can be found for which Access holds too.
The DAG states introduced in section 4.1.4 have the property that the structure
relation is acyclic. Thus for these states the resulting structure graph is acyclic as
well and describes hierarchical access structures.

Viewing the structure graph as a map for the transfer of access rights implies
that objects can be made accessible in the regions belonging to the connected
component of this graph where only the object o is represented. Three
particular structures to regulate the transfer access rights should be pointed out:
a filter region, a mailbox region and an agent region. Examples are shown
Figure 4.2.

4.2. SPE INDUCED GRAPHS 65

Definition 4.14
A region s is called a filter region between regions r and t, denoted by
Filter(o,5,r,t) when both (r,s) € STR and (s,t)€ STR.

Definition 4.15
A region s is called a mailbox region between regions r and t, denoted by
Mailbox(a s,r,t), if (r,s) ESTR and (t,s) ESTR.

Definition 4.16
A region s is called an agent region between r and t, denoted by
Agent(o,s,r,t), if (s,r) ESTR and (s,t) ESTR.

The filter region is so named, because it can be used as a security barrier for
access flow. A mailbox is characterized by the fact that access to an object can
be transferred from region r to the region t without any information
administered for this object in the intermediate region s. To transfer the object o
from r to t it suffices to export it from r and import it into t. Of course, the
object o becomes accessible in the mailbox region too. The agent s in Figure
4.2.c region plays a double role in the transfer of access from r to t. Both an
import and an export action are associated with it.

Figure 4.2 a) Filter region, b) mailbox region, c) agent region

4.2.3. The import/export graphs

The definition of accessibility in terms of structure relations and the existence of
import/export actions can be made visible using the notion of an import/export
graph. An import/export graph for the object o is obtained by taking the object
o, its defining region and all regions used in the transport of access permissions
as vertices and introduce edges whenever accessibility is transported between the
two nodes. Thus, the import/export graph models the actual flow of access
permissions for a particular object.

66 FORMALIZATION OF SPE 4.

Definition 4.17
Let ¢ be an SPE state. An import/export graph for object o, denoted by
IE(0,0)=(V,E) is a directed graph defined by:
V= ({r:(on)EEXP} U {r:(or) EIMP} U {o} U
{r:(o,r) EDEF}U
{ri3steER A Mailbox(a,r,5,t) A (o) EIMP A
(0,s) EEXP}
E = {(ox): (o,r) EDEF} U {(s,r): T3EV A Exported(o,0,5,r)} U
((sr): rsEV A Imported(0,0,r8) }
The import/export graph visualizes the notion of valid states. The graph
consists of all the regions potentially involved in the validation of the predicate
Access. The direction of the edges reflect the transport of grants between the
regions. For example, observe in Figure 4.3b that the STR direction between r2
and 15 is reversed in the import/export graph.

— X5
N
Is

Figure 4.3a An SPE state with import/export actions

4.2. SPE INDUGED GRAPHS 67

o

Figure 4.3b The import/export graph IE(o,0 ;)

In Figure 4.4 we have depicted different import/export graphs for the filter,
mailbox, and agent regions shown in Figure 4.2. Observe that accessibility does
not depend on the existence of a single specific path of grants from the owner of
the object to the grantee, but on the existence of some path. Thus, no distinction
1s made between grantors, nor as to the order in which grantors grant access.
Note too that the definition of accessibility is not affected by cycles in the
structure relation, because each cyclic path implies the existence of a nen-cyclic
path in the structure graph as well, along which access permissions are
transferred.

VAN
[\

U

5

Figure 4.4 Filter, mailbox, and agent regions.

Definition 4.18
A source graph is a directed graph with a single source and multiple sinks,
such that there exists a path from the source to each vertex.

A source graph has one vertex without incoming arcs and a (non-empty) set of
vertices without an outgoing arc. A source graph has no isolated points nor
isolated components. Removal of cycles from a source graph results a source
graph. In fact, it turns the graph into a tree. Source graphs are related to the

68 FORMALIZATION OF SPE 4.

import/export graph as follows:

Theorem 4.2
Let 0€32 and 0€O0. If Pualid(o,0) then IE(0,0) is a source graph.

Proof Assume Pualid(0,0) and that IE(0,0) is not a source graph. As o is a
partially valid state for the object o IE(0,0) has at least two vertices, namely o
and its defining region r. The assumption that IE(,0) is not a source graph
requires two cases to be considered.

First, assume that a vertex s 7= o belongs to IE(0,0) with indegree zero, i.e. s
forms a second source node. Then vertex s is a region, because each
import/export graph depends on one object only. Since s has no incoming arcs
it can not be a defining region for the object o, nor a mailbox. Therefore, we
have to consider two cases, either (0,s) EIMP or (o;s) EEXP. Partial validity of
the state ensures that for the case (0,s) EIMP there exists a region r such that
(s,;r) ESTR and either access to 0 was exported to r or imported into r. The
former makes r a mailbox. The latter ensures that (o,r) EIMP as well and ris a
vertex in the import/export graph. Thus s has an incoming arc based on
Imported(c,05,r). In all cases s has an incoming arc, which contradicts our
assumption.

Second, assume that a single vertex s 7o exists, such that there is no path from
o to s in IE(0,0). The vertex s is a region and can not be the defining region for
o. That is either (0,s) EIMP, (0;s)EEXP, or s is a mailbox. The latter implies
that there exists a region r such that Exported(o,0,r,s) and no path exists from r to
the source 0. Thus we may assume that s is not a mailbox.

For both remaining cases (filter region and agent region), partial validity implies
that there exists a structure path r; i=1.n,s = r, (o,r;) EDEF) such that each
region is used for an IMP or EXP tuple. This implies that all regions r; are
vertices in the IE-graph and that they form a directed path, because of the
partial access flow Imported and Exported (construction of IE). The case that
multiple vertices exist with the property is handled by induction. Thus, contrary
to our assumption there exist a path from o tos, which makes the import/export
graph a source graph. [

Theorem 4.3
Let s €S and 0 €0. If IE(0,0) is source graph then Pualid(,0).

Proof 1E(6,0) is a source graph implies that for each rEV-{o} there exists a
structure path from the defining region of o to r. Moreover, the construction of
the IE-graph ensures that each structure relation (r,t) implies either
Imported(o,0,rt) or Exported(o,0,r,t). Together, this implies that for each such r
Access(o,0,r) is true. As V exhausts all regions used in DEF, IMP, and EXP, the
requirements for Pualid (def. 4.6) are fulfilled. O

4.2, SPE INDUCED GRAPHS 69

Theorem 4.3 provides a means to estimate the cost of establishing partial
validity of a state. This cost is equal to the cost of constructing the
import/export graph and to checking the source graph property. The latter can
be determined using a depth-first search on the graph in O(|E|).

Both the import/export graph and the structure are based on structure
relations. Yet, import/export graphs are not subgraphs of the structure graph,
because the directionality of the arcs is dictated by the import-export operations
and because multiple arcs are allowed between the vertices. The cyclic behavior
of the structure graph can be inferred from the import/export graph under
limited conditions.

Theorem 4.4
Let 0 be a valid state. If IMP=@ and IE(0,0) is cyclic then SG(o) is
cyclic.

Proof Let r, ... r_ be regions on a cycle in IE(0,0). By Definition 4.15 these are
vertices in SG(0) too. IMP=@ means that each edge (r,r; 4) is the result of an
export. By Definition 4.15 this means that a structure relation (ri,ri 41) exists,
but then SG(o) contains a cycle. O

Corollary Let 6 be a valid state. If EXP=& and IE(0,0) is cyclic then SG(o) is
cyclic.

Theorem 4.5
Let 0 be a valid state. If SG(o) is a DAG and I1E(0,0) is cyclic then there
exists regions rst in IE(g,0) such that either Mailbox(o,rs,t) or
Agent(o,r;s,t) is true.

Proof Let r, ... r, be the regions on a cycle in IE(0,0). Each edge (r,r;, ,) on this
cycle corresponds with either (rpr; ;) ESTR when the object is Exported, or with
(r; ;) ESTR when the object is Imported. Because the structure graph SG(o) is
a DAG there exists at least one r; such that either (r,;r)ESTR and
(r;,;5t,) ESTR, that is r; is a mailbox, or (r,r.) ESTR and (r,r, ,)ESTR, that

isr;is an agent. O

4.2.4. Algorithmic costs

The introduction of static security constraints alone is insufficient without a
means to test an arbitrary state for security. An efficient representation of the
SPE states is needed, for which the complexity of deriving the security property
is cheap. The three graphs introduced in the previous section provide a good
handle on this problem, for they indicate that the security properties can be
translated into (directed) graph properties. The consistency property is checked
by repeatedly checking the elements of the sets. Any data structure representing
sets with an efficient set retrieval operation can be used for this purpose.
Acceptability of the state is checked using the ownership graph and the structure

70 FORMALIZATION OF SPE 4.

graph, since a necessary prerequisite of state acceptability is that the ownership
graph forms a bipartite graph without loose points. This is easily checked. The
outdegree of all vertices representing objects in the structure graph should be 1
to satisfy the third acceptability constraint. The construction of both graphs is
limited by the number of their elements.

Finally, state validity is checked using the structure graph and the
import/export graphs. This is a costly operation, because the import/export
graphs for all objects defined should be (virtually) constructed and checked for
the source graph properties. However, the latter is limited by the number of
edges in the import/export graph.

The value of the predicates Defined and Owner can be determined using table
lookup of the corresponding tuple in the state component. The predicates
Imported and Exported require at least two tuple searches, one for fixing the
structure relation and one for the import and export respectively. That is, the
cost is limited by the size of the contents (Section 3.1) or environment or the
region considered. The value of the predicates Access and Visible require the
construction of an import/export graph. However, when validity of the state is
known beforehand, the costs are limited as well.

Theorem 4.6
Let o be a valid state. Then the value of the predicate Access(o,0,r) can be
determined considering r and the regions in its contents only.

Proof State validity ensures that if an IMP or EXP tuple is associated with a
region r, r is a node in IE(0,0) (which forms a source graph). Access(o,0,r) is true
when either the object is defined in r, imported into r, or exported to r. The
latter requires a check on the administration associated with the regions in the
contents only. That is, does there exist a region s such that Exported(o,0,5,r)? The
other cases do not require other regions to be considered at all. O

The overall costs involved in checking state security, in the context of a static
system, is one good reason to translate the security properties into state
modification invariants, which are addressed next.

4.3. State transformations

For the definition of a secure programming environment, static security
properties alone are not sufficient, because such an environment is dynamic in
nature. We have seen that the dynamics can be described by an abstract
machine, which is characterized by the notion of a state and by a mechanism to
generate new states using an instruction set. Thus, we should extend the notion
of static state security with dynamic aspects in such a way as to benefit from the
definitions and results derived so far.

4.3. STATE TRANSFORMATIONS 71

The mechanism to generate new states for the abstract machine is an
instruction set. Instructions are mappings, which take a state of the machine and
one or more user-supplied parameters, and generate a new state together with
information (output) for the user. The user-supplied parameters and user
oriented information depends on the design philosophy of the instruction set,
such as which primitive actions are combined into a single instruction and which
authorization policies should be enforced. The analysis presented in this section
addresses their behavior with respect to the protection state only. A class of
simple state mappings is defined, which take an SPE state as an argument and
produce a new SPE state. For these transformations we derive the pre- and post-
conditions for making security an invariant property of the mapping.

"The definition of instruction sets opens a new area of security problems. That

is, under what circumstances can a state be changed while preserving the
security properties and who is permitted to apply an instruction to a state?
Different schemes can be considered, ranging from allowing any user to apply
all instructions, to a rigid scheme where the use of instructions is coupled to the
existence of additional information in the state affected. For the SPE machine
model an authorization policy is defined which couples the effects of an
instruction with the user responsible for its invocation. That is, users are allowed
to exercise instructions as long as they hold access permissions to the objects
manipulated or own them. In that context, we extend the simple mappings with
parameters, giving a characterization of different implementations of SPE based
instruction sets.
Finally, some baseline properties are defined for arbitrary SPE instruction sets,
which describe what should be considered as well-defined instruction sets. This
characterization is used in the following chapter to define and analyze a
particular set, the SPE instruction set; for which the behavior is specified by pre-
and post-conditions and for which we show that it is well-defined.

4.3.1. Classes of state transformations

The class of simple state transformations, ®, is the collection of all functions
on the domain £ and image =. This class is more than we really need for
protection. For example, it includes functions mapping a consistent state into an
inconsistent state. Therefore, we focus on a small subset of ®, namely those
functions which map secure states into secure states. As state security is a
complex property, we concentrate on subclasses of ® satisfying a single security
property.

Definition 4.19
A state transformation ¢:2 — 3 is acceptable iff V cEA:P(0)EA

Similarly, consistent and valid functions or state transformations are defined.
Functions satisfying all three properties are called secure state transformations,
the prime candidates for usage in the SPE instruction sets. A sample secure

72 FORMALIZATION OF SPE 4.

state transformation is the identity function. The identity function is used later
on for instructions which extract information from the state, leaving the state
itself unchanged.

The introduction of secure state transformations as mappings with the security
property as a mapping invariant has far-reaching consequences for the analysis
of security questions, i.e. can a given insecure state be derived from any secure
state, or does the state describe unauthorized access privileges? It implies that
given an initial secure state and repetitive application of a secure transformation,
a secure state is obtained. Thus, when the instruction set is chosen from the
secure state transformations, from the protection point of view expressed by the
security policy decisions in the SPE model, no insecure state can be reached.

A further reduction on the functions in @ is obtained by considering two
subclasses with simple behavioral properties only. The advantage of this
approach will be a cost reduction in determining the security properties of the
state generated. Moreover, the two classes exhibit opposite behavior. The first
class, MI, consists of the incremental state transformations, functions which
extend one or more of the state description components.

Definition 4.20
A state transformation ¢ E® is incremental if Vo €2

Uqb(o) O U OWN O OWN _ IMP D IMP

g o) o (o) o
R 5(0) D Ru STR 5(0) o] STR.o EXP 5(0) o EXPE
0 5(0)) Oo DEF #(a) =) DEFo

The decremental state transformations MD are defined by replacing D by C in
Definition 4.18. The intersection of the incremental and decremental state
transformations consists of mappings which behave like the identity function, but
which, by their implementation, may deliver information on the protection state
to the user. For both classes we translate the consistency, acceptability, and
validity property into pre- and post- conditions for the function.

4.3.2. Incremental state transformations

The nature of incremental state transformations, extending the state components,
can be used directly to observe that accessible and visible objects in the initial
state remain accessible and visible in the generated state. Thus, extension of the
state does not have a drastic effect on the access permissions modeled. For the
decremental state transformations this is not true, as we will see shortly.

4.3. STATE TRANSFORMATIONS 73

Theorem 4.7
Let ¢ be an incremental state transformation. Then
Defines(0,0,r) — Defines(¢(0),0,r)
Exported(0,0,r,8) — Exported(¢(0),0,r.s)
Imported(6,0,r,8) — Imported(¢(a),0,r,s)
Aceess(a,0,r) — Access(p(0),0,r)
Visible(o,0,u) — Vistble(¢(o),0,u)

Proof Follows directly from the definitions. [J

4.3.2.1. Consistent incremental state transformations

The consistent incremental transformations are characterized by keeping the
consistency property invariant, which leads to the following observation.

Theorem 4.8
Let ¢ €MI; ¢ is consistent if Vo €C and
1) OWN‘MO) -OWN, C U¢(a) X R,
2) STR¢(a) =STR. C R¢(a) X qu{u)
3) DEF‘MG) - DEF, C O-f:(o) X R¢(o)
4) IMP%,) -IMP_ C Oﬂﬂ) X R‘MU)
5) EXPW,] -EXP, C qu(a) x R¢(a)

(o)

Proof

=> Let ¢ be consistent and 0 €C. Thus by definition ¢(¢)EC. For a
consistent state OWNﬂQUﬂ)(R‘J and for the image OWN #(a Ccu & t,)X R 5(o)"
As (OWN «U)-OWNU) C(OWN qb(l:r)_OWNu) U OWN_ C OWN 5(0)
requirement 1) is satisfied. A similar argument proves 2) to 5).

<= One must show that the image of a consistent state is consistent under the
proposed conditions. An incremental ¢ means that OWN, COWN #(0) and
OWNGQUUXRH cCu (o) X R 5(o)" Thus, when requirement 1) is satisfied,
OWN o) € U ¢'@XR () The other conditions are proved analogously.(J

4.3.2.2. Acceptable incremental state transformations

The transformations which keep the state acceptability property invariant are
characterized by the following pre- and post- conditions on the state
transformation.

Theorem 4.9
If an incremental state transformation ¢ changes the binary relations
STR, EXP, and IMP only, then ¢ is acceptable.

Proof The acceptability property is a relationship between the three basic entity

74 FORMALIZATION OF SPE 4.

sets and the binary relatons OWN and DEF. Thus, whenever these
components of a state are not changed by an incremental state transformation,
the resulting state remains acceptable. O

Theorem 4.10
Let € MI; ¢ is acceptable if 0 €4 and

1) VuEU‘#(G)-UG : 3r: (ur)E OWNMO)

2) \U’I'ER‘#(U)-Rcr : 3u: (ur)e OWNqs(a)

3) Vo€O,,,-O,: A'r: (o,r}EDEFﬂa)

4) V(o,r) € DEF & 0)-DEF0: o0,
Proof == When ¢ is an acceptable transformation, its image ¢(0) with 6 €4 is
acceptable too. Since ¢ is incremental the acceptability constraints a,.a; of
Definition 4.3 are satisfied for the image of the state components, which imply
constraints 1), 2), and 3). Constraint 4) is implied by assertion a, of def. 43 as
well, because new object definitions cannot violate the uniqueness of the defining
region property for objects in the state 6.
<= We prove that ¢(c)E4 given 0EA and the truth of the four conditions.
Assume that ¢(o) & 4; then three cases should be considered.
First, there exists a user u€g(o) such that there does not exist a region r E¢(a)
with the property (u,r) EOWN, . Since ¢ is incremental u should belong to
U np(a)-Uo’ but according to 1) there is a region with this property.
Second, a similar argument holds for regions and condition a, of def. 4.3.
Third, let 0E¢(c). The assumption that ¢ is not acceptable means that either
there does not exists a region in ¢(¢) such that (o,r) €DEF oy OF associated with
o are multiple regions with this property. The former is prohibited by condition
3), which states that precisely one such region can be found for each new object.
Uniqueness of (o,r) for objects in O, is guaranteed by condition 4. Conclusion:
under the constraints posed ¢ can not be unacceptable. [

4.3.2.3. Valid incremental state transformations

The analysis of valid incremental state transformations is more involved,
because the validity of a state depends on the combination of STR, DEF, IMP
and EXP. In fact, the information embodied by STR and DEF constrain IMP
and EXP. To reduce the complexity of the state validity analysis, each
component is discussed separately.

Theorem 4.11
Let ¢ be an incremental state transformation; if only U,R,0O and OWN
are changed then ¢ is valid.

Proof Follows directly from the definition of validity. O

4.3. STATE TRANSFORMATIONS 75

Theorem 4.12
Let ¢ be an incremental state transformation; if ¢ extends the component
DEF only then ¢ is valid.

Proof Let (o,r) be a new DEF tuple. Then two cases should be distinguished.
First, if there does not exist a (05)EDEF | with ss“r then by definition
Poalid(¢(0),0) is true. Second, if there exists a (o) EDEF,_ with sr then
IE(¢(0),0) remains a source graph (although the state becomes unacceptable).
Thus according to Theorem 4.3 Pualid(¢(0),0) is true. These observations hold
for all objects O_=O 5(o)" Thus by Definition 4.7 Valid(¢(o)) is true.(]

Note that extension of the DEF component alone may lead to a valid but
unacceptable state. For example, it may violate the constraint that each object is
defined in one region only. Therefore, in the SPE instruction set DEF and O
can be changed with one instruction. The theorems above show that this
combined usage does not invalidate the state.

Theorem 4.13
Let ¢ be an incremental state transformation; if ¢ extends the component
STR only then ¢ is valid.

Proof The easiest way to prove this is to consider the import/export graph of an
object. The extension of STR is reflected in the graph with possible new edges.
However, the resulting graph remains a source graph, because it can never
change its source (which is the object) and is thus, by Theorem 4.2, partially
valid. This property holds for all import/export graphs derived for objects and
thus the final state is valid. [

Theorem 4.14
Let ¢ be an incremental state transformation which extends the
component IMP only. If ¥ (o,r)EIMP¢(a}-IMPa Is: (rs)ESTR, and
Access(0,0,8) then ¢ is valid.

Proof Let o be a valid state and (o,r) EIMP (o -IMP_ such that it satisfies the
requirements. Access(0,0,5) means that there exists a path from o to s in the
import/export graph IE(0,0). Moreover, Imported(¢(v),0,r,5) is true, because
(r;5)ESTR and o is accessible in s. Thus by Definition 4.14 there exists a path
from o to r in IE(¢(0),0). This property holds for all r such that
(o,r)EIMP ﬂ)-Il\/iPu, which makes ¢(¢) a source graph and therefore partially
valid by Theorem 4.3. Since this property holds for all objects o mentioned in
the extended import list, the final state is valid by definition.[]

This theorem expresses a sufficient condition for validity for a limited extension
of IMP only. In general, addition of an arbitrary number of elements to IMP
requires a connectivity check for the corresponding import/export graphs, which

76 FORMALIZATION OF SPE 4.

is more expensive than the limited case covered by this theorem. This theorem
states that a local check suffices to guarantee validity. Thus any compound
change to IMP should be rewritten as a series of small changes or shown to be
equivalent to such a series without invalidating the security policy implemented
by the instruction set.

Theorem 4.15
Let ¢ be an incremental state transformation which extends the
component EXP only. If ¥ (o) EEXP, ¢(o)-EXPd: Access(o,0,r) then ¢ is
valid.

Proof Analogous to previous theorem.[]

The separation of the validity invariant into properties of restricted function
classes does not limit the class of derivable states. We can always consider a
state transformation as a composite of a number of (more primitive) functions,

cach affecting a single component. When the primitive steps preserve validity,
the composite is valid as well.

Theorem 4.16
Let ¢ be an incremental state transformation; if ¢ is the composition of
one or more functions ¢, i=1.n, such that each ¢, is valid then ¢ is a
valid state transformation

Proof By transitivity of state transformations. (]

4.3.3. Decremental state transformations

The complementary class of state transformations are the decremental

transformations which reduce one or more of the state components. Unlike the
incremental transformations, the predicates defined for the states, ie. Access,
Imported, Exported, and Defines, do not remain valid in all situations. For
example, in general Access(o,0,r) does not imply Access(¢(0),0,r), because when ¢
removes some essential structure elements or import/export relation IE(¢(0),0) is
not a source graph.
The transformation of the state constraints for this class of functions is again
presented by the partial state security constraints, i.e. consistency, acceptability
and validity. Functions satisfying all three constraints form the class of secure
decremental state transformations.

4.3.3.1. Consistent decremental state transformations

The consistency property of states is preserved easily for the decremental
functions. As consistency binds the binary relations with the elements in the
three basic sets, decremental functions can invalidate the consistency when the
basic sets are reduced only. First, consider the situation that no changes are

4.3. STATE TRANSFORMATIONS 77

made to the basic sets.

Theorem 4.17
If ¢ is a decremental state transformation and the three basic sets U, R,
and O are not affected by ¢, then ¢ is consistent.

Proof Follows directly from Definition 4.2 and Definition 4.17. [

When a binary relation is affected by ¢, we should ensure that all information
discarded from the state description is done properly. That is, whenever regions
are removed, users associated with that region should own another region or be
removed from the state as well. When users are removed then the region not
owned by other users, should be removed too. Moreover, the removal of regions
implies the removal of objects defined in that region. These observations are
combined in the following theorem.

Theorem 4.18
Let ¢ be a decremental state transformation: ¢ is consistent iff Yo € C
1) Vue UG-UMU) not 3r: (u,r) € OWN¢(o)
2) Yoe OO) Dot 3r: (o,r) € DEF¢(o) V
(or)E IVEP V (o,r)EEXP
3) Vr€ R R
— Ju: (u,rSE OWNg(o) A — 3s: (s,;r) € STR¢(0) N
- 3t: (r,t) € STR¢(6) N — Jo: (o,r) € DEFg(o)

Proof

=2 Definition of consistent transformation and Definition 4.2, 4.16, and 4.17.
<= Let 6 €C and assume that ¢ is not a consistent state transformation. Then
five different cases should be considered, based on the five composite state
components,

Assume that there exists (u,r) EOWNg(0) causing ¢ to be inconsistent and such
that either u or r does not belong to Ug(c) and R¢(0) respectively. However,
u@U, . means that condition 1) is not true. When r&R) then condition 3)
is to obeyed, contradicting the assumption that (ur) is a cause for
inconsistency.

Similar arguments can be used to conclude that none of the other possibilities
are in effect, which means that our assumption that ¢ is not consistent under the
proposed conditions is not true, [J

A few special cases are of interest in proving consistency of various instructions
later on. Note, for example, that the removal of objects violates the consistency
constraint if it isn’t accompanied by the removal of the related EXP, IMP, or
DEF.

78 FORMALIZATION OF SPE 4.

Corollary Let ¢ be a decremental state transformation which changes DEF and
O only. Then ¢ is consistent iff Vo & CYo€O, - 5(0)
(o,r) €DEF) A (ox)EIMP) N (o) EEXP .

Corollary Let ¢ be a decremental state transformation which changes OWN and
U only. Then ¢ is consistent iff
VYo EC VuEU Uy, (u,r) EOWN

4.3.3.2. Acceptable decremental state transformations

The acceptable decremental functions remove users and objects from the state
or revoke ownership of users over regions. Transformation of the security
property to function invariants is done similarly to the validity check in section
4.3.2.2, i.e. using different classes of state transformations, which change the state
in a limited way. First, observe a simple property of acceptable decremental
state transformations.

Theorem 4.19
Let ¢ be a decremental state transformation; if U, R, O, DEF, and OWN
are not changed then ¢ is acceptable.

Proof Follows from Definition 4.3 and the decremental behavior of ¢.[]

Theorem 4.20
Let ¢ be a decremental state transformation; if O is changed and R, U
are not changed then ¢ is acceptable

Proof == Let ¢ be an acceptable state. Then YoE O, 3r:(o,r) EDEF, ie.
property a, holds. Since O DO, Property as holds for ¢(c) too. As only O is
changed, property 2, and a, h%(lgl automatically for ¢(g), which makes (o)
acceptable.[]

Note that a transformation of this kind leaves an acceptable, yet inconsistent
state behind, which is a good reason to combine the removal of objects with
removal of their definitions in instruction sets.

Theorem 4.21
Let ¢ be a decremental state transformation changing O and DEF only;
¢ is acceptable iff Vo €4 V(o,r) EDEF -DEF #(0) ° o0&0O 5(0)

Proof == Let ¢ and o be acceptable and (o) EDEF -DEF, with 0€EO, .
Since o is an acceptable state there is only one region r with (o,r) EDEF_ and
removal of this (o) invalidates constraint a, of Definition 4.3 for ¢(c) when
0€0, . But this contradicts our assumption that ¢ is acceptable and
o€0 oy Such an (o,r) does not exist.

<= Lot 6 be an acceptable state. Only O and DEF are changed, so a, and a,
of Definition 4.3 are satisfied for ¢(0). To satisfy a; we should distinguish two

4.3. STATE TRANSFORMATIONS 79

cases. First, Theorem 4.20 shows that the removal of an object alone won’t
invalidate a;. Second, when (o,r) EDEF ,-DEF, (o) then a; of Definition 4.3 is
not true when the object o belongs to the objects in the final state, which is

prohibited by the constraint. [J

The intertwining of conditions a, and a, makes analysis of the acceptability
invariant involving decremental changes to OWN, R, and U more involved.

Theorem 4.22
Let ¢ be a decremental state transformation changing R only; then ¢ is
acceptable iff Vo €4 V reR R,
((u,r)EOWNa — Is:(u,8) E%\)/\fNﬂo)) AR EIo:(o,r)EDEFa.

Proof => Let ¢ and o be acceptable and assume that reR -R o) Then two
cases should be considered.

First, assume that there does not exist an s(sr) with (u,s) EOWN (o) Then
region r is the only region assigned to user u, and, because ¢ is acceptable, u
should be removed from the state as well to ensure a;. This, however, is
prohibited by the assumption that only R is changed. Thus at least one other
region s exists in R () with (u,s) EOWN_ ..

Second, assume there is an object o, such that (o,r)EDEF . As ¢ changes R
only (o,r) EDEF, .. Yet each object has one defining region, therefore assertion
a, of def 4.3. does not hold for ¢(o), violating the assumption that ¢ is
acceptable.

<<= Let ¢ be acceptable and assume that ¢ is not acceptable. Then three cases
should be considered.

First, assume that a ; of def. 4.2 is not fulfilled for ¢(o). That is, there exist a user
u€U_ and no region sER (o) Such that (us)EOWN, .. As o is acceptable
there exists at least one region r with (u,r)EOWNa and 8u,r)EOWN o) thus
rERa-qu(o). But then there exists a region s with (u;s)EOWN 5oy which
contradicts our assumption,

Second, assume that constraint a, is not fulfilled, that is, there exists a region
reR (0) which is not owned by a user. As ¢ is decremental on R only, this
contradicts the assumption that the state ¢ is acceptable in the first place.

Third, assume that a; is not satisfied, which means that there is an object o
defined in multiple regions or there exists no such region at all. The former
would contradict the assumption that o is acceptable. The latter is prohibited by
the constraints of the theorem. In conclusion, under the constraints posed ¢ is
acceptable.]

80 FORMALIZATION OF SPE 4.

Theorem 4.23
Let ¢ be a decremental state transformation changing U and OWN only.
Then ¢ is acceptable iff Vo €4
1) Vu EUG-U‘NO) veUy, (u,r) EOWN_A—(v,r) €0OWN,

2) V(u,r) EOWN,-OWN,) IvEU) (vr) EOWN,

Proof —> Let ¢ and ¢ be acceptable. Then, as only U and OWN are changed,
constraints a, and a, of Definition 4.2 hold for ¢(s). If u€U_-U #(0) then a, is
true by definition, and thus 1) holds. When (u,r) EOWN_-OWN #(0) it must be
ensured that region r has an owner in ¢(0), which is prescribed by 2).

<= Assume that o is acceptable and ¢ is not. That is, as only U and OWN are
changed, there exists a tuple (u,r) EOWN_-OWN,), which requires two cases
to be considered. First, u€U S and no r’ with (u,r)EOWN (o) which is not
allowed by condition 1). Second, no w exists such that w€U, , and
(w,r)EOWN, ,, which is prohibited by constraint 2). Thus, the assumption
that ¢ is not acceptable does not hold under the constraints of the theorem. [

4.3.3.3. Valid decremental state transformations

As with the analysis of the valid incremental functions, the validity constraints
for decremental functions are analyzed on a component basis. In general, the
validity of the state may be violated when one of the sets DEF, STR, IMP, or
EXP is reduced. Conversely, whenever these components are not affected by a
transformation, it is valid.

Theorem 4.24
Let ¢ be a decremental state transformation; if ¢ does not affect the state
components STR, DEF, IMP, and EXP then ¢ is valid.

Proof Follows directly from definitions 4.8 and 4.17.00

Theorem 4.25
Let ¢ be a decremental state transformation; if ¢ changes the components
DEF and O only and V(o,r) EDEF, ,-DEF, (o)’
— 3s Imported(o,0,r,s) N\
— 3s Exported(c,0,r,8)
then ¢ is valid

Proof Assume that the conditions hold for (o,r)EDEFu-DEF oy o€V, and ¢ is
not valid. In other words, there is an object o such that ?(E(qb(a),o) is not a
source graph. As the conditions hold for o, this source graph is either empty or
consists of the single node o. The former can never invalidate the validity of the
state. The latter is a source graph by definition, which contradicts the
assumption that ¢ is not valid.[]

4.3. STATE TRANSFORMATIONS 81

The conditions in Theorem 4.25 ensure that no access permissions were
outstanding for the object being removed, i.e. the import/export graph
associated with o is an empty graph. In general, we should check removed
structure relations for not being essential in the transfer of access permissions,
that is, not making the state invalid. Checking a structure relation for this
property is complicated, because a multitude of situations exists. For example,
consider the situation depicted in Figure 4.7, where access has been passed by
means of appropriate imports and exports to all regions, as indicated by its

import/export graph.

o

Figure 4.7 An example access control flow and IE graph

Removing the structure relation (r7,r5) is permissible when import of o into r7
has been undone first. Then no objects are imported into r7 any more and the
structure relation can be removed without making the state invalid. Removing
the structure relation (r1,r2) is more involved. Removing the export from rl will
not disconnect the graph. However, to see this, all regions which base their
access permission on Access(0,0,r2) should be checked for the existence of a
different grantor. In this case region r3 plays such a role.

Theorem 4.26
Let ¢ be a decremental state transformation which changes only the
component STR. If ¥V 0 EV, V (1,5) €STR -STR (o and for each object o
such that either Exported(o,0,r;s) or Imported(a,0,rs) the import/export
graph IE(¢(0),0) is a source graph, then ¢ is valid

Proof Follows directly using Theorem 4.3. O

As indicated in the example above, some situations can be checked more easily
using local state information only. The next theorem tells us that whenever the
subordinate region is not involved in any access flow, the structure can be
removed without violation of the state validity.

82 FORMALIZATION OF SPE 4.

Theorem 4.27
Let ¢ be a decremental state transformation which changes the
component STR only. If V(r,;s) ESTR -STR 5(0)’ —Jo ((or) EEXP_ V
(o,x) EIMP) then ¢ is valid.

Proof Assume that the conditions hold for a valid state ¢ and that ¢ is not valid.
By Theorem 4.2 and 4.3 this means that there is an object o such that IE(a,0) is
not a source graph, while IE(¢(s),0) was. Thus the removal of the structure
relation (r,s) makes IE(¢(0),0) to contain a second source node, i.e. r. However,
this situation is excluded by the theorem conditions, because r is not involved in
access transfers, contradicting our assumptions. [l

A similar theorem exists for the superordinate regions. In this case we have to
check whether superordinate regions function as mailboxes in the transfer of
access rights.

Theorem 4.28
Let ¢ be a decremental state transformation which changes STR only. If
V(rs) ESTR -STR,
—3(0,s) EE)&g () and
—3t Mailbox(s,r,5,t)) A\ ((o,r) EEXP A (o,t) EIMP)) and
—3t Mailbox(o,r,5,t)) A ((0,r) EIMP A (o,t) EEXP))
then ¢ is valid

Proof The proof runs analogously to the one given for the previous theorem.
Assume that the conditions hold for a valid state o and that ¢ is not valid. By
Theorem 4.3 and 4.4 this means that there is an object o such that IE(¢(0),0) is
not a source graph, while IE(g,0) was. Thus the last incoming edge for s has
been removed by ¢. This means that s is a second source node in IE(¢(c). This
criterion can be translated to the occurrence of export actions associated with s (s
plays an active role in access flow) or s being used as a mailbox between r and
another region t (s is passive). However, both situations are excluded by the
three constraints, which means that no edges emanate from s and thus s can not
be a node in IE(¢(0),0), contradicting our assumption.[J

Both theorems illustrate that removal of border nodes in the import/export
graph, i.e. nodes without emanating edges, preserves validity of the state. The
removal of an arbitrary structure relation leads to a connectivity check of the IE
graphs of all objects affected by the removal.

The analysis of removing access grants is analogous to the approach taken for
removing structures. Whenever access permissions are removed from the border
nodes of an import/export graph, ie. nodes without arcs emanating, we know
that it remains connected and thus partially valid.

4.3. STATE TRANSFORMATIONS 83

Theorem 4.29
Let ¢ be a decremental state transformation, which changes the
component IMP only. If V(o,r) EIMP -IMP =
(o,r) EZEXP A 3t ((t,r) ESTR A Imported(d(a),0,r,t))
then ¢ is valid,

Proof For each import removed, condition a) guarantees that the region is not
used as an agent, which exports the access permissions. Constraint b) guarantees
that no region in the contents of r makes use of access permission to o.[]

Theorem 4.30
Let ¢ be a decremental state transformation, which changes the
component EXP only. If ¥(o,r) EEXP_-EXP ©)
3t —3s ()ESTR A (05)CEXB. A (o)EIMP) A
. #(0)
Mailbox(a,r,s,t)
then ¢ is valid.

Proof Analogous to previous theorem. [

4.3.4. Constraint variations

In a similar way, the properties of the state transformations can be checked for
the models derived from SPE, as described in section 4.1.4. For example, we
have introduced the DAG and hierarchical states as alternatives to describe
access control properties. In general, for DAG states the cost involved in
guaranteeing for non-cyclic behavior requires a graph connectivity algorithm.
In a limited number of cases, the DAG property can be checked without
resorting to a global graph analysis. For example, removing structure relations
never invalidate the DAG property and addition of structure relations are
sometimes checked easily.

