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Constraint satisfaction has been used as a term to cover a wide range of methods to solve problems stated in the form of a set of constraints.
As the general constraint satisfaction problem (CSP) is NP-complete,  initially the research focused on developing new and more efficient
solution methods, resulting in an arsenal of algorithms. Recently, much attention has been paid on how to finetune the use of this arsenal, and
to be able to judge which methods are promising for a given problem or problem-type. In the last few years different generalisations of the
classical CSP have got much attention too, allowing to model a wider range of every-day problems. 

In this survey we introduce the classical CSP and the basic solution techniques as well as the ongoing research on the applicability of these
methods  and  on  extensions  of  the  classical  framework.  After  giving  some  introductory  examples  we  define  the  most  essential  technical
notions in order to explain different solution methods. First, we discuss constraint propagation algorithms, which transform the initially given
CSP step by  step to  an  equivalent,  but  smaller  problem.  Then we will  introduce a family of  constructive search algorithms,  followed by
methods exploiting the structure of the problem. Finally, we discuss the local and stochastic methods, also applicable to solve non-standard
problems.  The discussion  of  solution methods  will  be  closed by  addressing  the issue of  choosing a good algorithm for  a given problem.

Many  practical  applications  have  essential  characteristics  which  do  not  "fit  into"  the  classical  formalism  of  CSP.  The  extension  of  the
problem definition and appropriate solution methods will be dealt with in the final chapter.

 

 

 

1. Constraint satisfaction problems

A  constraint  satisfaction  problem  prescribes  some  requirements  for  a  finite  number  of  variables  in  the  form  of
constraints. The set of possible values - the domain - for each variable is finite. A constraint tells which value tuples are
allowed for a certain subset of  all the variables. A constraint can be given either explicitly, by enumerating the tuples
allowed, or implicitly, e.g. by an algebraic expression. The solution of a CSP is an instantiation of all the variables for
which all  the constraints  are satisfied.  A CSP is solvable if  it  has at  least  one solution,  otherwise it  is  unsolvable or
overconstrained. 

Solving a CSP is usually understood as the task of providing a single solution for the problem. However, there are cases
when one would like to get all the solutions. In the case of  constraint optimisation problems, the best solution is to be
found, namely the one with the optimal value of a given optimisation function. In some situations one is not interested
in the solutions themselves, but in the number of  solutions. Particularly, if  the problem is solvable or not. It has been
shown that all these questions are equally hard, NP-complete problems (Macworth 1977). In this review by solving a
CSP we understand the task of producing a single solution.

Before  providing  the  formal  definition  of  the  CSP  and  its  solution  methods,  let’s  look  at  some  examples,  also  to
illustrate the variety of the potential application fields.

1.1. 8-queens, graph colouring and practical applications

Famous test-problem popular also in the CSP world is the 8-queens problem: place 8 queens on the chess board such
that they do not attack each other. In order to formulate this problem as a CSP, the location of  the queens should be
given  by  variables,  and  the  "do  not  attack  each  other"  requirement  should  be  expressed  in  terms  of  a  number  of
constraints. A simple way to do this is to assign a variable to each queen. As the 8 queens must be placed in 8 different
columns, we can identify each queen by its column, and represent its position by a variable which indicates the row of
the queen in question. Let x stand for the row of the queen in the i-th column. The domain of each of the variables x ,...,
x is  {1,2,...,  8}.  For  any two different  variables  the  following two constraints  must  hold,  expressing that  the  queens
should be in different rows and on different diagonals:



 

x ¹ x , 

|x - x | ¹ |i - j| .

 

In this formulation of  the problem, we have to find a solution out of  the total possible instantiations of  the variables,
which is 8 . This formulation, though seems natural, does contain a trick: a part of  the requirements of  the problem is
reflected  in  the  representation,  not  in  the  constraints.  We  could  have  used  the  most  straightforward  representation,
namely identifying the squares of the chess board by the 1,2,..., 64 numbers, and having 8 variables for the 8 queens all
with the domain {1,2,..., 64}. In this case, the "different columns" requirement should be expressed too by constraints,
and all  the three types of  constraints become more intrinsic to formulate. The total number of  possible arrangements

becomes as large as , containing a configuration of queens multiple times due to the identification of the 8 queens.
So we have many reasons to prefer the first representation over the second one.

It  is true in general  that  a problem can be formulated as a CSP in a number of  ways. The resulting CSPs may differ
significantly considering the number and complexity of the constraints and the number of the possible instantiations of
the variables, and thus may require very different amount of time and memory to be dealt with. Hence when modelling
a problem as a CSP, one has to pay attention to different possibilities, and try to commit to the one which will be the
easiest to cope with. The in-depth analysis of the different solution methods and of the characteristics of the CSPs may
provide a basis to make a good choice. Several cases have been reported when a notoriously difficult problem could be
solved finally as a result of change of the representation.

Both representations of the 8-queens problem are pleasantly regular: the domain of all the variables is the same, all the
constraints  refer  to 2  variables,  and for each pair  of  variables the same type of  constraints are prescribed. Hence the
8-queens problem is not appropriate as a test case for solution algorithms developed to solve general CSPs. In spite of
this intuitive observation, earlier the 8-queens had been a favourite test problem: there had been a race to develop search
algorithms  which  were  able  to  solve  the  problem  for  bigger  and  bigger  n.  (It  is  possible  to  construct  a  solution
analytically.)  This  practice  was  stopped  by  two  discoveries.  On  the  one  hand,  Sosic  (Sosic  1991)  came  up  with  a
polynomial-time  search  algorithm,  which  was  heavily  exploiting  the  above  mentioned  special  characteristics  of  the
problem. On the other hand, by analysing the search space of the n-queens problem, it was shown that the general belief
that  "the bigger the n the more difficult  the problem is" does not hold -  in fact,  the truth is just the opposite (Morris
1992).

Another, equally popular test problem is graph colouring: colour the vertices of a given graph using k colours in such a
way that connected vertices get different colours. It is obvious how to turn this problem into a CSP: there are as many
variables as vertices, and the domain for each variable is {1,2,..., k}, where k is the allowed number of  colours to be
used. If there is an edge between the vertices represented by the variables x and x , then there is a constraint referring to
these two variables, namely: x ¹ x . Though for the first sight graph colouring may seem to be just as a toy problem as
the  n-queens,  there  are  basic  differences  between  the  two  problems.  First  of  all,  graph  colouring  is  known  to  be
NP-complete, so one does not expect a polynomial-time search algorithm to be found. Secondly, it is easy to generate a
great number of  test graphs with certain parameters, which are more or less difficult to be coloured, so the family of
graph colouring problems is appropriate to test algorithms thoroughly. (We will return to the issue what makes a graph
difficult  to  colour.)  Finally,  many  practical  problems,  like  ones  from  the  field  of  scheduling  and  planning,  can  be
expressed as an appropriate graph colouring problem.

Many  other,  sometimes  surprising,  fields  of  application  raise  problems  which  can  be  formulated  as  a  CSP.  Picture
labelling is one of  the basic tasks in image processing to analyse pictures and to recognise drawings. The lines in the
picture should be labelled in a consistent way, choosing from a set of labels of objects which may occur in the drawing.
That is, the assigned set of  labels should properly define the objects given in the picture. The very first application of
this kind -which is also one of  the first applications of  constraint technology - was given by Waltz (Waltz 1975), who
could interpret line drawings of polyhedra. For the sake of simplicity, we restrict ourselves to line drawings of bricks. A
line drawing is modelled as a CSP with variables corresponding to line segments in the drawing. Each variable should
get  a label  from the set  {+,  - ,  ® ,  ¬ }.  For each vertex in the drawing (junction of  2 or 3 line segments) there is a
constraint. The allowed label tuples for the different kinds of junctions are given in Figure 1 (based on Huffman 1971).

It  can be seen easily  that  in Figure 2 the labelling of  the lines fulfils the constraints,  hence this is a proper labelling
(interpretation) of  the drawing. The drawing given in Figure 3. cannot be labelled properly, that is, the corresponding



CSP has no solution. This is in accordance with the fact that the drawing cannot be interpreted as any view of a brick.

Many mechanical engineering design task can be given in the form of requirements with regard to certain parameters of
the  object  to  be  produced  (Frayman  1987,  Nadel  1991).  As  from  the  point  of  view  of  functionality,  safety,
manufacturability,  marketing  and  maintenance,  different  sets  of  requirements  are  formulated,  which  often  cannot  be
fulfilled all, the successful practical applications have to be prepared to handle conflicts, to combine partial solutions, to
allow  hierarchical  constraints  (Bowen  1992).  In  the  field  of  electrical  engineering,  CSP has  been used  to  test  VLSI
designs (Hooker 1994). 

 

Figure 1. Proper labelling of line segments for different types of junctions.

 

 

Figure 2. A consistent labelling of the line segments of a drawing.

 



Figure 3. This drawing cannot be interpreted as a view of a brick - there is no solution for the labelling problem

 

Graphical user interfaces and interactive editors (Sutherland 1963, Borning 1995, Sannella 1994) assure certain layout
by generating a solution of  the CSP reflecting the layout criteria, each time some variables have been changed by the
user or by an application program. The fields of  application include transportation and scheduling (Fox 1989, Zweben
1994), natural language processing, robotics, molecular biology. For more applications, see a recent overview (Wallace
1996).

 

1.2. Definition and graph representations of  the CSP 

After the above intuitive description, in this chapter we give the formal definition for the CSP, and
introduce  certain  characteristics  to  be  referred  to  when  discussing  solution  methods.

 

1. Definition

A constraint satsfation problem (CSP) is a triple <X, D, C>, where:

(i) X = { x ,..., x } is the set of variables.