Theorem 4.31
Let ¢ be an incremental state transformation. If for all DAG states o
V¥ (rs)€ STR & o)-STRG: in-degree(¢(o),r)=0 V
in-degree(¢(0),5)=0
then ¢ preserves the DAG property.

Proof Property of a DAG 0.

Theorem 4.32
Let ¢ be a decremental state transformation then ¢ preserves the DAG

property.
Proof Property of a DAG O

84 FORMALIZATION OF SPE 4.

4.4. Authorization

The state transformations were discussed in the previous section from a formal
world perspective, ignoring the practical problem of how a state transformation
is actually triggered. In implementing the SPE model, someone or something is
needed from outside this closed world, such as an active entity which is held
responsible for the application of the state change. This active entity introduces
a new dimension in security problems, summarized in the single phrase "who
may do what and when?”. More specifically, under what conditions can a user
apply a state transformation and how are these conditions represented?

The answer to this kind of protection problems is the use of a decision
procedure, which implements an authorization policy. Each state transformation
is first checked against this policy and when the decision procedure does not
prohibit the transformation, it is performed. The authorization policy consists of
a set of (self referential or static) rules using information extracted from the
protection state and the identity of the user responsible. For example, the
authorization policy might enforce that only an owner of an object may remove
it, or that a user initiating a "create object” request has to be in control over the
environment where the object is placed. This requires both a static rule to
express the constraints and information from the protection state to which it is
applied.

4.4.1. Authorized state transformations

Formalization of authorization in the SPE model requires a new class of
functions, the authorized state transformations T, defined below. The informal
introduction of authorization above indicates that three dimensions are relevant
for the state transformation: the activators, the instruction set, and the states of
the protection system.

Definition 4.21
An authorized state transformation y €T is defined by the function
y:USERSX®XZ — 2
and the authorization function
Authorized: UXZX® — (truefalse}
such that
¢(0) when Authorized(u,p,0)=true
Y(u,$,0) {
¢ otherwise
Each authorized state transformation in the context of SPE is a state
transformation defined over the domain of actwators, i.e. the active entities, an
instruction set, Le. the state transformations, and the set of SPE states. The
application of authorized state transformation leads to a new state ¢(a) if and
only if the activator u is authorized to apply the state transformation. When the

4.4. AUTHORIZATION 85

activator is not authorized, the result of the invocation is the application of the
identity function. Note that the authorization function is defined on users
represented in the protection state only.

The introduction of the authorized transformations as an extension to the state
transformations implies that the results derived in the previous sections on the
behavior of these mappings carry over to the authorized state transformations.
In particular, we will use the subset of secure authorized state transformations in
the construction of an SPE instruction set.

4.4.2. Authorization policies

Before we present a formal definition of the authorization policy of the SPE
model, some alternatives are presented. The authorization policies, as described
in the literature, can be divided into two classes: the static and the dynamic
policies. Under a static policy the authorization information to evaluate the
predicate Authorized is fixed. It is defined with the creation of the protection
system. The static policy approach is illustrated by four examples, each of
which emphasizes different components of the authorization function.

Example 1 The static authorization policy with emphasis on the activators and
the instruction set can be found in the architecture of many computer systems,
For example, the DEC PDP-11 machines use a two-level architecture of user
and kernel mode, which can be considered as the activators of the machine
instructions. Part of the machine instruction set is not available within user mode
and the association of mode with instruction is static, i.e. built into the hardware.
Example 2 A static policy with emphasis on the states and the instruction set
can be found in compilation of high-level programming languages. Here, there
is one activator only, the programmer, and the authorization for an instruction
invocation depends on the accessibility of the object, which is often restricted to
the scope of its definition, i.e. the state of the compiling process.

Example 3 An authorization policy with emphasis on the activators, operations,
and the state of the system can be found in the military environment, such as the
multi-level security classes [Bell74] where a user may read/write all the
documents for which his clearance level equals or exceeds the level associated
with the document.

Example 4 Within the context of SPE a static policy can be defined involving
both a group of activators G, an instruction set OP and a subspace of 2. The
policy enforces that users in G can issue any state transformation, provided that
the state remains secure. Other users are restricted to the instruction set OP.

Authorized(u,$,0) = ¢(0)ES A\ (WEG V (WEU-G A $EOP))

Dynamic authorization policies are characterized by using the state of the
protection system in combination with the identity of the activator. That is, the

86 FORMALIZATION OF SPE 4.

authorization information, as well as the decision procedure, is represented as
objects within the protection state. This use of the protection state provides a
means to change the authorization information dynamically. One can
effectively propagate access rights to newly defined users or change the security
level of objects.

Example 5 An example of a dynamic authorization procedure is the password
scheme found in a multi-user systems. The decision procedure for system access
makes use of the database of <Cuser, password>> associations to allow or deny
service.

Example 6 An example of a dynamic authorization policy is the theoretical
model of Harrison-Ruzzo-Ullman [Harrison76], where the value of Authorized is
defined by an access matrix M, the protection state description within this
model. Each entry M[u,0] designates the function(s) (or right(s)) of a user u
with respect to the object o. The access matrix defines the value of
Authorized(u,9,6) by:

Authorized(u,$,6) = M[u,0]=¢ N (0 €0, V o€U) AueU

Observe that a dynamic policy needs information on static rules to describe
the policy employed for redefinition of the authorization information too. For
example, part of the policy inherent to the HRU model is implied by the access
matrix structure. That is, adding a new right to an element of the table is
authorized if the element already exists. Alternatively, one cannot give rights to
nonexistent users nor manipulate nonexistent objects.

4.4.3. SPE authorization policy

The authorization policy for SPE is based on two concepts: the affected region
and cooperation when access flow is concerned. A region is considered an
affected region if it plays a role in the state change caused by a SPE instruction.
Thus, addition and deletion of binary relations from a state turns the region
mentioned into an affected region, formally defined by:

Definition 4.22
Let ¢ €®; the set of affected regions is defined by
AR(¢,0)

{r: (ur) EOWN -OWN_} U {r: (u,r)EOWNo-OWN¢(a)] U

{r: (o,r)EEXqu(a)- XP } U {r: (o,r)EEXPo-EXP¢{U} U

{r: (o,r)EIMP¢(O}-IMPU} U {r: (o,r) EIMP -IMP a)i U

{r: (0,r)EDEF¢(o)-DEFa} U {r: (o,r) EDEF -DE ¢(o)}
The concept of affected regions does not apply to changes made to the structure
relation. Establishment of a communication path requires participants to
cooperate, while revocation can be issued by either one. These constraints are
being taken care of separately, which gives the following formal definition of the

4.4, AUTHORIZATION 87

SPE authorization policy:

Definition 4.23
The SPE authorization predicate Authorized(u,$,0) is true when
a) V rEAR(¢,0) : (u,r)EO\?\H\I‘:l and
b) V¥ (rs)eSTR, ,-STR : (ur)EOWN_ A (u;s)EOWN_ and
c)V (rs)ESTR, - qu(a): (u,r)EOWNo V (u,s) €OWN,
This definition indicates that implementation of the model can be centered
around the region concept. Access authorization is based on the affected regions,
therefore storage of the protection state can be decentralized to the region
objects. This approach differs from traditional user oriented storage (capability

lists) and object oriented storage (access control lists) of authorization
information,

88 FORMALIZATION OF SPE 4.

4.5. SPE instruction sets

Now that we have defined both the concept of authorized state
transformations and the predicate Authorized, instruction sets for the SPE model
can be defined.

Definition 4.24
An SPE instruction set is a finite set of authorized secure state
transformations which enforce the SPE authorization policy.

This definition of an instruction set is still too abstract from an implementation
point of view. Different instruction sets can be perceived and what constitute a
good set is an open question. First, however, we address the syntactic means to
specify an instruction, which in turn requires a specification technique.

Until now we have discussed the SPE state transformation ¢ on an abstract
level. It has been characterized by its effects on the protection state, without
precise specification of its syntax. The design and analysis of an instruction set
requires more details. Within this thesis, an SPE instruction is specified in terms
of a name, a parameter list, a pre-condition, and a post-condition, similar to the
O-function in [Parnas72]. To emphasize the authorization decision it is specified
separately from the instruction pre-condition. The interpretation of an
instruction call is the same as defined for authorized state transformations,
whenever the auth- and pre-condition hold, the state is changed as defined by the
post-condition.

A V-function in this specification technique is used to define the state analysis
instructions, those instructions which extract information from the protection
state description and transform it to readable information, or to a Boolean value
for decision control.

For example, an instruction is defined to introduce a region ’new’ to be owned
by friend’ and to provide access to a single object *file’ within "new’.

command share(actor, area, file, friend, new)
auth (actor, area) € OWN
pre (file, area) € DEF
post (friend, new) € OWN A
(area, new) € STR A
(file, area) € EXP

Figure 4.8 A sample SPE instruction definition.

In the discussion of authorized state transformations we stated that failure of the
Authorized results in applying the identity state transformation. Similarly for the
pre-condition. In this respect the pre- and post- conditions specify the effect of an
if-then statement in algorithmic programming languages. Note, though, that in
an implementation of the model information about errors should be sent to the
activator or security officer when surveillance 1s needed.

4.5. SPE INSTRUCTION SETS 89

4.5.1. Well-defined instruction sets

In the foregoing sections the SPE protection model is formally defined, both in
terms of state components and in terms of state transformation invariants. The
state transformations and their constraints were used to give an outline of
instruction sets for the SPE model, including the definition of an SPE
authorization policy. By no means are these security properties the only possible
view of the world regarding access control. For example, the DAG and
hierarchical states can be considered as a model derivable from the SPE model.
Moreover, the specification technique for the instruction sets provides the means
to extend the authorization policy. For example, the pre-condition of the
instruction in Figure 4.8 can be extended to require the existence of a particular
object or the negation of some state property.

The potentially large number of instruction sets based on the SPE model
raises the question what properties they should have. We conclude this chapter
with an indication of well-defined instruction sets and analyze whether this
property can be derived for an arbitrary SPE instruction set algorithmically.

4.5.2. Completeness criterion

The first property we consider important for well-defined SPE instruction sets is
the ability to generate all secure states from a given secure initial state.

Definition 4.25
An instruction set [satisfies the completeness criterion if there exists a secure
state 0, such that for each secure state o there exists a series ¢>}. (j=1..n)
and 0=¢,0..8¢, (g,)
The restriction of this definition to a initial secure state stems from the
authorization policy, which requires each action to be triggered by a known
activator. Therefore, the initial state minimally consists of a single user u who
owns a region r. Such a state has been classified as a primitive state and is
known to be secure.

The completeness property of instruction sets can not be decided by a simple
algorithm, for it can be shown that the behavior of a Turing Machine can be
encoded in the SPE model in such a way that if completeness were decidable,
then so is the halting problem. Because the halting problem is known to be
undecidable, determining the completeness of a SPE instruction set is
undecidable.

Theorem 4.33
It is undecidable whether an arbitrary SPE instruction set is complete.

Proof Let T be an arbitrary Turing machine. We show how its states are
encoded into SPE states and how the moves of T are mapped to SPE
instructions. The tape symbols are associated with unique user names, and the

90 FORMALIZATION OF SPE 4.

non-blank cells are associated with unique regions. The Turing Machine states
p,q,... are associated with objects p,q-.. in the protection model. The SPE state
representing the Turing Machine state has precisely one such object in a region
to represent the head of machine.
Let T be in state q, then T has scanned a finite number of k cells, and the cells
k+1,k+2,.. are blank. The state q is represented by a secure SPE state 0 such
that:

1) If cell s of the tape contains the symbol X, then (X,s) EOWN_

2) (s,s+1) ESTR, which orders the tape cells

3) (End,k) EDEF, which marks the end of the tape

4) If the tape head is positioned at cell s, then (q,5) EDEF

An example encoding of the Turing machine in state q whose first cells hold
'rst’, and the tape head positioned at cell 2, is shown in Figure 4.9.

Figure 4.9 Turing machine tape simulation

A move f{g,X)=(p,Y,L) is represented by an SPE instruction MOVEgXL that
removes the object q from region r and grants p to region s, where r represents
the current position of the tape head, and s represents the cell to the left of r
(which is determined by the STR relation). The SPE instruction becomes:

MOVEqXL(r,s)
pre (s;x) ESTR A (q,r) EDEF /A (X,r) EOWN
post (q,r) EDEF N\ (Xr) & OWN A (Y,r)EOWN A (p;s) EDEF

The move f{q,X)=(p,Y,R) requires two cases to be considered, one for the state
containing End.

4.5. SPE INSTRUCTION SETS 91

MOVEqXR(r,s)
pre (r,s) ESTR A (q,r) EDEF A (X,r)EOWN
post (q,r) €DEF N (X,;r)@OWN A (Y,5)EOWN A (p,s) EDEF

MOVEQGEnd(r,s)
pre s€R A (End,r) EDEF A (qr) EOWN A (q,r) EOWN)
post (End,;r) €DEF N (X,r)@OWN A (r;s) ESTR

A (Y,s)EOWN A (End,s) €DEF

If the Turing machine reaches its final state q, then q,will be entered into some
region r. Equivalently, halting of the Turing machine ‘means that the TM enters
the final state q, ie. the object End is entered in some region. If the
completeness problem were decidable, it would be possible to decide beforehand,
given the above set of instructions, whether the final state is entered, which
means that we have a decision procedure for the halting problem, which is
known not to exist. [J

This theorem shows that there is no hope for finding a general algorithm to
decide completeness for an arbitrary instruction set and initial state. This result
need not discourage us in searching instruction sets with predictable behavior.
For example, if the domains REGIONS, OBJECTS, and USERS as well as the
instruction set are finite, completeness becomes decidable, since a brute force
method can be applied to check each possible state for reachability.

4.5.3. Compensation criterion

The second criterion for a well-defined instruction set is that it provides the
means to describe and cause not only the dissemination of access permissions,
but also the revocation of these permissions. That is, for each incremental
instruction applied to a secure state one can find a sequence which brings back
the original state. We restrict ourselves to instruction sets of incremental and
decremental instructions only, where the compensation criterion is satisfied when
for each incremental instruction there exists a composition of (decremental)
Instructions to undo its effect.

Definition 4.26
An SPE instruction set [is said to satisfy the compensation criterion if each
incremental ¢ €1 is either incremental or decremental and for each pe]
and secure state o there exists a series decremental instructions q:}EI
(j=1..n) such that ¢,°.. 29, °d(0)=0
The compensation criterion does not impose constraints on the SPE
authorization policy. Activators of the decremental instructions may be either
identical to the activator of the initial incremental instruction or may be users
with the same access rights, which allows for the construction of systems where
permissions are revoked by system-wide users (e.g- the super-user in UNIX).

92 FORMALIZATION OF SPE 4.

Definition 4.24 rules out instruction sets containing state transformations which
both extend and reduce the protection state components. In general, such an
instruction can be considered a composition of (more primitive) incremental and
decremental instructions. As far as authorization is concerned, such a
decomposition may require authorization information to be saved between the
execution of the component mappings in the protection state, ie. turns it into a
dynamic authorization policy.

Note that Definition 4.24 requires instruction sets to be able to compensate for
incremental instructions immediately; information added to the protection state
can be removed as long as it has not been used. For example, object definitions
can be undone before access rights on it are passed to other regions. The
general problem of undoing side effects is handled by a revocation policy, as
described in section 5.3.

The definition of the compensation concept raises the question as to the
existence of an algorithm to determine this property for an arbitrary SPE
instruction set. Obviously, when each incremental instruction is accompanied by
an inverse decremental instruction, i.e. the post-condition of the former implies
the pre-condition of the latter under all circumstances and the combined
application is equivalent to the no-op operation, the compensation criterion is
guaranteed.

Theorem 4.34
If 7 is a SPE instruction set and each incremental state transformation has
an inverse in I then I fulfills the compensation criterion.

Proof Trivial.(Od

Again there is no hope of finding an algorithm which decides this property for
arbitrary SPE instruction sets. Assume that such an algorithm exists. Then it
would work for the commands defined in the proof of Theorem 433 as well.
This means that the algorithm solves the halting problem by coupling the
original state with the final state of the Turing machine.

A handle on the problem is obtained by placing restrictions on the instruction
sets considered. If all instructions are classified as either incremental or
decremental and behave independently of the protection state then a brute force
method exists to check this property. By independent behavior we mean that
the number of elements added to the protection state by an incremental
instruction does not depend on the state to which it is applied. This way, one
such extension is representative for all cases.

Theorem 4.35
There exists an algorithm which decides the compensation criterion for SPE
instruction sets consisting of incremental and decremental instructions
only, each of which behaves independently of the protection state.

4.5. SPE INSTRUCTION SETS 93

Proof We should prove that for each incremental ¢ EJ there exists a series ¢J-
(j=1..n) such that ¢. is decremental and for each secure state o
byonod) wblors

Each protection state is described by finite sets, thus the incremental
(decremental) state transformation extend (reduce) the state with (by) a finite
number of elements. Moreover, we assumed that the number of elements added
does not depend on the state it is applied. Therefore, to undo the effect of an
incremental instruction, all elements added should be removed, which places an
upper bound on the number of decremental instructions to be applied. If we
assume that an incremental instruction adds N elements to the binary relations,
then all sequences of length N can be generated and checked, because the
instruction set is finite as well. (]

4.5.4. Minimality criterion

The third criterion for well-defined instruction sets is minimality, that is, the set
consists of a2 minimal number of instructions. An extreme situation would be an
instruction set consisting of a single instruction with many parameters.
Obviously, this is an unworkable situation, because the interpretation of this
instruction has to deal with many cases. Minimality in this respect should be
coupled with the notion of instruction orthogonality or instruction independence,
which is influenced by the access control constraints and the authorization
policy. Therefore, we adopt as definition of minimality the non-existence of
instruction overlap. For each instruction (changing the state description) it
should be impossible to give an equivalent series from the same instruction set.

Definition 4.27
An instruction set / satisfies the minimality criterion if V¢ €1 (¢541) there
does not exists a series ¢ #¢ (j=0..n), such that for any secure state ¢
¢(a)=¢ﬂ" "¢g(0)

The question whether within the context of SPE an algorithm exists to

determine minimality for an arbitrary instruction set should be answered
negatively. As with the compensation criterion, minimality of the instruction set
depends on the ability to generate a particular secure state, which is known to
be undecidable for the unbounded name space NAMES and the unconstrained
form of the instruction set. When the name space becomes bounded minimality
can be decided for the finite instruction set at considerable expense.
One method to prove minimality for a restricted class of instruction sets, a set of
decremental/incremental instructions behaving independent of the protection
state, runs as follows. Separate the instructions into groups affecting the same
portion of the protection state. Then for each group the pre- conditions can be
checked for overlap using a proof technique tailored to the set.

94 FORMALIZATION OF SPE 4.

4.6. Summary

In this chapter we have introduced the SPE model by formally specifying the
static and dynamic properties of SPE protection states. An SPE protection state
is considered secure when it satisfies the independent properties consistency,
acceptability, and validity, which model the security properties introduced in
Section 3.3. The security properties of SPE states have been related with
directed graphs, which gave a handle on their algorithmic complexity. The
dynamic properties of SPE states are cast into state transformation invariants,
which thereby describe properties for many SPE instruction sets. In Section 4.4
we have indicated how authorization policies enter the scene as a separate
dimension of access control. A particular authorization policy for the SPE
model has been introduced, which models the rule that each user changing the
protection state should own (or be responsible for) the protection domains where
the changes take place. Finally, in section 4.5 desirable properties of SPE
instruction sets, i.e. minimality criterion, compensation ~criterion and
completeness criterion, have been introduced as forming a basis for well-defined
instruction sets. Although no algorithm exists that can check the well-definedness
property handed an arbitrary SPE instruction set, a given set may well be
proved to satisfy as shown in the next chapter.

5

AN SPE INSTRUCTION SET

The SPE model does not prescribe a single instruction set, but forms a basis
for many instruction sets. In this section we formally specify one such instruction
set using the specification technique introduced in section 4.4 and show that is
satisfies the well-definedness properties. Next, this instruction set is applied to
the problem of revocation, undoing protection actions of the past. After an
introduction of the semantic problems associated with revocation in general and
an indication of the implementation approaches taken in various systems, two
revocation policies for SPE are described: a chronological and a goal-seeking
revocation policy. A sketch of the associated algorithms is given.

In Section 5.5 an important question for all protection systems is addressed:
“who can steal privileges?” First, we study the capabilities of the instruction set
in predicting derivable states. Then, the notions of stealing and conspiracy are
given a more formal basis. The SPE instruction set js used to predict the
leakage of privileges and the means to prohibit this. Finally, the observations
are used to construct a model (and representation) to analyze this problem in an
SPE environment.

In Section 5.6 we address the construction of protection system commands, i.e.
SPE programs, and their use in the construction of alternative SPE based
protection systems. The technique is illustrated by simulating two formal access
control models [Harrison76, Jones76], which shows the modeling power of our
proposed scheme and simultaneously illustrates the differences with the
aforementioned models.

95

96 AN SPE INSTRUCTION SET 5.

5.1. An SPE instruction set

The SPE instruction set OP is split into three categories: the incremental, the
decremental, and the state analysis instructions. These categories are denoted by
IP,DP, and AP respectively. The former two categories are O-functions in
Parnas’s terminology, the latter are V-functions, i.e. value returning instructions.
As the V-functions do not change the protection state, they are no threat to
security being modeled. Note, however, that they may breach security policies
related to confidentiality. We restrict ourselves in this thesis to a formal
specification of the O-functions. The state analysis instructions are introduced
where appropriate.

As described before, the semantics of the instructions are specified by the auth-,
pre-, and post-conditions. To differentiate the initial and final state of each
instruction, the component sets of the final state are marked with a single quote.
Moreover, the final state is considered identical to the initial state, except for
those components mentioned explicitly in the post-condition.

Whenever a pre- or auth-condition fails for an activation of an instruction, or
the post-condition of the state can not be guaranteed to hold, the instruction is
considered in error and the result of the instruction is the same as would be
obtained by applying the identity state transformation. We have omitted the
formal description of this behavior from the specifications. In any
implementation of the instruction set an error message should be returned to the
activator, who, by convention, is denoted by the first parameter of an
instruction.

5.1.1. Incremental instructions

The incremental instructions IP extend one or more components of an SPE
state and consist of the instructions:

add region(u,s) - introduce a new region

add object(u,r,0) - introduce a new object in a region
add owner(u,r,v) - introduce a co-owner for a region
add struct(u,r,s) - introduce a structure relation

add export(u,r,0) - export an object
add:import(u,r,o) - import an object

The first instruction, add region(u,s), introduces a new region s and designates u
as its owner. The auth-condition implies that the activator of the command is
known within the initial state. For these instructions we will show that they are
authorized secure state transformations in the sense of Definition 4.21.

5.1. AN SPE INSTRUCTION SET 97

Definition 5.1
add_region(u:USERS;s:REGIONS)
- auth uelU
pre s&R

post R’=RU{s} A\ OWN’=OWNU {(u,s)}

The parameter list of an instruction includes the parameter type, which can be
seen as an integrity constraint on the actual parameter. Note, however, that
these constraints are primarily of importance in an implementation of the
instruction set. Within the model all three domains are unbounded and disjoint.

Theorem 5.1
The instruction add region(us) is an authorized secure state
transformation.

Proof We should prove that the result of applying the instruction to a secure
initial state o is secure.

According to Definition 4.17 add region is an incremental state transformation.
The instruction is consistent, because the post-condition ensures that region s is
included in the base set R, a necessary requirement to fulfill the conditions of
Theorem 4.8, The post-condition enforces that in the derived state the region s
has been assigned an owner, no objects are introduced, and no structure
relations. Thus, the conditions for Theorem 4.10 are fulfilled, making add region
an acceptable state transformation. The state transformation is valid, because
increment of R and OWN does not invalidate existing access privileges
(Theorem 4.11), which makes the instruction a secure state transformation. The
newly defined region is not an affected region in the sense of Definition 4.19, but
as the activator of the instruction becomes its owner, the instruction is authorized
by Definition 4.21.0J :

Co-owners are introduced for a region using add owner(u,r,v). The activator
u grants ownership rights on region r to user v. Hence, it makes v equally
powerful to u in relationship to this region. This instruction is the only way to
introduce new users, because, as for the definition of a new object, someone must
be qualified to change the protection state.

Definition 5.2
add_owner(u:USERS; r:REGIONS; v:USERS)
auth (u,r)EOWN
pre (v;r) EOWN
post OWN’=OWN U {(v,r)} A U'=U U {v}
Note that security of the initial state ensures that (u,r) EOWN implies rER.

Theorem 5.2
The instruction add owner(u,r,v) is an authorized secure state
transformation.

98 AN SPE INSTRUCTION SET 5.

Proof Definition 4.17 tells us that add owner is an incremental state
transformation. The post-condition ensures that condition 1) of Theorem 4.10 is
satisfied. Conditions 2), 3), and 4) are satisfied by definition. Thus, add owner is
an acceptable state transformation. Theorem 4.8 shows that add owner is
consistent. Validity is obtained from the behavior condition and not changing
any of the components IMP, EXP, DEF, and O. Finally, the instruction is an
authorized secure state transformation, because the pre-condition ensures that the
activator of the command, u, is an owner of the affected region r.0J

Extension of the structure relationship STR is provided for by
add struct(u,r,s), which requires bidirectional cooperation to satisfy security
property SP-4; the activator should be an owner of both regions involved in the
establishment of an communication path. In particular, the authorization
condition may require an action to introduce u as a co-owner of the region s
first.

Definition 5.3
add struct(u:US ERS; r,s:REGIONS)
auth (u,r) EOWN A (u,s) EOWN
pre (rs)&STR
post STR>=STR U {(rs)}
Theorem 5.3
The instruction add struct(urs) is an authorized secure state
transformation. -

Proof According to Definition 4.17 add struct is an incremental state
transformation. The add region instruction is consistent by Theorem 4.8 and by
the implication of the post-condition that (rs) ER’XR’. The instruction is
acceptable by Theorem 4.10 and valid by Theorem 4.13. Together, the
instruction is a secure state transformation. The set of affected regions is empty,
but by definition Authorized(u,add_region,o) is true.l]

New objects are introduced with the add object instruction, which expects the
name of the activator, the name of the new object, and the name of the region
with which the object is to be associated, i.e. its defining region.

Definition 5.4
add object(u:USERS; r:REGIONS; 0:OBJECTS)
B auth (ur) EOWN
pre o &0
post O’=OU {0} N\ DEF=DEFU {(o,r)}
Theorem 5.4
The instruction add object(ur,0) is an authorized secure state
transformation. B

5.1. AN SPE INSTRUCTION SET 99

Proof According to Definition 4.17 add region is an incremental state
transformation. The instruction is consistent by Theorem 4.8 and the fact that
the post-condition implies (0,r) EQ’XR’. Theorem 4.10’s condition 1) and 2) are
fulfilled automatically and conditions 3) and 4) are satisfied by the constraint on
the result. Thus, the instruction is an acceptable state transformation. The
add_object instruction is valid by Theorem 4.11 and the observation that the
new object is added to O. Together, the instruction is a secure state
transformation. The set of affected regions is {r} and the authorization
prescribes that the activator owns r. Thus, by Definition 4.21 the instruction is
authorized.[

The add import and add export instructions are the object sharing
instructions. That is, add export makes an object accessible within the
environment of a region, while add import makes an object accessible within the
environment accessible within the region itself,

Definition 5.5
add_import(u:USERS; r:REGIONS; 0:OBJECTS)
- auth (u,r) EOWN
pre (o,r) & IMP A 3s €environment(o,r): Access(0,0,5)
tost IMP’<IMPU {(o,r)}

Theorem 5.5
The instruction add_import(ur,0) is an authorized secure state
transformation,

Proof The instruction is incremental by Definition 4.17. Consistency is
guaranteed by the fact that both r and o are known in the initial state and thus
the conditions for Theorem 4.8 are fulfilled. Acceptability of the instruction
follows directly from Theorem 4.9, while the transformation is valid by Theorem
4.14. Together, add import is a secure state transformation. The instruction is
authorized, because u owns the affected region r.[]

Definition 5.6
add_export(u:USERS; r:REGIONS; 0:0OBJECTS)
' auth (u,r)EOWN
pre (o) EZEXP A Access(o,0,r)
post EXP’=EXPU {(o,r)}

Theorem 5.6
The instruction add export(u,r,0) is an authorized secure state
transformation.

Proof Analogous to previous proof using Theorems 4.8,4.9, and 4.15. O

100 AN SPE INSTRUCTION SET 5.

5.1.2. Decremental instructions

The second category of SPE instructions is formed by the decremental
authorized secure state transformations DP, surnmarized by:

del region(u,r) - rermove a region

del object(u,r,0) - remove an object

del owner(u,r,v) - remove a co-owner

del struct(u,r;s) - remove a structure relation
del_import(u,r,0) - remove an import

del _export(u,r,0) - remove an export

The instructions in this category are defined such that application of the
instruction immediately after its corresponding incremental instruction functions
as a no-op. In fact, these instructions are compensating instructions for the
incremental instructions. For example, let ¢ be a state and apply
add object(u,r,0) giving o’ then the application of del object(u,0,r) to the state
o brings back the state 0. These properties turn the proposed instruction set
into a well-defined SPE instruction set, which is shown formally shortly.

The regions in SPE play a central role and the removal of a region r in the
compensation instruction requires that the region is not used for object definition,
nor is it used within structure relations. The former implies that no exports are
outstanding for local objects, the latter that no imports exists for r (in a secure
state of course) and thus no exports for imported objects either. A boolean V-
function is defined for this purpose, called Notused(r), which is formally specified
by:

function Notused(r:REGIONS): boolean

Notused := (— Jo:(o,r) € DEF) A (= Is:((rs) ESTR V (s,r) ESTR))
end

With the compensation criterion in mind, the instruction del region is defined
by:
Definition 5.7
del region(u:USERS;r:REGIONS)
B auth (u,r) EOWN
pre —(AvsEu:(v,r) EOWN) AN Notused(r) A
Js=£r:(u,s) EOWN
post OWN’=OWN-{(u,r)} AN R=R-{r}
Theorem 5.7
The instruction del region(ur) is an authorized secure state
transformation. B

Proof We shall show that if the instruction is applied to a secure state then the

5.1. AN SPE INSTRUCTION SET 101

final state is secure too. Firstly, observe that the instruction is decremental by
Definition 4.17. Theorem 4.18 is used to prove consistency of the mapping. U
and O do not change; therefore conditions 1) and 2) are fulfilled. Furthermore
the pre-condition, ie. the term Notused, ensures that no (u,r) EOWN, no
(o,r) EDEF, no (rs)ESTR, and no (s;r)ESTR exists. Thus Theorem 4.18
ensures consistency.

Assume that the pre-condition holds. Then, to be acceptable, the constraints in
Definition 4.3 should be true. This can be seen as follows. The sole user
associated with r is u, who owns another region r’ by the pre-condition. Thus,
the mapping satisfies constraint a, for acceptability. Second, no objects are
defined in the region being removed, thus satisfying constraint a,. Finally,
constraint a, is satisfied by definition. Thus, the mapping is acceptable. Validity
of the mapping follows directly from Theorem 4.24. Together, the instruction
del region is a secure state transformation. Finally, the pre-condition ensures
that the invoker of the command is associated with the affected regions, making
it an authorized secure transformation. (]

Co-owners are removed with the del owner instruction, which ensures that users
are equally powerful.

Definition 5.8
del owner(u:USERS; r:REGIONS; v:USERS)
- auth (ur)€ OWN
pre (vir)€ OWN
post OWN’=OWN-{(v,r)} A (Iss4r:(v,s) EOWN V v |08}
Theorem 5.8
The instruction dcl__owncr is an authorized secure state transformation.

Proof Use Theorems 4.17, 4.22, 4.23. O

Removal of structure relations requires a complex pre-condition, for it must be
ensured that all access flow through the structure is not essential. That is, all
access rights can be obtained from a second source. In general, this requires a
reconstruction of the import-export graph for all objects accessible in regions
mentioned and a connectivity check. The check is modeled by the function
Notessential sketched below. Simplified cases are discussed in section 5.3.

102 AN SPE INSTRUCTION SET 5.

function Notessential(r,s: REGIONS):boolean;

foreach object o accessible in r or s
begin
construct import-export graph
check connectivity after removing structure relation (r,8)
if the graph becomes disconnected
then return false
end;
return true
end

Definition 5.9
del struct(u:USERS; r,s:REGIONS)

- auth ((u,r) € OWN V (us) EOWN)
pre (r,5)€ STR A Notessential(r,s)
post STR>=STR-{(r;s)}

Theorem 5.9

The instruction del struct(urs) is an authorized secure state
transformation.

Proof Del struct is a decremental instruction by Definition 4.17. Consistency
follows directly from Theorem 4.18. Acceptability is guaranteed by the pre-
condition, which ensures that no access rights can be transported through the
structure relation. Validity is ensured by the function Notessential, which tells
that all import-export graphs remain source graphs after removal of the
structure. The authorization condition ensures that all affected regions are
owned by the invoker.U]

Removal of an object is allowed when it is not exported or imported any
more. This requires a simple check on the protection state.

Definition 5.10
del object(u:USERS; r:REGIONS; 0:OBJECTS)
auth (u,r) € OWN
pre (o,r) € DEF A (o,r) EZEXP A
—3s € contents(o,r):(0,5) EIMP
post O’=0-{o} N\ DEF'=DEF-{(o,r)}
Theorem 5.10
The instruction del object(uro) is an authorized secure state
transformation.

Proof The instruction is decremental by Definition 4.17. Since conditions 1, 3a,

5.2. WELL-DEFINEDNESS OF THE SPE INSTRUCTION SET 103

3b, and 3c of Theorem 4.17 are satisfied by definition, the post-condition ensures
condition 2 and 3d, and thus the instruction is consistent. The post-condition
satisfies the condition of Theorem 4.20, making it acceptable. The validity of
the instruction follows directly from Theorem 4.24 and the pre-condition of the
instruction. Authorization is fulfilled, for the activator is owner of the affected
regions. [J

Undoing export and import instructions requires a complex check on the
protection state. Removal is allowed as long as the final state remains valid.
However, state validity requires the import-export graph associated with the
object to remain a source graph, which, due to the cycles in the import-export
graph, can not be decided by a local check of the protection state. A boolean
function Remainsvalid is introduced to check for the validity property; the
detailed description is left as an exercise.

Definition 5.11
del_import(u:USERS; r:REGIONS; 0:OBJECTS)
B auth (ur)€ OWN
pre (o,r) € IMP A Remainsvalid(o,r,IMP)
post IMP'=IMP-{(o,r)}
Theorem 5.11
The instruction del import(ur,0) is an authorized secure state
transformation. B

Proof Del import is a decremental instruction by Definition 4.17. Use Theorem
4.17 to prove consistency, Theorem 4.19 for acceptability. Validity is enforced
by the pre-condition, which test the source graph property of the final state.
Authorization is guaranteed by the auth-condition, O

Definition 5.12
del_export(u:USERS; r:REGIONS; 0:OBJECTS)
auth (u,r)€ OWN
pre (o,r) € EXP A Remainsvalid(o,r, EXP)
post EXP’=EXP-{(o,r)}
Theorem 5.12
The instruction del export is an authorized secure state transformation.

Proof Similar to proof of previous theorem. [J

104 AN SPE INSTRUCTION SET 5.

5.2. Well-definedness of the SPE instruction set

In this section we show that the proposed instruction set fulfills the criteria for
well-defined SPE instruction sets as introduced in section 4.5.1. First, the
instruction set is proved to satisfy the compensation criterion by showing that
each incremental instruction is accompanied by a decremental instruction such
that a sequential composition of the two is equivalent to a no-op, or identity
transformation. Second, the minimality criterion of the instruction set is shown
and, finally, we prove that the instruction set is complete with respect to the
trivial states.

5.2.1. Compensation criterion

The compensation criterion introduced in section 4.5.3 requires that the
instruction set can be split into two categories, based on the definition of
incremental and decremental state transformations, such that each incremental
instruction can be undone by a sequence of decremental instructions when
applied immediately thereafter. Checking this property for the proposed
instruction set is straightforward, because the instructions were defined with this
property in mind. For each instruction in IP we show that the pre- and post-
condition of the incremental instruction imply the pre-condition of the
corresponding decremental instruction and that the net result of the two
instructions applied to a state in sequence is equivalent to applying the identity
transformation.

The compensation criterion does not prescribe any policy on the activators of
the decremental sequence, yet to effectively undo actions, the decremental
instructions should be authorized. If we choose the activator to be the same one
as used in the incremental instruction then inspection of the instructions show
that all are authorized. Therefore, the authorization problem as it should be
addressed in the proof of the next theorem is considered fulfilled and left out.