(ii) D = { D ,..., D } is the set of domains. Each domain is a finite set containing the possible values for
the corresponding variable.

(iii) C = {C ,..., C } is the set of constraints. A constraint C is a relation defined on a subset {x ,..., x }
of all the variables, that is 

D x...x D Ê C  . *

 

Given a (partial or complete) instantiation of the variables, the constraint C is satisfied if all the x ,..., x variables got a
value and such that the corresponding value tuple belongs to C . A solution of a CSP is such a complete instantiation of
the variables that all the constraints are satisfied. If for a CSP there is at least one solution, then the problem is solvable,
otherwise unsolvable, or inconsistent, or overconstrained. The set of all possible complete instantiations, that is, D x...x
D is often called the solution space, in the sense that the solution should be searched for in this space. 

We emphasise that though a constraint is defined as a relation, it is not necessarily given explicitly, by enumerating the
elements  in  the  relation.  It  can be given implicitly,  by  any description  which is  sufficient  to  decide  if  the constraint



holds for a value tuple or not. In case of  variables with numerical domains, a constraint can be given as an equation,
inequality, or the prescription that the value of two variables values should be relative prime numbers. A constraint can
be given by a function or logical predicate, as well.

A constraint is loosened or relaxed if  there are further element(s) added to the relation. If elements are removed from
the relation, then the constraint is tightened. The variables of  a constraint C are the variables in the set v(C )={x ,...,
x }. It is also said that constraint refers to these variables, or it constraints these variables. (Note that in our definition of
a  CSP  for  sake  of  simplicity  we  did  not  include  the  variables  of  a  constraint  explicitly.  In  more  strict  and  formal
discussions they often do.) The tightness of  a constraint is given by the proportion of  the number of elements in the
constraint and the number of  all possible instantiations of  the referred variables. The cardinality of  a variable  is the
number of constraints referring to the variable.

If  v(C )  has  one  element,  then  C is  unary  constraint ;  if  v(C )  has  two  elements,  then  the  constraint  is  binary
constraint. A CSP is a binary CSP, if all its constraints are unary or binary.

Binary CSPs play a special role, as any CSP can be transformed into an equivalent binary CSP. Namely, if  in a given
CSP, C is  a k-ary (k>2) constraint,  then we may replace it  by an y variable and the B ,...,  B binary constraints.  The
domain of  the y variable is the set of  those k-tuples for which C holds. B refers to x and y, and B holds if  the value
assigned to x is the same as the value in the i-th position of the instantiation of y. By eliminating all the non-binary and
non-unary constraints in such a way, the resulting problem is a binary CSP. It can be seen easily that this problem is
solvable if and only if the original one is solvable, and there is a one to one correspondence between the solutions of the
original CSP and the derived binary one. No question, a binary problem has a nicer and simpler structure than a general
one.  As  we will  see later,  there are  solution  methods which exploit  this  specific  structure and are only applicable to
binary  problems.  However,  as  any  problem  can  be  transformed  to  an  equivalent  binary  one,  after  all  these  solution
methods can be considered as general. In practice, nevertheless, one should check carefully if it is worth to deal with the
binary equivalent of  a given general CSP, as this usually implies a problem with many additional variables with large
domains,  hence  a  problem  with  a  considerably  bigger  solution  space  than  that  of  the  original  problem.

The structure of a binary CSP can be visualised in a straightforward way by a graph, the vertices of which correspond to
the variables, and two vertices are connected iff there is at least one constraint referring to the corresponding variables.
This  graph  is  called  the  constraint  graph  of  the  binary  CSP.  The  constraint  graph  of  the  8-queens  problem is  the
complete graph with 8 vertices. The constraint graph of  a graph colouring problem is isomorphic with the graph to be
coloured.

The concept of  constraint graph can be defined for general CSPs as well. Constraints are not represented by edges, but
by the set of vertices corresponding to variables of the constraint. Such a hyper-edge can be shown by drawing a closed
curve  around  the  vertices  involved.  For  a  general  CSP  the  constraint  graph  is  thus  a  hypergraph.

Another  presentation  of  a  CSP  is  its  primal  graph .  It  is  a  non-directed  graph,  with  vertices  corresponding  to  the
variables of  the problem. There is an edge between two vertices iff  there is at least one constraint in the problem such
that its referred variables contain the two ones corresponding to the vertices. For a binary CSP, the constraint graph and
the primal graph are the same.

The  dual  graph  of  a  CSP  is  a  non-directed,  labelled  graph  with  vertices  corresponding  to  the  constraints  of  the
problem. Two vertices are connected iff  the two constraints represented by the vertices share at least one variable. The
edge is labelled by the set of variables shared by the two constraints. In Figure 4 the different graph representations are
shown for the picture labelling problem given in Figure 2. 

The structure of  a CSP is characterised in terms of  topological features of  its primal graph. A CSP is connected, if  it
primal graph is connected. 

The width  of  a CSP is the width of  its primal graph, which is defined as follows. Let’s consider an ordering of  the
variables,  x ,  ...x .  The width of  a variable x at the given ordering of  all the variables is the number of
edges in the primal graph which connect x with another variable preceding it in the ordering. The width of
an ordering is the maximum of the variables at the given ordering. The width of a primal graph  is the minimum of the
width of all possible orderings of the variables.

As we will see, CSPs with a tree primal graph are easy to solve. It is easy to prove that a graph which is a tree has width
1. 

If all the variables have got a value, then we talk about complete instantiation of the variables. Otherwise the variables



are partially instantiated. If we assign a value to an uninstantiated variable in a partial instantiation, then we extend the
partial instantiation . We will refer to an instantiation of a variable as <x,v>. The projection of a constraint C on the
variables {x ,..., x } , denoted by 

P(C ,  {x ,...,  x }) ,  is  the set  of  all  (v ,...,  v )  value h -tuples for which it  holds that  the (<x ,v >,...,  <x ,v >) partial
instantiation can be extended in such a way that the constraint holds. The projection of  several constraints on a set of
variables  is  the  intersection  of  the  projection  of  the  individual  constraints.  Particularly,  the  projection  of  all  the
constraints on a set of variables - denoted by P(C, {x ,..., x }) - is also called as the projection of the solution set on the
variables.  A  partial  instantiation  is  consistent if  all  the  constraints  which  refer  to  instantiated  variables  only,  are
satisfied. An <x,v> instantiation of  a variable is compatible with a partial instantiation if  the extension of  the partial
instantiation with <x,v> is consistent.

 

 

 

a) b) c)

 

Figure 4. Graph representations of the consistent labelling problem given in Figure 2. a) the constraint graph b) the
primal graph c) the dual graph

 

 

A CSP is usually formulated in such a way that the domain D contains other elements too than the ones in P(C, {x }).
Removing those elements from D has no effect on the solution set. However, it decreases the size of the solution space,
which is advantageous when searching for a solution. The same can be told of constraints as well. Usually, a constraint
contains more tuples than the projection of the solution set on the variables of the constraint, and those additional value
tuples can be eliminated without having an effect on the set of solutions. By tightening a domain and/or a constraint in
such a way the CSP is reduced to an equivalent one. A CSP is minimal if it cannot be reduced. A minimal CSP can be
considered as the ideal representation of the solution set, as there are no redundant values left in the domains and in the
constraints. The task of producing the minimal equivalent of a CSP is also NP-hard (Freuder 1978), thus in general it is
not  a  feasible  scenario  to  reduce  the  problem to  its  minimum and then solve  it.  However,  as  we shall  see,  a  certain
amount of reduction can pay off. 

1.3. Solution methods

The methods to generate a solution for a CSP fall into three classes. The first class includes the variants of backtracking
search.  These  algorithms  construct  a  solution  by  extending  a  partial  instantiation  step  by  step,  relying  on  different
heuristics  and  using  more  or  less  intelligent  backtracking  strategies  to  recover  from  dead  ends.

As we saw in the previous chapter, the reduction of a problem is advantageous, resulting in a smaller solution space to
be  searched.  The  second  class  includes  the  so-called  constraint  propagation  algorithms,  which  do  eliminate  some
non-solution  elements  from  the  search  space.  In  general,  these  algorithms  do  not  eliminate  all  the  non-solution
elements, hence, they do not produce a solution on their own. They are used either to pre-process the problem before
another type of algorithm is applied, or interwoven with steps of another kind of - e.g. backtracking search - algorithm
to boost its performance. 



Finally, the structure-driven algorithms exploit the structure of the primal or dual graph of the problem. There are very
different algorithms in this class, including ones which decompose the initial CSP into loosely-coupled subproblems,
which can be solved by methods from the previous two classes. Hence, structure-based methods can be also coupled
with some other types of algorithms. 

All the algorithms from the above three classes investigate the solution space systematically. Hence all those algorithms
of the above classes which are meant to find a solution, in theory really do the job as long as there is a solution. These
algorithms are: 

(i)  sound,  that  is  if  they  terminate  with  a  complete  instantiation  of  the  variables  then it  is  a  solution;

(ii) complete, that is capable to investigate the entire search space and hence find all the solutions. 