Theorem 5.13
Let o be a secure state. Then for each incremental ¢ €1 the effects of on
o can be undone by a decremental instruction ¢’ such that

0" =¢'(9(0)) =0

Proof Let o be a secure state. Each incremental instruction is analyzed in turn.
add region(u,r); del region(u,r)

Assume that the pre-condition of add_region(u,r) holds. Then its effect are that

reR 50) and (ur) EOWN (o) which implies that del region(u,r) is authorized.

Moreover, there does not exists a user uw'7u with (w,r)EOWN o) because

del region is applied immediately. Therefore, the pre-condition 0% del region

holds and the result is that the final state is identical to the state o.

5.2. WELL-DEFINEDNESS OF THE SPE INSTRUCTION SET 105

add object(u,r,0) ; del object(u,r,0)
Assume that the pre-condition of add object(u,r,0) holds; then 0€O » and
(or)E DEF Moreover, del object when applied immediately thereafter
ensures that tglerc does not exists a region r with (o,r) EEXP, . nor does there
exist a region s such that (o,s)EIM'P Thus the pre-condltlon holds and the
post-condition ensures that ¢” equals o.

add_owner(u,r,v) ; del owner(u,r,v)

Assume that the pre-condition of add owner(u,r,v) holds; then veU and
(v;r) EOWN,. Moreover, the pre-condition of add owner, which ensures that
ustv, and the post-condition of add owner, (v, r)EOWN imply the pre-
condition of del owner. The post-condition of del owner ensures that
(v;r)@OWN. Furthermore two cases must be distinguished. First, if v&U then
v has been added to U by add owner, but then there does not exist a region
s€ER_ , such that s¥%r and (v,s) EOWN sy Which implies that v is removed
fromqs&} by del owner. Second, if v€U 'then Is€ER such that s7r and
(vs) EOWN_ this implies the last part of the post—condltlon

add_struct(u,r,s) ; del struct(u,r,s)
Assume that the pre-condition of add | struct(u,r,s) holds; then (r,s) ESTR (o) 2 and
(u,r) EOWN 3 and (u,5)EOWN Moreover, the function Notessential
returns true, for no extra access fibow occurs in between, i.e. all access flow
remains consistent. Thus, pre-condition of del struct holds and the net result of
is (r,s)GESTRo,,.

add_import(u,r,0) ; del_import(u,r,0)

If the pre-condition of add import(u,r,0) holds then (o, r}EIMP (o) Moreover,
the function Remainsvalid returns true, because del |rnport can not invalidate
the source graph property when the access permission is not further distributed.
Nor can removal invalidate the source graph property when the object o was
accessible in r in the first place. Therefore the result of del import is
(o) & IMPO,,.

Similarly sequence add_export(u,r,0) ; del export(u,r,0) is analyzed.

Together, all SPE incremental instructions have a counterpart as required in
Definition 4.24, thus it satisfies the compensation criterion. [

Corollary For each incremental instruction ¢ there exists precisely one
decremental instruction ¢’ such that ¢’ compensates for the effects of ¢.

106 AN SPE INSTRUCTION SET 5.

5.2.2. Minimality criterion

Minimality of the instruction is best shown by making a table of the effects of
the instructions on the state components. In Figure 5.1 we have indicated
dependencies between incremental instructions and the changes made to the
state components. From this figure we conclude that all instructions affect
different state components except for add_owner and add region, which overlap
on the OWN component only. Nevertheless, neither add region nor add_owner
can be replaced by another instruction with the same results in all situations,
because they differ in changes made to the basic sets. The decremental
instructions have been shown to correspond with their incremental counterparts,
since they affect the same state components. This result implies that none of
these instructions can be replaced by an equivalent, shorter sequence and thus
by definition the SPE instruction set is minimal.

U R O OWN STR DEF IMP EXP

add owner + +

add region + +

add object + +

add_struct +

add import +
add:cxport +

Figure 5.1 Dependencies between instruction and state component

5.2.3. Completeness

An instruction set is said to be complete if we can indicate one or more initial
secure states and generate all possible secure states from them. The empty state
E can not be used for this purpose, because the SPE authorization policy
requires the activator of an instruction to be known in the initial state. This
indicates that at least one user must be present and, to get a secure state, this
user must be associated with at least one region. States with these properties
have been introduced as a trivial state.

Theorem 5.14
The SPE instruction set is complete for T-E

Proof Observe that in each trivial state a user and region exists, which is
sufficient to satisfy all auth-conditions in the instruction set. Given an arbitrary
secure state o, then a sequence to derive this state from the trivial state ¢’, with
user u and region r, is obtained by the following algorithm.

First, perform add_region transformations for all regions defined within o with
u as invoker. Each of the instructions is authorized and the result is a secure

5.3. REDUCING THE COST FOR DECREMENTAL INSTRUCTIONS 107

state. Similar, perform add owner and add object for all owners and objects in
o respectively. Subsequently, perform add struct operations with u as invoker (u
owns all regions already). As all import and export relationships are consistent
with the structure relation in ¢ and access paths can be traced back to the
object, sequences of import and exports can be generated to achieve the
structure defined in 6. Finally, the user u and region r are removed from the
result if necessary. As all sets and relationships are finite, this algorithm results
in a finite sequence. [

In conclusion, the analysis of the instruction set properties together satisfy the
well-definedness property as introduced in section 4.5.1.

5.3. Reducing the cost for decremental instructions

A disadvantage of SPE instruction set is that for decremental instructions the

cost to guarantee state security require more than a local check on the
protection state. During the removal of import/export grants the import-export
graph is checked for source graph property. Removing structure relations
requires a series of such checks, namely for all objects accessible within the
regions named.
"The cause of this asymmetric behavior stems from the requirement to keep the
protection state secure at all times and the side effects by not specifying the
source of grants. Still the cost is limited to the size of the source graph, because
removal of a given edge in the import-export graph requires at most all edges to
be inspected. The special case that an edge is the end of all access paths, can be
checked locally.

To avoid the costly checks on the applicability of decremental instructions,
one might conceive an instruction set with local checks only. For example, the
instruction del_struct, del import and del export defined below all require a
local check. Both are secure state transforr-'x_lations, but the modified instruction
set is not well-defined, as shown shortly.

Definition 5.13
del struct(u:USERS; r,s:REGIONS)
- auth ((ur) € OWN V (u;s) EOWN)
pre (rs)€ STR A —Jo:((o,r) EEXP V (o,r) EIMP)
post STR’=STR-{(r,s)}
Theorem 5.15
The instruction del struct(ur,s) is an authorized secure state
transformation. -

Proof Similar to 5.9 using Theorem 4.27.0J

108 AN SPE INSTRUCTION SET 5.

Definition 5.14
del import(u:USERS; r:REGIONS; 0:OBJECTS)
B auth (ur)€ OWN
pre (o,r) € IMP A 3o’ (o’;r) € EXP A
—3s: ((s,r) ESTR A (0,s) EIMP, ¢(a))
post IMP'=IMP-{(o,r)}
Theorem 5.16
The instruction del import(urs) is an authorized secure state
transformation.

Proof Similar to 5.14 using Theorem 4.29.01

Definition 5.15
del export(u:USERS; r: REGIONS; 0:OBJECTS)
auth (u,r) € OWN
pre (o) € EXP N —(Is€ environment(o,r):(0,s) EEXP V
3t € contents(s):(0,s) EIMP, ¢(a))
post EXP=EXP-{(o,r)}
Theorem 5.17
The instruction del export(u,r,s) is an authorized secure state
transformation. -

Proof Similar to 5.15 using Theorem 4.30.0]

The disadvantage of the modified instruction set is that it blocks the removal of
regions and grants; and therefore does not satisfy the compensation criterion of
well-defined instruction sets. To illustrate this, Figure 5.2 shows the protection
state before and after the action add_import(u,r,0). Although each effect can be
nullified, it can not be done without a mixture of decremental and incremental
instructions. In this particular case, first the import into s has to be removed,
second del import(u,r,0) is applicable, and finally the old situation is restored by
execution of add_import(u,5,0)-

Figure 5.2 Side-effects of importation.

5.4, REvocaTioN 109

3.4. Revocation

The definition of the SPE model in terms of its secure states and the SPE
instruction set allows for the analysis of security issues at a higher level of
abstraction. In particular, the SPE instruction set concentrates on security
properties of at most two instructions at a time. A new class of security questions
arises when longer series are considered and when algorithms are developed
which generate an instruction series to achieve a certain (protection) goal.

In this section we address the problem of finding series with the property that
some action ’performed in the past’ is canceled or compensated for, i.e. the
revocation problem. A revocation scheme associated with a protection system
prescribes (and enforces) a policy for the removal of access permissions, as well
as the removal of users and objects administered. A revocation scheme, like an
authorization scheme, is characteristic of a protection system. The choice not
only affects the security properties, but also the ways to implement the
protection system.

The basis for any revocation scheme in SPE is provided by the compensation
property of the instruction set, for each incremental instruction can be undone
immediately by its associated decremental counterpart. In general, however, an
incremental instruction is followed by many state-modifying instructions before it
is considered for revocation. Then, application of its decremental counterpart is
not guaranteed to succeed. Moreover, its application may breach the security
policy decisions made by the users of the system. For example, when a
protection system protects the definition of objects and the transfer of its access
permissions only, something is amiss if any user could freely remove them using
a revocation primitive.

In the following sections we address different issues related to revocation
schemes. First, the notion of a protection state history is defined to obtain more
formal definitions of revocation in the context of the SPE model. Next, the
semantic limitations of a revocation scheme are discussed in terms of activators
and security semantics embodied by the protection state as perceived by the
user. Example revocation schemes from the operating system and database area
are presented. Finally, two specific schemes are presented and illustrated by an
revocation algorithm.

5.4.1. The history of a protection state

Revocation deals with undoing actions applied to a protection state in the
past, which indicates the need for the notion of a protection state history. The
history information is used to deduce what actions can possibly be revoked and
what time relations exist between actions. In turn, this information is needed to
guarantee state security invariants during and after the revocation act.

The occurrence of failed instructions, due to invalid auth- and pre-condition, is
normally administered in the history as well to implement security threat

110 AN SPE INSTRUCTION SET 5.

monitoring. This information won’t be used in the process of revocation, because
of there null effect on the protection state. Moreover, as illustrated shortly,
security is easily violated when unsuccessful actions from the past are executed
by the revocation process. A formal definition of protection state history in
terms of SPE concepts becomes:

Definition 5.16
The action ;€1 succeeds, denoted by Succeeds(o,) if its auth- and pre-
condition holds for the state ¢.

Definition 5.17

A history of the state ¢’, denoted by H(o,l), is the series of instructions

I=i_ ... 1, applied to the state o such that (for i=1..n)

0, =i (0;,) and 0= 0, and o’ = o, and Sueceeds(0,; ;)

The history of a state is a list of instructions as applied to a given initial state.
For each instruction, the history list includes the actual parameters, i.e. the name
of activator, the object names, and the region names involved, which is
emphasized by the convention in this context to use 7 rather than ¢. Notational
convention: I(g)=1 1 , ... i, (0).

5.4.2. A definition of revocation

A recurring definition for revoking an action { is to rebuild the protection state
such as it would have been if the instruction ¢ was not executed in the first place.
This means that if an action is revoked all dependent actions should be revoked
as well. Application of this approach to the SPE model results in the following
definition:

Definition 5.18
Let H(o,l) be the history of the state ¢’. Then revocation of i. €I by a user
u, denoted by revokc(u,s.), is the application of a sequence I'=; 1) to the
state ¢’ such that
(@) = iy .y (@) = 1 in :;‘-_I...ia(o)

The user u is called the revoker and the sequence I is called the revocation
sequence. In leaving out i, some of the successful instructions Z_ (m=i+1.n)
may become unsuccessful, because the auth- and pre-condition depends on the
effects of the action revoked and should be revoked as well.

Note that revocation of unsuccessful actions is covered by this definition as well,
provided they are represented in the history as identity state transformations,
which properly describes their effects on the protection state.

The revocation schemes presented in the literature often ignore the existence
and the role of the revocation sequence. Instead, revocation is seen as a simple
atomic action to rebuild the state [Wood79, Griffiths76, Tanenbaum8l].
Moreover, a revocation sequence provides useful information for a user
considering a revoke action. Instead of being forced to analyze the protection

5.4. REvocaTion 111

state and the required state to obtain the differences, inspection of the revocation
sequence shows all actions potentially affected by the revoke action.

5.4.3. The revocation sequence

The revocation sequence properties in Definition 5.18 were explicitly left
undefined. Yet protection systems addressing the concept of revocation should
spell out the revocation policy to avoid semantic problems and bring the
protection system in line with the organizational policies. A revocation policy,
like an authorization policy, consists of a number of rules which describes the
conditions under which an action can be revoked and what the consequences are
in terms of changes made to the protection state. In particular, a revocation
policy addresses the issues; "Who is allowed to revoke an action ?’ and "How are
the effects of the revoked action undone ?’

One possible revocation policy is to limit the sequence to decremental actions.
Unfortunately such a simple policy does not work in reality, because an action
and its consequences are mostly unrevocable. The best one can hope for is to be
able to compensate for the effects of the action being revoked. A simple
example illustrates this phenomenon.

Let the director of a bank grant a branch manager access to a class of
accounts. The branch manager in turn grants some of his accessible accounts to
his clerks. When the branch manager is found fraudulent the bank director will
revoke the rights of the branch manager. In general, however, the access
permissions of the clerks should not be revoked (they depend on the rights of the
branch manager) to avoid disruption of client handling. The grants of the clerks
should be considered obtained from the new branch manager instead.

Therefore, we propose the following less stringent revocation policy: the
complementary action of the instruction being revoked is executed successfully
once. In terms of the example, it is possible to remove the grants given to the
branch manager without disrupting the rest of the system. The solution in the
example above would be, just like SPE, to make the new branch manager co-
owner of the rights on the branch first, after which the rights may be stripped
from the fraudulent manager without making the protection state unsafe.

The resulting protection policy has a drawback. It allows revocation
sequences changing more of the protection state than strictly necessary, For
example, it is undesirable that the new branch manager can, using the
revocation situation of the protection system introduce his nephew as a clerk.
Therefore, a general and more realistic definition of a revocation becomes:

112 AN SPE INSTRUCTION SET 5.

Definition 5.19
Let H(o,]) be the history of the state o’. Then weak revocation of i€l by
user u, revoke(u,?), is the application of a successful revocation sequence
P=¢_ .7’ to the state ¢’ such that
Succeeds(P(0),1)
and P is of minimal length and includes the compensation action for ¢,
denoted by 1.

5.4.4. Limitations of revocation

Definitions 5.18 and 5.19 allow any action to be revoked. This generality is
unnecessary and results in severe (semantic and implementation) problems,
which are illustrated for SPE using revocation with side-effects and revocation of
decremental instructions. However, similar remarks can be made for other
protection systems as well.

As indicated before, unsuccessful actions when included in the history can not

be revoked. The only reasonable instruction to be considered in such a situation
as the revocation sequence would be an identity state transformation, because in
SPE an erroneous instruction does not change the state either. Generating a
revocation sequence based on the parameters of the unsuccessful action alone
would lead to undesirable behavior.
For example, consider the historic act add_object(u,r,0) and that it is recorded as
unsuccessful. Then the revocation sequence should not contain the action
del object(u,r,0) or add object(u,r,0). The former is senseless, because it is
bound to fail. The latter results in the undesirable situation that a user is
confronted with the creation of an object long forgotten or compensated for by
other (successful) actions.

A more serious problem occurs when decremental instructions are considered
for revocation. Allowing these instructions to be revoked easily leads to
violations of protection policies imposed by users (but not formalized in SPE),
since the protection policy used by users may include decisions based on the
protection state at the moment of decision making. If a compensation action
were to be revoked then the user should incorporate both the past and the future
of the state in his decision making, because at any time an action of the past
may be revoked and violate his policy, as may each action in the future.

For example, consider two regions r and s, owned by users u and v, respectively
and the following actions to establish a communication path:

add_owner(u,r,v)

add_struct(v,s,r)

del owner(u,r,v)
Each of these actions is an authorized state transformation and from this point
on, user v can share objects with u and vice versa. Now, assume that u
terminates this ’contract’ and applies

5.4. RevocaTtion 113

del struct(u,s,r)
If later on v exports an object to its environment it has to include the possibility
that the action del struct(us,r) might be revoked in the future. Clearly an
unworkable situation. If u has given up his rights on exported objects from v, he
should first negotiate for a new contract, rather than reactivate the old contract.
Another example is the revocation of deleted objects, which would require the
protection system to keep deleted objects for an indefinite time.

In conclusion, any revocation policy which allows for the revocation of
unsuccessful or decremental instructions is bound to lead to semantic problems.
Therefore, we restrict the definition of SPE revocation policies to the successful
incremental SPE instructions included in the history of a protection state.

5.4.5. The role of activators

Let H{o,I) be the history of ¢’ and I'= 1, ... {; be a revocation sequence for a
successful incremental SPE instruction i in 1. Then, for n=1, the revocation
sequence consists of a single decremental instruction, the compensation
instruction for 7 in SPE. This holds for all protection systems with the
compensation property for their instruction set. However, for n>1 problems
arise.

For example, consider the following sequence of authorized SPE instructions.
add object(u,r,0) (1)

add_export(u,r,0) (2)
add_export(u’s,0) (3)

Let revoke(u,(1)) be applied to this state, then a natural revocation sequence
becomes:

del_export(u’;s,0) (4)

del export(u,r,0) (5)

del_object(u,r,o) (6)
In other words, the object o is removed after all grants relating to it are removed
first. This sequence, however, includes a number of assumptions. It assumes
that both u and u’ exist when revoking (1), that they will cooperate with v, and
that indeed (2) and (3) should be revoked as well. The latter is easy, for not
removing (2) nor (3) would result in an unsafe (invalid) protection state.

The SPE instruction revoke(u,z) like all protection system instructions, has an
activator (u) and should be authorized before it takes effect. The authorization
policy for SPE requires u to be a user represented in the protection state and
owner of the affected regions. However, this rule is neither sufficient nor
desirable as a basis for a revocation policy. First, assume that it would be
sufficient to be a known user. Then each user could revoke all actions, clearly an

114 AN SPE INSTRUCTION SET 5.

undesirable, insecure system. Second, assume that we would require that the
revoker owns all affected regions. Then a user could prevent revocation by
removing the potential revoker as co-owner from his regions.

An alternative revocation policy is to allow the original activator to be the
revoker or allow this to those users having the same “power” as the original
activator. In the example above u and u’ would be the potential revokers, user
u is authorized to revoke (1) and (2), u’ to revoke (3). If v were a co-owner of u
in region r then this policy would consider them equally powerful and v would
be allowed to revoke the actions as well.

A rule exploited in access control list organizations is to restrict all revocation
actions to the one object owner. Such a scheme will be referred to as an object-
oriented approach and is relevant for protection systems neglecting the flow of
access permissions.

Revoke(u,(1)) illustrates a domino-effect, where all actions solely based on the
revoked action are revoked too, ie. revoke(u,(2)) and revoke(w’,(3)) are
triggered. This means that the protection system both generates the requests
and selects the proper activators, u and u’ respectively. A more democratic
revocation rule is to execute a revoke when all actions generated under a
domino-effect policy are revoked first. This prohibits revocation of (1) until o’
has revoked (3). Unfortunately, such a democracy does not work, because then
any access right obtained by a user can be safeguarded against removal through
isolation, i.e. removal of all co-owners.

The last assumption hidden in the example above is that both u and u’ exist
when revocation is triggered. That user u exists is evident, otherwise
revoke(u,(6)) is not authorized, but u’ should exist also, otherwise the protection
state contained inconsistent information.

In conclusion, a revocation policy can be seen as an extension of the
authorization policy aimed at regulating the undoing of state changes. Shortly
an authorization policy for the SPE system is defined and supplied with
algorithms to enforce the policy in an implementation of the model.

5.4.6. Revocation algorithm classification

The two revocation policies presented later on in this chapter for the SPE
model differ considerably in the approach taken to represent a state and form of
revocation algorithm. To place the approaches in a broader perspective we
illustrate the possibilities of protection state representation and algorithmic
revocation strategies first.

Representations of protection states can roughly be divided into two classes: a
chronological approach and a state oriented approach. A chronological
representation is directly based on the history of the protection state and consists
of a time stamped administration of the actions. These time stamps enable the
user to derive relevant parts of the history for analysis and revocation, Two sub-

5.4. REvocaTioN 115

categories of this class are the space conservative and the pure representation.
In a space conservative representation the history of the protection state is
compressed to include successful and non-revoked actions only. Under a purely
chronological approach all actions, successful/ unsuccessful and revoked/ non-
revoked actions are administered. This approach lends itself not only to the
enforcement of the protection policies, but also to realize of effective threat
monitoring. Unfortunately, no efficient realization of a purely chronological
representation is known, because of the excessive amount of storage involved.

The state oriented approach ignores the time aspect of the actions involved.
Thus, given the protection state, limited information is available on the sequence
of actions which took place and no threat monitoring is possible. Most operating
system protection systems use this scheme. Any state oriented approach is faced
with what has become known as the frame problem in the AI area. That is, 1t is
difficult to infer the actions responsible for changes in successive states. This
results in a costly analysis of a revocation sequence and thus severely restricts the
class of policies to be considered.

To alleviate the shortcomings of both classes a hybrid system is mostly used. A
state description is used to authorize new requests, while the history (transaction
log) is used to generate the revocation sequence.,

Both major categories of state representations lend themselves to the same kinds
of revocation algorithms once a revocation policy is fixed. A possible
categorization is: simulation based, goal based, and compensation based
algorithms.

A simulation based revocation algorithm for a chronological state representation
starts from the initial state and re-evaluates the actions, leaving out the action
revoked to arrive at the new protection state, i.e. a modified action list. The
final list can be used to replace the current protection state or the simulation
shows the actions required to arrive at a state satisfying a constraint revocation
policy. When a state oriented approach is used, the revocation procedure
requires a simple rule to generate the sequence to avoid the frame problem.
Either the revocation action is obvious or it can be deduced by generating a few
potential new states which are checked for compliance with the revocation
policy. The prime advantage of a simulation based algorithm is the ease with
which the new state is derived or a revocation sequence is generated. A
disadvantage, though, is that it may be time-consuming and requires full control
over the protection state representation.

Under a goal based revocation algorithm no simulation of the protection state
is used, the algorithm tries to find the shortest sequence to successfully revoke the
instruction i instead. It takes the current state, the pre-condition of the
compensation instruction for i, and the additional revocation rules and decides
which actions are necessary to bring a successful execution of ! closer. For a
chronological representation scheme it implies that the action list is traversed
backwards. This algorithm does not require full control of the state. Local

116 AN SPE INSTRUCTION SET 5.

decisions are sufficient to bring the goal closer, provided that during the
revocation process no concurrent actions are issued which postpone reaching the
goal indefinitely.

The last algorithm differs from the previous two in adding information rather
than removing or changing the protection information. We will call it the
compensation approach. It enters information to the state which declares
information as outdated. Either the information that some action is revoked is
stored or a set of actions is generated to mark all relevant parts as being
revoked. Again, such an approach in a chronological state representation is
relevant for threat monitoring, because at any time the complete history of the
protection system is available. Note that representations which mark the object
as being deleted without marking all derived access rights as such leads to a
protection system which is not locally secure. It means that no local check
suffices to determine accessibility.

5.4.7. Example revocation policies

Operating system revocation.

A well known architecture for secure operating systems is MULTICS
[Organick72] This system uses an access control list to administer the users’
access permission regarding the objects stored. The revocation policy permits
the one owner of the object to remove any entry from this list. No additional
dependencies are kept for the propagation of access rights and thus no domino-
effect occurs. MULTICS uses a state oriented representation of the protection
state and its revocation algorithm falls within the class of goal-seeking
approaches, which is simplified by the straightforward selection of the
compensation action.

An exponent of the capability-based approaches to secure operating system
construction is the AMOEBA [Tanenbaum81] distributed system. In this system
access rights are represented by encrypted objects, le. a state oriented
representation. The revocation policy restricts revocation to those users having
implicitly or explicitly obtained revocation permission. A capability is declared
invalid and is administered as such by the object managers, i.e. a compensation
algorithm is used. The scheme is not space-conservative nor locally secure,
because it permits invalid capabilities to remain in existence, while a new
capability to represent access to the object prohibits their use.

5.4. REvocaTIiON 117

Database system revocation

An example space-conservative chronological protection state description is
the model proposed by Wood-Summers-Fernandez [Wood79]. A short
description of which is given in section 2.5.3.3. The following revocation policy
is used. Whenever Run grant permission on the object, ie. the right to
distributed Run permission to others, is delegated to a subject, the grantor
receives the right to revoke this grant and looses the right to issue any further
Run grant permission on the object. The protection state of this model can be
represented as a hierarchy; granting a right can be considered as introducing a
node, with the right to revoke the grant represented by an arc between grantor
and grantee. In fact, this hierarchy describes the dependencies among the
actions,

In this approach, the goal-secking revocation policy is implemented by a set of
access control decisions, i.e. the revocation right is exercised. Revoke includes a
domino effect, for all the access rights associated with the revoked right are
passed to the revoker.

For example, assume that grants are transmitted as depicted in Figure 5.3,
where u grants a right to the user v. This right is further granted by v to user w.
Revocation of the action issued by u results in the removal of the edge (u,v)
representing the grant action and rewriting the hierarchy such that all actions
issued by v are associated with u, the grantor of v, instead.

u l]1 u

v E—— v e v
grant \ revoke

w w w

Figure 5.3 WSF granting scheme

Another chronological scheme is the authorization model defined by Griffiths-
Wade [Griffiths76] and the refinement by Fagin [Fagin77]. In the Griffiths-
Wade model the actions are time-stamped and kept in a list, which effectively
represents the history of the protection state. Each grantor can revoke the
privileges granted and revocation has a domino-effect, so that all privileges
(exclusively) based on the action revoked are undone. The disadvantages of the
goal based revocation algorithm are overcome in this model by storing the
protection state in a database and using the transaction notion to ensure
atomicity of the revocation analysis.

118 AN SPE INSTRUCTION SET 5.

Programming language based revocation

A form of revocation can be found in most (algorithmic) languages as well.
The symbol table of a language compiler functions as a protection state
representation, the authorization and revocation policy being described by the
scope rules. For example, in a language like Pascal all local object declarations
are revoked when a procedure returns, an example of a goal directed revocation
algorithm. However, the protection state representation of dynamic objects is
handled by the programmer in his data structures. Notice that only one user is
involved at the program definition level, but that each procedure invocation can
be seen as an active entity during program execution. In fact, each procedure
might run on a different machine with different operating system security
regulations.

5.4.8. SPE revocation policies

In the definition of revocation algorithms for the SPE model we are restricted
to simulation and goal oriented algorithms, because there is no primitive concept
in the model which can be used to administer compensated actions. In addition,
a simulation approach requires, in addition to the protection state
representation, a chronological representation scheme. The goal oriented
approach can be based on the set representation.

Revocation limitations and implementation examples described before provide
the background for two revocation policies for the SPE model and instruction
set. First, revocation is provided by an extension of the SPE primitive set with
the instruction revoke(u, action) which implements the revocation policy of
Definition 5.18. This policy is illustrated using 2 hybrid state representation in
combination with a simulation algorithm, which highlights commutative aspects
of the SPE instruction set. Second, an example goal oriented policy is defined,
where only the ability to execute the compensation action at some derivable
state is required. That is, Definition 5.19, a weak revocation scheme, is
implemented. An algorithm is given and its difference with the former approach
is illustrated.

5.4.8.1. SPE chronological revocation

A chronological revocation scheme for SPE requires an inspection of the
information available from the state history, which should be maintained
separately in a list. First, notice that each action represented in the state history
is either successful or unsuccessful, and revoked or non-revoked. The examples
given above suffice to restrict revocation to the successful actions. Second, the
SPE instruction set satisfies the compensation criterion, Le. the decremental
instructions undo the incremental instructions. Thus, a decremental instruction
applied to a state can be considered as a revocation sequence of length one.

5.4. ReEvocaTION 119

Conversely, this implies that whenever an action is considered for revocation the
history description should not already include such a revocation action. To ease
the recognition of these dependencies a predicate is introduced.

Definition 5.20
Let H(o,/) be the history of the state o’. The predicate Isreuoked(H(a,I),{i)
is true if z} is revoked by an action which succeeds in 1.

A revocation policy can now be defined for SPE as follows:

Definition 5.21
Let H(o,l) be the history of the state ¢’. An action zj in I can be revoked
by the instruction revoke(u,z;,), if
1) i.€l=i ..i, and
2) i. is an incremental instruction and
3) g‘uccmir(a . 1) and
4) not Isrevoked (0,1),5) and
5) u is an owner of the regions affected by z}l
by a revocation sequence I such that
2) P(HO)= iy, J(0) by ..if0)
b) Vi€ {1..m} not Succeeds(H(o,1),1)— not Succeeds(H(a I 1),1)
€) Vi€ {1..m} Isrevoked(H(o,0),1)— Isrevoked(H(a,l1) i)

Condition a) enforces the revocation policy of Definition 5.18, while b) and c)
take care of the semantic problems described before by guaranteeing that
revocation does not change the status of non-successful and revoked actions.

This policy allows all owners of the affected regions implied by the compensation
action to revoke the corresponding action. This means that an object owner can
always remove the objects and its access rights, while other users can always
revoke their import/export grants. This relaxation on the activator identity
solves problems arising from the removal of users from a state or retracting (co-
Jownership.

A straightforward implementation of this policy, assuming a hybrid state
description, is to simulate the behavior of the protection state by re-execution of
the state history and replacing the current state by the simulated state and
replacing the history list by the modified list, which is extended with the
revocation list, in the end. Although simulation certainly results in a secure
state, it should be shown that the revocation sequence appended to the history
list satisfies the constraint of Definition 5.18, i.e. the revocation sequence can
indeed be applied to the state and leads to a secure state with the desired
properties. Analysis of the revocation sequence generated by the simulation
algorithm not only answers this question, but provides useful insight in the
commutative aspects of SPE sequences.

A sketch of algorithm Algorithm-H is given in Figure 5.4. The protection
system is represented by three global variables, the initial state, the list of actions
applied, and the current state. The revocation procedure accepts the name of

120 AN SPE INSTRUCTION SET 5.

an activator and an index in the history of the action to be revoked. First, the
current state used to authorize the revoke action, i.e. does the user own the
affected regions and is the action revocable. Second, the intermediate state is
reconstructed up to the action to be revoked. Third, the compensation action is
saved in the revocation stack and all subsequent actions are evaluated. Finally,
the revocation sequence is appended to the history. This process results in a new
state and a revocation sequence. The new state can replace the current state
when we can prove that the obtained state satisfies the revocation definition.

{ This program is not supposed to compile directly }

type Operators = (add_region,{...},dcl export);

Action=record -
instruction:Instructions;
activator:SPEname;
region,parm:SPEname;
success, isrevoked: boolean;

end; History = array[l..infinite] of Action;

State = SPE_statc_description;

var h: History; { history of the current state }
hlim:integer; { length history }
istate, { initial state }
cstate, { current state }
s: State; { temporary state }
rs : Sequence; { revocation sequence }
slim:integer; { length of revocation sequence }

function authorized(s:State; a:Action):boolean;

begin

{ returns true when the action a is authorized for state s }
end;

function applicable(a:Action):boolean;

applicable:= not a.isrevoked and a.successful
end;

function owner(s:State; region:SPEname): SPEname;
begin { return name of a region (co-Jowner } end;

function complement(op:Operators):Operators;
begin { as expected } end;

procedure compensate(act:Action; var newaction:Action);

5.4. REvocaTioN 121

begin
newaction:= act;
newaction.activator:= owner(s,act.region);
newaction.instruction:= com plement(act.instruction)
end;

procedure transform(act:Action; var state:State);

begin
case act.instruction of
{ change the state accordingly }
end
end;

procedure pushaction(a:Action);
begin
compensate(a, rs[rslim]);
rslim:= rslim+1
end;

procedure revoke(u:user; actnr:integer);
var i:integer; ca:Action;

begin
compensate(cstate,h[actnr],ca);
ca.activator;= u;
if authorized(cstate,ca) and applicable(ca) then
begin
s:= initial; { construct intermediate state 1
for i=1 to actnr-1 do transform(h[actnr], s);
rs[0]:= ca; rslim:=1;
hist[actnr].isrevoked:= true;
for i:=actnr+1 to hlim do
if applicable(h[i]) and authorized(s,h[i])
then transform(h[i],s)
else begin
compensate(s,h[i],ca)
pushaction(ca)
end
end;
for i:= hlim+1 to hlim+rslim do h[i]:= rs[i-hlim-1]
end

Figure 5.4 Algorithm-H, a history based revocation algorithm.

122 AN SPE INSTRUCTION SET 5.

5.4.8.2. Characteristics of revocation sequences

Algorithm-H generates a sequence I which satisfies Definition 5.18 as a
revocation sequence to revoke(u,t}) when the revocation is authorized. This
claim is shown in a few steps. ~First, assume that 7. is the last, successful,
incremental, and non-revoked authorized action in the sequence /, L.e. o’=i1"(o).
Then inspection of the algorithm shows it to generate a single compensation
action by applying the routine compensate once. The SPE instruction set
guarantees that 1}-1 i. I"(0) succeeds and that it is equivalent to the identity
transformation, or no-op transformation, and the final state 6" =0 satisfies the
policy set forth in Definition 5.20 and Definition 5.21
If i. is not the last action, but is followed by a sequence of one more actions, say
Im, it is not immediately clear that

5.1 Imi.I"(6) (1)
succeeds, except when all actions in Jm are unsuccessful (or revoked) i.e. they are
equivalent to a no-op. Assume that algorithm-H generates precisely one action.
Then necessarily all actions in fm are independent of ¢, because otherwise the
algorithm would have failed to generate a simulated state with one action in the
revoke sequence. To show that it implies that ¢! can be applied to the state
successfully with the results of 5.21, we should prove either that (1) is equivalent
to

Im ;}‘ i.1"(0) (2)
or that it is cquwajlcnt to the sequence

2}1 i, Im I'(0) (3)

Unfortunately, the latter can not be proved for all cases, as illustrated by the
following counterexample. Let the history be composed of two instructions only,

dcl_owner(v,r,u) ; add_struct(u,r,s) (o)
and assume that both instructions succeed. Add__stmct(u,r,s) can be revoked by
user v and algorithm-H generates the compensation action del struct(v,r;s). The
simulation process concludes that del owner can be successfully applied to ¢ and
does not depend on the effects of add struct(u,r,s), giving the sequences:

del_stmct(v,r,s); del__owngr(v,r,u); add__struct(u,r,s) ()

del struct(u,r,s); add_struct(u,r,s); del owner(v,r,u) (6) (3)
However, sequence (4) is not equivalent to (5), because the pre-condition of
add struct is no longer satisfied after applying del owner. Sequence (4),
obtained from (2), succeeds, which shows that apparently del struct and
del owner commute. Property (2) for a single action revocation sequence is
proved by induction on the number of actions in Im and the SPE instruction set.

5.4. REvocaTIiON 123

Theorem 5.18
Let H(o,/) be the history of the state o’ with /= : . If algorithm-H
generates a single action z_; ! to revoke i 1, then

Succeeds(H(o,I), 1 L5 l) and
ma’mm.’(o) m;rnf m‘,(ﬂ) (G)

for all SPE primitive operations i .

Proof The existence of a smglc revc—catlon action means that i can be applied
successfully to the sequence ¢ m: iy (O)= 1 (o)-— o. This result leaves us to
show that ¢ : R m'l for all SPE instructions i . This means that we have
to prove that the post—condltlon of i does not invalidate the pre-condition nor the
authorization constraint of 7

The authorization condition of ; : is invalidated by i by removing an activator
or an affected region only. Assume that rm is a clc]_owner(v r,u) operation
removing the activator u from an affected region. Then algorithm-H would not
authorize the revoke action due to violation of constraint 4) in definition 5.21
and thus the action generated can not be this del owner operation. When i
removes an affected region, for example del regmn(v r) is applied, we know that
its successful application implies that r was not used for the definition of
structure, objects, import, and exports, nor that it was owned by other users, but
algorithm-H has generated an action, so r can not be an affected region of i_,
and thus can not invalidate the authorization of ; :

To prove that the post-condition of i does not invalidate the pre-condition of ; :1
we should consider six cases only, because ..; €an be undone by a decremcntal
instruction only.

Let 'l be a del_owner(u,r,v) operation compensating add_owner(u, rv) Then
the pre condltlon of del_owner fails if u is removed by i such that v is the sole
remaining owner of r. Then, however, 1, would also have failed during the
simulation as well and a longer sequence would have been generated.

Let: '1 be the operation del region(u,r) compensating add |_region(u,r). Then its
pre—condltlon fails if either i introduces a co-owner of r, or uses the region in the
definition of an object or a structure relation, or makes r the last region owned
by u. However, the simulation process in algonthm H ensures that i was
successful against the state obtained by leaving out ¢_,. This means that : zm can
not affect region r at all.

Let im:} be the operation del object(u,r,0) compensating add object(u,r,0).

124 AN SPE INSTRUCTION SET 5.

Then i invalidates its pre-condition if it removes the object from the state, which
is precluded by the algorithm (non-revoked), or applies an export or import
operation to the object. The latter, however, would fail against the state
obtained by leaving out the add_object instruction.

Let im'_}, be the operation del_struct(u,r,s) compensating add_struct(u,r,s}. Then
i invalidates the pre-condition if (r,s) forms an essential link used by i in the
transfer of access. However, the algorithm ensures that any transfer of access
could be done without the existence of the structure relation.

Let im:‘l, be the instruction del import(u,r,0) compensating add_import(u,r,0).
Then it is invalidated when either the object is removed or it is not accessible in
r any more. First, the object can not be removed by i , because the instruction
del object requires all imports to be revoked first. Second, the only instruction
to remove accessibility of the object from r is del import(u,r,0), which would
mean that an empty sequence is generated by algorithm-H. A similar argument
holds for del import. [J

This theorem can be applied directly to all sequences where a single revocation
action is generated.

Theorem 5.19
Let H(o,J) be the history of the state ¢ with I=Pi (P=i .i). If
Algorithm-H generates a single action i”! to revoke i then
TP i(o)="i'i(o)="T (o) !

Proof The proof is given by induction on m, the number of instructions
separating & { from i. For m=1 the previous theorem provides the result.
Assume that the theorem holds for m=k. Then we should prove the property for
m=k+1, that is,

i ey (1)

-

iy T ipedgio)= ()
by j gy ()= (3)
iy i) (0)= (4)

To go from step (2) to (3) follows from the induction hypothesis. This means
that the authorization condition nor the pre-condition of i'! is invalidated by the
sequence # I .. i With these properties in mind we can apply arguments

similar to those of the previous theorem.

First, assume that the authorization constraint of 7! is invalidated by i, which
means that either the activator and/or affected region is removed. Removing

5.4. REvocaTioN 125

the activator from an affected region would make the revoke action
unauthorized by constraint 4) of definition 5.21, which is not the case, because a
compensation action is generated. Removal of an affected region can not
invalidate ! either, because in that case it was not used for any other purpose
at all.

Proving the non-interference of 1, with the pre-condition is shown similarly as
in the previous theorem, one illustrative case will be shown only.

Let i'! be the operation del_region(u,r) compensating add region(u,r). Then its
pre-condition fails if either z;r ; introduces other users to r, or uses the region for
the definition of objects or structure relations, or makes r the last region owned
by u only. The induction hypothesis gives that 4;...1; does not interfere with the
execution of i . Moreover, the simulation in algorithm-H ensures that L, is
successful against the state leaving out i. as well. Combination with the
knowledge that i was successful and not rcvo“iied, which means that 7, , does not
affect region r at all. Otherwise it would have failed in the simulation. [

Theorem 5.20
Let H(a,/) be the history of the state o’. Then Algorithm-H generates a
revocation sequence I'=7,...7 ;» such that

Succeeds(H(o,1),l’) and P(o’)=r,..2 (o) x;n...z})ﬂ, 5._‘,...1'0(0)

Proof The proof is based on two observations. First, the simulation of
Algorithm-H ensures that all the actions depending solely on the action revoked
at the time of interpretation are handled by the routine compensate, which
generates a compensation action and pushes it onto the revocation stack. This
results in the following sequence

applied to the state o, where the arrows indicate which actions are compensated.

Second, this sequence is successfully applied to the state o by repeated
application of the previous lemma, starting with 7 ;- Algorithm-H ensures that

e]

the action compensated by : ; is not followed by an action which could
invalidate its authorization or pre-condition. Thus, the previous lemma can be

v }

applied to obtain the sequence: gl 0

126 AN SPE INSTRUCTION SET 5.

5.4.8.3. SPE goal-seeking revocation

A disadvantage algorithm-H is that it requires full control of the protection state
during revocation and rebuilds the intermediate states. This may become a
bottleneck when an extensive history is kept or when a distributed system with
the protection state partitioned over the nodes is considered. A goal-seeking
revocation algorithm may provide a solution to these problems.

A goal-secking revocation algorithm generates one revocation action at a time
and applies it to the state. The algorithm stops when it is able to apply the
compensation instruction for the action being revoked. Moreover, with the
assumption of no interference (exclusive access to the protection state) the
sequence should be minimal in terms of reaching its goal. Such an approach
implements a weak revocation scheme (Definition 5.19). A formal definition of
the goal oriented revocation scheme becomes:

Definition 5.22

Let H(o,/) be the history of the state ¢’. An action zj in I is revoked by
the instruction revoke(u,z), if

1) f}EI=im..:'!, and

2) 1. is an incremental instruction and

3) Succeeds(o; 1) and

4) not Isremked(H(a,I),ij) and

5) u is an owner of the regions affected by i;
then a minimal revocation sequence I is gcnerated, such
that Succeed(i] ip-ipy; (0°)):

fl

Before we give a sketch of Algorithm-G, observe the dependencies between the
incremental SPE primitives as shown in Figure 5.5. This picture is read as
follows. An edge between two nodes indicates that in order to revoke the action
referenced by the node name, first related information as introduced by
operations pointed at should be revoked. For example, before a region definition
can be revoked, all objects defined within the region and its structure relations
should be revoked. Another example, before an add export operation can take
effect, other dependent add_export and/or add import operations should be
revoked. This dependency framework forms “the basis of the revocation
algorithm.

5.4. REvocaTtion 127
acld_owner

add region

e

add_struct add_object

add export add_import

Figure 5.5 Dependencies among incremental instructions.

A sketch of the goal-seeking algorithm is given in Figure 5.6 using a Pascal-

like language notation. The function revoke is called with a description of the
action to be revoked, which authorizes the request. If this is successful, a
compensation action is determined and applied to the state. If this instruction
fails, the cause is determined and a remedy is sought. In particular, this may
involve a recursive call of the procedure goal.
Note that authorization of a revoke takes place only once. Thus, it may happen
that during the revocation process, the revoker is removed from the protection
state. Moreover, this algorithm may run indefinitely due to interference when
concurrent actions are allowed to occur. However, when concurrency is
prohibited the process terminates with execution of the compensation action
selected.

128 AN SPE INSTRUCTION SET 5.

type action=record
{ This program is not supposed to compile }

type Operators = (acld_region,{...},de]_“cxport);

Action=record
instruction:Instructions;
activator:SPEname;
region,parm3:SPEname;
success, isrevoked: boolean;

end;

State = SPE state_description;

var cstate:State; { current state }
{ use routines specified in Figure 5.4 }

function wscntial(object,sourcc,destination:sPEna,mc):boolean;
begin
{ return true when the structure relation between source
and destination for the object is essential. }
end;

function pa.ssed_on(object,sourcc):boolean;
begin
{ return true when the access right on object is passed on
to other regions }
end;

procedure goal(ca:Action);
var newac:Action;
begin
if not authorized(cstate,ca) then return; { with some error message }
{try to execute the compensation action}
if transform(ca,cstate) then return; { with success}
newac:= ca;
case act.instruction of
del owner:
{ this means that ca.activator is the last owner of the region}
{ remove the region completely}
newac.instruction:= del region;
goal(newac); B
break;
del_region:
{ failure indicates existence of objects, multiple owners,
structure relations, or import/exports. Remove these first. }
newac.instruction:= del_object;

5.4. RevocaTion 129

foreach object in ac.region
begin
newac.parm:= object;
goal(newac)
end;
foreach co_owner in ac.region
begin
NEWAC.PArm:= CO OWTET;
goal(newac) B
end;
break;
del struct:
* { failure indicates essential use of the structure
for import/export. Revoke these first.)
foreach object in ac.region
if essential(object,ac.region,ac.parm) then
begin
newac.instruction:= del import;
newac.parm:= object;
goal(newac)
end;
{ similar for revoking exports }
break;
del object:
{ failure indicates existence of export/imports }
foreach object in ac.region
begin ,
newac.instruction:= del import;
newac.parm:= object;
goal(newac)
end;
{ similar for revoking exports }
break;
del import:
dcl_cxport:
~ { failure indicates further essential transport of export right }
foreach object in ac.region
if not passed_on(object,ac.region,ac.parm) then
begin
newac.parm:= object;
goal(newac)
end;
end;
{obstructive stuff has been removed, try original goal.}
goal(ac);
end;

130 AN SPE INSTRUCTION SET 5.

procedure revoke(u:user; ca:Action);
ca.activator:= u;
if authorized(cstate,ca) then goal(ca);
end;

Figure 5.6 Algorithm-G, a goal-secking algorithm.

The advantage of the goal-seeking scheme over a chronological scheme is that

it does not require the state to be stable during the interpretation of revoke. This
means that concurrently new objects can be defined and used. It is even
possible that an object definition is revoked, while still in the process of revoking
an export action on the object. The prime disadvantage of the scheme is that
the precise revocation structure is nondeterministic and it implements a policy
satisfying Definition 5.19.
The chronological revocation scheme and the goal oriented scheme are not
equivalent, that is, they will not produce the same revocation sequence under
the same starting conditions, not even when the goal-seeking procedure is
assumed to have full control over the protection state. A simple example suffices
to prove this. Consider the SPE state in Figure 5.5.a and its history in Figure
5.5.b.

|
©) add import(uro) (1)

r

add_import(u,t,o} (2)

v v /
add_import(u,s,0) 3)

Figure 5.5.a SPE state Figure 5.5.b

Then application Revoke(u,(1)) with the chronological scheme results in the
revocation of action (2) too. Under the goal based scheme only one action is
generated, namely del import(u,r,0), because access of o in the region t is
supplied by a different path as well. To summarize, the goal oriented approach
ignores the order in which the protection state is reached.

5.5. SPE STATE PREDICTIONS 131

5.5. SPE state predictions

The previous section illustrated how to generate a protection state that
guarantees the revocation policy constraints. This section addresses the more
general problem of how to characterize the set of reachable states using subsets
of the SPE instruction set. For example, removing the add user from the SPE
instruction set fixes the protection state to users known in the initial state, but
also places an upper bound in the ability to share access to objects, because in
this particular case introduction of structure relations is limited.

Although reduction of the instruction set reduces the number of reachable
states considerably, an analysis of the consequences reveals useful information on
SPE implementations where, for example, the add user instruction is available
to a restricted class of users only. This way, the analysis sheds light on the SPE
looseness’, in the sense of [Lipton78] and the consequences for achieving both
an acceptable level of protection and flexibility.

The reachable states are characterized by predicates and theorems, which
relate an initial state to a class of applicable instructions. First, the structure
graph properties are characterized by the predicate Can.connect, which forms the
basis for transfer of access rights and which naturally leads to the predicates
Can.share and Can.obtain. A second class of predicates is obtained by including
information on the instruction activators. This leads to predicates characterizing
stealing and conspiracy, which answer questions like: “Can a user obtain access
to an object without help from any other user,” and "how many users (and who)
are needed to cooperate in accessing a particular object”.

5.5.1. Connected regions

A central concept in the transfer of access rights is the existence of a (directed)
path in the structure graph of a state. The predicate path-connected indicates
whether such a path can be constructed using a subset of the SPE instruction set.

Definition 5.23
Two regions r and s are said to be path-connected in a state o, if there exists
an undirected path between r and s in the structure graph for the state o.

Definition 5.24
Let o be a secure state and P be a instuction set, then two regions r and s
can be made path-connected, denoted by Can.connect(o,r,s,P), if there exists a
finite sequence of p, € P such that both
0’=p,...p;(0) and r and s are path-connected in o’

The initial state should be secure, otherwise a sequence with the desired
properties does not exist. Moreover, to make r and s path-connected, the STR
component should be extended, which can be done with the instruction
add_struct only and therefore should belong to P. This instruction, however,
assumes that both regions involved are members of R in the first place. If this

132 AN SPE INSTRUCTION SET 5.

is not the case, a necessary prerequisite on the class P is that it contains the
instruction add region as well.

Note that the predicate Can.connect holds for those cases where the two regions
are path-connected in the initial state already, because an empty sequence suffices.
Moreover, when r and s are path-connected they belong to the same connected
component of the structure graph and, alternatively, Can.connect expresses that
two disconnected structure graph components can be connected using the
instructions provided.

Theorem 5.21
IfrseR and {add__struct,add_owncr} C P then Can.connect(o,rs,P).

Proof Assume that r and s are not path-connected in ¢ and have different owners,
say u and v. Then the following sequence makes r and s path-connected in the
final state;
add owner(u,r,v); add struct(v,s,r)

Both actions succeed, because ownership of r by u satisfies the authorization
condition and add_owner pre-condition. The post-condition of add owner
implies that v is an owner of r too, which suffice to apply add struct. Ifr and s
have an owner in common, the first action is not needed. [

Theorem 5.22
If Can.connect(o,r,s,P) and {add_struct,add_owncr} CP then a sequence of
at most two actions suffice to make the regions r and s path-connected.

Proof The proof of the previous theorem gives an effective sequence.[]

The constraint can be weakened somewhat by observing that the instruction
add_owner is not needed for those cases where r and s have as least one owner
in common, who takes the role of activator in both instruction calls.

Theorem 5.23
If rs€R and add structEP and usr_reg(r) Nusr_reg(s)7 2 then
Can.connect(o,r,8,P).

Proof Assume that r and s are not path-connected and let v be an owner common
to both r and s. Then Succeed(o,add struct(v,r,s)) holds. Thus, (r,s) belongs to
the structure component of the final state, which means that r and s are path-
connected.[]

The situations characterized by this theorem can simply be checked by
looking at P and the owners of the regions involved. When add owner &P nor
usr_rcg(r)ﬂusr_rcg(s)#@ then it is still possible that two regions can be made
path-connected, provided that a sequence of regions can be found such that each
pair in this sequence has an owner in common. Moreover, if it is known that
two regions can be made path-connected then this can be done without extending

5.5. SPE STATE PREDICTIONS 133

the class of regions.

Theorem 5.24
Can.connm’(o,r,s,P+{add_struct}-{adcl_omler}) iff there exist regions r,
(i=1..n) such that both
a) r,=r, s=r_ and
b)r.e RU and
c) usr_reg(r,)N usr_reg(r,, ;)72 or
(rpr JESTR or
(r) ESTR

Proof => Assume Can.connect(o,r;s,P+{add struct}-{add owner}) and r and s
are not path-connected in 6. Then there exists a sequence of instructions applied to
o such that in the final state o’ an undirected path between r and s exists, say
r=r,...r,=s. Let r. be the first not included in R,. Then a shorter sequence can
be constructed with the path-connectedness property which does not include r,
for r; can effectively participate in the path when it added to the state together
with' both (1}._ 1,,1}) and {r,,rj ;) as structure relations. As no co-owners can be
introduced, the ‘owner of 1 should be a co-owner of both r_, and r, +;- This
implies that r., and I, can be connected directly with the add_struct
instruction. Thus, each “region not belonging to o can be removed from the
sequence giving constraint b),

Constraint c) expresses the situation that two successive regions in the path were
path-connected already or can be made so by applying Theorem 5.23.

< = Induction on the number of regions and Theorem 5.23.]

The definition of the path-connectedness places no constraints on the direction of
the structure relation. Neither does the SPE instruction add_struct, which leads
to the following property:

Theorem 5.25
Can.connect(o,r,3,P) «~—> Can.connect(a s,r,P)

Proof Trivial.(J

Note that path-connectedness does not require new users to be introduced either.
Adding a new user implies the use of the add_owner instruction, which, together
with add_struct, is already sufficient to construct a path directly (Theorem 5.21).

3.5.2. Sharing access between regions

The next step is to analyze under what conditions the predicate
Can.connect(o,r,s,P) and the instructions P can be used to transfer accessibility to
an object between regions.

134 AN SPE INSTRUCTION SET 5.

Definition 5.25
Let o be a secure state. Then a region rER_ can share access to 0€0,
with region sER_, denoted by Can.share(o,r,5,0,F), if there exists a finite
sequence of p,EPCOP such that
a) o’= p,..py(o) and
b) Access(o,0,r)= true and
c) Access(0’,0,8)= true

Condition b) restricts the predicate to regions and objects known in the initial
state. To study access sharing with unknown regions and/or unknown objects,
just pretend that they are properly included in the initial state, for this can be
checked separately by inspecting P for inclusion of add region and add_object,
respectively. -

Recall that the construction of IE graphs was based on the existence of a path
in the structure graph. Thus Can.connect is a pre-requisite for Can.share. The
predicate Can.share expresses the ability of users to extend the import-export
graph associated with the object o such that a path between r and s is
established. It is sufficient to check Can.share(0,0,d,5,P) where d is the defining
region of o, because when Access(o,0,r) holds a path exists in the import-export
graph from d to r and Access(a’,0,5) implies a path from d to s. Together, they
make up an undirected path between r and s in the import-export graph.

Theorem 5.26
If add_import,add_cxport} cP and Canconnect(ors,P) then
Can.share(o,rs,0,P);

Proof Assume that (r=)r,,...,rn(=s) is the structure path obtained by execution of
the sequence of instructions defined by Can.connect giving o’, and let r; be the last
region in this sequence where Access(o’,0,r;). Two cases are considered. If
(ror;,) € STR) then apply add_export(u,r;0) by some owner of r; giving 0”.
If (v, 1) € STR,’ then apply add_import(u,r;, ;,0) by some owner of r;,
giving 6”. The combined result is that Access(”,0,r;, ;) holds. This process can
be repeated for all regions r; (I=>1).00

Access rights can be transferred between two regions with only the add_import
instruction, provided that the structure path between r and s has the correct
directionality or can constructed this way. The latter can be guaranteed when
Can.connect holds and both regions are not path-connected in the initial state.

5.5. SPE STATE PREDICTIONS 135

Theorem 5.27
If r and s are not path-connected in o and Can.connect(o,r,s,
P+{add import}) such that for each region pair (rpr,, ;) making up this
structure path both
r;€ R, i=l.m and
r=r, and s=r_ and Access(o,0,r) and
(rpr;p) € STR” and
(usr_reg(r)Nusr_reg(r,, }#@ or (r,, ,r) € STR’)
then Can.share(o,r5,0,P).

Proof The operation add struct should be applied at least once, because r and s
are not path-connected in . That is, add struct is a member of P. Assume that
r=r,..r, =s is the structure path obtained by execution of the sequence defined
by Can.connect giving o’. Let r; be the last region in this sequence where
Access(0’,0,r;). Two cases are considered: If (rpry)) € STR) and
usr_reg(r;) Nusr_reg(r;,)7 @ then add_struct(u, r,, ,,r;) can be applied by some
owner of both r; and 1, after which add import(v,ri +0) can be applied by

any owner of r, .. If (r,,r) € STRG’_thcn add_import(u,r;, ;,0) can be
applied by any owner of r,.

This process can be repeated for the tail of the region sequence. [J

Notice that in the previous theorem Can.connect alone is not enough. An example
to illustrate this is shown in Figure 5.7, where r and s can be made path-connected
but where no access permission can be transmitted using just the import
instruction. Region t plays the role of an agent, so that both an add_import and
add export instruction are required.

K

= o

—

27

Figure 5.7

136 AN SPE INSTRUCTION SET 5.

Theorem 5.28
If r and s are not path-connected in o and Can.connect(o,rs, P+{add_export})
such that for each region pair (r,r,, ;) making up this structure path both
(i=1..m)
r,€ R, and
r=r, and s=r, and Aceess(o,0,r) and
(r,,,r) € STR ,, and
(usr_reg(r;)Nusr_reg(r;, FD or (r,) € STR,)
then Can.share(o,r,5,0,P).

Proof Analogous to previous theorem.[l]

Knowledge about the validity of the predicate Can.share reveals the following
properties:

Prop 1 If Access(0,0,s) and Aceess(o,0,r) then Can.share(o,r,s,0,P) for any PCOP.
Prop 2 If Can.share(o,r,s,0,P) then Can.connect(o,r,s,P)

5.5.3. Sharing access by users

The two predicates Can.connect and Can.share characterize which regions can
obtain access to objects. The next predicate in this series extends these concepts
to describe the visibility of objects in reachable states.

Definition 5.26
Let o be a secure state then a user u€U_ can obtain access to the object
o, denoted by Can.obtain(o,u,0,P), if there exists a finite sequence of
p,EPCOP such that both
o’=p,-Py(0) and not Visible(s,0,u) and Visible(o’,0,1)
If u doesn’t belong to the initial set of users U, the class P should contain the
instruction add ownerer, and when the object o does not belong to O,, the
instruction add_object is needed.

Theorem 5.29
If add_owner €P then VueU_ and Yo€O, Can.obtain(o,u,0,P)

Proof Assume 0 €O, defined in the region r, and not Visible(o,0,u). Then a new
state can be generated by:

add_owner(v,r,u)
by some owner v of , resulting in a new state @’ in which Visible(a’,0,u).0]

This theorem indicates once again that the instruction add owner is powerful

in providing privileges to other users. Another characterization, more restrictive,
is obtained by explicitly removing this instruction from the class P.

5.5. SPE STATE PREDICTIONS 137

Theorem 5.30
Let (u,s) EOWNU. If 3Ire R, and Carz.skare(o,r,s,o,P—{add_owncr}) then
Can.obtain(o,u,0,P-{add owner}).

Proof Follows directly from the definition of Can.share and Visible.[

To increase the confidence on the protection properties of a subset P and the
initial state, negations of the predicates described before are of interest too. For
example, under what conditions are we sure that regions cannot be connected
and users cannot obtain access to a particular object? Without proof a few
easily derived properties are illustrated.

Theorem 5.31
Let r and s belong to R. If r and s are not path-connected in ¢ and
add_struct € P then Can.connect(o,rs,P) is false.

Theorem 5.32
Let r and s belong to R, If not Can.connect(o,r;s,P) then for all
(un)defined objects o in ¢ Can.share(o,r,5,0,P) is false.

Theorem 5.33
If PN{add import,add export}=@ and not Acess(o,r,0) then
Can.share(o,r,5,0,P) is false for all regions s.

Theorem 5.34
Let 0€EQ,, r €R,, u EUG, and Access(o,0,r). If for each s such that
(us)EOWN_ and not Canshare(o,r,s,0,P-{ add owner})) then
Can.obtain(o,u,0,P-{add owner}) is false.

From the perspective of ensuring a certain level of protection we conclude that
the instruction add owner is far and away the most dangerous instruction, for it
allows to freely pass along privileges, just by the Introduction of co-owners. A
useful property of all predicates is that they can be answered either in constant
time, by inspection of P, or by analysis of the graphs derived from the protection
state, for which the complexity of the algorithms involved is bounded by the
number of regions or structure relations.

5.5.4. Stealing

In the definition of the predicates Can.obtain, Can.share and Can.connect we were
concerned whether access rights could be transferred by applying a subset of the
SPE instruction set. Thus, we hypothesized compiete cooperation from all users.
In the definition of the next predicate, Can.steal, the set of users willing to
cooperate in the transfer of access rights is limited znd made cxplicit. This
predicate models questions like “can a user obtain access to an object, given a
subset of the SPE instruction set and a subset of the users,” or more specifically,

138 AN SPE INSTRUCTION SET 5.

“can a (non-trustworthy) subject steal access to a given object with the aid of a
group of conspirators.”

Our notion of stealing differs slightly from similar definitions in [Snyder79,
Snyder81] by considering users having access 10 the object as potential
conspirators as well. This generality extends the semantics one normally
attaches to the word stealing, 1.e. a person in possession of some objects would
not actively help a thief. Yet, our definition allows us to easily identify those

users subject to bribery too.

Definition 5.27
Let ¢ be a secure state. Then a user u can steal the object o with
collaboration of conspirators in Csp, u€Csp CUSERS and denoted by
Can.steal(o,0,0,P,Csp), if there exists a finite sequence of state
transformations p,€ PCOP such that
o’= p,--Py(0) and not Visible(o,0,u) and Visible(o’ o,u) and
vV p; (i=o.n) the activator of p, belongs to Csp.

Note that this definition allows for the situation where the object is accessible
to one or more members of the group Csp already. Furthermore, it assumes that
the potential thief u doesn’t have access to the object, otherwise it would not
reveal more information than the predicate Visible. Note too that Can.steal is a
refinement of the predicate Can.obtain and that Can.steal logically implies
Can.obtain.

This definition of stealing can be used to answer the following questions as
well: “can any object be stolen by a user u from a particular region r” and “can
an object o defined in region r be stolen by any user v”, because the former
problem can be translated into defining a new object o’ in the region r and
evaluating the predicate Can.steal(o,u,0’,P,{u}). The latter problem is solved by
considering all non-owners of r as conspirators.

First assume that Csp={u}, where the potential thief is the only user who can

issue actions. If u@ U_ then again the predicate is inherently false, because
unknown users can not gain access to any object at all without the help of at
least one conspirator. The active cooperation of a user is essential here, for he
has to make the malicious user known within the SPE protection state using the
instruction add owner. Therefore, for the rest of this analysis we assume that u
belongs to the users U, already.
Before proceeding with our analysis let us introduce a concept found in other
protection models and approaches, namely the access relationship or access
matrix [Harrison76). The access relation is defined between users and objects
and administers the objects visible to a particular user. A similar notion can be
defined for SPE as well:

5.5. SPE STATE PREDICTIONS 139

Definition 5.28
Let u be a user in the secure state . Then the set of visible objects VO
for u is defined as follows:
VO(o,u)= { 0€O0,: Visible(o,0,u)}

The predicate Can.steal, like Can.obtain, is casily translated into conditions on
the set VO, for stealing the object o means applying a sequence of instructions
from P by the users in Csp, such that 0&VO(o,u) and 0 EVO(c’,u). Therefore,
we should derive the conditions under which VO(o,u) is affected by the SPE
instructions. An important result is that any malicious user can only gain access
to existing objects, for which it had no access before, by applying the instruction
add_import.

Theorem 5.35
Let the set Csp consist of a single user u. Then VO(o,u) can be extended
using add_import or add object instruction only.

Proof The proof is given by analysis of the SPE instructions. Obviously, only
the incremental instructions should be considered. First, usage of add owner to
introduce new owners only does not affect VO(o,u). However, VO is changed
when u is made co-owner of, say, the region r, but this can only take place with
the cooperation of other users and u can never do it alone. Thus, add owner
does not affect VO(o,u) when no additional conspirators exist. B
Applying the instruction add region clearly does not alter VO(o,u). The
creation of new objects with the add_object instruction does and the objects are
visible in their defining region, owned by u.

The add _export(v,r,0) extends VO for all owners of the regions in the
environment of r, which may include the user u. However, as u is considered
the only activator, the object o already belongs to VO(o,u). Thus add export
does not extend VO(o,u). B

The instruction add struct(v,r,s) couples two regions and may change VO(o,w)
for all owners w of s as a side-effect of export operations, i.e. for some o’
(o’,r) EEXPO. However, the authorization constraint of add_struct requires that
the activator is owner of both regions involved. Thus, o’ was visible to u already
and VO(o,u) is not extended.

This leaves us with the instruction add import, which indeed can be used to
make objects accessible within the environment of a region, accessible within the
region itself. (]

This theorem gives a simple characterization of the objects which can be
stolen by a single user u and the instructions needed. All objects subject to
stealing by u alone are found in the environment of the regions owned by u.
Conversely, it means that if a user is isolated, in the sense that the environment
of each of his regions is empty, he is unable to steal any objects.

140 ' - AN SPE INSTRUCTION SET 5.

Corollary Can.steal(o,u,0,P,{u}) iff add_import €P and for some region Tt
Access(o,0,r) and some s such that (u;s) EOWN and r € environment(s).

Stealing an object need not be performed by the malicious user u himself. It
may happen that one of the users v E Csp-{u} has access to the object o in ¢ and
is able to share this access with u. Alternatively, user v & Csp-{u} may be able
to steal it, before passing it along. Therefore, a necessary prerequisite for
Can.steal(s,u,0,P,Csp) is the following constraint on the set of conspirators:

JvECsp Ar:(v,r) EOWN A (Access(o,r,0) Can.steal(a,v,0,P,Csp-{u}).

To investigate the role of conspirators, assume that Can.steal(o,u,0,P,{u}) is
false and that for some user v Can.steal(o,v,0,P,Csp-{u}). Then we should
consider the question: under what conditions the user v can share access to 0
with u? The approach taken in the next section is to derive predicates, related
to Can.connect, Can.share, and Can.obtain, and to apply a condensation technique
on the protection state, which results in cheap algorithms to determine
conspiracy.

5.5.5. Kernel, import, and export areas

The question whether or not a conspirator can effectively help a malicious
user in obtaining access to an object is called the conspirator problem. It
requires a characterization of the conditions under which a user v can pass its
access permissions on an object o from a region r to some user u. The
conspirator problem is generalized by considering the question: if Access(0,0,r)
and (v,;r) EOWN then what are the regions where user v can make the object
accessible using P.

The analysis of the previous sections indicates the power of the add owner
instruction in transferring access permissions, a good reason fto omit this
‘nstruction from P here. Availability of add owner requires at most one user to
conspire in stealing, namely, any user having access to the object or being able
to import it from its environment. With this restriction on the instructions
available in mind only, the regions belonging to the initial state must be
considered only, as illustrated by the next theorem.

Theorem 5.36
Let r and s be regions in o owned by u and v, respectively. If an access
right can be passed from r to s using a region t&Ro with a finite
sequence of state transformations from P-{add owner}, then there exists a

finite sequence for passing access rights between r and s without t.

Proof Assume that p...p, denotes the finite sequence generating ¢’ and both
Access(o,0,r) and Access(0’,0,8). Moreover, assume that the region t is essential in
this transport, that means, there exists instructions such that

5.5. SPE STATE PREDICTIONS 141

- p, introduces t as a new region, i.e. add_region is applied, and

- p; §>1) and p,(k>i) are applications of add struct to connect region t

with two other regions, say r’ and s’, and

- p(I>j) and p_(m>k) are either add_import and/or add export to

transfer access from r’ to t and from t to s’ respectively.
‘The activator v of p; becomes the sole owner of the new region t. Applying
add _struct (p; and p,) requires that v owns both regions involved, which means
that usr_reg(r’) Nusr reg(t)={v} and usr reg(t)Nusr reg(s’)={v}, because the
add owner instruction is not available. However, then add struct can be
applied by v to directly connect r’ and s’, which means that a shorter sequence
can be obtained by dropping the five instructions PP PpPpP,, and introducing
two others. OO

This theorem shows that we can characterize conspirators using the regions and
users in the initial state and instruction set only. In turn, we can group regions
and users with similar properties and thereby abstract from the SPE state, which
is a condensation technique applied to many graph oriented problems. For this
purpose we introduce three new concepts, the export area, the tmport area, and the
kernel area.

Definition 5.29
An export area EA(o,u,r,P) is the set of regions s in R, such that if
Access(o,0,r) (for any object 0€Q,) then a finite sequence of p,EP
(1=0..n) exists with:
0’= p,...p,0 and
Access(a’,0,5) and
u is the activator of p..

The export area characterizes all the regions which can receive access
permissions available in the region r, called the area center, by actions (at least
one) of a single user u, called the area owner. An export area is necessarily
qualified by both a user and a region, because it may happen that a user owns
two regions which can not be made path-connected using the instructions P and
thus access rights can never be passed between them. Observe the similarity
with the previously defined predicate Can.share with the only difference being
lack of constraints on the activator.

Definition 5.30
An import area IA(o,u,r,P) is the set of regions s in R, such that if
Access(o,0,8) (for any object 0€0,) then a finite sequence of p,EP
(i=0..n) exists with:
0’= p,...p,0 and
Access(a’,0,r) and
u is the activator of p..

The import area characterizes all regions from which access permissions can

142 AN SPE INSTRUCTION SET 5.

be transferred to the area center r by actions issued by the area owner u. The
relationship between export and import areas is not symmetric. That is,
s€EA(o,u,r,P) does not necessarily imply that r € EA(o,us,P), because the access
flow instructions have a different directionality.

Definition 5.31
A kernel area KA(o,u,r,P) is the set of regions s in EA(o,u,r,P)NIA(o,u,r,P)

The kernel area characterizes regions interchangeable under the given protection
primitives. Any access permission for r can be transported to all regions in the
kernel area and, conversely, each access permission associated with a kernel
region can be transported to r, its center. This implies that any region in the
kernel area owned by u can be chosen as area center. The properties of the
kernel area regions are stipulated by the following theorems:

Theorem 35.37
KA(ou,r,P) N KA(ous,P) 9 — KA(o,u,r,P) = KA(o,us,P)

Proof First, we show that KA(ou,r,P) C KA(o,us,P). Let t€ KA(ou,r,P) N
KA(o,us,P). Then there exists sequences of p,EP which transfer access
permissions from r to t and vice versa. As tE€KA(o,us,P) access can be
transferred from t to the center s too. Combination of the paths makes r a
member of KA(o,u,s,P). Induction on all other regions in KA(o,u,r,P) ensures:
KA(our,P) C KA(ougsP). A similar argument can be used to prove
KA(our,P) 2 KA(o,us,P).00

The non-empty intersection conditions in this theorem can be refined by focusing
on the properties of import and export. The next theorem shows that for a given
area center and availability of both the add_import and add_export instructions,
kernel-, import-, and export- areas are the same.

Theorem 5.38
If {add_import,add_export } CP then
IA(o,u,r,P) = EA(ou,r,P) = KA(ou,r,P)

Proof We shall show the first equality only, as the second follows directly from
the definition of kernel areas. Let tEIA(ur,0.P). Then there exists a sequence
which transfers access from region t to the area center using a structure path.
However, the same path can be used to transfer access from r to t using
add export. This means that t belongs to EA(our,P). A similar argument
proves that any region t in EA(o,u,r,P) belongs to TA(o,u,r,P).00

Theorem 5.39
If r=£s and IA(ou,s,P)NEA (o,u,r,P)5# 3 and
{add_import,add__cxport} C P then KA(o,u,s,P)=KA(o,u,r,P)

Proof The previous theorem states that IA(o,us,P)=KA(o,u,s,P) and

5.5. SPE STATE PREDICTIONS 143

EA(o,u,r,P)=KA(o,ur,P). Applying Theorem 5.37 gives equality of kernel
areas.[]

Observe that a non-empty intersection of import and export areas centered
around r alone does not imply that these areas contain the same regions. A
simple counterexample is obtained by excluding the add export instruction from
P. Then the export area centered around r contains no other regions, iLe.
EA(o,u,r,P)={r}= KA(o,ur,P), while the import area for r contains all the
regions in the environment (or potential environment by application of
add_struct).

The three area concepts abstract from the initial state and can now be used to
solve the conspirator problem directly. First, a user can pass access perrnissions
to all regions in the export areas for which he is an area owner. Second, overlap
of an import area J4(o,u,r,P) with the export area /A(o,v,s,P) is sufficient to pass
access from s to r,

Theorem 5.40
Let I4(o,v,s,P)N EA(0,u,r,P)# @ and Access(o,0,r). Then user u can share
access to o with v in region s.

Proof Let t€ EA(o,u,r,P)N IA(o,usP). According to Definition 5.29 there exists
a finite sequence of state transformations, issued by u, such that Access(o’,0,t).
Moreover, t is a member of the import area of 1A(6,v,5,P) and thus there exists a
finite sequence, activated by v, such that Access(a” 0,5) holds, O

This analysis solves the stealing problem and conspiracy problem, because
objects potentially being stolen by a single user u should be accessible in a
region belonging to an import area owned by u, say r. Moreover, the area
concept shows where the stolen access right can be used by u (or passed on to
u), namely in all regions belonging to the kernel area KA(o,u,r,IP).

Stealing with conspiracy requires the conspirators to transfer access rights
between their kernel areas. This concept is visualized by a conspiracy graph using
the notational convention that JA(o,u,r,P) denotes an area owned by u with
center r.

Definition 5.32
The conspiracy graph, CG(o,P,Csp) is a directed graph in which the nodes
correspond to all kernel areas of the conspirators Csp. An edge (r.s)
between nodes IA(o,u,r,P) and IA(o,v,s,P) exists if
EA(ou,r,P) N IA(ovs,P)# D
A node in the conspiracy graphs represents all regions in a kernel area. Arcs

depict the possibility to send access rights form one kernel area to another, The
result of this construction is a directed, cyclic graph with the following property:

144 AN SPE INSTRUCTION SET 5.

Theorem 5.41
Let Access(o,0,r) and let u own region r. Then u can transfer access rights
on o to v in region s using conspirators Csp+{u) iff there exists a directed
path between r and s in CG(o,P,Csp)

Proof Use Definition 5.10 and Theorem 5.20. O

Corollary Can.steal(0,u,0,P,Csp) is true if there exists a directed path in the
conspiracy graph CG(o,P,Csp) between two node JA(ovs,P) and
IA(o,u,r,P) such that object o can be imported into s or is accessible in the
kernel of I4(o,v s,P).