 

These requirements seem to be very essential, however, often one has to be satisfied with algorithms which do not fulfil
one or both of  them. The systematic search algorithms require exponential time for the most difficult CSPs. A CSP is
difficult  if  (almost)  the  entire  search  space  has  to  be  investigated  before  finding  a  solution  or  concluding  that  the
problem has none. If  the search space is large, then it may take days or weeks to run a complete and sound algorithm.
This can be forbidding in case of applications where a solution can be used only if provided within a short time. In such
cases a compromise is made, by using an algorithm which provides an answer fast, but the answer is not guaranteed to
be a  solution.  However,  it  is  "good enough"  in  the  sense that  not  all  the constraints  are satisfied,  but  the number of
non-satisfied  constraints  and  the  degree  of  violations  can  be  accepted.  Though  such  algorithms  cannot  be  used  to
generate all the (good) solutions for sure, usually it is possible to generate several quite different "almost solutions" (if
they exist). The so-called local stochastic search algorithms have in common that they explore the solution space in a
non-systematic way, stepping from one complete instantiation to another, based on random choices, and may navigate
on the basis of heuristics, often adopted from systematic search methods. In the recent years such algorithms have been
used with success to solve large practical problems, and they are suitable to handle CSPs extended with some objective
function to be optimised. We will devote a chapter to three algorithms of this kind: local search, genetic algorithms and
neural networks.

One may try to tackle the difficulty of solving CSPs by another approach than trying to forge new and better algorithms.
The  exponential  time  complexity  of  a  CSP  solving  algorithm  refers  to  the  worst  case,  i.e.  the  most  difficult  CSP
instances. The same algorithm could be applied with success for non-difficult instances. Should one be able to judge the
difficulty of CSPs in advance, based on some characteristics of the problems, one could try to avoid difficult instances,
and could get  a forecast about the resources needed to solve a problem at hand. How to make such a forecast? As a
closing  topic  of  the  discussion  of  solution  methods,  we  will  quote  a  couple  of  interesting  results  form  the  intense
research having been carried out in the past years.

 

2. Constraint propagation

By eliminating redundant values from the problem definition, the size of the solution space decreases. Reduction of the
problem  can  be  done  once,  as  pre-processing  step  for  another  algorithm,  or  step  by  step,  interwoven  with  the
exploration  of  the  solution  space  by  a  search  algorithm.  In  the  latter  case,  subsets  of  the  solution  space are  cut  off,
saving the search algorithm the effort of  systematically investigating the eliminated elements, which otherwise would
happen, even repeatedly. If  as a result of  reduction any domain becomes empty, then it is known immediately that the
problem has no solution.

One should be careful with not spending more effort on reduction than what will "pay off" in the boosted performance
of the search algorithm to be used to find a solution of the reduced problem. The reduction algorithms eliminate values
by  propagating  constraints.  The  amount  of  constraint  propagation  is  characterised  by  the  consistency  level  of  the
problem, hence these algorithms are also called consistency-algorithms. The iterative process of  achieving a level of
consistency  is  sometimes  referred  to  as  the  relaxation  process,  which  should  not  be  mixed  up  with  relaxation  of
constraints.

Constraint propagation has a long tradition in CSP research. Below we introduce the most well-known and widely used
algorithms.

2.1. Node- and arc-consistency



A CSP is node-consistent, if  all  the unary constraints hold for all  the elements of  the domains. The straightforward
node-consistency algorithm (NC), which removes the redundant elements by checking the domains one after the other
has O(dn) time complexity, where d is the maximum of the size of the domains.

A CSP is arc-consistent, if for any u value from the domain of any variable x any binary constraints which refers to x
can  be  satisfied.  The  Domain_Reduction  procedure  given  below  eliminates  those  elements  from  the  domain  of  a
variable x for which a given binary constraint cannot be satisfied. (The given pseudo-programs are based on ones in
(Tsang 1993)).

 

Procedure Domain_Reduction (<x,y>, domains, constraints)

1. reduced ¬ FALSE

2. domain_x ¬ get_domain(x, domains)

3. domain_y ¬ get_domain(y, domains)

4. while not all_checked(domain_x) loop

5. v ¬ pick_not_checked_value(domain_x) 

6. if not good_value(v, domain_y, constraints) then

7. domain_x ¬ domain_x \ {v}

8. reduced ¬ TRUE

9. endif 

10. endloop

11. return (reduced)

end

 

Running  the  Domain_Reduction  procedure  for  all  the  binary  constraints,  it  is  not  sure  that  the  reduced  problem  is
arc-consistent.  Let’s  assume that  the edge <x,y> is  on turn,  after  the edge <z,x> was processed.  When reducing the
domain of the variable x we may eliminate a value which assured that the binary constraints referring to z and x could
be satisfied for a value not eliminated earlier form the domain of z. Thus the edge <z,x> should be checked again, and
the Domain_Reduction should be reinvoked until  it  does not reduce further any of  the domains. The very first AC-1
algorithm  has  been  followed  by  the  algorithms  AC-2,...,  AC-7,  each  improving  the  bookkeeping  of  the  changed
domains  and  the  administration  of  the  iterations.  Below  we  give  the  widely-used  AC-3  algorithm:

 

Procedure AC-3 (variables, domains, constraints)

1. NC (variables, domains, constraints)

2. arcs ¬ binary_constraints(constraints)

3 while arcs ¹ Æ loop 

4. <x,y> ¬ pick_one_element(arcs)

5. if Domain_Reduction(<x,y>, domains, constraints) then



6. arcs ¬ arcs È (binary_constraints(constraints) Ç {<z,x> | z¹ y})

7. endif

8. endloop

9. return (domains)

end

 

The  time complexity  of  AC-3  is  O(d e),  memory  complexity  O(e+nd),  where  e  is  the  number  of  binary  constraints.
AC-4 improves AC-3 by checking if  in line 6 the just eliminated value did destroy the arc consistency of edge <z, x>.
This modification results in an algorithm with O(d e) time- and space complexity. Though we shall address the issue of
interpreting worst-case complexity  estimates in Section 6,  we must  note now that  testing AC-3 and AC-4 on a large
body of  CSPs, on average AC-4 did not run faster than AC-3 (Wallace 1993).  Another improvement of  AC-3 is the
algorithm  AC-5  (Van  Hentenryck  1992),  which  exploits  the  semantics  of  special  types  of  constraints.  The  AC-7
algorithm (Bressiere 1995) uses the symmetry of binary constraints.

Assuring  node-  and  arc-consistency  pays  off  for  sure  for  binary  problems  with  tree  structure.  This  is  stated  by  the
following, easy to prove theorem:

 

 

 

2. Theorem (Freuder 1982)

If a binary CSP has tree structure, and it is node- and arc-consistent, then a solution can be constructed without
backtracking. *

 

For the success of a backtrack-free search it is sufficient to assure that there is a value for the variable to be instantiated
in  the  current  step  which  is  consistent  with  the  earlier  produced  partial  instantiation.  Based  on  this  observation,  the
condition in  the above theorem can be weakened: it  is  sufficient  to require that  instead of  arc  consistency a weaker,
so-called directional arc-consistency holds for the problem.

For  a CSP directional  arc-consistency holds along a given ordering of  the variables,  if  for  any variable x,  for any
value u from its domain which satisfies the unary constraints on x, taking any variable y succeeding x in the ordering,
there  is  a  value  v  in  the  domain  of  y  such  that  the  binary  constraint  on  x  and  y  is  satisfied  for  x=u,  y=v .

Dechter  and  Pearl  (1988)  not  only  sharpened  the  theorem  by  Freuder,  but  since  then  have  coined  a  series  of  other
directional consistency concepts and have shown how the different directional consistencies improve the efficiency of
the uninformed search algorithm.

2.2. k-consistency

Arc-consistency can be also understood as telling something about how far a partial solution can always be extended.
Namely,  any  partial  solution  containing  only  one  instantiated  variable  can  be  extended  by  instantiating  any  second
variable  to  a  properly  chosen  value.  Applying  the  same  principle  for  more  variables,  we  arrive  at  the  concept  of
k-consistency.

 

3. Definition

A CSP is k-consistent, if  any consistent instantiation of any k-1 variables can be extended by instantiating any one of



the remaining variables. *

 

Note that according to the definition, k-consistency does not imply r-consistency for any r such that r<k. This is assured
by the definition of strong k-consistency.

 

4. Definition

A CSP is strongly k-consistent, if 1, 2, ..., k-1 and k-consistent. *

 

For binary CSPs there is yet another type of consistency used:

 

 

 

 

5. Definition

A binary CSP is path-consistent, if  for any path in its constraint graph it holds that if  the assignments of  the starting
and ending variables are consistent, then this can be extended to a consistent partial instantiation by assigning values to
the remaining variables along the path. *

 

It is an easy exercise to prove the following theorem:

 

6. Theorem

A binary CSP is strongly 3-consistent if  and only if  it is path-consistent. *

 

Similarly to the family of  arc-consistency algorithms, there is a family of  algorithms to achieve path-consistency of  a
binary CSP. These algorithms also assure node- and arc-consistency. The best of  them, PC-4 which is the analogue of
AC-4,  has  O(d n )  time-  and space-complexity.  A  weaker,  directed  variant  of  path-consistency  is  also used (Dechter
1988).

It  is  important  to  understand clearly  the  significance of  consistency.  A CSP which is  k-consistent,  is  not  necessarily
solvable, and in the other way around, the solvability of  a problem does not imply any level of  consistency, not alone
1-consistency. The consistency as a feature of a problem does guarantee that certain values and value h-tuples which are
not in the projection of the solution set have been removed form the domains and constraints. The level of consistency,
k  indicates  for  what  h-values has this  been done.  It  is  true,  however,  that  if  a  problem is strongly k-consistent,  then
taking any k variables in any order, they can be instantiated without backtracking one after the other in such a way that
the  instantiation  of  the  k  variables  is  a  partial  solution,  assuming  that  one  exists.  This  partial  instantiation  is  then  a
solution of the subproblem which is gained by restricting the problem to those variables.

 

7. Theorem

If  a  CSP  is  strongly  k-consistent,  and  none  of  the  domains  is  empty,  then  restricting  the  problem  to  any  set  of  k



variables,  this  subproblem  is  solvable  and  the  solution  can  be  constructed  with  uninformed  search,  without
backtracking. *

 

This theorem too has a directed version due to Dechter and Pearl, which assures that the solution of a subproblem can
be constructed without  backtracking assuming a given ordering of  the instantiation of  the variables.  To achieve this,
instead of  a uniform level strong k-consistency it is enough to require adaptive-consistency, that is the right level of
consistency  for  the  subproblems  one  is  to  solve  one  after  the  other,  which  assures  that  the  variable  on  turn  can  be
instantiated without backtracking. 

The practical value of the above theorems depends on how the effort needed to reduce the given problem to one with a
certain  level  of  consistency  is  related  to  the  gain  in  resources  needed  to  solve  the  reduced  problem.  To  achieve

k-consistency for a big k is expensive, as the time complexity of  the k-consistency algorithm is beyond O(d). For
adaptive consistency, the same worst-case estimate is O(d ), where a denotes the so-called induced width of  the given
CSP - the computation of  which is itself  NP-hard. However, for a given CSP these algorithms may work much better
than the  worst-case estimates guarantees.  The other factor,  the gain is  also unclear,  as no good in-advance estimates
exist. When facing the "how much reduction to be done" dilemma for a given CSP, there remains the study of empirical
results  (Frost  1995)  and the general  principle that  it  is  profitable to propagate tight  constraints,  as loose ones do not
cause much backtracking anyway.

3. Search algorithms

A  CSP  can  be  solved  by  systematically  exploring  the  solution  space  by  an  uninformed  search.  The  algorithms
instantiate variables one after  the other  in such a way that  the partial  instantiation is  always consistent.  If  this is not
possible  for  a  variable  on  turn,  that  is,  all  the  possible  values  are  in  conflict  with  some  earlier  assignment,  then
backtracking takes place.

3.1. Chronological backtracking

The simplest search scenario is when the order of variables as well as the order of values to be considered next is fixed,
and if a dead end occurs, then the latest instantiation is reconsidered. In this uninformed, depth-first search no heuristic
is  used  for  any  of  the  choices  made  during  exploration.  The  pseudo  code  of  the  chronological  backtracking  (CB)
algorithm is given as a basis to discuss possible improvements:

 

Recursive  procedure  CB  (free_variables,  instantiation,  domains,  constraints)

1. if free_variables= Æ then return(instantiation) endif

2. x ¬ pick_one_variable(free_variables)

3. domain_x ¬ get_domain(x, domains)

4. while domain_x ¹ Æ loop

5. v ¬ pick_one_value(domain_x )

6. if consistent(instantiation È {<x,v>}, constraints) then

7. solution ¬ CB(free_variables \ {x}, instantiation È {<x,v>}, domains, constraints)

8. if solution ¹ Æ then return(solution) endif

9. endif 

10. endloop

11. return (Æ )



end

  

 

Running the above procedure with free_variables ¬ X, instantiation ¬ Æ , domains ¬ D, and constraints ¬ C as initial
values, the procedure will return a solution - the one found for the first time -, if the problem is solvable, Æ otherwise.
The worst case is when the algorithm has to generate and check all the complete instantiations to find the only solution

or to conclude that there is none. This requires O(dm) steps and O(dn) memory. 

The CB algorithm can be improved at different points in the following ways:

(a) Whenever a choice has to be made, some heuristic is to be used instead of  the fixed lexicographical
ordering given by the description of the problem.

(b) After each variable instantiation, a part of  the search space not containing solutions is identified and
discarded from further investigation.

(c) Analysing the structure of the problem, the chronological backtracking is replaced by some intelligent
backtracking.

(d)  The  algorithm  learns  while  exploring  the  search  space:  both  negative  and  positive  conclusions  on
partial  instantiations  are  remembered  and  reused  later  if  appropriate,  instead  of  redoing  the  necessary
checks again.

3.2. Ordering heuristics

Variable instantiations should be done in such an order that we try to avoid deep backtracking in course of the search. A
deep backtracking means that a big part of  the variable instantiations have to be undone, often repeatedly many times.
(This  annoying  phenomena  in  search  got  a  distinct  name:  thrashing.)  The  reason  for  this  is  that  the  variable,  which
cannot be instantiated properly for a big set of partial instantiations, is dealt with too late. Hence, intuitively, one would
deal  with  the  critical  variables  first.  Different  heuristics  are  used  to  judge  how  critical  variables  are,  based  on  the
number  of  possible  values  for  the  variable  and  the  already  satisfied  and  remaining  constraints.  The  heuristic-based
selection, whatever heuristic is used, replaces the uninformed pick_one_variable process. If the order of variables is set
in advance, then we talk about static variable ordering. Otherwise, in the case of  dynamic variable ordering, the next
variable to be instantiated depends on the current state of the search.

The fail first principle  (FFP), which is a general search heuristic, in our case of variable selection means that variables
with  the  least  possible  values should  be instantiated  first.  This  principle  can be applied  in  a  static  way,  if  the initial
domain of  the variable is taken into account, or in a dynamic way, if  the domains of  uninstantiated variables may get
reduced due to the already committed instantiations. 

The minimum width ordering  (MWO) heuristic is based on the idea that if a variable does not depend on many earlier
instantiated  variables,  then  it  will  be  easier  to  assign  an  appropriate  value  to  it.  Hence  the  smaller  the  width  of  an
ordering is, the fewer backtracking can be expected. The heuristics takes a static ordering of the variables, namely one
with minimal width. 

If the width of a CSP is w, then taking an ordering of the variables with this minimal width, for each variable on turn at
most  w-1  earlier  instantiated  variables  are  to  be  taken  into  account.  The  strength  of  the  heuristic  depends  on  the
consistency level of the problem, as illuminated by the following theorem.

 

8. Theorem (Freuder 1982)

If  for  a CSP with level of  strong consistence s and width w holds that s>w, then a solution can be produced without
backtracking,  by  instantiating  the  variables  in  the  order  corresponding  to  the  width  of  the  problem.  *

 



The  MWO  heuristic  thus  does  guarantee  backtrack-free  search,  assuming  that  the  problem  has  a  sufficient  level  of
strong-consistency. But even if  the necessary condition does not hold, that is w³ s, then the magnitude of (w-s) can be
used to judge the amount of backtracking to happen: the smaller the difference is, the less backtracking is expected. 

To  produce  the  minimal  width  ordering  of  the  variables  requires  O(n )  steps.  O(n)  steps  are  sufficient  to  order  the
variables  by  cardinality.  The  maximum  cardinality  ordering  (MCO)  heuristic,  which  takes  the  variables  in  the
decreasing order of  cardinality, can be considered an approximation of  the MWO heuristic. This cheaper heuristic has
been used with success.

Another heuristic is based on the idea that variables which constraint each other should be close to each other in the
order of instantiations. This principle is reflected in the minimum bandwidth ordering  heuristic (MBO), which takes a
variable  ordering  with  minimal  bandwidth.  The  bandwidth  of  an  ordering  is  the  maximum of  the  bandwidth  of  the
vertices in the ordering. The bandwidth of  a vertex in an ordering is the maximum distance of  the vertex from all the
vertices in the ordering which are constrained by the given vertex. 

We have seen that it is advantageous to consider the most critical variables to be instantiated first. When deciding about
the  order  of  assigning values to  a  variable  on  turn,  the  situation is  just  the  opposite:  one would  like  to  take a  value
which will  not  have to  be reconsidered later  on,  due to backtracking.  Hence,  the "most  promising" values should be
tried first. "Most promising" in the sense that the partial instantiation resulting by assigning the value to the variable on
turn,  the  partial  instantiation  can  be  extended further  to  a  solution.  A  common measure  to  judge the  "promise"  of  a
value is based on the number of values not in conflict with the value in question, for each uninstantiated variable. The
value which leaves the most options for each uninstantiated variable is the best. This heuristic is known as minimum
conflict first (MCF) heuristic. 

Both for variable and value ordering there is the question of  breaking ties, that is, selecting one from several equally
good  candidates.  This  is  done  either  in  a  deterministic  way,  based  on  lexicographic  ordering  or  applying  another
principle to differentiate further between the candidates; or by choosing randomly from the equally good candidates. It
has been observed that random choice is better than uninformed deterministic choice. 

3.3. Intelligent backtracking

We illustrate two weaknesses of  uninformed search by an example. Let us assume that the CSP to be solved has the
variables x, y and z, each with the domain {1,2,3}. The constraints to be satisfied are: y £ z, xz ³ 4. Let us assume that in
the search process the x=1, y=1 instantiations have taken place. Now when trying to instantiate z, it turns out that for all
the possible values for z the xz ³ 4 constraint is violated. Uninformed backtracking will reconsider the variable y in vain,
ending  up  in  the  same dead-end  situation,  without  noticing  that  the  cause  of  the  dead end  is  obviously  in  the  value
assigned to x, the very variable involved in the violated constraint. On the other hand, when after having backtracked to
x, y is re-instantiated again to 1, and a value for z is to be chosen, the y £ z, constraint will be checked again, though
earlier it was found that if  y=1 then none of  the variables from the domain of  z were in conflict with the value of  y,
hence this constraint should not be checked again if y=1. 

These  shortcomings,  due  to  chronological  backtracking  and  blind  constraint  checking,  can  be  avoided  by:

(a)  backtracking  to  such  a  variable  which  can  be  the  cause  of  the  detected  dead-end  situation;

(b) when extending a partial solution again after backtracking, some earlier proven partial instantiations
which are not effected by recent changes are re-used instead of re-generating and testing the assignments
again.

 

Depending on the policy used to pick the variable to backtrack to, and on the amount of learning taking place during the
exploration of the solution space, different intelligent backtracking methods are defined. 