Using the conspiracy graph we can obtain the identity of the minimum
collection of conspirators for the malicious u in obtaining access to an object o
using a simple graph algorithm. Consider the kernel area where o is accessible
or into which is may be imported. Then let S1 be the class of all paths between r
and these kernel. For each path in Sl count the number of different users;
sorting gives the minimal number of users. Sorting S1 on the path length gives
the minimal number of areas involved, i.e. a measure for the minimal amount of
work.

5.6. SPE programs

The SPE instruction set can be considered as the instruction set of an abstract
protection machine and the predicates derived in the previous section define the
reachable states and the conditions to be met when reachability of states is to be
precluded. This analysis is based on the assumption that arbitrary sequences of
SPE instructions can be issued. In this section the concept of an SPE program is
defined and security questions for a fixed group of programs are considered. By
means of a program concept new abstract machines can be defined with
additional security semantics. It is necessary, though, that the SPE machine
:tself can be hidden in an actual implementation.

The SPE programs are introduced as composite SPE operations, that is, linear
sequences of SPE instructions. To accommodate additional protection policies
SPE programs may be qualified with constraints on the applicable state and
function parameters, leading to the notion of conditional SPE programs or
guarded SPE instruction sequences.

The SPE program concept is used to simulate two well-known formal access
control models, the Harrison-Ruzzo-Ullman model and the Take-Grant model,
and we show the differences in handling the security problems. Subsequently we
indicate how additional security properties can be atiacked and to what extent
the predicates derived for SPE help. This approach provides the stepping stone
for the analysis of the protection of a given situation and to indicate what should

5.6. SPE PROGRAMS 145

be checked at run-time. Note, however, that a well-founded theory to support
such an analysis in all its details is far beyond the scope of this thesis.

3.6.1. A model for SPE programs

A commonly used definition of a program defines it as an abstraction of a
particular sequence of instructions. In other words, a program is a partial
function taking the domain of input values over into the domain of output
values. This definition can be carried over to the domain of the SPE model by
considering the initial state and parameters given to the SPE instructions as
input parameters and the final state as its output, With this in mind an SPE
program can be considered as a composite SPE state transformation.

Definition 5.33

An SPE program f(x;%,,...x) is a composite mapping

o009, W8-=>8

of SPE instructions.
Following the programming language conventions, the SPE instructions ¢, are
called statements and x; the program parameters. For simplicity we assume that
each program parameter is used and that the program consists of at least one
statement. The statements considered are drawn from the incremental and
decremental SPE instructions only, which ensures that whenever the auth- and
the pre-condition are satisfied, a new secure state is derived. Observe that this
definition of a program differs from its use in a programming language
environment in that individual statements may be invoked or activated by
different users, each with different authorization properties.
Example

newuser(u,r,v)= del owner(v,r,u) o add ownerer(u,r,v) © add region(u,r)

defines an SPE program, which creates a region r and makes v the sole owner of
it. In the sequel a programlike syntax is used. References to entities in the
global protection state are enclosed by single quotes. The aforementioned
example is written as follows:

command newuser(u,r,v)
begin
add region(u,r);
add_ownercr(u,r,v);
del Bwner(v,r,u)
end B

146 AN SPE INSTRUCTION SET 5.

Definition 5.34
"l.l;'he effect of an SPE program f(x,,x,,...,x,) on the state gEZ is defined
Y.
[(x‘,,)c?,...,xn) (o) = if Vo, (i=1..k) b (0,)7F0,,

then ¢,o... o, (0)

else o
This definition is interpreted as follows. The program f with parameters x; to x_
applied to the secure state o generates a new state o’ as defined by the composite
state transformation, or generates an error and makes ¢’=0. An error occurs
when any of the individual components did not generate a new state.

The requirement that each statement produces a new state simplifies the
analysis of the security property of SPE programs, because it disallows erroneous
programs and no-op instructions. Notice that this simplification does not restrict
SPE programs to simple error free straight line programs, but merely requires a
straight line program for each possible correct path through the program
instead.

The definition of SPE programs as (partial) composite state transformations
provides limited tools for the design and analysis of new protection policies. One
should also be able to constrain the execution of a program, beyond the
conditions of with the SPE instructions. One approach to control the
applicability of a program execution is to extend the heading with a constraint
on the the actual state and parameters, ie. introduce a condition on the
invocation of an SPE program. This predicate is evaluated upon program
activation as part of its initialization. The resulting program is called a
conditional SPE program and is formally defined by:

Definition 5.35
A conditional SPE program f(x,X,,...x,,Q) 15 a mapping from § into S,
with Q a predicate, such that the effect of program f on the state 6 €S is
defined by
f(x Xose1X,s Q N0O) =
if Q(x,,..,%,,0) and V¢, (i=1.k) ¢ (0,)70
then ¢k°"'°¢}(°)
else o
Example The program newuser defined above can be constrained as follows
command newuser(u;r,v) if u€ {’root’,’sys’} begin
add_region(u,r);
add ownmerer(u,r,v);
dcl_-awner(v,r,u) end
which ensures that the two named users can execute this program. The notion
of a conditional program is closely related to the activator concept in the
operational model proposed by Minsky [Minsky78a] and provides a basis for
dynamic access protection for databases in [Fernandez81], because it can be

5.6. SPE proGRAMS 147

used to place conditional guards on the execution of protection system programs.

The notion of SPE programs allows for the definition of a hierarchy of abstract
machines, an approach first used by Dijkstra in the THE operating system
[Dijkstra66]. The lowest level, level 0, is formed by the SPE model and its
instructions. A group of (conditional) SPE programs defines a new abstract
machine as level 1. These programs are defined by instructions of level 0.
Moreover, the programs inherit the security properties of level-0, that is, a
proper implementation of level O ensures that no insecure state can be derived.
In general, multiple levels can be introduced this way, giving a series with a
program at level i defined in terms of programs of level i-1.

The introduction of new abstract machines allows to abstract from the
underlying machine; that is to change, enhance, or restrict the security policies
provided by the lower levels. This method is illustrated in the following sections
by showing how the Harrison-Ruzzo-Ullman and Take-Grant model can be
simulated by a set of conditional SPE programs. The gain of this exercise is
twofold. First, it illustrates the potentials of the SPE model in building
alternative protection systems on top of it and to enforce its protection policy.
Second, it illustrates the differences between these three models. In particular, it
shows that the access matrix model implementations, capability lists and access
control lists, ignore the possibility to take the entries of the access matrix as a
departure point for access control implementation. The latter, however, closely
resembles the premises in the SPE model, where neither the users nor the objects
are taken as a starting point for access description, but their relationship in a
particular environment. Moreover, it shows that the access flow is ignored in the
HRU model.

5.6.2. Simulation of HRU with SPE

The real world in HRU is modeled by the triple (S,OB,AM) called a
protection system configuration, with AM=SXOBXR an access matrix, S is a
set of subjects, OB a set of objects, and R a set of rights. It is assumed that S is
a subset of OB, which makes it possible to model access relations among users as
well. In the simulation given below we restrict the set of generic rights to one
element, namely accessibility. An alternative scheme which handles multiple
rights is indicated shortly.

The HRU access matrix shown in Figure 5.8 is mapped to the SPE structure
as shown in Figure 5.9 and the corresponding state description is given in Figure
5.10. The subjects in HRU are associated with users in SPE, the rows are
mapped to regions owned by the subject associated with the row and, finally, the
columns are represented as objects in a single region. Having access to an object
or a subject is equivalent to having access to its SPE object representation.

148 AN SPE INSTRUCTION SET 5.

Figure 5.8 HRU Access matrix

sr
R K i
@ ... [(col 1)

rowl row
[" | LI

Figure 5.9 The SPE representation of the access control matrix.

HRU= <U,0,R,OWN,STR,DEF,IMP,EXP>

U = {sus;: i=1..n}
o= [coli: i=1..n+m}
R = (sr,row:: i=1..n}
OWN = {(s;, row,): i=1.n} U {(susr)} U {(su, row;): i=1..n}
STR = {(row;,, sr):i=1..n}
DEF = {(col,, sr):i=1..n+m}
IMP = &
EXP= @
Figure 5.10 SPE state description.

The HRU instruction set consists of six operators, which are mapped to
conditional SPE programs as shown in Figure 5.11.

HRU model SPE model
enter right into (s,0) command enter(s,row,0)
if (s,row) EOWN

5.6. SPE ProOGRAMS 149

begin
add_import(s,row,0)
end h
delete right from (5,0) command delete(s, row, o)
if (s,row) EOWN
begin
del import(s,row,0)
end
create subject s command cr_subject(s,row,col)
begin
add_region(’su’,row);
add_owner(’su’,rows);
add_struct(’su’,row,’sr’);
add_objcct(su’,’sr’ col)
end -
delete subject s command del subject(s,row,col)
begin
del_object(’su’,’sr’,col);
del_stmct(’su’,row,’sr’);
dc]_-owncl‘(’su’,l‘ow,s:l;
dcl—rcgion(’su’,l‘ow)
end a
create object 0 command cr_object(o)
begin
add object(’su’,’sr’,0)
end -
delete object 0 command del object(o)

del_object(’su’,’sr’,0)
end

Figure 5.11 SPE commands for HRU instructions

To illustrate, the HRU instruction ’enter right into (S,0)’ can be simulated
with the SPE program ‘enter(S,Row,0). Note that an extra parameter is
needed to indicate the region where accessibility is required. Moreover, enter is
constrainted, which implies that when S does not own the region Row or O is
not an object an error occurs and the program leaves the protection state
unchanged. Another example, the usage of the operation ’delete subject S, i.e.
del_subject(S,Row,Col), consists of three SPE instructions to remove row, column
and user, but which can only be executed successfully when all rights, i.e.
imports, are removed first.

An obvious distinction between SPE and HRU is the lack of an authorization
constraints within the HRU model. In principle each user can add/remove
users and objects. This is circumvented in the simulation using the user ’su’,
who has access to all regions and objects and who is the only subject to
introduce/remove subjects and objects. It represents the user held responsible

150 AN SPE INSTRUCTION SET 5.

for the contents of the access matrix.

As the HRU instruction set does not incorporate the notion of authorization,
no real access protection is provided at all. Any user who can apply the
instructions can transfer access rights or remove objects from the protection state.
The solution proposed to control the use of rights is based on an abstraction
mechanism, similar to the conditional programs in SPE. HRU assumes that all
changes are performed through calling guarded commands, rather than one of
its instructions. An example of such a command is shown in Figure 5.12. No
command is executed when any of the instructions would fail against the actual
state or when the condition does not evaluate to true. Higher level protection
policies, like flow control of access rights, should be encoded by the user in the
form of these commands.

command &(X; 5., Xy Ko 155X 05)
if ry In (X:thi} and
2] in (X.t?rXal!) and

T 0 (X Xom)
begin
opy
0Pk
end

Figure 5.12 Harrison-Ruzzo-Ullman command structure

A second important distinction between SPE and the HRU model is the
definition of the security problem. In SPE security is defined as a collection of
state transformation invariants. In HRU security violation is associated with the
ability to reach some undesirable state, called an unsafe state. More specifically,
HRU defines lack of safety as the ability to modify the access matrix such that a
right can be entered in a position where it wasn’t before. Interpreted in the
context of a class of non-trustworthy subjects it corresponds to the stealing
problems in SPE. A formal definition of this notion is given by: [Harrison76]

Given a protection system and a generic right r, we say that the initial
configuration Q is unsafe for r if there exists a configuration Q ¢ and a
command alpha such tha:

f

Q=
2) alpha leaks r from Q

This general notion of safety (=state security) is, although theoretical interesting,
of limited use for the construction of secure systems. Its prime result is that the
general safety question is undecidable. That is, no algorithm exists which, given
a set of commands and an arbitrary state, tells whether the system is safe for this

5.6. SPE proGrAMS 151

state or not. Yet, its point of departure is radically different from the approach
taken in this thesis where security is an invariant property of state
transformations, rather than a property of reaching an undesirable protection
state. Once all commands have been proved to guarantee the security
invariants and implemented correctly, no insecure state can ever be derived.

5.6.3. Simulation of SPE with HRU

The previous analysis showed that the HRU model and its instructions are
easily modeled by conditional SPE programs. The question arises whether the
converse is true as well, that is, is it possible to simulate the SPE model using the
HRU instructions and its command construction facility. First, the SPE
protection state is mapped into the access matrix AM. HRU contains the notion
of user (called subjects) and objects already, thus they can be used to represent
the SPE users and objects, respectively. The mapping of entity sets and the
binary relations are represented by generic rights, i.e.

R={User, Object, Region, Own, Str, Def, Imp, Exp}

The first row of the access matrix is used to denote the type associated with the
column, it contains a single right from {User, Object, Region}. This row is
assigned a fictive user ’type’ and provides a means to express simple type
constraints, like uEU. The regions in SPE are used in both dimensions of the
binary relations and thus each region should be represented similarly to a user in
HRU. That is, a new region results in the creation of both a row and a column
with the same name. The structure relation (r;s) results in the entry M[s,r] with
the right Str. Regions are used as intermediaries between users and objects,
which means that the matrix elements M[u,u’] (u,u’ are users) and M[u,0] (o
object) remain empty. Moreover, a compound right ({Own,...Exp} guarantees
proper types are available for the components.

In Figure 5.13 a small SPE protection state is depicted, the corresponding HRU
access matrix is shown in Figure 5.14.

Figure 5.13 Example SPE protection state.

152 AN SPE INSTRUCTION SET 5.

u v i 5 5 o]

type | User | User | Region Region | Object

u Own

v Own

r Str Imp
s Def

Figure 5.14 HRU access matrix representation for SPE

SPE instruction HRU command

add region(u,s) command add _region(u,r)
if User € M[’lyﬁc’,u],
begin

create subject r
create object r
enter Region into M[’type’,r]
enter Own into M[u,r]
end
add_object(u,r,0) command add object(u,r,0)
if Own in M[u,r]
begin
create object o
enter Object into M[type’,0]
enter Def into M(r,0]
end
add_owncr(u,r,v) command add owner(u,r,v)
if Own in M[u,r] A User in M[’type’,v]
begin
enter Own into M[v,r]
end
command add owner(u,r,v)
if Own in M[u,r]
begin
create subject v
create object v
enter Own into M[v,r]

end
add struct(u,r,s) command add struct(u,r,s)
- if Own in M[u,r] A Own in M(us]
begin
enter Str into M[s,r]
end
add_export(u,r,0) command add _export(u,r,0)

if Own in M[u,r] A Def in M[r,0]

5.6. SPE proGrRAMS 153

add_import(u,r,0)

begin
enter Exp into M[r,0]

end

command add export(u,r,0)

if Own in M[u,r] A Imp in M[r,0]

begin
enter Exp into M[r,0]

end

command add export(u,r,o0)

if Own in M[u,r] A 3s: (Exp in M[s,0] A Str in M[s,r])

enter Exp into M[r,0]
end
command add import(u,r,0)
if Own in M{u,r] A\ 3s: (Def in M[s,0] A Str in M{r;s])
begin
enter Imp into M[r,0]
end
command add_import(u,r,0)
if Own in M[u,r] A 3s: (Imp in M[s,0] A Str in M]r,s])

enter Imp into M[r,0]
end
command add_import(u,r,0)
if Own in M[u,r] A 3st (Exp in M[s,0] A Strin M[s,t] A Strin M[r,t])

enter Imp into M[r,0]
end

Figure 5.15 Mapping the SPE incremental instructions

Figure 5.15 shows that the mapping of SPE instruction into HRU commands
is relatively straightforward. The authorization conditions are mapped to a test
on the availability of the proper rights or a test on rights administered in the
‘type’ row. Moreover, the semantics of HRU commands is used to guarantee
the additional constraints. For example, in the routine add region no check is
made on the existence of region r in the initial state, because the interpretation
of the HRU command ensures that either all actions succeed or none.
Unfortunately we have to resort to multiple commands to cover all cases.
Moreover, the existential quantifier is needed to handle import and export of
privileges, a concept not used within the original definition of HRU. However,
as the quantifier runs over a finite state description it can be considered a
shorthand for a disjunction involving all elements. Disjunctions are allowed
implicitly through command replication in [Harrison76].

154 AN SPE INSTRUCTION SET 5.

SPE instruction HRU command
del region(u,r) command del_region(u,r)
if Own in M[u,r] A VeM[rt]=2

delete Own from M[u,r]
destroy subject r
destroy object r
end
del object(u,r,0) command del object(u,r,0)
- if Own in M[u,r] A Yt:M]t,0]U {Imp,Exp}= &
begin
destroy object o
end
del_owncr(u,r,v) command del_owncr(u,r,v)
if Own in M[u,r] A Own in M[v,r] A 3s7r Own in M[v,s]
begin
delete Own from M[v,r]
end
command del owner(u,r,v)
if Own in M[ur] A Own in M[v,r] A not 3 s#r: Own in M[v;s]
begin
delete User from M[’type’,v]
delete Own from M[v,r]
destroy subject v
destroy object v
end
del_struct(u,r,s) command del struct(u,r;s)
if (Own in M[u,r] V Own in M[us]) A Notused(rss)
begin
delete Str from M]r.s]
end
del import(u,r,0) command del import(u,r,0)
- if Own in M[u,r] /A Imp in M[r,0] A remainsvalid(r,0)
begin
delete Imp from M]r,0]
: end
del_export(u,r,0) command del export(u,r,0)
if Own in M[u,r] A Exp in M[r,0] A\ remainsvalid(r,0)
begin
delete Exp from M[r,0]
end

Figure 5.16 HRU commands to simulate decremental instructions

Similar to the definition of the SPE instruction set in section 5.1 the
constraints placed on decremental parameters results in complex pre-conditions.

5.6. SPE programs 155

Conjunction testing for the presence of rights in the matrix elements, as proposed
in [Harrison76], is not enough; quantifiers and negation are needed as well.
The predicate remainsvalid is similar to its use in del import, it checks for validity
after removal of the grant. -

This simulation exercises show that the SPE model and an extended HRU
model are equally powerful in representing access matrix oriented protection
systems. However, a few differences should be be pointed out.

- The access matrix in HRU is primarily used to administer the state of affair,
rights are merely used as labels to control the use of commands. By contrast,
the SPE instructions incorporate constraints on the flow of access permissions,
that is, access flow need not be enforced through defining an abstract
machine, a configuration or set of commands, first.

- As mentioned before, the HRU model does not recognize the role of an
activator. In the SPE model each action is triggered by a user which is held
responsible and it is ensured that the user can not affect those portions of the
protection state for which he is not considered an owner. The HRU model
does not place restrictions on the use of its define/remove subjects/objects
instructions.

- In the HRU model users play a double role, since they are represented as
both rows and columns, which make it possible to model the roles between
subjects. By contrast, in the SPE model, user and objects play a single role.
Relations between users with different roles should be modeled with the region
concept and the structure relation.

- The command definition facility provided for HRU does not provide full
abstraction instructions, i.e. right identifiers (and commands) can not be used
as parameters in the command heading, which prohibits the definition of
generic commands to control the flow of rights. Rights (and programs) are
represented as objects in the SPE model, which can be used freely as
parameters in a SPE program.

5.6.4. Semantics of rights

Rights are used in protection systems like HRU to regulate both the use of
objects by subjects, as to regulate the modification of the protection state itself,
This difference can be used to divide the class of rights into ’controlling’ rights
and ’non-controlling’ rights. The former consists of those rights used for
controlling the modification of the protection state only. That is, the controlling
rights are used to distribute the non-controlling rights. The latter regulate the
semantic use of objects by the subjects, i.e. application of operations to objects.
Separation of the rights according to their role was first proposed by Weyuker
[Weyuker78]. It provides a good basis for the analysis of the flow of access
rights and leads to a modular protection system. In dynamic systems, where

156 AN SPE INSTRUCTION SET 5.

changes to the protection state are encoded in commands subject to the
protection being modeled, the controlling rights form a subset of the non-
controlling rights. The elements of the HRU access matrix contain one or more
rights taken from a (fixed) set or rights. All rights used to control the
modification of the matrix, ie. those mentioned in the conditions of the
commands, can be considered as controlling rights.

In the formal definition of the SPE model no special attention has been given
to the different classes of access one might wish to distinguish in real situations,
ie. the non-controlling rights were missing. Rather the one concept, accessibility
of an object to a subject, forms the basis for access control. The SPE simulation
using an access matrix shows that the binary relations can be considered as
controlling rights instead. In this section we show how accessibility can be used
to accommodate non-controlling rights, like ‘read’, 'write’, and ’execute’ rights,

" found in other models.

5.6.5. A three-dimensional access matrix

The easiest way to accommodate semantic rights in the SPE model is to
associate them as object labels, similar to a capability based approach.
However, such an approach works when the right labels perform a similar
function only. That is, they are constrained by the same access flow policies. In
general this is not the case. Therefore, an alternative view is taken here, based
on SPE protection state replication for each right.

Taking the access matrix for a single right as a point of departure, two
approaches present themselves to extend the access matrix to accommodate
different generic rights. First, the columns can be replicated such that each
column contains a single right. In the proposed SPE simulation this means that
multiple regions are introduced, one for each right in the generic right set. The
subject regions are all made part of the contents of these regions.

A second approach is to consider a three dimensional matrix in which the
matrix elements contain controlling rights only. Then each user/object slice in
the matrix can be associated with a different non-controlling right. In the
traditional ’read, write, execute’ case three slices would be needed. The prime
advantage of the three dimensional approach, as opposed to the use of a single
access matrix (with replicated columns), is a reduction of information considered
during protection analysis, because the access rights are grouped by non-
controlling right. Moreover, objects and users are not necessarily represented in
all slices, as it depends on the semantics. For example, read-only objects need
not be represented in the slice associated with *write’. The second advantage of
a three dimensional view is that the infrastructure for access flow and the
commands to change the protection state can be grouped per slice. That is, the
policy to change the protection state is strictly separated from the protection
policy associated with the different operations on the objects modeled.

5.6. SPE proGrRAMS 157

The notion of slices indicates a third method for access matrix representation.
Instead of storing the access rights with the objects, i.e. access control lists, or in
the user domain, i.e. capabilities, the access rights can be administered by the
functional processor, i.e. server. This approach is of particular interest when
both the number of users and the set of objects are large, while the access
decisions are simple.

For example, consider a database of documents classified into top-secret,
secret, classified, and unclassified, which are accessed by a large group of users.
The access control list method requires a long list of permissible users to be
associated with the individual documents. By contrast, the capability-based
approach requires long lists of capabilities to be distributed to all the users. In
the right oriented approach this information is associated with each document
class. This approach not only reduces the amount of storage, but provides a
means to control the physical location and properties of the system more easily
as well.

Viewing the access matrix as a three dimensional matrix does not generate
radically new security problems. Instead, partitioning the protection state
simplifies a number of security questions due to a reduction of complexity. The
following problems are new and should be addressed separately for a given
system:

1) The slices; what is the flow of access within a given slice ?

2) Inter slice; what interference can be expected when two slices model different
policies ?

3) The objects; what role does an object play in the different slices ?

4) The users; what role does a user play in the different slices ?

The different roles rights play has been given limited attention in the literature.
As noted before, in [Weyuker78] an attempt is made to distinguish the roles of
rights in the HRU model and it is used to analyze its general safety question.
Another example, the Take-grant model, to be discussed shortly, models the flow
of access permissions with two rights, take and grant. In Lipton and Snyder
[Bishop79] the interplay between these two controlling rights and the flow of
information extracted from documents is analyzed, i.e. an example of the inter-
slice protection.

5.6.6. Mapping the three-dimensional matrix to SPE concepts

An SPE realization of the three-dimensional matrix model repeatedly uses the
SPE state depicted in Figure 5.6, i.e. the mapping of the two dimensional matrix
with one non-controlling right. However, in the new situation each object is
represented by a set of SPE objects each representing a different access right.
Each SPE object behaves like a ’ticket’ in terms of a capability based approach
with the observation that the ticket contains a reference to a single right and

158 AN SPE INSTRUCTION SET 5.

object. An example 3-right protection state is shown in Figure 5.19.

Modeling rights in SPE as objects makes the introduction and manipulation of
new rights easely. For example, three SPE programs suffice to selectively extend
the new slice with users and objects, as shown in Figure 5.18. The command
addslice can be applied by any user to create a new slice with owner
'rightowner’. The latter subject is introduced solely to avoid a clash between any
real user and the fictive users known within the model. This framework can be
extended to enforce new policies dealing with the interplay of rights, such as
enforcing that users having execute permission to a file do not have write
permission.

Isu] |su|

S
op ool

Figure 5.18 Access matrix representation with three slices.

command addslice(user, rightname, rightowner)
begin
add_region(user, rightname)
add_owner(user, rightname, rightowner)
del owner(rightowner, rightname, user)
end
command addusertoslice(user, userregion, rightowner, rightregion)
begin
add_region(rightowner, userregion)
add_struct(rightowner, userregion, rightregion)
add_owner(rightowner, userregion, user)
end i
command addobjecttoslice(object, rightname, rightowner)
begin
add_object(rightowner, rightname, object)
end

Figure 5.19 Slice extensions.

5.6. SPE PROGRAMS 159

5.6.7. The Take-Grant model

The second model simulated is the Take-Grant model introduced by Jones
[Jones76] which uses a directed graph to represent the protection state, the
nodes of which denote subjects or objects, edge labels denote access rights. Two
controlling rights take and grant are defined, which represent the ability to
rewrite the protection graph as illustrated in Figure 2.4.2. The relationship
between Take-Grant and HRU has been analyzed by Weyuker [Weyuker78],
who gave a HRU simulation of the Take-Grant model as well. As HRU can be
simulated with the SPE, we know that Take-Grant can be simulated too with
one extra level of SPE programs. In this thesis we also show how this model is
directly simulated with the SPE model.

Similar to the SPE, the Take-Grant model distinguishes passive from active
entities and associates rights to describe their relationship. Unlike the HRU
model rights can be defined between objects as well, which makes it possible to
model directories in file systems. The authorization policy of Take-Grant limits
the modification of the protection state to active entities, i.e. the elaboration of a
controlling right is restricted to users. Consequently, take and grant rights
associated with edges between objects are passive, and can only be the object of
transfer by subjects.

These properties imply that objects should be mapped to a combination of
region and object in the SPE model. Likewise active entities are represented by a
SPE user and region combination. The rights modeled are restricted to the set
{take, grant, Alpha}, the latter standing for a non-controlling right. The region
architecture for the simulation is shown in Figure 5.14. Three regions are used
as containers for SPE objects to represent the rights. Moreover, each user and
object is represented as a region. It is a focal point for access rights available to
the user (or object), that is, they represent the nodes of the protection graph. To
simplify the description of the SPE commands we use the naming convention
<region>>/ <object>>, which stands for the name of a single object called
<<object> in the region <Cregion>>. Each object (and user) is represented by
three SPE objects: take/object, grant/object, and alpha/object. Moreover,
names for regions, objects and users may be identical, the context being derived
from its use. An owner of region X having take right to object Y is represented
by accessibility of the object take/Y in the region X. All state transformations
are issued by the fictive user ’su’. The users are only used for authorization
purposes, i.e. a graph rewriting can be requested by active users only. Figure
5.15 shows the mapping of the Take-Grant instructions.

160

AN SPE INSTRUCTION SET 5.

Figure 5.14 Take and Grant SPE state description

create_obj(o)

create_usr(u)

destroy_obj(c)

destroy_usr(u)

command create_obj(o)

begin
add_region(’su’,0)
add_struct(’su’,0,’alpha’)
add struct(’su’,0,'take’)
add_struct(’su’,0, grant’)
add object(’sw’,’alpha’,’alpha’/0)
add:object(‘su’,’takc’, ’alpha’/0)
add object(’su’,’grant’,’alpha’/0)

end B

command create usr(u)

begin -
add_region(’su’,u)
add_owner(’su’,u,u)
add_struct(’su’,u,’aipha’)
add_struct(‘su‘,u,’takc’)
add_struct(’su’,u,’grant’)
add_object(’su’,’alpha’,’alpha’/ u)
add_object(’su’,’take’, "alpha’/u)
add object(’sw’,’grant’,’alpha’/u)

end -

command destroy_obj(o)

begin
{compensation actions of create_obj 1

end -

command destroy usr(u)

begin
{compensation actions of create_usr }

end -

take alpha(A,B,0) command takc_alpha(A,B,O)

auth (A,A) EOWN
pre (take’/B,A)EIMP A (alpha’/O,B) € IMP

add_import(A,A,’alpha’/O)

5.6. SPE PrOGRAMS

end
take-take(A,B,C) command take take(A,B,C)
auth (A,A) EOWN
pre ('take’/B,A)€IMP A (‘take’/C,B) EIMP
begin
add_import(A,A,’take’/C)
end -
take-grant(A,B,C) command take grant(A,B,C)
auth (A,A)EOWN
pre ('take’/B,A)€IMP A (’grant’/C,B) € IMP
begin
add import(A,A,’grant’/C)
end B
grant-alpha(A,B,C) command grant alpha(A,B,C)
auth (A,A)EOWN "~
pre (grant’/B,A)EIMP A (’alpha’/C,A)EIMP
begin
add_import(A,B,’alpha’/C)
end
grant-take(A,B,C) command grant take(A,B,C)
auth (A,A) EOWN_
pre ('grant’/B,A)EIMP A (take’/C,A) € IMP

add import(A,B,’take’/C)
end -
grant-grant(A,B,C) command grant_grant(A,B,C)
auth (A,A)EOWN
pre (’grant’/B,A)EIMP A (’grant’/C,A) € IMP
begin
add import(A,B,’grant’/C)
end -

Figure 5.14 Mapping TG instructions to SPE commands

161

To illustrate, the take-alpha right rewriting rule, which is applied to nodes
A,Band C with wke labeling the edge (AB) and alpha labeling (B,C) is
simulated with the SPE instructions add import and the object naming
convention. The authorization condition ensures that a user is requesting the

state transformation, the command condition checks for the proper TG rights.

The security questions analyzed within the context of the Take-Grant model
are limited in scope. The prime question considered is whether a finite sequence
of graph rewritings exists such that a subject u gains access to an object 0. This
security question has been shown to be decidable in linear time in the size of the
protection graph. In fact, this security question is analogous to path finding in

an undirected graph.

162 AN SPE INSTRUCTION SET 5.

The result of this simulation that it is indeed possible to build multi-level
security systems with different protection policies using SPE. In particular, in
this example any user represented in the SPE state is able to obtain any access
right using add_import. However, as all actions are encapsulated by commands
this weakness in protection is avoided. Similarly, it illustrates how a system
owner can be used to regulate the creation and removal of users(objects) without
taking part in the access flow.

The Take-Grant model definitions [Jones76] do not provide an abstraction
mechanism. In [Jones78] an attempt is made to extend the model with
behavioral properties, i.e. procedure mechanism. This machinery can be used to
simulate the SPE model, because it allows for testing . However, it requires a
single universal node having take and grant access to all users, regions, and object
nodes, as well as the SPE specific rights on all of these. (In the Take-Grant
model disconnected components can not be combined using the graph rewritting
rules.) Then access relations between two nodes can be described by edges
labeled with the relevant SPE relation names, while the applicable procedures
can be controlled by the behavior rules. The effect is that the distance of edges
in the simulated SPE model is at most two, for the universal’ node connects all.
No theory has been developed around the procedural concept in Take-Grant to
derive protection properties for a group of procedures.

5.7. Summary

In this chapter we have introduced a sample instruction set for the SPE model
and showed that it satisfies the properties set forth in the previous chapter on
instruction sets, ie. the set is well-defined. In Section 5.4 the
compensation property is extended to cover the notion of revocation.
Revocation prescribes a policy to undo actions in general. Two algorithms were
presented to realize the revocation sequence with different objectives and
implementation costs. Subsequently, instruction set partitions were studied to
realize protection states governed by derivable security policies. In particular, a
set of predicates parameterized by initial state and instruction set characterize
reachable states. In that context the notion of stealing has been given a formal
definition and an algorithm to determine potential theft and the conspirators has
been indicated.

In the last part of this chapter we have indicated the potentials for a multi-level
security system based on the SPE model and used this approach to simulate two
well-known theoretical protection models. The first simulation, the Harrison-
Ruzzo-Ullman model, emphasized the approach taken by the SPE model in
viewing access control protection as a state transformation invariance property
rather than a state property or a state reachability property. Moreover, it is
shown that both protection systems are equally powerful by simulating the

5.7. SumMMARY 163

Turing machine. The simulation of the Take-Grant model showed how the SPE
model should be extended to accommodate semantic rights.

6

AN SPE PROGRAMMING
ENVIRONMENT

In the previous chapters we have introduced the SPE model and instruction

set. The protection model defines an abstract machine and has been show to be
a good basis for multi-level protection systems. In particular, its emphasis on
behavioral properties made it a vehicle for the description and analysis of access
control problems in computer systems.
The SPE model as a theoretical tool has limited use without an indication of
how it can effectively be applied to the construction of machines, how it relates
to trends in their design, and how the model realizes protection issues in a
programming environment. These topics are addressed in this chapter.

First, a sketch of a (virtual) machine architecture based on the SPE model is
presented. In the design of this machine we ignore the large collection of details
to be dealt with in reality. Instead we concentrate on its global characteristics
and rely on the large body of literature in the area of operating systems design
to fill-in the details. The approach taken is based on a distributed architecture
of loosely coupled virtual processors. Each processor provides a security kernel
implementing a reference monitor for the SPE model.

Second, the SPE model is compared with the static scope rules of the
language PLAIN. It is shown that access control within SPE forms a framework
for enforcing visibility rules in the programming language. The protection
model is used to extend the scope rule mechanism to define and enforce access
control at compile time in collections of PLAIN programs. This leads to a
consideration of a module interconnection facility based on the protection model
which encompasses a framework for project and version management.

The last section of this chapter describes access control enforcement in the
PLAIN programming environment as achieved by a symbiosis of the SPE

164

6.1. THE ARCHITECTURE OF AN SPE MACHINE 165

machine architecture with a PLAIN interpreter. In that context procedure
calling, variable declarations, and variable sharing are analyzed. This leads to
rules for a secure compiler/interpreter SPE implementation.

6.1. The architecture of an SPE machine

6.1.1. Region managers as basic building block

The architecture of the SPE machine is based on an aggregation of virtual
processors. One such processor is associated with each region in the protection
state and referred to as Region Managers. A region manager cannot be
equivalent to a single hardware processor, because this would make dynamic
extension and reduction of the system, as provided for in the protection model,
impossible.

Each region manager can be broken down into three functional components:
a data type processing function, an SPE processing function, and a network
processing function. The network processing function provides facilities for
region managers to communicate using (various) communication media and
protocols. The SPE processor is dedicated to the administration and
enforcement of the SPE protection policies. The data type processing function
provides object class manager(s). Each functional component presumnably has
exclusive access to hardware components, such as cpu and memory banks. The
tasks and options of the machine components are discussed separately.

network processor(s) <<---->> [message queues, protocols]

SPE processor <-----> [SPE protection information]

Type processor(s) ~ <C-----> [process text and data]

Figure 6.1 SPE machine components

The choice for a functional decomposition of the SPE processor stems from
concerns about protection separation and mediation. Cluttering functions dealing
with protection administration and processing has long been recognized as
highly insecure. Early attempts to resolve the protection problem led to
separation of activities in a few different processor states, i.e. kernel-system-user
states. Unfortunately, operating system software soon became too complex to
guarantee reliability and enforcement of the protection policy in the multi-state
processor systems. In turn this led to a new design criterion to separate, as
much as possible, access control enforcement from normal processing functions.

166 AN SPE PROGRAMMING ENVIRONMENT 6.

All access rights, whether related to IO devices or memory, are encoded in
special (hardware supported) objects called capabilities, and handled by a
reference monitor. The reference monitor is the sole system function able to
interpret the capability objects and is normally implemented by a
hardware/software mechanism, called a security kernel. The reference monitor has
been used as a basis for many secure systems. For a survey sce [Landwehr83,
Levy84]. The smaller size of the protection code in a reference monitor makes
verification attainable as shown by Popek [Popek80], yet full scale application
of this technique is not likely going to happen for some time .

The SPE machine architecture considered, based multiple processors coupled
through communication media into a computer network, aggravates the security
problems. The mediation on protection issues, as implemented by a security
kernel in the single site system, becomes more complex, because protection
information is spread among multiple sites. Moreover, access control requires
cooperation and trust among sites, while the communication media impose their
own security problems, such as piggy backing, wire tapping, etc.

In the area of secure distributed operating systems design emphasis is placed
on the network processing activities and reliable exchange of information. The
communication aspects has led to several communication models and protocols.
One example is the ISO/OSI model [Zimmerman80], a multi-layered
description of inter-site communication. With respect to reliable and private
communication, the model relies on message encryption to ensure a secure
communication channel between different user processes. A public key
encryption scheme can be used for this purpose [Diffie 76).