In  the  discussion  of  possibilities  for  intelligent  backtracking  we  will  assume  binary  CSP,  and  that  the  variables  are
instantiated in a fixed order. We will refer to the place of occurrence of a variable in this ordering as its level. Given a
feasible  partial  instantiation,  the  conflict  set  for  an  x=v  assignment  is  the  set  of  those  variables  in  the  partial
instantiation which got such a value that at least one constraint is violated when x=v. 

Below we give the code for the simplest realisation of  intelligent backtracking, the so-called backjumping  (BJ). In a
dead-end situation, all  the possible values for the variable x are in conflict with at least one earlier instantiation. The
algorithm takes the union of  the conflict sets belonging to the possible values, and backtracks to that variable x in the



union  which  was  instantiated  the  most  recently.  Hence  the  variables  x ,  ...  x  are  jumped  over,  instead  of  doing
chronological backtracking. Backjumping makes sense only if  the dead-end situation was discovered at x . If  an x =v
instantiation was successful, but later on it turns out that backtracking has to take place, chronological backtracking will
be performed. This is assured by the Where_to_Backtrack procedure.

 

Recursive procedure BJ(free_vars, inst, domains, constraints, dl, cl),

1. if free_variables = Æ then return(inst) endif

2. x ¬ pick_one_variable(free_vars)

3. set_level(x, dl, cl)

4. domain_x ¬ get_domain(x, domains)

5. result ¬ Æ 

6. while (domain_x ¹ Æ and not (backtrack_to(result, bl) and bl< cl) ) loop

7. v ¬ pick_one_value(domain_x )

8. if consistent(inst È {<x,v>}) then

9. result  ¬ BJ(free_vars\{x}, inst È {<x,v>}, domains, constraints, dl, cl+1)

10. if not (backtrack_to(result, bl) then 

11. return (result) 

12. endif

13. endif

14. endloop

15. if (backtrack_to(result, bl) and bl< cl) then 

16. return (bl) 

17. else bl ¬ Where_to_Bactrack(x, inst, domains, constraints, cl)

18. return(bl) 

19. endif

end

 

Procedure  Where_to_Backtrack(x,  inst,  domains,  constraints,  dl,  level)

1. jump_level¬ -1

2. domain_x¬ get_domain(x, domains)

2. for each v Î domain_x loop

3. temp ¬ level-1, no_conflict ¬ TRUE



4. for each <y, w> Î inst loop

5. if not consistent ({<y, w>, <x, v>}) then

6. no_conflict ¬ FALSE

7. temp ¬ min(temp, get_level(y, dl))

8. endif 

9. endloop

10. if no_conflict then return (get_level(x, dl)-1)

11. else jump_level¬ max(jump_level, temp) endif

12. endloop

13. return(jump_level)

end

 

Conflict-directed backjumping  (CBJ) is an improved variant of the above algorithm, which jumps back to a potential
cause  of  a  conflict  whenever  a  variable  instantiation  has  to  be  undone,  not  only  when  a  dead-end  is  detected.

The procedure Where_to_Backtrack gains valuable information to decide about the level of backtracking, however, this
information gets forgotten, not used any more. Though feasible({<y, w>, <x, v>}) remains true and could be re-used as
long as <y, w> is part of the partial instantiation. Backchecking (BC) exploits this fact, by eliminating all values from
the domain of the current variable to be instantiated which are not compatible with some earlier assignment. 

Backtracking does not register which instantiation forbade a value. Hence if the level of backtracking exceeds the level
of the variable, the complete domain is reconsidered and checked again. Backmarking (BM) improves backchecking at
this point, by keeping administration of the instantiations in the partial solution which exclude a value form the domain
of a variable x, and compares this to the depth of backtracking since the last instantiation of x. 

The  procedure  Where_to_Backtrack  does  not  give  information  about  the  set  of  earlier  instantiations  which together
forbid  all  the  possible  values  for  x  and  hence  force  backtracking.  E.g.  if  the  conflict  sets  belonging  to  the  different
possible values are such that at least one of the y and z variables is member of each set, then these two variables with
their corresponding instantiations cannot be part of  a solution, as they do not leave a compatible value for x. If  it also
holds that neither y nor z occurs in all conflict sets, then {y, z} is a minimal conflict set. Thus this set of instantiations
as a "nogood set" can be put on the list of  forbidden instantiations, which cannot be extended to a complete solution.
Naturally,  there  can  be  more  than  one  nogood  sets  which  all  should  be  excluded  from  consideration.  The  learning
nogood labels or recording nogood constraints algorithm works on this principle. That is, after having generated all the
conflict  sets  for  the  values for  the  current  variable,  it  produces  the  minimal  covering sets  of  the conflict  sets.  These
minimal covering sets are the nogood sets. The generation and administration of minimal covering sets is referred to as
deep learning, while the opportunistic recognition and registration of (not necessarily minimal) covering sets is referred
to a shallow learning.

3.4. Lookahead algorithms

Let us assume that when searching for a solution, the variable x is given a value which excludes all the possible values
for the variable y.  In case of  uninformed search this will  only turn out when y will  be considered to be instantiated.
Moreover, in case of chronological backtracking, thrashing will occur: the search tree will be expanded again and again
till y, as long as the level of  backtracking does not reach x. Both anomalies could be avoided by recognising that the
chosen  value  for  x  cannot  be  part  of  a  solution  as  there  is  no  value  for  y  which  is  compatible  with  it.  Lookahead
algorithms do this, by accepting a value for the variable on turn only if  after having looked ahead, it could not be seen
that the instantiation would lead to a dead-end. When checking this, problem reduction can also take place, by removing
the  values  from  the  domain  of  the  future  variables  which  are  not  compatible  with  the  current  instantiation.  The
algorithms differ in how far and thoroughly they look ahead and how much reduction they perform. 



Forward  checking  (FC)  checks  the  satisfiability  of  the  binary  constraints,  and  removes  the  values  which  are  not
compatible the current variable’s instantiation. 

 

 

Recursive procedure FC(free_vars, inst, domains)

1. if free_variables= Æ then return(instantiation) endif

2. x ¬ pick_one_variable(free_vars)

3. domain_x ¬ get_domain(x, domains)

4. while domain_x ¹ Æ loop

5. v ¬ pick_one_value(domain_x )

6. if consistent(inst È {<x,v>}) then

7. reduced_domains ¬ Reduce_Domains(<x,v>, free_vars\{x}, domains)

8. if not there_is_empty_domain(reduced_domains) then

9. solution¬ FC(free_vars\{x}, inst È {<x,v>},
reduced_domains)

10. if solution¹ Æ then return(solution) endif

11. endif 

12. endif 

13. endloop

14. return (Æ )

end

 

 

The Reduce_Domains procedure does basically the same as the Domain_Reduction introduced in 2.1, but returns the
reduced domains.

Forward checking can be performed for general constraints too, assuring that only such partial solutions are generated
for which all the constraints with one uninstantiateted variable can be satisfied one by one. 

The full lookahead or arc-consistency lookahead extends this with assuring arc-consistency of the remaining problem
to  be  solved.  That  is,  the  domain  of  the  uninstantiated  variables  is  reduced  such  that  the  problem  becomes
arc-consistent.  This is  achieved by performing one of  the arc-consistency algorithms instead of  Reduce_Domains in
line 7 of  FC. In contract to its name, full lookahead does not perform complete possible lookahead, only one assuring
arc-consistency.  In  principle,  there  are  lookahead  algorithms  possible  which  achieve  higher  consistency  for  the
remaining  problem.  However,  such  algorithms  are  not  used  in  practice  due  to  the  high  time-complexity  of  the
consistency-algorithms.

In-between  the  forward  checking  and  full  lookahead  algorithms  is  partial  lookahead  or  directed  arc-consistency
lookahead,  which  assures  directed  arc-consistency  for  the  remaining  problem,  assuming  a  fixed  ordering  of  the
variables.



 

4. Structure-based algorithms

According to Theorem 2, if  a CSP is directed arc-consistent, then it can be solved without backtracking. As it can be
seen  easily,  for  a  tree-structured  problem  directed  arc-consistency  can  be  achieved  in  at  most  O(nd )  steps.  Hence
tree-structured problems are easy to solve.

The methods to be discussed in this chapter all rely on the above fact, namely that binary tree-structured problems can
be solved efficiently. The applicability of the methods require some features of the primal or dual graph of the problem,
which can be checked by - sometimes complex - well-known algorithms of graph theory (Even 1979). 

4.1. Decomposition into subproblems

If  a CSP can be decomposed into independent subproblems - ones which do not share variables -, then obviously these
subproblems should be solved independently. There is a fast algorithm to decompose a graph, so it is worth to check the
connectivity of the problem before deciding about the solution method. Even if the primal graph of a CSP is connected,
there may be a small subset of the variables identified such that removing these variables, the remaining problem can be
decomposed into independent subproblems. These independent subproblems can be solved in O(d ) steps, where s is the
number of  variables in the biggest subproblem. Hence the entire problem can be solved in O(d ) steps, where r is the
number of elements to be removed to make the problem decomposable. The ideal case is such a choice for the elements
to  be removed when r+s is  minimal.  Unfortunately,  there is  no efficient  algorithm known to produce such and ideal
decomposition of a graph.

4.2. Problems with tree dual graph

The  dual  problem  of  any  CSP  is  always  a  binary  CSP.  The  solution  of  the  dual  problem  requires  that  the  vertices
representing constraints get instantiated, that is, the constraints are satisfied, but in such a way that they "join" along the
edges representing shared variables. That is, any two constraints sharing variables must have the same value assigned to
the shared variables. If the dual problem is a CSP with tree structure, that is, its primal graph (which is the dual graph of
the original CSP) is a tree, then it can be solved easily. Namely, if  the original CSP has m constraints, each of  them
with maximum r solutions, then the dual of the problem can be solved in maximum O(mr ) steps. The number of steps
with better bookkeeping can be further reduced to O(mlog r). (Dechter 1991).

If  the dual graph of  a problem is not a tree, it is worth checking if  it has redundant edges, and if  the removal of  these
redundant edges reduces the graph to a tree. Particularly, if  a set of  variables assigned to an edge in the dual graph is
such that all the variables are present in the sets assigned to edges along a path connecting the two vertices of the edge
in question, then the roundabout path assures that the variables on the selected edge will get matching values. Hence,
the edge is redundant and can be removed. The graph gained by removing all redundant edges is the join graph  of the
problem. If the join graph is a tree, then the problem can be solved easily. There are efficient graph algorithms to decide
if the dual graph can be reduced to a join tree. 

4.4. Decomposition into nonseparable subproblems

The decomposition into nonseparable subproblems method also produces a tree graph, by identifying such subgraphs of
the  primal  graph which,  if  contracted to  a  point,  the  resulting  graph is  a  tree.  These subgraphs are the nonseparable
components, which can be found in an efficient way. Once they are identified, the original CSP can be turned into one
with  tree  structure,  and  with  some  variables  the  instantiation  of  which  require  the  solution  of  the  nonseparable
components  they  represent.  Such  a  problem  can  be  solved  in  O(nd ),  steps,  where  r  is  the  size  of  the  maximal
subproblem. Hence, this method is worth using if  the nonseparable components are all small. However, the worst-case
performance is inferior to the one of  the adaptive-consistency algorithm. The method can be applied to dual graphs as
well. 

4.5. Cycle cutset

The cycle cutset  method is  used for  binary CSPs. It  identifies nodes the removal of  which would turn the constraint
graph into a cycle-free one. Such a set of nodes is a cycle cutset. Once the variables in a cycle cutset are instantiated in
a  consistent  way,  the  remaining  tree-structured  problem  can  be  solved  or  unsolvability  can  be  proven  without
backtracking. In the latter case, a new instantiation of  the variables in the cycle cutset should be tried. Hence, the tree
search algorithm should be invoked at most as many times as the number of solutions of the problem in the cycle cutset.
That is, the time complexity of this algorithm is exponential in the size of the cycle cutset. Because the task of finding a
minimal cycle cutset is NP-hard, the method is used interwoven with backtrack search, looking for a cycle cutset in an



opportunistic  way.  Namely,  by  checking  if  the  already instantiated variables are a cycle  cutset.  If  so,  the rest  of  the
problem can be solved without backtracking. The tree search assumes directed arc-consistency of  the problem, hence
the method can be used only if the order of variable instantiations is static. 

5. Local methods

Local  search  methods  are  also  used  to  solve  CSPs.  These  methods  all  try  to  find  a  solution  by  stepping  from  one
complete instantiation to another one in its neighbourhood. This is achieved by changing the value of  a few - usually
one - variables at a time. The algorithms differ in their policy of selecting and changing the variables to be altered. This
can be done in  a  deterministic  way,  or  by incorporating random elements in the choices.  The first  category contains
traditional local search methods applied to CSPs. In the second case, running the algorithm several times it is likely that
it  will  follow different  paths  and terminate with  different  results.  Hence these algorithms are designed to be used to
generate many candidate solutions parallel  and/or  one after  the other,  and to keep the best  candidate found.  We will
outline how genetic algorithms as representatives of this category can be applied to CSPs. A third possibility is that on
the basis of the evaluation of the effect of the local perturbations, the principle of changes is tuned in a way that finally
a solution is produced. Neural networks apply this principle.

Multiple trials, learning and different tricks used with local search are all meant to assure that a solution will be found in
spite  of  the  local  scope  of  the  search.  All  the  same,  completeness  cannot  be  guaranteed  in  general,  neither  for
deterministic  nor  for  nondeterministic  algorithms.  However,  the  random  elements  do  increase  the  diversity  of  the
search, giving a chance of escaping from mistaken biases of the deterministic decisions. That is why random elements
play  an  essential  role  in  many  of  the  algorithms.  Random  elements  can  be  added  at  different  points:  to  generate  a
"starting  instantiation",  to  decide  about  which  variable  to  change  and  to  what  value.  On  the  other  hand,  too  much
random choice degrades the search to random walk and makes it very unlikely to find a solution fast. Hence the art of
designing  efficient  algorithms  is  in  combining  heuristics  to  focus  the  search  with  random elements  to  proliferate  it.
These algorithms are very sensitive to the structure of the solution space: the amount and distribution of solutions and
"almost solutions". 

In  spite  of  all  these  uncertainties,  for  big  and  difficult  problems  which  cannot  be  tackled  by  constructive  search
methods, non-deterministic local methods are not only alternatives to be tried, but have proven to be successful in many
real-life applications.

In  the  rest  of  this  chapter  we  introduce  the  three  types  of  local  methods,  and  discuss  the  possibility  of  coupling
constructive and local methods.

5. 1. Local search

The skeleton of the local search methods used to solve CSPs is given below:

 

Procedure Local_Search (variables, domains, constraints)

1. instantiation ¬ (a complete instantiation)

2. stop ¬ FALSE

3 while (not stop) loop

4. x ¬ pick_a_non_compatible_varible(instantiation, constraints)

5. w ¬ pick_a_not_worse_value(instantiation, x, domains, 

constraints)

6. instantiation¬ instantiation \ {<x, v>} È {<x, w>}

7. if solution(instantiation, constraints) stop ¬ TRUE endif

8. endloop

9. return (instantiation)



end

 

Using  the  terminology of  general  local  search,  in  the  above algorithm the  neighbourhood of  the  current  element  -  a
complete  instantiation  -  consists  of  all  instantiations  differing  from  the  current  one  in  at  most  one  variable.  The
pick_a_not_worse_value  procedure  assures  that  at  each  step  the  new  instantiation  generated  is  not  worse  than  the
previous  one.  The most  straightforward way to  achieve this  is  to  let  the  pick_a_not_worse_value procedure a  value
(randomly selected if  there are more equally good ones) such that the new instantiation with this value satisfies at least
as many constraints as the current one. But the improvement can be maximised, by selecting the value producing the
least constraint violations. This is the principle of the min-conflict heuristic repair method (Minton 1990, Selman 1992).

By local search there is the danger of arriving at a peak or a "plateau", that is, at an element which has only elements in
the neighbourhood which do not mean improvement. To avoid such traps, the algorithm should be extended with some
explicit  stopping  criterion  and  mechanism  to  force  a  "jump"  out  of  the  current  neighbourhood  if  trapped  in  a
neighbourhood. 

5. 2 Genetic algorithms

In the simplest scenario of  using a genetic algorithm (GA) to solve a CSP, a member of  a population consisting of  a
given number of  complete instantiations is chosen, and a new instantiation (a child) is generated by some perturbation
of  the  chosen  one  (the  parent).  Afterwards  the  child  is  evaluated  and  it  is  decided  if  it  should  replace  one  of  the
elements  in  the  population.  The  evaluation  is  given  by  a  function,  the  so-called  fitness  function.  The  algorithm is
aiming at producing an element with maximal fitness. It prefers fitter elements both to be selected to be a parent and to
survive. However, this is done in a probabilistic way, so poorer elements get a chance too. When generating children,
heuristics and random elements both are used. 

In  case  of  CSPs,  the  fitness  function  can  be  defined  e.g.  as  the  number  of  satisfied  constraints  or  as  the  number  of
"good" variables, that is the ones referred to only by satisfied constraints. As heuristics, the ones used for variable and
value selection in constructive search methods can be adapted and used on a probabilistic basis. Already the "one parent
-  one  child"  schema allows  a  variety  of  genetic  algorithms.  Most  of  the  applications  to  solve  CSPs  use  such  a  GA
(Eiben 1997). However - according to the original principle of GAs - a new instantiation can be produced by selecting 2
or  even more parents and inheriting some parts from each of  them. In such a scenario the structure of  the constraint
graph and classical heuristics used by graph-based methods can be adapted to design the GA: what number of parents to
be considered, how to select promising parents and how to inherit parts of the instantiations by the child to be generated
from them. It is also a used practice to refine and tune the fitness function from population to population, as a result of
learning about the difficulty of variables and subproblems.

5.3. Neural networks

Neural network-based solution methods work on a network with vertices representing all the possible <variable, value>
pairs of  the CSP to be solved, and the edges have weights. A vertex is either live (on) or dead (off). The live vertices
provide input for all their neighbouring vertices. Each vertex evaluates the weighted effect of the inputs, and preserves
its state or changes it to the opposite. This process keeps repeating until an equilibrium state is reached. If  the reached
state  is  not  acceptable,  that  is,  many  constraints  are  violated,  then  some  of  the  weights  assigned  to  the  edges  are
changed, which may start another sequence of  changes. The structure of  the network and the evaluation of  the inputs
assures that  a  state  always corresponds to  a  complete  evaluation of  the variables,  and that  only conflicting variables
have an effect  on  each other.  The strength of  the algorithm is in its  mechanism to learn,  which makes it  possible to
explore the solution space and to escape from states which are not solutions by adapting weights. Though this algorithm
cannot  guarantee  that  a  solution  will  be  found,  the  empirical  results  are  very  encouraging  (Tsang  1992).

5.4. Combining constructive search and local methods

Initially the researchers of the classical methods and those of the local and non-deterministic methods were competing
in trying to show that their own approach is the more successful. Recently this has been replaced by the recognition that
these  two  very  different  paradigms  can  well  co-exists:  none  of  them  provides  the  winning  approach,  but  when
combined, they can compensate each other’s weaknesses, and hence surpass the single-paradigm methods of both kinds
(Freuder 1995).