The ISO/OSI model does not explicitly address the access control aspects

implied by the architectural choices. It assumes that entities at the same level in
the hierarchy can establish a communication path. This, however, requires peer
authentication and an authorization mechanism between the different
communication layers. Unfortunately, the model explicitly allows for layer
bypassing, which may result in overloading the communication net with
messages not intended to reach the net at all, or the ability of higher levels in
the ISO/OSI model for illegally tapping the message streams.
A security kernel approach can be used to improve security in an ISO/OSI
environment as well. For example, the presentation layer can be extended to
include authentication functions to establish reliable application level
communication. Each message sent to the application is authorized first.
Conversely the presentation layer authorizes all requests for network facilities,
reducing contamination of the communication media (Assuming that no
bypassing of the presentation layer is allowed). This implies that layers should
ot be able to decode and use the contents of the message other than required
for the task associated with that level.

The designer of a distributed system should address the security properties of
the individual sites as well, since the insecurity of a single site results in insecure

6.1. THE ARCHITECTURE OF AN SPE MAGCHINE 167

communication paths. To circumvent these problems two approaches have been
proposed in the literature:

a) explicitly allow for insecure components and
b) use a distributed capability object type.

The former approach has resulted in the design and implementation of a multi-
level security system around a number of UNIX machines [Rushby83], where
individual sites may be insecure. The network functions only guarantee that
inter-site transfer obeys a multi-level security policy. Approaches taken by
designers of capability based systems can be classified further into:

1) make forging capabilities a probabilistic problem [Tanenbaum81] or

2) ensure that distributed hardware is trustworthy in the management of
system wide capability objects [Wulf74].

The SPE machine architecture sketch is based on the premises that each node
in the network can be made secure and that reliable communication is
achievable. That is, we assume that the hardware is fail safe or has an
acceptable low error rate. The design guidelines raise technical problems of
naming, network topology, type management, authentication, and object
administration, each of which is now addressed separately.

6.1.2. A naming problem

"The first problem to be solved for the SPE machine is its naming policy. The
SPE protection model requires unique names, which in turn requires a solution
for the distributed environment envisioned. System wide naming has been a
problem to be solved in each distributed system and therefore it suffices to
choose an efficient and reliable one. Different strategies have been adopted,
which may be classified as follows:

- Centralized naming

- Decentralized naming
- Context naming

- Probabilistic naming

Centralized naming in an SPE machine requires a single region manager,
called the name space manager, to be in control of the name space. Whenever
a new name is required this manager is consulted. The advantage of the
centralized naming mechanism is compactness in both name representation and
new name generation. The prime disadvantage of the centralized naming
mechanism stems from reliance on the proper working of the communication
network. When the name space manager is disconnected, all work comes to a
halt,

168 AN SPE PROGRAMMING ENVIRONMENT 6.

The disadvantage of centralized naming is solved by generating unique names
based on local information only, i.e. using distributed counters. One way to
handle this is by using a system clock (or counter) extended with the processor’s
serial number [Wulf74] or in generating system wide unique transaction
numbers [Reed79].

Context or relative naming differs from previous methods by dropping the
name uniqueness requirement. Instead, names are bound by the context in
which the are used. A good example of context naming is a hierarchical file
system, like the UNIX file system. File names may be re-used in different
directories, name decoding takes place in the current working directory or an
explicitly defined search path through directories. Another example is the use of
identifiers in scoped programming languages, global definitions are shielded by
local definitions.

Probabilistic naming is used in distributed systems based on the paradigm that
access control is a probabilistic problem. Whenever a new name is needed, one
generates a bit pattern of sufficient length at random. Uniqueness can not be
guaranteed, but the probability that a names clashes with one already in use can
(under the assumption that drawing random numbers in a distributed system
can be realized).

In the subsequent use of the SPE model implementations we assume that all
names are unique within a given context. Wherever it is necessary to distinguish
them, they are prepended with the name of the context, i.e. the defining or
enclosing region.

6.1.3. The network processor

The top level component of the SPE machine is formed by the network
processor, which isolates the communication aspects from the functional aspects
of the SPE machine. Its sole task is to establish reliable and secure
communication links with other network processors. Reliable in the sense that
all messages sent reach their destination unaltered and, conversely, all messages
addressed to the region manager are delivered to its security kernel. The
communication link established should be made secure by making provisions
against wire tapping, piggy backing, masquerading etc. Moreover, the security
kernel has to safeguard the contents of the messages against tampering and it has
to perform remote security kernel authentication.

The separation of transport activities from access control makes it easier to
verify the functionality of the network processor, because one does not have to
prove that the buffering schemes, routing, temporary storage, and message
logging facilities used by the network processor are secure as well. Moreover,
moving authentication to the security kernel dissociates the site’ aspects from the
communication software. Altogether, the network processor can be considered as
providing the SPE processor facilities at the presentation layer level in the

6.1. THE ARCHITECTURE OF AN SPE MACHINE 169

ISO/OSI model.

For the design of the SPE machine the topology considerations do not differ
from other distributed operating system designs. One aspect of concern is that in
the subsequent use of the SPE machine model we assume a fast local area
network, although this is not a prerequisite for a proper working of the system.

6.1.4. The type manager

The lowest level of the SPE machine provides the conventional operating
system functions, i.e. a limited class of objects, types and operations such as
devices, semaphores, processes and files. Rather then considering a single piece
of software providing all facilities, resulting in a baroque and complex system,
we assume that the operating system is a collection of type managers or abstract
data types. A type manager is a piece of software (hardware), which supports
the creation/deletion and manipulation of a particular class of objects. The
notion of type managers comes directly from the area of software engineering
and has been introduced in the area of operating system design by Jones
[Jones73].

From a protection point of view a type manager denotes the boundaries
considered relevant for access control. Authorization takes place during
initialization of a procedure call. Subsequent execution of the procedure is
assumed to be free of any access violations. Realization requires hardware
support, ie. memory segmentation, as available on commercially available
systems.

To illustrate the concept in the context of the SPE machine, one of the type
managers available within each region manager is a segmented virtual memory
data type. This data type splits a virtual address space into a number of distinct
segments and attaches read, write, and execute capabilities. The operations
made available are besides reading, writing, and execution of the segment, as
well as its creation and destruction. Segment creation delivers the name of the
segment for subsequent references.

The segment type facilities are used by user defined type managers in the
same region manager to realize, for example, a database of records. The
database type manager uses one or more segment names provided by the
segment manager for record representation. Incidentally note that these type
managers view a piece of memory from two different perspectives. The SPE
machine should provide facilities to extend the class of tvpe managers for this
purpose and can therefore be considered an open system. However, to simplify
the subsequent discussion we assume that a single user defined abstract data type
is associated with a given region.

170 AN SPE PROGRAMMING ENVIRONMENT 6.

6.1.5. The SPE kernel

The central component of the virtual SPE processor is the security kernel,
which implements a reference monitor. This means that all requests to execute
an operation provided by one of the type managers or to access an object locally
or remotely is checked against the protection policy administration. For this
purpose, the security kernel contains part of the system wide SPE protection
state. In particular, it contains the SPE names for all owners associated with the
region being managed, the objects defined within the region, objects exported
and imported from the region, and the structure relations with regions in both its
environment and contents. Replication requires access control information to be
consistently stored in all sites and that all security kernels should trust one
another after proper authentication. Moreover, it implies that the resulting
system should be homogeneous at the security kernel level.

The tasks assigned to the security processor can be further divided into: (local
and remote) procedure execution, maintenance of the protection state
information, mapping instances of the abstract data types and operations to SPE
names, and authenticating users of the region manager. Each of which is
discussed shortly.

6.1.5.1. Procedure execution

A procedure invocation is considered local when its definition, ie. the
corresponding SPE object, resides in the same region manager as from which the
request originates. Otherwise the call is considered remote. To illustrate the
actions taken when a local call is made, assume a program named Job issues a
request to execute the procedure Insert supplied by the type manager Dbm.
The actions performed by the different SPE machine processing functions are:

a) Job sends the message Insert with parameters and user held responsible to
the security processor.

b) The SPE processor checks the SPE protection information, ie. is the
procedure Dbm/Insert being called defined as a local SPE object?

¢) If authorization succeeds then the message is sent to the object Dbm/Insert
for further processing. Otherwise notify denial.

d) The type manager procedure Dbm/Insert decodes the parameters, executes
the procedure definition, and notifies success to caller.

In this scheme mapping object names and access control enforcement take
place within the SPE processor. The representation of objects, however, is hidden
by the type managers. All communication between procedures is done in terms
of SPE names, which is equivalent to the approach taken in capability oriented
systems. In a sense the SPE security kernel can be seen as a capability directory
manager.

6.1. THE ARCHITECTURE OF AN SPE MACHINE 171

6.1.5.2. Remote execution

In the SPE machine, procedure execution is limited to the context of their
definition, rather than their call. This implies that necessary access rights should
be transferred to the remote region safely. The alternative approach is
addressed in the next section. For the moment it suffices to note that such a
scheme ensures that private access rights of an operation are kept private.
Remote execution differs from local execution in the involvement of the network
processor to transport messages.

For example, assume that the type Dbm is defined remotely, i.e. in another
region manager. Then calling the routine Dbm/Insert from Job results in the
following actions:

a) Job sends the message to the security processor of the region manager it
belongs to for authorization and execution.

b) The SPE processor checks the local protection information, i.e. is the
procedure Dbm/Insert accessible as an SPE object and is the user an owner
of the region?

c¢) If authorization succeeds, the message is given to the network processor for
transport to the region manager where the procedure is defined as an SPE
object. Otherwise the caller is notified of denial.

d) Upon receipt of the message by the region manager for Dbm, the message
is propagated to the type manager.

¢) The type manager procedure Dbmtype/Insert decodes parameters, executes
the operation, and returns information.

Note that distribution of the SPE access control information means that local
inspection to authorize requests is sufficient. Provided though that information
distribution can be done in a secure way. This represents a departure from
capability-based systems where the type manager receiving the capability
authorizes a request.

6.1.5.3. Mapping names

The execution templates above ignore the mapping problems introduced by
the separation of the security kernel from the type manager. Each has its own
memory and they are assumed to cooperate. The kernel, upon receiving a
request to execute a procedure, should be able to determine the name of this
procedure within the type manager name space (i.c. its segment and entry
point). On the other hand a type manager should be able to determine the
name of an SPE program to request its execution or to determine the name of
an SPE object to access it. Both situations call for a directory, binding the name
spaces of the two subsystems.

172 AN SPE PROGRAMMING ENVIRONMENT 6.

As message flow is funneled through the security kernel, the directory is best
placed under control of the kernel software. Selection of an object (or an SPE
user) is triggered by a type manager by sending an alias for the SPE object to
the kernel. Conversely, procedure parameters received by the kernel are
mapped to their aliases before being shipped to the type manager.

The advantage of this approach is that it limits type managers in naming
valid SPE objects (and users), they can only name objects (users) accessible
within their security kernel. Moreover, using this approach makes it possible to
define additional aliases for the same object. Often they reflect an address in the
(permanent) virtual memory associated with the type managers’ process.
Although a type manager is free in the construction of the aliases, actual use is
limited by the directory structure kept in the kernel. An actual implementation
should address problems like how both kernel and type manager become active
upon receiving a message, and the size and structure constraints imposed on the
type manager aliases. In summary, instruction invocation in this architecture is
seen as sending a message with the appropriate access rights to an object, in this
respect it is similar to systems like [Wulf74, Goldberg] or to a communication
port in [Tanenbaum81].

6.1.6. Changing the protection state

Changing the protection state administration is not different from calling
routines provided by any type manager. When a change is requested a message
is constructed for one of the SPE programs with SPE parameter names.
However, the message is interpreted directly by the security kernel. The
instructions add owner, add object, add region, and add export can be handled
locally. Communication with the region managers in the environment is
sufficient for handling add struct and add_import instructions. Other SPE
instructions, such as the deletion instructions, require conversation with the
region managers in the environment or beyond. (chapter 4 and 5) The actions
are illustrated with a few examples.

Whenever a new object is added to a region the security kernel generates a

unique SPE name and constructs an entry in the directory to enable the type
manager to denote this object in the future. Export of SPE objects are handled
as specified in the SPE model, the user issuing the request is checked as one of
the owners associated with the region manager, access of the object being
exported is checked, and finally the EXP relation is updated.
The instruction add region requires support by the underlying machine, because
a new region manager should be constructed. One possible implementation is to
copy the network processing functions and built-in type managers of its ancestor
into the new region manager and assign the user responsible for the call as sole
owner.

6.1. THE ARCHITECTURE OF AN SPE MacCHINE 173

When access rights are imported or when structure relations are created
conversation with other region managers is required. The former requires the
object to be accessible in one of the regions in the environment from which the
call arises, and the latter requires that the invoker of the call owns both regions
involved. ~ For example, consider importation of an object, i.e.
add_import(u,R,0), used within a program running in the region manager R.
First, the security kernel obtains the region names of those defined in its
environment. Each of these regions is sent the request add import(u,R,0). Say
region manager S receives it, then its security processor recognizes the message
as an inter region manager request (looking at R), which means that no
authorization of the user is needed. Instead, the region manager R requests
access permission to an object accessible in S based on the availability of a
structure relationship with S. Accessibility of the object in S and the (R,S)
structure relationship is checked to ensure that indeed R is allowed to obtain
access. An acknowledge message is returned indicating success or denial. When
R receives a successful reply, it modifies the protection area to indicate that the
object has been imported. Upon denial other regions are checked or the action
is sent a denial or access violation.

Another example is the making of a structure relation, which requires
modification of the protection area in both security processors involved. Assume
that security processor for R tries to establish a structure relation with security
processor S on behalf of user u. The first action of R is to authorize u, then the
message add_struct(u,R,S) is sent to the processor for S, which authorizes the
request and changes its protection area accordingly. Upon receiving a successful
reply R can change the protection area as well.

6.1.7. Authentication in the SPE machine

In the SPE model extensive use is made of the concept of user entities. Each
state transformation requires the user responsible for the request to own the
regions affected. The representation of users within the SPE security kernel
requires a solution for naming, authentication, and introduction of new users as
well. In essence, the naming problem for users is not different from the naming
problem of objects. Each new user should be represented by a (globally) unique
SPE user name within the kernel. Moreover, to allow type managers to
construct messages for protection state management, the user names should be
supplemented with an alias.

Authentication involves a process where the identity of a user is established in
a ’dialogue’. In essence the authentication process has access to the list of user
name aliases and, upon receiving proper information (passwords) from the user
(at the terminal), changes the activator associated with the command interpreter
or starts a new interpreter process for the user. One approach is to dedicate a
single region manager RM to handle all authentication requests. The

174 AN SPE PROGRAMMING ENVIRONMENT 6.

advantage is simplified authentication information administration. The
disadvantage is that all region managers should trust the authentication
manager. The role of this RM can be compared with the role of a notary in
reality. An example of such a scheme in a PLAIN programming environment is
given in [Riet80]. An authentication scheme using encryption within a
distributed environment is described in [Needham78].

A small problem arises during the authentication process itself, especially
when conversation is required with other RMs. During this process, an SPE
user name is required as invoker of the actions. Clearly, the user being
authenticated can not be this invoker. The solution to these and similar
problems is supported in SPE by considering co-owners of a region equally
powerful. This property can be used to introduce an SPE user name at creation
time of the region manager, which is unique to the region. When this SPE user
is not augmented with authentication information, no changes with respect to the
protection policies result. This way the authentication process never derives it.
However, it can be used to represent actions taken by the region manager on its
own initiative or as a substitute for the user for whom it is interpreting the
command.

6.1.8. Summary

In summary, the SPE model can be used to direct the design of a distributed
system using existing hardware/software technology. In resulting system
necessary protection information is available on the spot, i.e. the security kernels,
which makes access authorization cheap. Moreover, separation of the security
aspects from the type managers and communication protocols leads to a more
orthogonal system design. Type managers (i.e. servers) are freed from the
storage, decoding, and maintenance of the access rights (if they so desire). The
communication media are shielded from the type managers using the same
protection structure, avoiding malicious communication software and type
managers gaining access to the interkernel communication.

As mentioned in the introduction of this section, the description of a complete
SPE based machine architecture necessarily requires attention to many more
detail, such as multi-programming a region manager, concurrency conflicts in
access authorization and revocation, etc..

To summarize the global design of the SPE machine, we compare it with the
design constraints given by Saltzer [Saltzer75] for the construction of secure
systems:

1) Processes on an SPE machine execute in small protection domains by
definition.

2) The number of instructions used to implement access control is small, ie.
the SPE instructions.

6.2. VISIBILITY IN HIGH-LEVEL PROGRAMMING LANGUAGES 175

3) Every access is checked against the most current policy by the SPE security
kernel.

4) The design is open and new type managers can be introduced readily to
describe and enforce new protection policies.

5) More than one condition determines access permission, ie. local
administration and invoker identity.

6) Access control flow channels between procedures are explicitly defined and
limited.

Therefore, the architecture presented here around the SPE protection model
provides the necessary infrastructure to accommodate a large class of protection
policies, which may include insecure data type processors as components as well.

6.2. Visibility in high-level programming languages

Central issues in the design of high-level algorithmic programming languages
are the description of its program text structuring primitives, the visibility of
identifiers at various points in the program text, and classification of objects by
data types. The structuring primitives, like block structure, modularization, and
visibility rules give the programmer precise control over the name space
management: the set of names a programmer may define and use at any point
in his program. Name space management results in economy of name space
usage by resolving naming ambiguity by context using the visibility rules.

Primitives for text structuring and visibility rules can be traced back to the
early days of High Level Languages (HLL). For example, Fortran allows for
grouping of code into separately compiled routines. Objects are declared local
to a routine using both explicit and implicit typing. The prime name space
management primitive is the (labeled) common data area, which, besides the
parameter mechanism, is the only means for routines to communicate within the
language framework.

The late fifties mark the introduction of block structured languages
[Wijngaarden69], where two units are written in the context of the same
declarative part if they are to share the visibility of some common outer objects.
Its successor, Algol 68, is a significant mark in the development of block
structured languages, because it generalizes the typing mechanism and visibility
rules of ALGOL 60. Its definition is rich enough to describe formally visibility
rules as well [Wijngaarden69].

Languages developed in the seventies extended and refined the structuring and
visibility rules in two directions: encapsulation, originating with the class
definition in SIMULA, and control of name visibility. Encapsulation is used to
describe not only the structural aspects of objects in a data type definition, but
include its behavioral aspects as well. Encapsulated data types are manifested as

176 AN SPE PROGRAMMING ENVIRONMENT 6.

textual units and are divided into an interface specification and implementation
body, also called modules or abstract data types. In addition, the programmer
is given tools to explicitly state the transfer of name visibility between different
lexical groups in the form of import/export lists [Wirth80, Liskov8l,
Lampson77] or restrict/use clause [Ichbiah79].

6.2.1. Relation between access control and visibility

Object visibility in programs has long been related with access control. An
early example is the extension of COBOL with access classes to restrict the use of
record fields [Conway72b]. Morris [Morris73] claims that types in HLL should
be interpreted as a language mechanism to implement authentication and access
authorization. Authentication ensures that any value supplied to an operation is
consistent with the type expected. Access authorization in this view means that
any operation applied to a value is meaningful for that type. Jones and Liskov
[Liskov78] take a different approach by extending a HLL with facilities to
restrict the behavior of an object when it is declared to support a subset of the
operations defined for the type. Their approach is based on mapping 2
capability-based protection scheme into a high-level programming language,
using generic procedures to handle objects with different access behavior.

The main benefit of enhancing a language with explicit access control
information is enhanced software reliability and manageability of the
development environment. Software reliability is gained through the ability to
state the intended use of objects in advance and to control/restrict the
propagation of object visibility. These language based control primitives,
compared with operating system access control, results in finer protection
granularity. Moreover, a language providing separate compilation augmented
with access control information results in a better software engineering
environment. CLU [Liskov77], PLAIN [Wasserman81] and Ada [Ichbiah79]
are examples of such languages.

Inclusion of access control primitives in a HLL alone does not solve all
protection problems encountered. For one thing, a model to study the range of
protection is needed and this model should be independent of the semantics of
the rest of language. For example, in [Liskov78] the Take-Grant model is used
in a language framework, addressing assignment and parameter passing only.

The access control issues in a HLL are studied in this thesis using the
programming language PLAIN. PLAIN was designed in the late seventies to
simplify the construction of interactive information systems, a goal similar to
languages like ASTRAL [Bratbergsengen79] and Pascal-R [Schmidt77]. It
contains most features of contemporary high-level programming languages. In
addition, it incorporates full fledged relational data base facilities and pattern
matching mechanism, to ease the construction of dialogues. PLAIN follows the
trend in providing powerful data structures and control primitives. Being

6.2. VISIBILITY IN HIGH-LEVEL PROGRAMMING LANGUAGES 177

designed late, it could rely on experiences gained in the ’use’ of the languages
[Wirth80, Liskov81, Lampson77]. After a short introduction of the lexical
language elements, the SPE model is used to obtain a more formal basis of the
access control issues in this language. A prototype compiler has been
irnplemented at the University of California San Francisco.

6.2.2. Scope rules in PLAIN

The syntactic objects dealt with in a PLAIN program are:

program units (program, procedures, functions, handlers)

type definitions (simple, structured, database, modules)

variable declarations

exception definitions

pattern definitions

constant definitions
Syntactic objects can be referred to by the identifier assigned to it as part of its
declaration/definition. The region of text where an identifier or name is known
with a single meaning is called its scope, which is delimited by the closing
bracket of the program section in which it is declared or defined. A scope is
associated with an identifier and not with keywords of the language.
Consequently each introduction of a name can be considered starting a new
scope. A procedure name is both known within the procedure definition and in
the body of directly enclosing program units.
Economy of name space allows the same identifier to be used for identifying
different objects, thereby shielding its previous definition i.e. disallowing access.
Renaming is allowed for objects defined at an outer definition or declaration
section only.

Aside from hiding definitions by identifier reuse, the programmer is given tools
to control the visibility of identifiers using a refinement of the scope mechanism.
PLAIN distinguishes two scope types: open- and closed- scopes. A program, a
module type and a program unit definition (procedure, function, or handler)
form closed scopes; the others are open. Open and closed scopes affect the
visibility of identifiers defined in the enclosing scopes as follows:

In a closed scope, an identifier is accessible if it is:

- declared/defined in that scope

- accessible within the enclosing scope, and imported into the scope

- a formal parameter of the type or program unit definition in which
the identifier appears, or

- declared as being an external object in the main program in which
the scope is enclosed

In an open scope, an identifier is accessible if it is:
- declared/defined within that scope, or

178 AN SPE PROGRAMMING ENVIRONMENT 6.

- accessible within the enclosing scope.

Basically, a closed scope makes all identifiers known within the enclosing scopes
inaccessible unless explicitly requested through an import clause.

6.2.2.1. Pervasiveness

From the standpoint of programming practice straightforward application of
the open/closed scope rules is cumbersome, because it requires cach procedure
(type,program) to enumerate all identifiers used in advance. Recognition of this
effect led to the definition of pervasive objects in EUCLID [Lampson77].
Pervasive objects are not affected by the scope type, they are accessible in all
inner scopes without an explicit import request. Non-pervasive objects should be
made accessible within the inner scopes by means of the imports statement.

The question still remains as to which language constructs should be made
pervasive and which not. In PLAIN all names associated with definitions, i.e.
constants, patterns, and exceptions are pervasive, while all others, ie. files,
variables, and program units, are non-pervasive. This separation is based on the
premise that pervasive objects are not “mutable”. Mutable objects are those
objects in the PLAIN program which can be changed using assignment or
implicitly assigned in a parameter list. (Unfortunately, the latter makes
program units “mutable” as well)

6.2.2.2. Visibility restrictions

The closed scope in combination with the import statement, allows the
PLAIN programmer to describe the use of objects in the context of their use, i.e.
“what object is used here”. The complementary primitive to limit the context
where a mutable object can be made visible, the restricted to clause, embodies
the “where an object may be used” concept. The restricted to clause provides a
means to restrict the number of closed scopes in which an object can successfully
be imported, but controls the first of a nested sequence of imports only. For
example, the variable a in Figure 6.2 is restricted to the procedure walk. Thus a
can not be used in the procedure print, although a is defined globally. The
procedure walk can import a, as can all of the procedures defined locally to
walk.

6.2, VISIBILITY IN HIGH-LEVEL PROGRAMMING LANGUAGES 179

program progl;

procedure search;
var b:integer;
a: integer restricted to walk;
procedure walk;
imports a:readonly;
var c,d:integer;

wd..c.d
end
procedure print;
begin

end

begin
end

begin
... body of program ...
end.

Figure 6.2 Example PLAIN program structure

To complete the introduction of the access control primitives in PLAIN we
should mention the ability to limit the use of mutable objects upon importation
to either modify, readonly, or invoked access. Procedures can be imported as
invoked, variables as either readonly, or modified. A modifiable object can be
restricted to readonly, which restricts further import to readonly as well.

Access control primitives in PLAIN are limited to compile time issues only,
i.e. static properties are controlled. The qualification invoked does not limit the
use of an imported procedure, because the single operator defined for a
procedure is invocation. The use of readonly/modify primitives for access
control is limited too, because it is restricted to lexical objects rather than an
attribute of a variable. Furthermore, the access attributes are restricted to entire
variables and cannot be applied to structure components.

6.2.3. SPE as a framework for PLAIN object visibility

In this section we show how the visibility aspects of algorithmic languages like
PLAIN can be translated into SPE terminology, which makes the protection
model a reference point of compiler implementation and verification.

180 AN SPE PROGRAMMING ENVIRONMENT 6.

The regions in the SPE model are repositories of objects and provide
boundaries on the accessibility of objects, which is best modeled by associating a
different region with each closed scope in the language. That is, each program
unit definition, program and (module) type introduces a new region. The
nesting of closed scopes in PLAIN is mapped to the structure relation of SPE,
which results in a hierarchical region structure.

The next step is to associate each PLAIN object definition with an SPE
object. The SPE object is assigned to the region associated with the scope in
which the PLAIN object is defined/declared. Note that a procedure definition is
both represented as a region and as an SPE object. The former represents the
scope, the latter the entry point. Applying these actions to the example program
of Figure 6.3 (ignoring the restricted to clause) gives the following graphical
representation. To resolve ambiguity in naming, regions are named after their
PLAIN occurrence, enclosed in <<= brackets.

<progl >

<print>'.'.

Iy

Figure 6.3 SPE state description of progl

A region is associated with each closed scope, depicted by a line and the name of
the scope. Within each closed scope, i.e. region, objects representing the
variables and the body of the unit are defined. The name of a procedure is
exported to its environment to make it visible to other procedures defined at the
same lexical level. The contents of the SPE objects is shown below.

6.2. VISIBILITY IN HIGH-LEVEL PROGRAMMING LANGUAGES 181

Object Contents
progl program progl;
begin
.... body of program ...
end
search procedure search;
begin ... end
a azinteger
b b:integer
walk procedure walk;
begin ...b...c...d end
end
c c:integer
d d:integer

"The region/object structure obtained from this mapping defines the visibility
relationships only. We should show how a compiler interprets the various scope
rules and statements in the context of the protection model. That is, it is
necessary to define the meaning of identifier hiding, importation, pervasiveness,
and restricted access.

Identifier hiding is solved in SPE by using context naming, as assumed in
section 6.1.2. Importation of mutable objects is interpreted as issuing an import,
which succeeds if and only if the object imported is accessible within the
environment. Export of an object, as available within module types, models the
concept of making ’globally’ known objects defined. The semantics of pervasive
objects is simple. For each subregion of the object’s defining region an import is
generated recursively. Since the structure relation forms a hierarchy,
pervasiveness makes the objects known within the complete subtree. The
restricted to clause divides the collection of subregions of the object’s defining
region into classes with similar access permissions: those where the object may be
imported and those where the object may not imported. This situation can be
modeled within SPE using filter regions. For example, consider the declarations:

var a: integer;
b: integer restricted to proc2;
This leads to a graphical notation as shown in Figure 6.4, where two regions are
introduced to control the environment of procedures procl and proc2.
Procedure <<proc2> is limited to object a, while <<procl> can import both
object a and b.

182 AN SPE PROGRAMMING ENVIRONMENT 6.

< procl> <proc2>

¥ v oV
Figure 6.4 Mapping restricted to access

Note that a different filter region is required for each access group involved and
that the environment is defined by the structure relations.

6.2.4. Summary

Mapping PLAIN visibility aspects to the SPE model equates identifier
visibility with access control. The model describes the actions taken by the
compiler upon the interpretation of the scope related actions and can serve as a
basis for implementation verification. Moreover, the SPE model suggests a
number of improvements and clarifications to the informal language definition
[Wasserman81] in the areas:

a) export of mutable objects

¢) exception identifiers

d) restricted to for program units
e) the role of externals.

The export directive allows operations defined for a module type to be
exported. However, the language report requires all operators exported to be
defined in the operator definition section (Sec 6.5). This requirement precludes
export of operations of module types defined local to the module type
considered. A generalization is gained by considering all these operators to be
defined implicitly in the operator section as well. For example, assume that the
module stack in Figure 6.4 defines the concept of a stack element locally. Then
all operations defined on stack elements should be exported to the environment
of stack.

Exception identifiers don’t follow the identifier hiding policy. In every closed
scope where they are is used, they should be defined. In terms of SPE this
means that multiple objects are used to represent them, but this makes the
resulting SPE state unacceptable. In particular, it is very difficult to analyze
and control the scope of exception identifiers. A solution would be to consider

6.3. BUILDING INFORMATION SYSTEMS wiTH PLAIN 183

exception definition equivalent to either variable declarations or constant
definitions. Then, however, they should follow the same importation rules.

"The restricted to clause can be thought of as implementing SPE filter regions.
Considering program units as “mutable”, subject to import manipulation and
thus filtering, requires that the restricted to clause to be applicable to program
units as well, Moreover, to benefit from the filtering mechanism at all levels in
the program, the import clause should be extended with the restricted to clause
as well.

External definitions can be seen as a specification of the environment of the
program’s region, or the program’s prologue. All mutable objects should be
named in both the external clause and a global import statement. However, the
latter is superfluous.

In the mixture of (non) pervasive identifiers, restricted to clauses, and the two
scope variants, PLAIN differs from similar languages like Pascal and Ada. In
Pascal all scopes are open, while in Ada all scopes are open unless explicitly
closed and importation is necessary for modules only. The rationale for using
closed scopes is founded in the application of “the need to know privilege” from
protection methodologies. Phrased alternatively, a program unit should not gain
access to objects unless explicitly granted.

Observe that in the SPE model the protection issues are related to the actions
of users as they are associated with regions, that is, users can affect regions when
they own the region only. Normally when compiling a program there will be
one user. Thus the security questions addressed by the SPE model, such as
“who can gain access to an object”, translates to cross reference information on
the program, ie. in what scopes is an identifier visible. Moreover, the use of
these features supports the construction of reliable code by making visible more
of the intended behavior.

6.3. Building information systems with PLAIN

Construction of large information systems requires more than the
programming language PLAIN. A well-integrated environment is needed, which
incorporates both tools for the construction of systems, and a methodology for
their analysis and design, supported by automated tools. A requirement
specification for such a programming environment has been described for the
language Ada [Buxton80], which includes a compiler, syntax driven editors,
(symbolic) debuggers, cross reference tools, and linkage editors. The
methodological consequences of Ada has been given limited attention in the
literature so far.

By contrast, the programming language PLAIN was developed in parallel with
User Software Engineering methodology [Wasserman82b, Wasserman 79a]. The
advantage of such an approach is a better integration of the software tools with

184 AN SPE PROGRAMMING ENVIRONMENT 6.

the techniques to apply them to the construction of interactive information
systems. The automated tools to support the methodological aspects are under
development at the University of California, Berkeley [Rubin84], which uses the
relational database system Troll developed at the Vrije Universiteit, Amsterdam
[Kersten81b, Kersten], to store the system structure information and to drive the
different software specification and analysis tools.

In this section we illustrate two aspects of the PLAIN programming
environment: a module interconnection facility in the development phase and
the realization of the programming environment using an SPE machine.

Going from PLAIN programs to the construction of large scale information
systems poses three problems not covered by the language semantics:
incremental system construction, integration and versioning, and project
management. Incremental system construction is a technique to build systems
through gradual extension of a family of application programs. Incremental
system construction is often based on separate compilation, a technique to
compile programs components delaying variable binding to the linkage editing
phase or execution time (dynamic linkage). For this purpose the compiler
maintains a database of (un)resolved names and the interface definitions of the
program constituents. Example high-level programming languages providing
separate compilation and tight control over the interfaces are CLU [Liskov8l] ,
Euclid [Lampson77] , and Adalchbiah79.

The SPE model can function as an architectural framework for the
construction of a separate compilation facility for PLAIN, because it describes
the infrastructure and the access relation between the system parts. The model
does not restrict the semantic issues involved in linkage, such as text/ data/ bss
memory allocation scheme. However, the model constrains execution of
separately compiled PLAIN code. That is, a PLAIN program can only be
executed if the corresponding SPE state is secure, i.e. all access references are
resolved.

6.3.1. Module interconnection languages

Incremental system construction, supported by separate compilation, can be
seen as a bottom up approach to system development. It does not enforce any
decomposition or hierarchical system structurc in advance. On the other hand,
system structure and access relations may be derived from the design process and
enforced by the compilation system. This technique was first proposed by
DeRemer and Kron [DeRemer76] They stipulate that the construction of
complex systems should primarily constitute programming in the large, knitting
(large) pieces together, rather than programming in the small, writing low level
code. Their suggestions have triggered research on models and tools for
capturing the interconnections between program components (modules) at design
stage, which resulted in several Module Interconnection Systems [Cooprider79,

6.3. BUILDING INFORMATION sySTEMS wiTH PLAIN 185

Thomas76].

A module interconnection language (MIL) can be considered as a design
language, because it states how modules of a specific system fit together to
implement the system’s function. This is architectural design information. The
basic functions of a MIL are:

a) Description of the system structure

b) Establishing static inter-module connections

c) Provide different kinds of access to resources

d) Manage version control and system families.
MILs are not concerned with what the system does (specification information),
what the major parts of the system are and how they are embedded in the
organization (analysis information), or how the individual modules implement
their function [Pietro-Diaz83]. In particular, a MIL does not address the
following compilation properties:

a) Loading

b) Functional specification

c) Type specification

d) Embedded link-edit specification.
The trend in MIL development is to keep the domain of the MILs well defined
so that stand-alone MILs can be defined and then integrated as part of a
software development environment, such as Gandalf [Habermann?79]

The SPE model is a good architectural framework for developing a MIL as
well. System structure, import, export, and inheritance properties as used in
[Thomas76] can be mapped into structure relation and accessibility directly.
Module and (sub)system map to object and region respectively, The version
concept can be mapped to user entities in the protection model, which then
models the access relationships of versions and the objects composing a system
version,

6.3.2. Module interconnection and project management

During the software development phase each program (module) can be (and
should be) assigned a person principally responsible for its creation. The extend
to which a user can obtain or use other pieces, that is, software owned by other
users, depends on the provision of access rights (explicitly) granted. The obvious
way this is achieved in existing systems is to maintain one or more library files
(maintained by a librarian), to reflect the access rights by a particular group of
users. The disadvantage of this method is inflexibility in the dissemination of the
components needed by programmers to complete their task. The file system
protection deals with files as units and provides limited facilities to distribute
access permissions on an file component basis.

Designing a Module Interconnection Language using the SPE protection
model as a basis makes it possible to address these project management issues.

186 AN SPE PROGRAMMING ENVIRONMENT 6.

In particular, an SPE based MIL can be used to control the communication
paths between the programming teams. A sketch of this approach follows.

6.3.3. A PLAIN Programming Environment

The SPE model is used as an infrastructure for a programming environment
for PLAIN, hereafter referred to as PLAIN®. In the description of this
programming environment we restrict ourselves to the basic relations among
programs and processes. We ignore the large collection of semantics specific to
editors, library management, etc. The infrastructure of PLAIN* is based on the
extension of the scope concept in the language itself, for which we have seen that
the SPE model primitives are applicable as well. Figure 6.5 shows some
commands available to the user of PLAINY, partly based on the commands
available in the User Software Engineering Control Systems [Rubin84].
Presumably these commands are recognized by a command interpreter and
supported by the proper SPE kernel programs. Most commands are directly
obtained from the SPE instruction set. The command change(name,region)
permits users to switch between different regions they own without the necessity
of re-authentication by the system.

addowner(region-name, user-name)
addregion(region-name)

addstructure(region-name, environment-region-name)
addimport(object-name, region-name)
addexport(object-name, region-name)

delowner(region-name, user-name)
delregion(region-name)

delstructure(region-name, environment-region-name)
delimport(object-name, region-name)
delexport(object-name, region-name)

runprogram(objcctname,rcgion-namc)
newsystem(username,region-name)
ncu_wcrsion(usernamc,vegion-namc,vcrsion-namc)
compile(file-name, region-name)
change(username,region-name)

Figure 6.5 PLAIN* commands

PLAIN* deals with relations between users, system versions, and PLAIN
lexical objects. This means that PLAIN* users should be recognized, ie.
authenticated, and an alias should be determined corresponding to the SPE user
entity. The methods to realize this within the SPE machine have been presented
earlier (Section 6.1.7).