One of the possibilities is to use local methods and constructive search in a sequential way. Local search can be used to
investigate the environment of  a partial solution and use the evaluation of  the exploration as a dynamic heuristics for



value  selection.  Or  in  a  different  scenario  local  search  is  used  to  find  an  "almost  solution",  which  is  improved  by
systematic backtracking search. By using this idea for partial instantiations, many open test CSPs could be solved for
the first time (Zhang 1996).

Another possibility is to couple local search with systematic or opportunistic constraint propagation. The famous GSAT
local  search algorithm could solve difficult  problem instances after a certain level of  consistency was assured before
running the local search (Kask 1995).

6. Comparison of problems and solution methods

We have introduced a number of solution methods, some of which can be even combined with each other. How should
one,  when  confronted  with  a  given  CSP,  choose  from  this  arsenal  of  methods?  It  is  not  sufficient,  possibly  even
misleading, to consider the worst-case or average complexity of the algorithms - for the given problem a generally slow
algorithm  may  perform  well.  On  what  basis  can  one  forecast  the  performance?  What  type  of  methods  are  most
promising for a given problem? What should we understand by the difficulty of problems? Can the difficulty be judged
on the basis of the structure and other features of the problems? The answers for these questions are not only useful for
practical applications, but also give an insight into the structure of a family of NP-complete problems, which can direct
further  theoretical  research,  e.g.  to  discover  new  solution  methods.  The  analysis  of  the  difficulty  of  problems  -  a
flourishing  research  topic  since  the  mid-90s  - has  produced  some  very  useful  and  exciting  results.

6.1. Easy, hard and exceptionally hard problems

Intuitively,  a  problem is  easy  if  it  can  be  solved  fast.  One  would  say  that  the  less  the  proportion  of  the  number  of
solutions and the size of the solution space is, the more difficult the problem is. If a problem is unsolvable, then in the
most difficult cases this can be shown only by checking all the elements of the solution space, while in the easiest case
the unsolvability can be seen "at a glance", e.g. by noticing that a certain constraint cannot be satisfied. When adding
constraints  to  an  initially  easy  problem with  many  solutions,  the  number  of  solutions  decreases,  hence  the  problem
becomes harder. On the other hand, the added constraints make more partial instantiations inconsistent. Hence, it can be
earlier  detected  in  course  of  search  that  a  partial  instantiation  leads to  a  dead end.  Thus  one expects  that  by  adding
constraints will gradually make the problem more difficult to a certain point, and afterwards the extra constraints will
make the problem easier. 

Empirical results for several types of CSPs have supported this hypothesis. E.g. for graph 3-colouring it has turned out
that there is, indeed, a critical level of  constrainedness, namely graphs with 4.6 edge density are the most difficult to
colour (Hogg 1994). For graphs with a smaller edge density it was easy to find one of  the several solutions, while for
graphs with a higher edge density there was no solution at all, which - because of the many edges - was easy to detect.
The most difficult problems were found in the transition phase from the region of  solvable problems to the region of
unsolvable problems. This is the so-called phase transition phenomenon: the solvability of  CSP instances of  a given
type can be expressed in terms of a single parameter representing the constrainedness of the problems, and the solvable
and nonsolvable instances are separated by a critical value of this parameter. The hard problems are to be found around
the critical parameter, in the transition phase, where the expected number of  solutions is 1. The phenomenon of phase
transition  was  detected  for  all  investigated  problem  types,  including  practical  problems  (Gent  1995).

Is the above hypothesis of  phase transition true for all  types of  CSPs? How can the single parameter of  difficulty be
derived for different problem families? A recent analytical investigation gives answers to these questions, and provides
a  general  framework  for  the  empirical  results  (Gent  1996).  Namely,  if  M is  the  expected  number  of  solutions  for  a
certain subset of  CSPs of a given type, and the size of the solution space is N, then the number k=1-log represents the
constrainedness of the problems. In the region k<1 the problems are underconstrained, while for k>1 the problems are
normally overconstrained. The critical region is around k=1, where it is difficult to find out if the problem is solvable or
not. For graph 3-colouring problems the empirically detected critical edge density corresponds to k= 0.84. 

For certain problem types the expected number of solutions, M can be well estimated, and this estimate can be used to
judge the difficulty of  a problem at hand. The k value is also used to generate a body of  difficult graph-colouring or
other binary CSPs to be used as test cases to evaluate solution methods. 

Another nice way of profiting from the above result is to use it as a dynamic variable ordering heuristic: that variable is
taken next for which the corresponding extended problem is the most difficult, according to the k value of the possible
extensions.  This  heuristic  seems  to  outperform  the  widely  used  fail  first  heuristic.  On  the  other  hand,  for  several
widely-used classical heuristics it has been shown that they correspond to the optimisation of k, or an easy to compute
estimate of it.

One should not forget that a k value always represents the difficulty of  a subset of  CSPs of a given type based on the



expected number of solutions. Hence k tells how difficult the instances of the set in consideration are, on average. It can
happen that  as  an exception,  a  hard or  even extremely  hard problems occur  in  the  easy region,  which was observed
indeed (Smith 1995).

6.2. Which method to use ?

How to select from the ever increasing choice of the applicable heuristics and solution methods when one has to attack
a  given  CSP?  In  the  recent  years,  two  approaches  have  been  taken  to  solve  this  dilemma.  Thorough  empirical  and
theoretical analysis of the distinct methods and combination of heuristics provides guidelines for their applicability. On
the other hand, there is a new paradigm emerging: instead of committing oneself to a single method, one should go for
using different  solution methods, one after  the other  or  parallel.  There are toolkit-like application-domain specific  or
general CSP solving environments based on this idea. 

As  discussed  in  Section  3,  uninformed  search  can  be  turned  into  a  specific  one  by  extending  it  in  (some  of)  the
following 4 respects:

(a) order of instantiating the variables;

(b) order of trying out possible values for the variable on turn;

(c)  amount  of  propagation  of  the  effect  of  a  hypothetical  or  performed  instantiation;

(d) strategy of backtracking in case of a dead-end.

 

The distinct methods can be identified by naming the heuristics used at the different points:  FFP-FC-CBJ is thus the
method which for a) uses the first-fail principle; for c) it performs forward checking; and for d) it uses conflict-directed
backjumping. In place of FFP there could stand MWO (minimal width ordering heuristic), or nothing, indicating that no
heuristic is used for variable ordering. 

Which combinations of heuristics are to be used? When does the application of heuristics pay off? Is it so that the more
heuristics are plugged in, the better the algorithm is? Extensive research is still  going on to chart the performance of
solution  methods  with  one  or  more  heuristics  on  a  large  testbed  of  binary  CSPs  with  different  difficulty  and  other
characteristics,  such  as  tightness  and  number  of  constraints,  size  of  the  problem  (Frost  1994,  Tsang  1995).  These
empirical  investigations  have  proven  what  one  would  expect:  there  is  no  single  best  solution  method.  Intelligent
backtracking pays off if  the constraint graph is sparse, while it is worth to do forward checking and perform constraint
propagation  if  the  constraint  graph  is  dense  and  the  constraints  are  tight.  Considering  variable  ordering,  for  certain
problems structure-based heuristic is suitable, while for others a domain-based heuristic is the more advantageous. Not
withstanding all these, there are two methods which are accepted as "generally good, robust ones": MWO-BM-CBJ for
CSPs with sparse and non-homogeneous constraint graph, and FFP-FC-CBJ for CSPs with dense constraint graph and
tight constraints.

The delicacy of  the problem is well illustrated by the case when, in contrast to the general practice, the application of
two heuristics decreased the efficiency of the single-heuristic methods (Posser 1993). 

Hence choosing the proper  solution method for solving a difficult,  large CSP should be done with much care, in the
light  of  the  theoretical  and  empirical  results  on  the  strength  and  weaknesses  of  the  distinct  methods.  This  a  priori
critical  decision,  requiring  expertise,  is  not  necessary  if  one  can  switch  to  more  and  more  expensive  and  powerful
heuristics  if  necessary,  while  searching  for  a  solution.  The  first  promising  example  of  this  principle  is  a  solution
strategy which automatically switches to a more powerful heuristic if  the search has made no progress for some time
with the current one (Borrett 1996). 

We  finish  the  account  on  the  evaluation  of  solution  methods  with  a  positive  and  exact  result:  by  analysing  the
exploration of the search tree, some heuristics can be compared in terms of the number of instantiations and the number
of constraint checks. E.g. it has been shown that FC-CBJ is always better than FC alone, but it is not necessarily better
than CBJ alone (Kondrak 1995). This first work on the partial ordering of  heuristics is a very illuminating and by the
research community much appreciated first result.

7. Non-classical constraint satisfaction

In  real-life  situations often emerge problems which cannot  be fully  captured by the classical  definition of  CSP. It  is



quite normal that not a single CSP has to be solved, but a series of  CSPs: because of  - usually slight - changes in the
circumstances, a solution of  the accordingly modified CSP has to be found from time to time. Often it is also required
that the solution of the modified problem is close in some sense to the solution provided for the previous one. But there
are situations - e.g. exploring possible alternatives for a design - when one would like to get a very different solution by
relaxing some constraints. The third most important phenomenon in real problems is that not all the constraints are of
equal  importance.  If  not  all  the  constraints  can  be  satisfied,  the  user  would  be  quite  happy  with  a  "good  enough"
solution, that is with such a complete instantiation for which some constraints are violated, but only those and to such
an extent that  the violations are still  acceptable for the user. Such a compromise may even be necessary for solvable
problems too, because of the limited time available to find the complete solution. 

CSP researchers have been extending the original concept of the CSP and enhancing the traditional solution methods in
a variety of  ways, in order to bridge the gap between the needs of  real-life applications and the rigour of  the classical
framework. Below, we discuss some representative approaches.

7.1. Partial constraint satisfaction

From the point of applicability probably the most unpleasant limitation of the classical CSP framework that it cannot do
anything other than reporting failure if  a problem is unsolvable - rather the rule than the exception in real-life cases. In
such a case the user knows that he has to sacrifice some constraints anyway. He would like to know how this can be
done the best, that is by relaxing the problem to a nearest solvable one. In parallel to the research on classical CSPs,
already in  the  mid-80s the first  steps were made to generalise the CSP in this  direction.  In  case of  partial  constraint
satisfaction, not a single CSP is to be solved, but a partially ordered metric space of CSPs over the same set of variables
is considered. The task is to find a solution of a best, or good enough problem, in terms of the given metric. 

In case of partial constraint satisfaction elements of the metric space - all CSPs - contain an initially given P problem
and some of its relaxations. The partial ordering reflecting relaxation is defined by comparing the solution sets: P³ Q if
all the solutions of P are also solutions of Q , where P and Q are CSPs defined on the same set of variables. E.g., one
can consider the relaxations gained by removing 1, 2, 3, ...  constraints from the initial problem. The metric indicates
how acceptable the relaxed problems are. On the above introduced set of  relaxed problems a straightforward metric is
the number of constraints. The higher the metric of the problem is, the better it is. The task of finding the solution of the
corresponding partial CSP is to find a solution for a subproblem which contains the maximum number of  constraints
from the initial problem. (Note that there may be more than one solvable subproblems with the maximum number of
constraints.)

If  not  all  the  constraints  are  equally  important,  this  can  be  reflected  by  defining  the  set  of  CSPs  and/or  the  metric
differently. If  some constraints cannot be sacrificed, then these are labelled as hard constraints, while the rest are the
soft constraints. Then the problem space consists of  only those relaxations of  the initial problem which are gained by
removing  1,2,  3,...,  of  the  soft  constraints.  This  scheme  can  be  further  refined  if  the  constraints  have  different
importance, given by the user. It is also him who has to define the metric in terms of the importance of the individual
constraints: whether he wants to have the most important constraints to be satisfied as possible, or rather have the total
importance of the satisfied constraints maximum. A variant of partial constraint satisfaction is the so-called hierarchical
constraint  satisfaction  (Borning  et  al.  1992),  when  the  problems  in  the  solution  space  are  evaluated  based  on  the
hierarchy of the constraints.

The  partial  constraint  satisfaction  framework  also  allows  that  a  given  problem  gets  relaxed  along  its  variables,  by
extending  the  domain  of  the  variables  step  by  step.  In  this  way  one  can  assure  that  a  solution  near  to  a  given
instantiation - one which is preferred by the user - is to be found.

A  similar  generalisation  is  gained  by  introducing  fuzzy  constraints  in  place  of  the  traditional  crisp  constraints.  A
traditional  crisp constraint  can be described by a function which assigns 1 to instantiations for  which the constraints
hold and 0 otherwise. A fuzzy constraint expresses to what extent an instantiation of the variables fulfils the constraint,
by assigning to each of  the instantiations a value between 0 and 1 (Ruttkay 1994). The degree of  satisfaction of  more
fuzzy constraints also given by a value between 0 and 1, derived from the degree of satisfaction of the individual fuzzy
constraints,  e.g.  as  their  maximum,  average  or  product.  Fuzzy  constraints  are  handy  to  model  qualitative  or  vague
requirements and incomplete knowledge. 

For possible extensions of  the classical CSP and their applicability, unifying discussion of  problem spaces (Bistarelli
1995) and the adaptation of classical search methods is recommended (Freuder 1992).

7.3. Special domains and constraints

In the classical CSP setting the domains are finite and unstructured, which makes the modelling of certain real problems



unhandy or impossible. A typical case is when the constraints are to express temporal relations. In principle, a problem
with temporal relations can be formulated as a classical CSP. Time has to be discretized, which may result in very large
domains.  The  second  problem  is  that  the  traditional  framework  cannot  exploit  the  ordering  of  the  domains  and  the
specific semantics of temporal relations. That is, if  a constraint prescribes a lower limit for the time of the event as x ³
100, and after discretizing time the domain for x is {1,2,3,..., 100, 101, ..., 300}, then in the traditional framework for all
the 300 possible values for x the 

 

x  ³  100  will  be  checked,  while  by  exploiting  the  fact  that  the  domain  of  x  is  an  interval  of  integers,  and  the  ³  is
transitive,  one  would  know  immediately  that  the  values  satisfying  the  relation  are  { 100,...,  300 } .

This is happening in the case of temporal constraint satisfaction problems. The speciality of the temporal CSPs is that
the domains are intervals, and the constraints are from a set of  specific, qualitative (like precedence of time of events)
and/or quantitative (explicit limits on duration) constraints (Schwalb 1998). The general TCSP is also NP-hard, which is
very critical from the point of  view of  the applications: usually, a problem concerning time, like scheduling, has to be
solved within a reasonable time. However, by restricting the types of  temporal constraints, the specific TCSP can be
solved  in  polynomial  time.  Such  a  sub-class,  called  the  simple  temporal  problem is  gained  by  allowing  only
constraints giving a single lower or upper limit for time intervals.

A  natural  generalisation  of  CSPs  comes  by  lifting  the  finiteness  requirement  of  the  domains.  In  the  case  of  the
numerical constraint satisfaction problem (NCSP), the domains are intervals of  reals. The domains and the search
space can be efficiently represented by using the endpoints of  the intervals. The propagation of  values of  the classical
solution scheme is replaced by propagation of intervals. The concept of classical arc-consistency is replaced by certain
consistency for the endpoints of  the intervals, which can be achieved by algorithms similar to AC-3 (Lhomme 1993).
The  focusing  of  the  search  takes  place  by  splitting  the  interval  in  the  domain  of  the  current  variable  into  two,  and
restricting the search to one of them. The process terminates either by showing that the problem has no solution, or by
narrowing the interval containing at least one solution until an initially given approximation of the solution is reached.
In the last years there is much interest in these methods suited for engineering and scientific applications. Some of the
special solution methods have been incorporated into constraint logic programming languages which are (also) prepared
to solve NCSPs.

If the constraints are all linear equations over reals, and the task is to find a solution which minimises a linear objective
function, then this special COP is the well-known problem of linear programming . There are special solution methods
like the most common simplex method, to solve linear programs. Methods have been developed to solve the problem in
linear time. Though some constraint programming languages do support linear programming, they do not compete with
the  performance  of  dedicated  linear  programming  packages.  However,  the  integration  of  constraint  satisfaction  and
linear programming is useful  when a general  CSP or COP can be reduced or decomposed to linear problems. For an
overview of further possibilities, see (Van Hentenryck 1995). 

A specific type of the general CSP is the satisfiability problem  (SAT). The variables are all Boolean variables with the
possible values {true, false}. Each constraint is a disjunctions of  literals, where each literal is a variable or a negated
variable. The task is to find an assignment of the Boolean variables for which the Boolean expression corresponding to
the  conjuction  of  constraints  is  satisfied.  SAT  is  important  because  it  links  CSP  to  deductive  reasoning,  and  also
because  it  is  the  reference  NP-complete  problem.  For  discussion  of  tractable  sub-classes  of  and  special  solution
methods for SAT see (Rauzy 1995).

7.4. Generation, modification and analysis of CSPs

In the classical CSP framework CSPs are dealt with in a stand alone way, without providing means to generate a CSP or
to  exploit  the  way  it  was  generated.  The  solution  methods  were  designed  to  produce  a  solution,  but  not  to  provide
analysis of  the solution neither to allow interaction with the user in course of the search for a solution. Below, we will
discuss  how  certain  generalisations  of  the  classical  CSP  deal  with  some  of  these  shortcomings.

A straightforward generalisation of the classical scheme, the so-called mixed constraint satisfaction (Fragier 1996) is
achieved by  differentiating  the  role  of  the  variables.  E.g.  in  diagnostics,  one is  interested in  the  value of  the hidden
variables of  the problem, assuming that the observed variables have certain values. The same cast of  role is useful to
model  control  problems.  In  these  situations  the  existence  of  "many  solution"  is  just  the  unfavoured  case:  from  the
observations one cannot  derive the unique diagnosis,  or  the chosen setting of  control  parameters does not  define the
outcome  uniquely.  Along  similar  extension  it  is  possible  to  handle  variables  and  solutions  on  different  levels  of
abstractions.



It is often the case that the particular CSP to be considered depends on certain aspects of  the environment. Hence, the
actual problem to be solved can be generated by analysing variables reflecting the state of  the environment. Dynamic
constraint  satisfaction is  capable  to  cope  with  such  situations.  Next  to  the  traditional  constraints,  there  are  some
so-called "variable activation" constraints. With the explicit declaration of these constraints it is possible to model e.g.
different stages of an evolving design, or to model scheduling tasks in a way that the problem is updated as a reaction to
certain events (e.g. breakdown of machines). Dynamic CSP is also used in a different sense, namely for a sequence of
such CSPs such that each CSP is "almost the same" as the preceding one. In this case the main research issue is how to
re-use solutions and special characteristics of the lately solved problem. 

Finally, a main shortcoming of  the classical CSP methods is that they are not enhanced to give an explanation for the
derived  result.  Not  all  the  solution  methods  are  suitable  to  provide  an  explanation  meaningful  for  the  user,  either
because of  the type or the level of  details of  the processing. For generating explanation when using a traditional and
several,  especially  "explanation-aimed"  constraint  propagation  methods,  see  (Sqalli  1996).
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