6.3. BUILDING INFORMATION SYSTEMS wiTH PLAIN 187

Initialization of a new system or project is implemented by the command
newsystem, which takes the alias for the system manager, say FooMegr, to create
a region and assigns ownership. In addition all PLAIN* commands are assumed
to be accessible to the system manager. Subsequently one or more projects are
defined by installing region managers and project managers as the sole owner,
By setting up a structure relation between the system region and the project
regions, using addstructure, PLAIN* commands can be imported by the project
managers using addimport. The project managers recursively define sub-
projects for their programmers. The resulting infrastructure is shown in Figure

6.6.
Foo

Project2

Figure 6.6 Project infra structure.

Construction and installation of software now becomes a two-phase process.
First, the programmer prepares a PLAIN object definition, a PLAIN program
or part thereof, using one of the editors built (or included) in the region
manager. Second, it presents the file to PLAIN* using compile(file-name,
region-name). The compile command performs a syntax and semantic check
and copies the text file into a region/object structure as illustrated in the
previous section. The net result is an extended protection state reflecting the
specifications of the program.

Note that the decomposition of a program into smaller components and its
representation in region/object/structure relations provides the means to
selectively replace or extend the program definition using an enhanced (syntax
driven) editor. Moreover, the access sharing commands, addimport and
addexport, can by applied directly to the protection state.

6.3.4. Object sharing

Building large systems is teamwork, which implies that a programming
environment should provide tools for selective communication as well as
’broadcast’ communication among the team workers. Sharing through a
common parent region, the use of filters, and the construction of private
communication channels are presented to illustrate this.

188 AN SPE PROGRAMMING ENVIRONMENT 6.

FooMgr
Foo

Figure 6.7 Project structure

Consider two programmers, ProgM and ProgF, working on the same project
Foo and managed by FooMgr. The region structure of this project is illustrated
in Figure 6.7. The authorization policy of SPE and thus for PLAIN* allows
both programmers to install software in their regions. Moreover, the protection
model supports selective transport of access rights in four different ways:

a) local trust communication

b) mutual trust communication
¢) third party communication

d) mutual distrust communication

Local trust communication allows both participants to communicate through
a common ancestor region. In our example, both ProgM and ProgF can import
all objects installed by FooMgr through the addimport command directly and
exchange access rights by exportation of objects. However, each export makes
the object accessible to FooMgr and all other programmers represented by
subregions of Foo. Note that both programmers exchange objects without active
support of FooMgr, yet are restricted in communication with the rest of the
*world’.

6.3. BUILDING INFORMATION SysTEMS wiTH PLAIN 189

g
z
5

|
|

Foo

PR

[ProgM]

I ProgF l

AN

Progl | | ProgF

NIIFregion

Figure 6.7 Project structure

A more private communication channel is the construction of a mutual trust
channel, illustrated in Figure 6.7. Both programmers end up with unlimited
access to objects in the neighbors’ region. Provided, of course, that the primitive
SPE operators are available. The construction of the channel requires both
programmers to cooperate, because the SPE authorization requires the invoker
to own both regions involved. After this channel has been installed, both ProgM
and ProgF can import objects into the common region and export it to the
region of the other,

The lack of selectivity in access flow is handled either through the
introduction of an independent third party or a filter region. A third party is of
use when access flow is known in advance and prescribed by a contract, which is
guaranteed by the third party. The introduction of a trusted user between
ProgM and ProgF to regulate access is shown in Figure 6.8.

190 AN SPE PROGRAMMING ENVIRONMENT 6.

[FooMer]

Foo

I Nota&'

MFI' region
|

&

Figure 6.8 Third party communication

|FO0Mél‘|

Foo
ProgM ’\ I ProgF'
| ProgM| |ProgF

Mifilter Ffilter
|

\E e

MIF region

Figure 6.9 Restricted third party communication

To reduce access permissions of the third party a filter region can be used.
The final situation is shown in Figure 6.9. The owner of the filter region
selectively imports the objects accessible to the other programmer. The result of
the actions is that both programmers can share selectively objects. Gaining
access to an object requires the active cooperation of the other, to make the

6.3. BUILDING INFORMATION sysTEMS wWiTH PLAIN 191

object accessible within the filter region.

The manager can, of course, use the concept of a filter as well. Placing a
filter between the Foo region and the programmer’s regions disables the use of
the system region as a mailbox between ProgM and ProgF. Exchange access
rights now requires active cooperation of FooMgr. Moreover, FooMgr can
selectively provide both programmers access to his objects.

6.3.5. Summary

The global description of PLAIN* shows that indeed the protection model can
function as a backbone for structuring the programming environment imposing
the protection infrastructure. The realization of PLAIN*, including a database
management system, editors, debuggers, graphical design tools, etc., is a major
time investment and its description beyond the scope of this thesis.

The SPE model provides a clear picture on the relationship between pieces of
the program without going into too much detail. It focuses on the access
permissions, that is, can a user use parts of the software in a given context? An
example of our approach is published in [Riet83].

The SPE model invariants ensure that the relations between the components
are consistent. In particular, it places a constraint on compilable programs. That
is, a program can be compiled when its region/object structure represents a
secure state only.

The SPE model shows a way to decentralize authorization. Each user owns
part of the system and can freely communicate with his ”twins” using a common
parent region as a mailbox. Moreover, the PLAIN commands can be regarded
as objects and thus their invocation becomes subject to SPE authorization. That
is, the system manager can withhold SPE primitives or provide parameterized
versions. For example, the system manager can, using a filter, withhold project
managers to define new users or provide new command to do this in a new way.

Theorems derived for the SPE model indicate the potentially dangerous
situations where access rights may leak to non-trusted users. For example, the
private channel of Figure 6.11 is only partly secure, because it allows both
programmers to import all objects from the other’s region. In other words,
ProgM can steal objects from ProgF without any conspirator. Using the filter
mechanism to restrict the commands available to the FooMgr, project leaders
can be forbidden to enter new programmers. This corresponds to the situation
that a limited instruction set is available, characteristics of which have been
analyzed in section 5.4.

192 AN SPE PROGRAMMING ENVIRONMENT 6.

6.4. Dynamic behavior

In the previous sections we addressed the lexical aspects of PLAIN programs
both at a microscopic level, in a single program, and the macroscopic level, in
the controlled construction of (interactive) systems. It showed that the SPE
model can be used as a framework for access control enforcement and system
structure in both situations. However, it relies on the proper incorporation of
the model in both the compiler and its environment. A machine architecture
has been introduced for SPE as well and it is worthwhile to investigate the
consequence of this architecture on the compiler construction and the run time
environment, such that the symbiosis of compiler and SPE machine guarantecs
the protection properties of PLAIN. All protection decisions are made by the
security kernel and the compiler generates only proper parameterized calls to
the security kernel. As a consequence, the compiler can not rely on isolation of
the object manipulated in the address space of the process to determine access
violations.

First, we show how procedures in PLAIN can be modeled in terms of SPE
programs. Second, the mapping of variable declaration in PLAIN to SPE
machine objects is discussed using the declaration and subsequent use of abstract
data types. Constants, files, and patterns can be considered variations on this
theme. Third, we show how parameters are treated. Finally, extended access
control and database representations are discussed. Studying the protection
issues in this context raises problems due to concurrency and multi-processing,
which are ignored in the compiler based approach discussed here.

6.4.1. Procedure invocation

In the introduction of the SPE machine we proposed a scheme for operator
invocation based on message passing. Each message is scrutinized by the
security kernel and sent to the region manager where the procedure being called
is defined. In the presentation of the protocol we ignored the choices underlying
the protection policies, which can be classified as follows:

a) who may invoke a procedure,
b) where is the procedure being executed,

" *
c) what are the access rights provided to the process .

The algorithmic properties defined by the procedure body are ignored as far
as they do not involve any transfer of access rights or (in)directly change the
- protection state. Thus, procedure calls, parameters, and object declarations are
retained for analysis only.

Issue a). There are limited options, because SPE requires that at least one user

* A process is the execution of procedure.

6.4. DyNAMIC BEHAVIOR 193

should be associated with each process. Moreover, the authorization policy
requires that this user is an owner of the region manager in which the procedure
is called or executed. For this purpose, the user is represented within the process
by an alias, sent to the security kernel for authorization purposes. Moreover, the
protection model implies that a procedure can only be invoked when the
corresponding SPE object is accessible within the region manager of the call,
because that is the only way to name it. it can not be named.

Issue b). Procedure execution requires a new name space to identify the local
variables uniquely. In terms of SPE, this means that execution is coupled with a
new region and that we should use a relative naming scheme. Isolation is
needed both to avoid name clashes and to avoid interference of concurrently
running processes in the same context.

Issue c). Access rights needed by a process are both determined statically, in
the procedure definition, and dynamically, through the use of parameters. This
implies that, during procedure initialization, access rights should be transferred
between region managers using existing structure relations or by building a
private communication channel between caller and callee. The former requires
the compiler to trust users to cooperate along the structure paths. This cannot be
enforced in all situations. Therefore, access transfer should take place using a
private channel, i.e. a structure relation between the defining region and the
region from which it is being called.

In conclusion, a procedure call results in the creation of a region with
structure relations to both the caller region manager and the region manager in
which the definition resides. The former path is used to obtain access rights for
actual parameters, the latter to obtain access rights based on the lexical structure
of the PLAIN program.

The region manager in which execution takes place requires an owner, the
choice of which greatly impacts security, because it determines the access rights
available during the call. Three different authorization policies can be
distinguished:

a) Caller based authorization
The execution region is owned by the caller, i.e. the access rights of the
invoked procedure are determined by the user responsible for its
invocation,

b) Callee based authorization
The execution region is owned by the callee, i.e. the access rights of the
invoked procedure are determined by the user responsible for the
procedure definition.

c) Third-party authorization
Under a Third-party based policy both the caller and callee provide
access rights, but have no control over its use during procedure
execution. The activator of the state transformation is a (unique)
fictive user or notary.

194 AN SPE PROGRAMMING ENVIRONMENT 6.

Each policy is illustrated in detail, showing the structure of the SPE programs
derived by the PLAIN compiler. We use an example type T with two operators
crt and proc, the type T operators are used in the region R. The static structure
as it results from a PLAIN program definition is shown in Figure 6.10. The
operators defined for the type T are represented by an SPE object within the
region associated with the static definition of T. Note that both operators are

made accessible within the region R through appropriate SPE primitives and
that we have introduced a fictive owner of the type T, called Tu.

program
A a7 N
| Caller|

R

VN

(erprod

Figure 6.10

6.4.2. Caller/callee based access control

Under a caller based access control policy the SPE process execution is bound
by the PLAIN compiler to one user; the user responsible for the procedure
activation. The code generated by the compiler includes references to designate
this user. Variable user names are replaced upon procedure activation by the
actual user name, similar to the association of UIDs in operating systems.

The process prologue and epilogue for this policy is represented in Figure
6.11. The command condition contains two access control constraints; the
procedure is called by a user having access to the procedure definition and the
user is owner of the execution region. The result of calling
execl (Caller,R,T/ proc,Newcontext) on the SPE state is shown in Figure 6.12.

6.4. DYNAMIC BEHAVIOR 195

command execl(caller, context, proc, newcontext)
if Visible(caller, proc) and Owner(caller, context) and newcontext &R
begin
add region(caller, newcontext);
add_struct(caller, newcontext, context);
add owner(caller, newcontext, reg own(reg obj(proc)));
add_struct(reg_own(mg_obj(proc)j: newcontext, reg obj(proc));
del _émcr(callcr, newcontext, reg own(reg obj{proc-)))i
{import global objects} B -
{execution of body }
{revoke import global objects)
revoke(add_owner(caller, newcontext, reg own(reg_obj(proc)));
revoke(add‘struct(callcr, newcontext, conﬁaxt)}; -
revoke(add:rcgion(cal]cr, newcontext))
end

Figure 6.11 Caller based policy

The construct reg_obj(proc) evaluates to the name of the defining region and is
a protection state inquire operator. Similarly, reg own(reg obj(proc)) returns
the name of an owner of the procedure. Both have no effect on the protection
state and could have been represented in the parameter list as well. In this case
the caller can be determined from the context of the call also.

The epilogue of the procedure invocation removes all objects necessary for its
working. Note that this involves a revocation process, instead of calling the
corresponding decremental operators. This way imports and exports of access
rights which result from the execution of the procedure body are undone as well,

, Newcontext

Figure 6.12 The SPE state after the invocation of T/ proc.

The shortcoming of this approach is its lack of selectivity, because access rights
granted to the Caller are increased during procedure execution. More precisely,
the SPE model shows that access rights private to the type manager are subject
to stealing by the Caller. Therefore, the command does not provide real
information hiding. During the interpretation of T/proc the caller is owner of

196 AN SPE PROGRAMMING ENVIRONMENT 6.

the region newcontext and thus objects created/manipulated are subject to
stealing too.

A secure implementation of the procedure call mechanism requires that at
least two parties should be considered: the Caller and the Callee. Both are
autonomous users in the SPE machine, which means that one user can not force
the other to initiate actions. However, the cooperation required between the
users can be partly prescribed by the compiler and modeled in SPE. To achieve
a secure implementation the compiler should take into account the different
protection requirements:

a) Caller provides Callee with a set of access rights and expects Callee to be
unable to acquire more,

b) Callee may need private access rights for its task and should ensure that
the Caller does not acquire any of these.

The latter is referred to in the literature as the problem of “rights
amplification,” the Callee needs more rights then the Caller can supply. In that
case of abstract data types, the Callee needs access to the internal representation
of the abstract object and doesn’t want the caller ever to be able to gain access
to the representation. Amplification of rights occurs as a side-effect of name
visibility in scoped languages. This poses no protection problems in their
implementation, because access control is then fully enforced by the compiler.
However, a compiler based on separate compilation should take special
precautions. Especially when object binding is achieved at run time.

These requirements are easily fulfilled using the modeling capabilities of SPE.
First, to avoid the Callee to gain access to the objects in the region Newcontext a
filter region is constructed to shield Newcontext. The second problem is solved
by removing the Caller from Newcontext before the actual interpretation of
T/proc starts. To safely transport access rights, a structure relation is
constructed between Newcontext and T. The resulting SPE command is shown
in Figure 6.13 and the SPE state at the moment of body execution is shown in
6.14.

6.4. DyNAMIC BEHAVIOR 197

command exec2(caller, context, proc, newcontext)
if Visible(caller, proc) and Owner(caller, context) and newcontext & R
begin
add_region(caller, filter);
add:struct(callcr, filter, context);
{import objects needed into filter region }
add_region(caller, newcontext);
add_struct(caller, newcontext, filter);
{add access rights to newcontext)
add_owner(caller, newcontext, reg own(reg obj(proc)));
del T)wncrer(callcr, newcontext, caTIer); -
{link new context with reg_obj(proc) region)}
add struct(reg_own(mg_oﬁj(proc)}, newcontext, reg_obj(proc));
{ready to interpret the procedure)
{execution of body)
{revoke all protection statements in this command }
{not spelled out in detail }
end

Figure 6.13 Restricted caller based procedure invocation

I Caller|

- R
<

filter
Newcontext

Figure 6.14 SPE state after restricted call

In this procedure we assume that the compiler is able to gencrate a locally
unique name for the filter region. Of course, this name can be replaced by an
actual parameter or an SPE primitive operation. Moreover, the construction of
the SPE intermediate state is assumed to be revocable, which has been
previously addressed.

Whenever the compiler uses this command as a basis for generating code for
the PLAIN procedure call, the two protection questions are guaranteed to hold.
In fact, the type manager and routine can be compiled with binding delayed to
run time. Moreover, the type manager can make additional dynamic protection

198 AN SPE PROGRAMMING ENVIRONMENT 6.

decisions and does not need to rely on the proper working of the compiler in the
enforcement of such constraints. For example, read/write access to objects may

be managed by the type manager.

6.4.3. Third-party procedure invocation

The distinction between Caller and Callee processing provides a natural
solution to the confinement of abstract data type object representations and
rights amplification. However, in the previous scheme we implicitly assumed that
Tu, the owner of the type T, could be trusted. The owner of T/proc has full
access to all internal representations and is able to disclose information to
different Callers either through import/export operations within the context T or
by using shared representation objects. Moreover, information embodied by the
actual parameters can be retained by the type manager and passed on.
Although these problems fall under the category of confinement, the SPE model
provides the hooks to partially overcome them.

A method of procedure invocation where Caller and Callee are mutually
suspicious is solved by a mutually trusted third party. An SPE user is
introduced to mediate between Caller and Callee for each procedure invocation
and becomes the activator of the SPE primitives specified in the execution
region. This method is similar to the concept of a notary office in real world.
The corresponding SPE execution framework is shown in Figure 6.15 and the
result of the invocation of T/proc is graphically displayed in Figure 6.16. The
process runs as follows. First the caller creates a filter region and imports the
objects needed for processing. Similarly, the type owner makes a filter region
with the necessary access rights. Finally, the notary creates the isolated
environment for procedure execution. Note that we can’t make the notary
owner of the context and type region, because this implies that he gains access to
the environment of both as well. In the command definition we assume that
filter and newcontext names are generated dynamically.

6.4. DYNAMIC BEHAVIOR 199

command exec3(caller, context, proc)
if Visible(caller, proc) and Owner(caller, context)
begin
add_region(caller, filterl);
add_struct(caller, filterl, context);
add owner(caller, ﬁ]tcrl » Notary);
{import objects from callcr context into filter region}

add _region(reg_own(reg_obj(proc)), filter2);
add_struct(reg_own(reg_obj(proc)), filter2, reg - obj(proc));
add owner(reg_own(reg_obj(proc)), filter2, Notary);
{import objects from type context into filter region}

add region(Notary, newcontext);
add_struct(Notary, newcontext, filterl);
add_struct(Notary, newcontext, filter2);
{add access rights to newcontext)

{ready to interpret the proc}
{execution of body}
{revoke import/exports from newcontext)
{not described in detail}
end

Figure 15 Third-party command

Tu
T l R

filter? filterl

: newcontext :

Figure 6.16 Calling T/proc with third-party policy

200 AN SPE PROGRAMMING ENVIRONMENT 6.

6.4.4. Variable declarations

PLAIN variable declarations differ from procedure calls by changing the
protection state *permanently’. This is reflected in the mapping of PLAIN to the
SPE machine architecture in two problem areas: handling variable declarations
and variable usage. We discuss variable declarations here and take up variable
usage later, in the context of parameter usage.

The two prime aspects of variable declaration are its type and representation

mechanism. The type of a variable determines the applicable operations and
reserves and manages space for its representation. In particular, it hides the
internal representation from usage outside control of the type procedures. Both
typing and information hiding can be considered as access control measures
normally encoded in and enforced by the compiler.
As with to the analysis in the previous section, we should consider the protection
issues raised and analyze the means to provide this protection within the context
of an SPE machine. That is, what are the requirements on and possibilities for
the PLAIN compiler given an SPE machine to enforce type checking and
information hiding.

The declaration of variables, i.e. abstract data type objects, raises four
protection issues:

a) the Caller should be unable to manipulate the variable representation,
b) the Caller should be able to share access to the variable,
¢) the type operators have access to the internal representation,

d) no other operator can gain access to the internal representation without
consent of the type owner,

e) no other user can use the variable without consent of the owner.

Rules a), b), and c) prescribe the ability to use the objects, while d) and e) limit
their use.

In mapping PLAIN to the SPE machine concepts, the declaration of variables
can be considered a procedure call with a modified epilogue phase. For
example, the declaration of an object o of type T can be thought of as handled
by an operation T/crt(0) using one of the invocations schemes but with omission
of the revocation phase. That is, after the procedure finishes, one or more SPE
objects, regions, and structure relations remain in existence to represent the
variable and its contents. The result, using the third-party scheme, is shown in
Figure 6.17. In the region newcontext the SPE object o represents the variable
and access to this object is exported to the declarer and type manager via the
filters.

Interpretation of a variable declaration as a suspended procedure call implies
that the SPE objects used for the variable representation are not created in the
context of the call, but in the execution region.

6.4, DYNAMIC BEHAVIOR 201

Tu Caller
T R

7 "‘

)

filterl

newcoritext

Figure 6.17 Variable declaration

In most cases the representation of a type T variable is one or more variables
of type T’, the representation of which should be accessible within the context of
T only. In general, the SPE objects representing the T objects can not be given
to the declarer of the variable, for it would invalidate information hidding.
Then the T objects could be manipulated directly by the T’ operators.

One approach to overcome this access problem is to use a single SPE object to
represent the variables of type T and to use this object for no other purpose then
as a variable alias. One may think of it as a capability or ticket (It does not
represent specific access rights). The mapping of a variable-alias to the internal
representation objects should be coded into the type operators, which are
permitted access to the internal representation anyway. Yet this precludes a user
to obtain access to the T” objects, unless explicitly granted by a T operator.

For example, when an variable o of type T is declared, which uses a type T
for representation, the SPE structure of Figure 6.18 is generated. This SPE
structure provides R access to o within Newcontext, but does not provide direct
access to its internal representation o’. Moreover, owners of R can share access
to the abstract object by sharing access to the variable-alias using the
import/export mechanism.

R ——
o

' Bibfiotheek
Cenfrumvoor Wiskunce en Informatica

202 AN SPE PROGRAMMING ENVIRONMENT 6.

Figure 6.18 Hidden representation objects
The operators defined on T use the object o’ instead. Thus, the SPE command
to create an instance of an abstract PLAIN variable becomes:

6.4. DyNaMIC BEHAVIOR 203

command declare(caller, context, variable, type)
if Owner(caller, context) and Visible(caller, type)
begin
{ set up region structure using Notary }
add_region(caller, filterl);
add_struct(caller, filterl, context);
add_owner(caller, filterl, Notary);
{import objects from caller context into filter region}

add_region(reg_own(reg_obj(proc)), filter2);

add struct(reg_own(reg_obj(proc)), filter2, reg_obj(proc));
add_owner(reg_own(reg_obj(proc)), filter2, Notary);
{import objects from type context into filter region }

add_region(notary, newcontext);
add_struct(notary, newcontext, filter] %
add_struct(notary, newcontext, filter2);

{ create the variable-alias and give it to caller}
add_obj(notary, variable, newcontext);
add-cxport(notary, newcontext, variable);
add:export(notary, filter1, variable);

{ suspend procedure until end of variable scope}
{ revoke all actions)

end

Figure 6.19

Note that we assume that the variable name is unknown in the state before the
execution of this command. In the protection state derived from this command,
the caller has no access to the variable representation and thus access rights on it
cannot be stolen,

6.4.5. Variable usage

Variable semantics in PLAIN require the compiler and SPE machine to
guarantee both type correctness and information hiding. In particular, we must
define what access control enforcement should take place upon invocation of
T.proc(o) and how the parameter o is interpreted. '

For the caller of the procedure, two access issues are implied by name
visibility:

- the caller should have access rights to the procedure T/ proc, and

204 AN SPE PROGRAMMING ENVIRONMENT 6.

_ the variable alias is accessible to the caller.
From the standpoint of the callee, two access constraints are in effect as well:
- the object o should be of type T and

_ all references to o within the procedure T/proc should be mapped to 0, its
representation.

Access control for the caller is handled similarly to the procedure mechanism
described earlier. An extension can be included to import the variable-alias into
the execution region of the procedure call. Under callee based procedure
processing, type compatibility enforcement is realized using a combination of
SPE features. Type correctness means that the parameter o is a variable alias
owned by the type T. This constraint can be modeled in the pre-condition of
T/proc. Thus, the pre-condition for each operator defined for T should include:

Access(caller, o) and
Visible(caller, T/proc) and
Owner(o) = callee

If the pre—condition succeeds, the internal representation of o, i.e. o', can be
made accessible in the execution region through the construction of a safe
communication path. All references to the internal representation of o in the
definition of T/proc can safely be replaced by references to o and each call to
an operation belonging to the class defined by T’ is considered activated by T.
Thus, to provide type enforcement and information hiding we can extend the
procedure invocation prologue with a simple test.

Parameter passing

Given the mapping for operations on variables using a single parameter to
designate the object, we can simply extend this scheme to handle the more
general procedure parameter mechanism. Note that each routine in PLAIN is
defined by the following structure:

routine(O1:T1;...;On:Tn)
This heading prescribes the order, type, and formal name of the actual
parameter. Protection issues involved in its use are:

a) does the caller have permission to use the parameters

b) does the callee have permission to use the parameters

c) is the parameter of the correct type

Unlike variable declarations, procedure definitions in PLAIN differ in number
of parameters and parameter types. In the mapping to an SPE machine we use
a single command to describe the actions for passing a single parameter.
Multiple parameters can be handled by repetitive application of this command.

Figure 6.20 describes the SPE command to enforce the three access constraints
on a single parameter. Note, that we used variable aliases and type owners to

6.4. DyNAMIC BEHAVIOR 205

guarantee type correctness,

command parameter(caller, callce, newcontext, variablealias, typeregion)
if Visible(caller, variablealias) and Visible(callee, newcontext)
Owner(variablealias)= Owner(typeregion)
begin
add_import(callee, newcontext, variablealias)
end

Figure 6.20 Parameter handling

6.4.6. Extended access control

The parameter mechanism in PLAIN is more involved then illustrated above.
In particular, semantic access rights are associated with the parameters, i.e.
readonly or modify rights. Clearly, these notions are not provided by the SPE
model directly, which concentrates on flow non-interpreted access rights. To
enforce these access rights within a dynamically interpreted SPE environment we
should specify for each parameter what operators are available. This in turn,
requires the class of operators defined for a type to be separable, or the ability to
define multiple views on the same variable, differing in the class of applicable
operations.

We illustrate the extended access control using multiple views. Assume that
we have to distinguish two different access categories, as in PLAIN. Then,
instead of using one variable alias, we use two variable aliases to represent access
rights to the object and associate with each alias access rights to an operator
class. The association between operator and alias is realized using filter regions
for each access rights. Next, extended access control can be enforced by
requiring that each operator usage is represented by access rights in the region
where the corresponding alias is defined. The internal representation of the
object is hidden in a separate region.

For example, consider a type T with operators readobj and writeobj, and
assume that we wish to restrict the use of the operators for the object o to either
read or write. Then for the declaration of o we construct an SPE state as shown
in Figure 6.21. The region r’ and r” are given access rights to the read and write
operator only, while both have access to the internal representation of the object.
To guarantee proper access we extend the access control statements above to
include the condition that in order to use an operator the alias presented should
be defined in the region where the operator is accessible. This way, the read
operator can only be used in the read-class context. Notice that we used filter
regions to separate access properties.

R

206 AN SPE PROGRAMMING ENVIRONMENT 6.

Type

readalias

internals

Figure 6.21 Readonly and Modify rights on the same object

A zone representation

An alternative scheme for variables of a certain type is to use a single region
for their representation, rather than dispersed in the protection graph. The
prime benefit of this approach in an implementation is the ease of removing all
objects whenever the type becomes obsolete and the provision of operators on all
the existing objects, like garbage collection, database facilities, and statistical
purposes. The programming language EUCLID uses this scheme in the notion
of a zone.

This scheme can be described in the SPE terminology as well. For, consider
subordinate to cach type definition, a region called Zone, were all the
representations are stored. Then the remaining protection issue is whether
privacy of the object representation can be guaranteed to its owner (=creator).
Stated alternatively, if the operator T/proc can be applied by the owner of the
object only (or those he has granted access), how should the SPE graph be
constructed and what authorization should be enforced.

To avoid naming conflicts we should store the object aliases and their
representations not within the Zone region directly, instead we represent each
object by a region subordinate to Zone. Thus, the execution region structure
used previously is moved to the Zone region. Unlike the previous scheme we
can not build a structure relation between the variable representation and the
context of the caller directly. For, an export of the variable alias would make it
accessible to other callers having defined a T-object as well.

The solution is to construct an agent between the hidden region and the caller
context, owned by the type. This scheme is similar to the secure communication
path defined in section 4, i.e. the caller is given exclusive access to the variable-
alias. Part of the SPE structure for the type T and two instances is shown in
Figure 6.22.

6.4. DYNAMIC BEHAVIOR 207

, type
\
@\

Figure 6.22 Database oriented ADT implementation

hidden

6.4.7. Summary

The scheme presented to combine PLAIN with an SPE machine architecture
may seem artificial at first. We claim it is not, in fact it models what happens in
many so-called capability oriented systems using type-managers. The
representation of the abstract object by a primitive SPE object is identical to the
representation of the object by a capability object. The capability object is
given to the declarer, which can share it with others. However, our scheme goes
a step further. It can model situations where access to objects is shared with
others, which do not have access rights to the operations defined upon the type,
because the applicable operators are not present in the capability.

For example, in a capability oriented system like Hydra [Wulf 74] or
AMOEBA [Tanenbaum81], a line-printer spooler inherently obtains read access
permission to the files to be printed, because the file manager does not
distinguishes the rights associated with the objects from the rights to use certain
of its operations. It examines the capability objects and executes the task. The
example use of SPE in restricting access to variables and its operations shows
that to ensure that the spooler does not read any file. In fact, each action on a
file requires two capability objects, one to indicate the access to a particular file
and one capability to indicate the right to perform the required file operation.
This way denying the spooler read access to the files being spooled leads to a
more sccure system. The authorization mechanism for such a two-edged
approach becomes

Visible(caller, operator) and Visible(caller,object)

That is, the operator should be accessible to the user as well as the object.
Where ObjRegion(operator) stands for Newcontext in our example.

208 AN SPE PROGRAMMING ENVIRONMENT 6.

The extended access control scheme discussed for the PLAIN parameter
mechanism indicates a solution to a major protection problem in the databases
as well. Whenever a database is defined by an abstract data type, as proposed
in [Wasserman79b, Riet83] using conventional programming semantics, its
internal representation becomes inaccessible for separately compiled programs or
results in an insecure system. Within a database environment where database
objects are persistent and shared by many application program under various
views, this constraint is too severe, rather opaqueness of the representation is
required. Our scheme illustrates how multiple views can be defined on a single
representation, using a classification of the applicable operators.

On the other hand, the schemes discussed do not directly model the situation
where the declarer binds an abstract object with a subset of operations, as in a
capability system. Two alternative solutions exists, either a new abstract data
type is defined to represent this object or for cach operator an alias object is
stored in the Newcontext region and made accessible to the owner of the object,
which in turn can selectively grant rights. We favor the first, because one can
consider the reduction of the operator class on an object as a change of its
semantics, which naturally leads to the definition of a new abstract data type (or
package, because the representation may be shared).

7

SUMMARY AND FUTURE
RESEARCH

7.1. Summary

In this thesis we have developed an access control model for a secure
programming environment. Although access control addresses only a small part
of security in computer systems, it is an important aspect of data security, where
emphasize is placed on the data stored and manipulated in a computer. Evenly
important areas of computer security not addressed in this thesis are physical,
operational and organizational security.

In Chapter 2 access control protection is placed in a broader perspective by
surveying the work done in this area. This survey shows that much of the work
is pragmatic; many techniques have been introduced without a proper formal
model and security analysis or without a proper separation of the protection
concepts, such as authentication, authorization and the semantics of the objects
being protected. Moreover, the lack of a formal basis makes integration of
access control in operating systems, programming environments, and
programming languages difficult to achieve.

Chapter 3 informally introduces the SPE model as a unifying model to
describe and analyze access control with emphasize on programming
environments for the construction of interactive systems. The security axioms
and security properties underlying the SPE model are explained and a rationale
is given. Moreover, a few examples illustrate the applicability of the model in
real-world situations. Furthermore, some variations of the model are given to
illustrate the effect on expressiveness and ability to analyze security issues.

209

210 SUMMARY AND FUTURE RESEARCH 7.

In Chapter 4 we have introduced the SPE model by formally specifying the

static and dynamic properties of SPE protection states. An SPE protection state
is considered secure when it satisfies the independent properties consistency,
acceptability, and validity, which model the security properties introduced in
Section 3.3. Following, the security properties of SPE states have been related
with directed graphs, which gave a handle on their algorithmic complexity.
The dynamic properties of the SPE model are cast into state transformation
invariants, which thereby describe the secure behavior of potential SPE
instruction sets. In Section 4.4 we have indicated how authorization policies
enter the scene as a separate dimension on access control. A particular
authorization policy for the SPE model has been introduced, which models the
rule that each user changing the protection state should own (or be responsible
for) the protection domains where the changes take place. Finally, desirable
properties of SPE instruction sets, i.e. minimality criterion, compensation
criterion and completeness criterion, have been pointed out as forming the basis
for well-defined instruction sets. Although no algorithm exists that can check the
well-definedness property handed an arbitrary SPE instruction set, a given set
may well be proved to satisfy this criterion.

In Chapter 5 we have introduced a sample instruction set for the SPE model

and showed that it is well-defined. In Section 5.4 the compensation property is
extended to cover the notion of revocation. Revocation prescribes a policy to
undo actions in general. The chronological algorithm and the goal-seeking
algorithm were presented to realize a revocation sequence. They differ in
objectives and implementation costs. Subsequently, instruction set partitions
were studied to limit derivable protection states. This way alternative security
policies can be implemented. In that context the notion of stealing access rights
has been given a formal definition and an algorithm to determine potential theft
and the conspirators has been indicated.
In Section 5.6 we have indicated the potentials of a multi-level security system
based on the SPE model and used this approach to simulate two well-known
theoretical protection models. The simulation of the Harrison-Ruzzo-Ullman
model emphasized the approach taken by the SPE model in viewing access
control protection as a state transformation invariance property rather than a
state property or a state reachability property. Moreover, it has been shown
that both protection systems are equally powerful by simulating the Turing
machine. The simulation of the Take-Grant model showed how the SPE model
can be extended to accommodate semantic rights.

Chapter 6 discusses the practical implications of the SPE model. First, a
machine organization centered around loosely coupled processors is presented. It
shows that a security kernel approach with SPE as the underlying model for this
kernel is feasible. Next the SPE model is used to analyze visibility rules in the
high-level programming language PLAIN, which shows some omissions and
‘nconsistencies in its definition. Extending the visibility rules to include the

7.2. FUTURE RESEARCH 211

environment of PLAIN programs using the SPE model provides a basis for a
secure programming environment. Finally, the PLAIN programs and the
machine organization are combined to study the dynamic behavior of program
execution,

7.2. Future research

7.2.1, Theoretical issues

The approach taken in this thesis to formalize the access control problem
using set and graph theory and using auth-, pre- and post- conditions in the
description of state transformations is just one approach among many
formalisms. An interesting theoretical question is whether other such formalisms
are more effective then ours in the description and analysis of the security
problems. Some formalisms to consider are shortly indicated; an introductory
work for language oriented formalisms is [Pagan8l].

In section 2.4.3 we introduced the grammatical approaches to access control.
"They are useful to define the protection state structure and simple state rewriting
rules. The major drawback of grammars is the limitation in medeling complex
authorization constraints. Simple authorization schemess as presented in
Chapter 4 result in a large set of context-sensitive grammatical rules.

An alternative formalism is the Vienna Definition Language (VDL)
[Wegner72], which, similar to our approach, results in an operational
specification of the protection system. Unlike the grammatical approaches,
VDL makes it possible to formalize both the structure (syntax) and the
semantics of pogramming languages. Therefore, VDL potentially has the
capability to formalize access control issues. It is unknown whether such an
approach is more effective in the analysis of the SPE protection issues than our
approach or whether VDL should be considered as a convenient vehicle for
implementation specification.

Another formalism advocated by programming language designers is the
denotational approach [Stoy77], where the meaning of a construct is taken to be
some abstract mathematical function. The prime use of this formalism is the
rigorous analysis of program computation sequences, e.g. conditional SPE
programs. There is no explicit concept of a machine or computation sequence,
but the protection state is still present in the abstract form.

The aforementioned formalisms, including our approach, are limited by the
fact that they assume nonconcurrent execution of programs. Unfortunately, this
assumption need not hold in reality. Potentially interesting formalisms to tackle
security problems inherent in concurrent execution of SPE programs and
ensuring the protection policies prescribed are modal and temporal logics
[Manna8l]. Both logics enable one to describe the detailed execution of a

212 SUMMARY AND FUTURE RESEARCH 7.

(concurrent) program(s) and not just the function it (they) computes. Relevant
concepts in this context to consider are:
- Invariance properties, stating that some condition holds continuously
throughout the computation, namely the security invariants.
- Eventuality properties, stating that under some initial conditions, a certain
event (e.q. stealing a right) is eventually realized.
- Precedence properties, stating that a certain event must precede some other
(e.g. in revocation sequences).

7.2.2. Machine architecture issues

Most systems designed for access control protection are based on capability
protection. A detailed study of how the SPE model can be matched to
capability-based machine architectures therefore seems in place. Although the
protection aims of both approaches have a lot in common, they differ on
essential points:

. SPE does not enforce tight coupling between access to objects and their
semantics.

- SPE restricts flow of access rights.

. SPE considers access to the object orthogonal to the ability to apply an
operator to that object.

- SPE addresses protection issues found in both programming languages and
filing systems in a uniform manner.

- The SPE model associates protection with the explicit maintenance of
invariants in (concurrently) running programs.

The SPE model and capability-based addressing bear the following
similarities:
- The SPE model and capability-based protection rely on typing as a means
for data-dependent protection.

Capabilities are nothing but context-independent protected addresses, while in
SPE context and flow restrictions form the basis of access control.

The SPE model can benefit from a hardware-supported capability scheme in
its implementation of the security kernel. For example, the Intel 432 [Pollack82,
Pollack81] microprocessor and operating system is one of the most sophisticated
architectures in existence for capability-based protection and provides many
high-level features to realize an SPE kernel. In particular, the interpretation of
procedures as objects with access rights checked both statically and dynamically
comes close to the proposal sketched in Chapter 6. However, the (static)
structure relations among environments are not modeled within their system,
which makes access flow constraints difficult to enforce. One way to extend or
modify the Intel 432 architecture is to change the semantics for object tables and

7.2. FUTURE RESEARCH 213

object table directory as follows. Conceivably, each SPE region structure can be
simulated with a single object table containing access descriptors both to objects
and to other object tables. Alternatively, a region manager object type can be
defined which uses a single segment to administer the objects, users and
relationships. In any case, to arrive at a secure implementation it should be
possible to limit the use of access descriptors by procedures. This step may
require splitting the access descriptor index for segments into two sections, one to
administer the locally stored objects and one to administer remote access rights.
In conclusion, the Intel 432 is a good basis for a building an SPE machine.

An method adhered to by many software developers is modularization and
classification of objects by abstract data types. A similar attitude has been used
in the design of the SPE machine and is the use of PLAIN in the construction of
interactive systems. As mentioned before, many implementation details must be
addressed before an SPE-based system is obtained. At the Vrije Universiteit,
Amsterdam, a prototype implementation of the class concept in the C-language
using separate processes, has been established [Klauw84]. This prototype
indicates that an ADT-like approach in combination with the region manager
concept is feasible and leads to a nearly provably secure programming
environment.

7.2.3. Software issues

In Chapter 6 we have illustrated the use of the protection model to highlight
and comment on language design choices in PLAIN. This language is a
traditional high-level programming language. The open question is whether the
SPE model is useful in the context of very high-level languages such as
PROLOG [Clocksin81] and SETL [Dewar79, Dewar82]. Protection issues have
not been addressed for the latter languages in great depth, which should be
ascribed to the limited use of both languages for the development of information
systems.

A central theme in software development research is the architecture of
integrated programming environments. Most researchers in this area address
technical problems of human interfacing, ignoring to a large extent the
protection issues of a multi-user software development team. For example, the
Ada programming environment requirements [Buxton80] leave decisions about
the protection to the designer of the tools, but assume that they fits the Ada
language framework. A negative aspect of this requirement is that the visibility
model within Ada -everything is visible within a program or module unless
explicitly forbidden- is less constraining than in PLAIN. In fact, it is not based
on the “need to know” principle used in most protection systems,

214 SUMMARY AND FUTURE RESEARCH 7.

7.2.4. The future of access control

The SPE model introduced in this thesis provides a framework to compare
and analyze access control features of new hardware and software systems. In
this respect it covers only part of the security problems. Equally important
areas are the authorization policy (Section 4.4), information flow, and the ability
to infer confidential information. However, these aspects rely on the facilities
provided by an access control mechanism. Formalization of such problems
within the context of a specific access control policy has been given limited
attention in the literature. Notable exceptions in these areas are the multi-level
security model [Bell74], its extensions by [Feiertag79], and the extension of the
Take-Grant model with de-facto and de-jure rules by [Bishop79]. Further
exploration of the formal aspects of these areas based on the SPE model may
lead to a better understanding of the applicability and effectiveness of either one.

An open area for access control research is its form and function in expert
systems and knowledge base management systems. In such systems blocking
access to pieces of knowledge, facts and rules, may drastically affect the decision
making process or compromise (governmental) policy decisions. For example,
consider a social welfare organization as complex as the Dutch system. Then it is
clear that an expert system is needed to allow individual social workers to help
their clients. How access control policies and techniques can aid in the
regulation of the knowledge base usage is unknown and therefore privacy of
individuals remains threatened.

References

[Anderson79]
Anderson, R.B., Proving Programs Correct. John Wiley & Sons, 1979.

[Andrews80]
Andrews, G.R. and Reitman, R., ” “An axiomatic approach to
information flow in programs”,” ACM Transactions on Programming
Languages and Systems, vol. 2, no. 1, pp.56-76, Jan 1980.

[Ardity 78] .
Ardity, Joel and Zukovsky, Eli, “An Authorization Mechanism for a
Data-Base,” pp. 193-214 in Database: Improving Performance and
Responsiveness, ed. Ben Shneiderman (1978).

[Astrahan76]
Astrahan, M.M. et al., “System R: Relational Approach to Database
Management,” ACM Transactions on Database Systems, vol. 1, no. 2, pp.97-
137, June 1976.

REFERENCES 215

[Bell 74]
Bell, D.E. and LaPadula, L.J., Secure computer systems: Mathematical
Joundations 1,2,3. MITRE Corp, Nov 1973 / Apr 1974,

[Berson79]
Berson, T.A. and Barksdale, G.L., “KSOS- The Design of a Secure
Operating System,” Proceedings NCC, vol. 48, pp-365-371, 1979, AFIPS
Press.

[Bishop 79]
Bishop, M. and Snyder, L., “The Transfer of Information and Authority
in a Protection System,” Proc. 7-th Symposium on Operating Systems Principles,
ACM Operating Systems Review, pp.45-54, December 1979.

[Bishop81]
Bishop, M., “Hierarchical Take-Grant Protection Systems,” ACM SIGOPS
Operating Systems Review, vol. 15, no. 5, pp.109-122, 1981.

[Borr81]
Borr, AJ., “Transaction monitoring in ENCOMPASS: reliable
distributed transaction processing,” Proc. 7-th Int. Conference on Very Large
Data Bases, pp.155-165, September 1981,

[Bratbergsengen 79]
Bratbergsengen, K., Risnes, O., and Amble, Tore, “ASTRAL- A
Structured Relational Applications Language,” Technical Report 6/79, June
1979, Division of Computing Sciences, University of Trondheim.

[Budd 77]
Budd, T.A. and Lipton, R.J., “Inert Rights and Conspirators in the
Take-Grant System,” Research Report #126, 1977, Dep. of Computer
Science, Yale University.

[Budd80]
Budd, T.A., “Safety in Grammatical Protection Systems”, TR80-22, Dep.
of Computer Science, Univ. of Arizona, August 1980.

[Bussolati80]
Bussolati, U. and Martella, G., “On designing a security management
system for distributed databases,” Proc. IEEE Fourth Int. COMPSAC,
Pp-288-294, October 1980.

[Bussolati8la]
Bussolati, U. and Martella, G., “Managing Data Privacy in Database
Management Systems,” Convention Informatique Latine, pp.216-230, 1981.

[Bussolati81b]
Bussolati, U. and Martella, G., “A Database Approach to Modelling and
Managing Security Information,” Proc. 7-th Int. Conference on Very Large
Data Bases, pp.532-542, September 1981.

216 SUMMARY AND FUTURE RESEARCH 7.

[Buxton80]
Buxton, J.N., Requirements for Ada programming support environments.
Department of Defense, Feb 1980.

[Chambers78]
Chambers, A.D., “Computer Fraud and Abuse,” The Computer jJournal,
vol. 21, no. 3, pp.194-198, 1978, British Computer Society.

[Cheheyl81)
Cheheyl, M.H., Gasser, M., Huff, G.A., and Millen, J.K, “Verifying
Security,” ACM Computing Surveys, vol. 13, no. 3, pp.279-340, Sep 1981.

[Clocksin81]
Clocksin, W.F. and Mellish, C.S., Programming in Prolog. Berlin:Springer
Verlag, 1981.

[CODASYL78]
CODASYL, “Report of the Codasyl Data Description Language
Committee,” Information Systems, vol. 3, 1978.

[Conway72a]
Conway, R.W. Maxwell, W.L., and Morgan, HL., “On the
Implementation of Security Measures in Information Systems,”
Communications ACM, vol. 15, no. 4, pp.85-103, Apr 1972.

[Conway 72b]
Conway, R.W., Maxwell, W.L., and Morgan, H.L., “Selective security
capabilities in ASAP- A file management systern,” Proc. AFIPS Spring Jomt
Computer Conference, 1972.

[Cooprider79]
Cooprider, L.W., “The Representation of Families of Software Systems”,
CMU-CS-79-116, Carnegie-Mellon University, Apr 1979.

[Date77]
Date, C.J., An Introduction to Database Systems. Addison-Wesley, 1977.

[Davida80]
Davida, G.I. and Turn, R., Proceedings of the 1980 Symposium on Security and
Privagy. Oakland, USA:Technical Committee on Security and Privacy
IEEE Computer Society, April 1980.

[Denning77]
Denning, D.E. and Denning, P.J., “Certification of Programs for Secure
Information Flow,” Communications ACM, vol. 20, no. 7, pp-504-512, July
1977.

[Denning76]
Denning, D.ER., “A Lattice Model of Secure Information Flow,”
Communications ACM, vol. 19, no. 5, pp.236-242, May 1976.

REFERENCES 217

[Denning80]
Denning, D.E.R. and Schlorer, J., “A Fast Procedure for Finding a
Tracker in a Statistical Database,” ACM Transactions on Database Systems,
vol. 5, no. 1, pp.88-102, Mar 1980.

[Denning82]
Denning, D.E.R., Cryptography and Data Security. Addison-Wesley Publ.
Company, 1982.

[Dennis66]
Dennis, J.B. and VanHorn, E.C., “Programming Semantics for
Multiprogrammed Computations,” Communications ACM, vol. 9, no. 3,
pp.143-155, Mar. 1966.

[DeRemer76]
DeRemer, F. and Kron, H., “Programming-in-the-large versus
Programming-in-the-small,” [EEE Transactions on Software Engineering,
vol, SE-2, no. 2, June 1976.

[DES77]
DES, “Data Encryption Standard”, Fed. Inf Process. Stand. Publ. 46,
National Bureau of Standards, Jan. 1977.

[Dewar79]
Dewar, R.B.K., Grand, A, Liu, S.C., Schwartz, J.T., and Schonberg, E.,
“Programming by Refinement, as exemplified by the SETL
Representation Sublanguage,” ACM Transactions on Programming Languages
and Systems, vol. 1, no. 1, pp.27-49, July 1979.

[Dewar82]
Dewar, R.B.K., Schonberg, E., and Schwartz, J.T., High-Level Programming
- An introduction to the Programming Language SETL. New York:Courant
Institute of Mathematical Sciences, July 1982.

[Diffie 76]
Diffie, W. and Hellman, M., “New Directions in Cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp.644-654, November
1976.

[Dijkstra66]
Dijkstra, EW., “The Structure of the THE’- Multiprogramming
System,” Communications ACM, vol. 11, no. 5, pp.341-346, Mar. 1966.
[Downs77]
Downs, D. and Popek, G.J., “A Kernel Design for a Secure Database

Management System,” Proc. 3rd Int. Conference on Very Large Data Bases,
pp-507-514, October 1977,

218 SUMMARY AND FUTURE RESEARCH 7.

[Downs80]
Downs, D., Security in Database Management Systems. Los Angeles:Ph.D.
Thesis University of California, 1980.

[Egge80]
Egge, P.R., “Overview of the ’Ina Jo’ specification language,” Tech. Rep.
SP-4082, Oct 1980, System Development Corporation.

[England 72]
England, D.M., “Operating System of System 250,” in Infotech State of
the Art Report on Operating Systems (1972).

[Fabry74]
Fabry, R, “Capabili{y-Bascd-Addressing,” Communications ACM, vol. 17,
no. 7, pp-403-412, July 1974.

[Fagin77]
Fagin, R., “Multivalued Dependencies and a New Normal Form for
Relational Databases,” ACM Transactions on Database Systems, vol. 2, no. 3,
pp.262-278, September 1977.

[Fak83]
Fak, V.A.(editor), Security, IFIP/sec °83. North-Holland, 1983.
[Feiertag79]
Feiertag, R.J. and Neumann, P.G., “The Foundations of a Provably
Secure Operating system,” AFIPS, vol. 48, pp.329-334, 1979, SRI
International.

[Fenton74]
Fenton, F.C., “Memoryless Subsystems,” Computer jJournal, vol. 17, no. 2,
pp.143-147, May 1974.

[Fernandez75]
Fernandez, E.B., Summers, R.C, and Lang, T., “Definition and
Evaluation of Access Rules in Data Management Systems,” Proc. First Int.
Conference on Very Large Data Bases, pp-268-285, 1975.

[Fernandez81]
Fernandez, E.B., Summers, R.C., and Wood, C, Database Security and
Integrity. Addison-Wesley, 1981.

[Goldberg]
Goldberg, A., “Introducing the Smalltalk-80 System,” BYTE, pp-14-26,
August 1981 .

[Goldsmith81]

Goldsmith, L.H., “Dynamic Protection of Objects in a Computer Utility,”
Technical Report CSRG-130, Apr 1981, University of Toronto.

REFERENCES 219

[Graham72]
Graham, G.S. and Denning, P.J., “Protection-Principles and Practice,”
Proc. Spring Joint Computer Conference, vol. 40, 1972, AFIPS Press.

[Graham68)
Graham, R.M., “Protection in an Information Processing Utility,”
Communications ACM, vol. 11, no. 3, pp.365-369, May 1968.

[Griffiths 76]
Griffiths, P.P. and Wade, B.W., “An Authorization Mechanism for a
Relational Data Base System,” ACM Transactions on Database Systems,
vol. 1, no. 3, pp.242-255, September 1976,

[Habermann79]
Habermann, A.N., “A Software Development Control System”,
Carnegie-Mellon University, 1979,

[Harrison 76]
Harrison, M.A., Ruzzo, W.L., and Ullman, J.D., “Protection in
Operating Systems,” Communications ACM, vol. 19, no. 8, pp.461-470,
August 1976.

[Hartson 75]
Hartson, H.R., Languages for Specifying Protection Requirements in Data Base
Systems- A Semantic Model. Ph.D. Thesis Ohio State University, 1975.

[Hartson 76]
Hartson, H.R. and Hsiao, D.K., “Full Protection Specifications in the
Semantic Model for Database Protection Languages,” Proc. 1976 ACM
Annual Conference, pp.90-95, October 1976.

[Herschberg84]
Herschberg, I.S. and Paans, R., “Programmeren is kraken,” Informatie,
vol. 26, no. 9, pp.690-698, September 1984.

[Hilhorst83]
Hilhorst, G., Jonge, W. de, and Krijnen, B., “About the Take-Grant
model”, Informatica Rapport IR-84, Vrije Universiteit, Amsterdam, Apr.
1983.

[Hoffman69]
Hoffman, L.J., “Computers and Privacy: A Survey,” ACM Computing
Surveys, vol. 1, no. 2, June 1969.

[Hoffman70]
Hoffman, L.J., “The Formulary Model for Access Control and Privacy in
Computer Systems”, Rep No 117, Stanford University, California, May
1970.

220 SUMMARY AND FUTURE RESEARCH 7.

[Hoffman77]
Hoffman, L.J., Modern Methods for Computer Security and Privacy. Englewood
Cliffs, N.J.:Prentice Hall, 1977.

[Hsiac79]
Hsiao, D.K., Kerr, D.S,, and Madnick, S.E., Computer Security. New
York:Academic Press, Inc, 1979.

[Ichbiah79]
Ichbiah, J.D. (ed), “Preliminary Ada Reference Manual,” ACM
SIGPLAN Notices, vol. 14, no. 6 part A, June 1979.

[Tliffe62]
lliffe, J.K. and Jodeit, J.G., “A Dynamic Storage Allocation Scheme,”
Computer Journal, vol. 5, no. 3, pp.200-209, October 1962.

[INGRES]
INGRES, Reference Manual. Berkeley, California:Relational Technology
Incorporated.

[Jones73]
Jones, A., “Protection in programmed systems”, PH-D Thesis, Carnegie-
Mellon University, 1973.

[Jones75]
Jones, AK. and Wulf, W.A, “Towards the Design of Secure Systems,”
Software, Practice and Experience, vol. 3, pp-321-336, 1975.

[Jones76]
Jones, AK., Lipton, R.J., and Snyder, L., “A Linear Time Algorithm for
Deciding Security,” Proc. 17-th Anual Symp. on Found. of Comp. Science, 1976.

[Jones78]
Jones, AK., “Protection Mechanism Models Their Usefulness,” pp. 237-
953 in Foundations of Secure Computation, ed. R.A. Demillo et al,
Academic Press (1978).

[Jonge83]
Jonge, W. de, “Compromising Statistical Databases Responding to
Queries about Means,” ACM Transactions on Database Systems, vol. 8, no. 1,
pp.60-80, 1983.

[Jonge85]
Jonge, W. de, Security and privacy in information systems: some theoretical aspects.
Amsterdam:Ph.D. Thesis, Vrije Universiteit, June 1985.

[Kamer82]
Kamer, Tweede.ds [J 17207, nrs 1-2, “Wet op de persoonsregistraties.

(Ontwerp van Wet),” ACM Transactions on Database Systems, Zitting 1981-
1982.

REFERENCES 221

[Kersten]
Kersten, M.L., Wasserman, A.IL, and Riet, R.P. van de, TROLL: Reference
Manual. Vrije Universiteit.

[Kersten81a]
Kersten, M.L., Riet, R.P. van de, and Jonge, W. de, “Privacy and
Security in Distributed Data Base Systems,” pp. 229-242 in Distributed
Data Sharing Systems, ed. W. Litwin, North-Holland, Amsterdam (June
1981).

[Kersten81b]
Kersten, M.L.. and Wasserman, AL, “The Architecture of the PLAIN
Data Base Handler,” Software, Practice & Experience, vol. 11, pp.175-186,
Feb. 1981.

[Klauw84]
Klauw, G. v.d. and Meer, D. v.d., Data Protection and Abstract Datatypes in
the C-Programming Language. Amsterdam:Ms. Thesis, Vrije Universiteit,
May 1984,

[Krauss79]
Krauss, L.I. and Macgahan, A., Computer Fraud and Counter Measures.
Prentice-Hall, 1979.

[Kreissig80]
Kreissig, G., “A Model to Describe Protection Problems,” Proc, IEEE
Symposium on Security and Privacy, pp-9-17, April 1980.

[Kuitenbrouwer79]
Kuitenbrouwer, F., “Het privacyreglement en andere beleidsaspekten van
gegevensregulering,” Informatie, pp.571-582, Oct 1979.

[Lampson69]
Lampson, B.W., “Dynamic Protection Structures,” Proc. Fall Joint Computer
Conference, vol. 35, pp.27-38, 1969, AFIPS Press.

[Lampson 73]
Lampson, B.W., “A Note on Confinement,” Communications ACM, vol. 16,
no. 10, pp.613-615, October 1973.

[Lampson 77]
Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G., and Popek,
G.J., “Report on the Programming Language Euclid,” ACM SIGPLAN
Notices, February 1977.

[Lampson81]
Lampson, L., “Password Authentication with Insecure Communication,”
Communications ACM, vol. 24, no. 11, pp.770-772, November 1981.

222 SUMMARY AND FUTURE RESEARCH 7.

[Landwehr81]
Landwehr, C.E. “Formal Models for Computer Security,” ACM
Computing Surveys, vol. 13, no. 3, pp-247-279, Sep 1981.

[Landwehr83]
Landwehr, C.E., “The Best Available Technologies for Computer
Security,” Computer, vol. 16, no. 7, pp-86-100, July 1983.

[Leerkamp82]
Leerkamp, N., “Hoofdlijnen van de wet op de persoonsregistratie,”
Informatie, vol. 24, no. 7/8, pp-372-377, Jul 1982.

[Levitt79]
Levitt, K.N., Robinson, L., and Silverberg, B.A., The HDM handbook.
Menlo Park Cal.:Computer Science Lab SRI, June 1979.

[Levy84]
Levy, H.M., Capability-Based Computer Systems. DIGITAL Press, 1984.

[Linden76]
Linden, T.A., “Operating System Structures to Support Security and
Reliable Software,” ACM Computing Surveys, vol. 8, no. 4, pp.409-445,
December 1976.

[Lipton78]
Lipton, R.J. and Budd, T.A,, «On Classes of Protection Systems,” pp-
281-296 in Foundations of Secure Computation, ed. R.A. Demillo et al,
Academic Press (1978).

[Liskov81]
Liskov, B. and others, “CLU Reference Manual,” Lecture Notes in Computer
Science, vol. 114, 1981, Springer Verlag.

[Liskov76]
Liskov, BH. and Jones, AK., “A Language Extension Mechanism for
Controlling Access to Shared Data,” Proc. 2nd Int. Conference on Software
Engineering, pp.62-68, 1976.

[Liskov77] .
Liskov, B.H., Snyder, A., Atkinson, R., and Schaffert, C,, “ Abstraction
Mechanisms in CLU,” Communications ACM, vol. 20, no. 8, pp-564-576,
August 1977.

[Liskov 78]
Liskov, BH. and Jones, AK., “A Language Extension for Expressing
Constraints on Data Access,” Communications ACM, vol. 21, no. 5, pp-358-
367, May 1978.

[Lockman81]

Lockman, A. and Minsky, N., “Unidirectional Transport of Rights and
Take-Grant Control”?, LCSR-TR-13, Rutgers University.,, New

REFERENCES 223

Brunswick, May 1981.

[Manna8l]
Manna, Z. and Pnueli, A., “Verification of Concurrent Programs: the
Temporal Framework,” pp. 215-273 in The Correctness Problem in
Computer Science, ed. J. Strother Moore, Academic Press (1981).

[Manola 75]
Manola, F.A. and Wilson, S.H., “Data Security Implications of an
Extended Subschema Concept,” Proceedings Second USA-JAPAN Computer
Conference, pp.481-487, 1975,

[Martin73]
Martin, J., Security, Accuracy, and Privacy in Computer Systems. Englewood
Cliffs, N.J.:Prentice-Hall, 1973,

[McCauley 79]
McCauley, E.J. and Drongowski, P.J., “KSOS- The design of a Secure
Operating System,” Proc. NCC , vol. 48, pp.345-353, 1979, AFIPS.

[McLean85]
McLean, J., “A comment on the ’basic security theorem’ of Bell and
LaPadula,” Information Processing Letters, vol. 20, no. 5, pp.67-70, February
1985.

[Minsky 76]
Minsky, N., “Intentional Resolution of Privacy Protection in Database
Systems,” Communications ACM, vol. 19, no. 3, pp.148-159, Mar 1976.

[Minsky 77]
Minsky, N., “Cooperative Authorization in Computer Systems,”
Proceedings of the COMPSAC-77, PP-729-733, November 1977.

[Minsky 78a]
Minsky, N., “The Principle of Attenuation of Priviliges and its
Ramifications,” pp. 255-276 in Foundations of Secure Computation, ed.
R.J. Lipton, Academic Press (1978).

[Minsky 78b]
Minsky, N., “An Operation-Control Scheme for Authorization in
Computer Systems,” Int, Jour of Comp.and Inf. Sci., vol. 7, no. 2, pp.157-191,
1978.

[Minsky81]
Minsky, N.H., “Locally Controlled Transport of Priviliges”, LCSR-TR-
17, Rutgers University, New Brunswick, June 1981.

[Morris 73]
Morris, JH., “Protection in Programming Languagse,” Communications
ACM, vol. 16, no. 1, pp-15-21, January 1973.

224 SUMMARY AND FUTURE RESEARCH 7.

[Morris79]
Morris, R. and Thompson, K., “Password Security: A Case History,”
Communications ACM, vol. 22, no. 11, pp-594-598, November 1979,

[Needham 78]
Needham, R.M. and Schroeder, M.D., “Using Encryption for
Authentication in Large Networks of Computers,” Communtcations ACM,
vol. 21, no. 12, pp.993-999, December 1978.

[Organick72]
Organick, E.L, The MULTICS System: An Examination of its Structure.
Cambridge Mass.:The MIT Press, 1972.

[Pagan8l]
Pagan, F.G., in Formal Specification of Programming Languages,
Prentice-Hall, Inc. (1981).

[Parker76]
Parker, D.B., Crime by Computer. New York:Charles Scribner’s Sons, 1976.

[Parnas72]
Parnas, D.L., “A Technique for Module Specification with Examples,”
Communications ACM, vol. 15, no. 5, pp.330-336, May 1972.
[Pietro-Diaz83]
Pietro-Diaz, R. and Neighbors, JM., “Module Interconnection
Languages”, Comp. Sci. Dep. University of Irvine, Cal,, June 1983.

[Pollack81]
Pollack, F.J., Kahn, K.C, and Wilkinson, R.M., “The iMAX-432 Object
Filing System,” Proceedings of the 8-th Symposum on Operating Systems
Principles, pp.137-147, December 1981.

[Pollack82]
Pollack, F.J., “Supporting Ada Memory Management in the iAPX-432,”
Proc. Symp. on Architectural Support for Programming Languages and Operating
Systems, pp.117-131, Mar 1-3 1982.

[Popek78]
Popek, G.J. and Farber, D.A., «A Model for Verification of Data Security
in Operating Systems,” Communications ACM, vol. 21, no. 9, pp.737-749,
Sep 1978.

[Popek80]
Popek, G.J., Walker, B.J., and Kemmerer, R.A., “Specification and
Verification of the UCLA Unix Security Kernel,” Communications ACM,
vol. 23, no. 2, pp.118-131, Februari 1980.

[Reed 79]
Reed, D.P., “Implementing Atomic Actions on Decentralized Data,” Proc.
Seventh ACM/SIGOPS Symposium on Operating Systems Principles, 1979.

REFERENCES 225

[Riet80]
Riet, R.P. van de, “Databanken, enkele onderzocksaspecten,” in
Colloquium Databankorganisatie, Math.Centrum, Amsterdam (1980).

[Riet81]

Riet, R.P. van de, Kersten, M.L., and Wasserman, Al, “A Module
Definition Facility for Access Control in Distributed Data Base Systems,”
PP- 255-272 in Distributed Data Sharing Systems, ed. W. Litwin, North-
Holland, Amsterdam (June 1981).

[Riet83]

Riet, R.P. Van de, Kersten, M.L.,, Jonge, W, de, and Wasserman, A,
“Privacy and Security in Information Systems using Programming
Language Features,” Information Systems, vol. 8, no. 2, pp.95-103, 1983.

[Robinson80]
Robinson, D.F. and Foulds, L.R., Dagraphs: Theory and Practice. Gordon
and Breach Science Publishers, 1980.

[Rubin84]
Rubin, H.L, Integrated Development Environment. Ms Thesis, University of
California, Berkeley, 1984.

[Rushby83]
Rushby, J. and Randell, B., “A Distributed Secure System,” Computer,
vol. 16, no. 7, pp.55-67, July 1983.

[Saltzer75]
Saltzer, JH. and Schroeder, M.D., “The Protection of Information
Systems,” Proc. IEEE , vol. 63, no. 9, pp.1278-1308, September 1975.

[Schmidt77]
Schmidt, J.W., Some High-level Language Constructs for Data of Type Relation.
ACM Transactions on Database Systems, September 1977,

[Schroeder77]
Schroeder, M.D., Clark, D.D, and Saltzer, J.H., “The Multics Kernel
design project,” ACM SIGOPS Operating Systems Review, vol. 11, no. 5,
pp-43-56, November 1977.

[Snyder79]
Snyder, L., “Theft and Conspiracy in the TAKE-GRANT model,” CSD-
TR 361, 1979, Dep. of Comp.Sci. Purdue University.

[Snyder81]
Snyder, L., “Formal Models of Capability-Based Protection,” IEEE
Transactions on Computers, vol. C-30, no. 3, pp.172-181, Mar 1981.

[Stepoway81]
Stepoway, S.L. and Silberschatz, A., “An extension to the Language-
Based Access-Control Mechanism of Jones and Liskov,” ACM SIGPLAN

226 SUMMARY AND FUTURE RESEARCH 7.

Notices, vol. 16, no. 5, pp.54-58, May 1981.

[Stonebraker74]
Stonebraker, M. and Wong, W., “Access Control in a Relational Data
Base Management System by Query Modification,” Proceedings ACM 1974
National Conference, pp.180-186, November 1974.

[Stoy77]
Stoy, J.E., Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory, 1977.

[Tanenbaum8l]
Tanenbaum, A.S. and Mullender, S.J., “An Overview of the AMOEBA
Distributed Operating System,” ACM SIGOPS Operating Systems Review,
vol. 15, no. 3, pp.51-64, July 1981.

[Thomas76]
Thomas, J.W., Module Interconnection in Programming Systems Supporting
Abstraction. PhD. Thesis, University of Utah, June 1976.

[Thompson81]
Thompson, D.H. and Erickson, R.W., AFFIRM System Documentation.
Marina Del Rey:USC Information Sciences Institute, Februari 1981.
[Tichy79]
Tichy, W.F., “Software Development Control Based on Module
Interconnection,” pp. 29-41 in Proc. 4-th Int. Conference on Software
Engineering (September 1979).

[Turn80]
Turn, R., “An Overview of Transborder Data Flow Issues,” Proc.
Symposium on Security and Privay, pp.3-8, April 1980, IEEE Computer
Society.

[Ullman80]
Ullman, J.D., Principles of Database Systems. Computer Science Press, 1980.

[Ware67]
Ware, W.H., “Security and Privacy in Computer Systems,” Proc. AFIPS
Spring Joint Computer Conference, pp-279-282, 1967.

[Wasserman 79a]
Wasserman, A.L, “USE: a Methodology for the Design and Development
of Interactive Information Systems,” pp. 31-50 in Formal models and
Practical Tools in Inf. Sys. Design, ed. Schneider,H.J., North Holland,
Amsterdam (1979).

[Wasserman79b]
Wasserman, A. L., “Modularity in Data Base System Design: A Software
Engineering View of Data Base Management,” in Issues in Data Base
Management, ed. H. Weber, North Holland (1979).

REFERENCES 227

[Wasserman81]
Wasserman, AL, Sherertz, D.D., Kersten, M.L., Riet, R.P. van de, and
Dippe, M. , “Revised Report on the Programming Language PLAIN,”
ACM SIGPLAN Notices, vol. 16, no. 5, pp.59-80, May 1981.

[Wassermang82a)
Wasserman, AL, Riet, R.P. van de, Kersten, M.L., and Leveson, N.G.,
“A Formal, Integrated Approach to Data and Usage Integrity in Health
Information Systems,” IFIP Conf. on Data Protection in Health Information
Systems, pp.103-118, 1982, North-Holland.

[Wasserman82b]
Wasserman, A.L, “The User Software Engineering Methodology: an
Overview,” pp. 581-629 in Information Systems Design Methodology, ed.
Verrijn Stuart, North Holland, Amsterdam (1982).

[Wegner72]
Wegner, P, “The Vienna Definition Language,” ACM Computing Surveys,
vol. 4, no. 1, pp.5-63, 1972.

[Weissman 73]
Weissman, C., “Security Controls in the ADEPT-50 Time-Sharing
System,” in Security and Privacy in Computer Systems, ed. Lance J-
Hoffman, Melville Publ. Co., Los Angeles (1973).

[Weyuker 78]
Weyuker, E.J., “Security in Operating Systems: separating the roles of
rigths”, Technical Report 003, Courant Institute New York University,
1978.

[Wijngaarden69]
Wijngaarden, A. van, Mailloux, B.J., Peck, J-E.L., and Koster, CH.A.,
Report on the Algorithmic Language ALGOL 68. Amsterdam:Mathematisch
Centrum, 1969.
[Wirth80]
Wirth, N., MODULA-2, Reference Manual. ETH Zurich, Mar, 1980.
[Wood 79]
Wood, C. and Fernandez, E.B., “Decentralized Authorization in a
Database System,” Proc. 5-th Int. Conference on Very Large Data Bases,
Pp-352-359, 1979, IBM Corp, Los Angeles Sci. Center.
[Wood 77]
Wood, HW., “The Use of Passwords for Controlling Access to Remote
Computer Systems and Services,” AFIPS NCC , vol. 46, pp.27-33, 1977.
[Wulf74]
Wulf, W.A,, Cohen, E., Corwin, W., Jones, AK., Levin,, R., Pierson, C.,
and Pollack, R., “HYDRA: The Kernel of a multiprocessor operating

228 SUMMARY AND FUTURE RESEARCH 7.

system,” Communications ACM, vol. 17, no. 6, pp.337-345,, 1974.

[Zimmerman80]

Zimmerman, H., “OSI Reference Model- The ISO Model of Architecture
for Open Systcms Interconnection,” IEEE Transactions on Communication,

vol. 28, pp.425-432, Apr 1980.

Bij het reglementeren van het benaderen van cbjecten in een computersysteem
dient onderscheid gemsakt te worden tussen het toegangsrecht en het gebruika-
recht.

{Hocofdstuk 4 van dit proefchrift)

Een formeel 'access-control' model is noodzakelijk voor het ontwerp van
een veilige programmeertaal en zijn omgeving.

(Hoofdstuk 6 van dit proefschrift)

De combinatie van 'information hiding' en ‘closed scopes' in PLAIN vormt
een goede basis voor de constructie van veilige informatieaystemen.

Lit: H.P. Van de Riet, M.L. Kersten, W. de Jonge and A.I. Wasserman,
“Privacy and Security in Information Systems Using Programming Language
Fentures," Information Systems, Vol. 8 nr. 2, pg. 95-103, Feb. 1983

De aanneme van McLesn dat 'security' een universeel begrip is en dat daardoor
het Basic Security Theorem van Bell-LaPadula van beperkte waarde zou zija, is
onjuist.

Lit: J. McLean, "A comment on the 'Basic Security Theorem' of Bell and
LaPadula,” Information Processing Letters, Vol. 20 anr. 2, pg. 67-70,
Feb. 1985.

Een ‘optimistic concurrency control® techniek is ongeschikt voor database
gystemen die ten behoeve van prest&tieverhetering geaggregeerde informatie
bijhouden.

Lit: M.L. Kersten and H. Tebra, "Application of an Optimistic Concurrency
Control Method," Software, Practice & Experience, Vol. 14 nr. 2,
pg. 153-168, Feb. 1983.

Een 'zoom' mechanisme vormt een essentieel onderdeel van een gebruikers-
vriendelijke vraagtaal voor (relationele) databanken.

Lit: A.I. Wasserman and M.L. Kersten, "A TBE Tutorial,” Vrije Universiteit,
Dep. of Mathematics and Computer Science, Amsterdam, May 1984 .

Het gebruik van trigrammen in plaats van woorden voor indicering van
documenten is wat betreft het mantal referemties in de index pas een
verbetering bij een gemiddelde documentgrootte van meer dan 40 paginaa.

Lit: J. ChudAdek, "Niet-grammaticale verwerking van natuurlijke talen in
computers,” Informatie, Jaargang 26 nr. 8, pg 594-600, juli/aug- 1984.

Het 'marking' concept in de programmeertaal PLAIN kan efficient geimplewenteerd
worden.

Lit: R.P. van de Hiet, A.I. Wasserman, M.L. Kersten and W. de Jongse,
“High-Level Programming Features for Improving the Efficiency of
a Relational Database System,” ACM Transactions on Database Systems,
Vol. 6 nr. 3 pg. 464-485 Sep. 1981.

9.

10.

1.

Het exploratief prototypen van informatiesystemen kan het beal geschieden

door gebruik te maken van software op microcomputers.

Lit: C. Floyd et al., "A Systematic Look At Prototyping,” Proceedings
Workshop on Approaches to Prototyping, Namen (Belgie) pg 1-19, Oct 1983.

De wettelijke verplichting om een kind binnen drie dagen na de geboorte bij
de burgerlijke s:and aan te geven is voor de meeate moeders een niet hualbare
termijn en dus een beperking in haar recht het kind zelf aan te peven.

Lit: Nieuw Burgerlijk Wetboek art. 18.

Het gebruik van andermans naam en password voor het zich met bedriegelijk
oogmerk toegang verschaffen tot computers kan beschouwd worden als het
aannemen van andermans identiteit en zou dienovereenkomstig strufbaar
gesteld moeten worden.

Lit: Wetboek van Strafrecht art. 225 en art. 326.

Uit oogpunt van bezuinigingen bij het onderwijs is te verwachten dut de term
atudent vervangen zal worden door leerling.

