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ABSTRACT OF THE DISSERTATICON

Requirements and Architecture
of a CAM-oriented CAD System for Design and Manufacture of

Mechanical Parts

by

Farhad Arbab
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1982

Professor Michel A. Melkanoff, Chair

This work focuses on the Computer Aided Design and Computer Aided
Manufacturing (CAD/CAM) of mechanical parts and on the advantage of an
approach to solid definition based on a three-dimensicnal gecmetric
model that considers manufacturing processes during the design phase.
We refer to this as CAM-oriented CAD methodology. Much effort is being
spent on establishing the cliched "bridge between CAM and CAD". 1In
pursuit of integrated CAD/CAM systems, we believe that our CAM—oriented
approach to CAD promises significant benefits in the design-to-
manufacture cycle of production. '



Geometric solid modeling is a fundamental requirement for CAD/CAM
systems that deal with mechanical parts. Several such modeling schemes
have been proposed and are used in existing systems. This work includes
an extended intreduction to several commercially available and
experimental systems, and reviews popular solid representation schemes,
discussing their potentials as candidate models for integrated CAD/CAM
systems. A new mathematical formalism for modeling of solid, rigid
bodies, called Realizable Shape Calculus (RSC), is developed. This new
model is similar in spirit to Constructive Solid Geametry (CSG), except
that 1t 1s also capable of consistently modeling assemblies of real-

world objects, and covers a wider class of realizable shapes.

Descriptive solid modeling schemes such as CSG or RSC, are not
suitable user-level part definition models for integrated CAD/CAM
systems. Following our CAM-oriented methodology, it is shown how an
operational approcach to mechanical part definition can serve as a
 foundation for a manufacturing-oriented integrated design language.
Such a language must provide operations meaningful to both designer and
manufacturer, resulting in part definitions expressed in terms of
components with meaningful counterparts in production cycles.
Reflecting this view of mechanical part design, a skeleton dJdesign
language called DSG, based on RSC and suitable for a truly integrated

CAD/CAM system, is proposed and its major features are discussed.
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This research is concerned with Computer Aided Design (CAD) and
Computer Aided Manufacturing (CAM) of mechanical parts and with the
benefits of an approach to three-dimensional solid definition that
considers manufacturing processes during the design. This work began in
the context of research on requirements and characteristics of an
"ideal" language for Computer Aided Design. It was clear at the outset
that the diversity of CAD applications (e.g. design of logic circuits,
mechanical parts design, architectural design, software design, etc.)
mandated focusing on a more specific gocal than a generalized CAD
language. We chose to concentrate our efforts on Computer Aided Design
and Manufacturing of mechanical parts and initiated a study of different
approaches to definition and modeling of solid objects. Chapter I
begins by a brief overview of CAD/CAM and discusses some fundamental

concepts and terminology used in this field.

Althouch the inadequacies of Computer Aided Drafting systems were
apparent, we, nevertheless, studied drafting as an informal modeling
scheme for representation of mechanical parts because of its historic
significance and traditional success. The concern in "good drafting
practices" for manufacturing-related issues, the rising demand for
integration of CAD and CAM, together with the recent trends toward
omnipotent Computer Aided Engineering systems and automated factories,
soon led us to the conclusion that a language for CAD must be based on a

view of design and manufacturing broader than just an abstract



mathematical mndél for geametric shape composition. Such a language
must make it possible for designers to sense and deal with
manufacturing-related issues which directly affect cost, performance,
functionality, and feasibility of their designs. This language must
produce part definitions in a form which can be directly used for
automated fabrication. Chapter II briefly sketches the requirements of
an integrated CAD/CAM system for design and manufacturing of mechanical

parts, based on such a manufacturing-criented view of design.

Geametric shape composition is indeed a central concept in any
CAD/CAM system that dJdeals with solid objects. Several representation
schemes and modeling formalisms have been proposed and are used in
existing systems. Chapter III reviews most of such popular solid
representation schemes and discusses their potentials as candidate
models for representation of mechanical parts in integrated CAD/CAM
systems. This chapter also includes an extended introduction to several
experimental and commercially available systems which typify distinctive
approaches to CAD/CAM. Chapter III indicates that geometric solid
modeling, although far from being sufficient, is a fundamental
requirement for systems aimed at design and manufacture of mechanical
parts. This is evident both from recent directions in theoretical

research and in new trends in development of such CAD/CAM systems.

The major contribution of this research is contained in Chapter IV.
This chapter reflects an attempt to first establish a sufficiently
general mathematical formalism for modeling of real-world solid objects,
and then, to show how an operational approach to mechanical part design

can serve as a foundation for a manufacturing-oriented integrated design



language. The first section of Chapter IV presents a new gecmetric
solid modeling scheme called Realizable Shape Calculus (RSC), which is
mathematically expressive enough to uniquely and unambiguously represent
any physically-realizable ocbject. BAn interesting characteristic of this
new mathematical model is its unique ability to consistently represent
assemblies of objects positioned arbitrarily relative to one another.
The remainder of this chapter justifies an operational, manufacturing=-
oriented approach to design and definition of mechanical parts,
Reflecting this view of mechanical part design, a skeleton
manufacturing-oriented design language called DSG, based on RSC and
suitable for a truly integrated CAD/CAM system, is proposed and its
major features are discussed. Finally, some interesting areas for
further research are briefly mentioned in a discussion on several
theoret.ically intrigquing and practically important problems; these
irllclude modeling of shaping operations, tolerances, and forging
envelopes. Possible directions to address some of these issues within

the operaticnal framework of DSG are also pointed out.






CHAPTER I
Computers in Design and Manufacturing

This work focuses on the Computer Aided Design and Computer Aided
Manufacturing of mechanical parts and thus, involves concepts and
methodologies related to all aspects of manufacturing production cycles.
Traditionally, two major phases of design and manufacturing are
identified and separated, sometimes to the limit of isolation, in the
fabrication of mechanical parts. Despite the relatively high initial
investment, use of computers in (semi)autamation of activities in design
and manufacturing, has separately proved to be a viable means to

increased productivity and efficiency.

Traditional structure of manufacturing production cycles reflects
requirements and limitations of conventional fabrication techniques.
Historically, increased complexity of manufacturing processes on one
hand and acceleration of technological advancements on the other,
necessitated "specialization" which began to separate "design" from
"manufacturing”. Industrialization of (once truly T"manual")
manufacturing further magnified this separation, and the two tasks which
used to be performed or supervised by the same "craftsmen" are now
delegated to isolated ranks of people who, therefore, must communicate.
Today's costly iterations between design and manufacturing phases of
production cycles are a result of this (justified) separation and lack
of better means of communication. Computerization of factories will
eventually both provide a proper channel of communication between

designers and manufacturers, and mandate a revision of their



responsibilities due to its profound effects on the structure of

production cycles.

CAD and CAM systems have evolved in the last decade fram being
reqarded as expensive fancy toys to practical tools imposed even on
reluctant segments of manufacturing industries by the force of
competition for survival. Furthermore, the necessity for integration of
CAD and CAM is acknowledged by both researchers in this field and
industrial users of CAD/CAM systems. Yet, despite marketing claims of
same CAD/CAM system vendors, no truly integrated CAD/CAM system
currently exists for design and manufacturing of mechanical parts.
Indeed, certain critical issues must still be further elaborated on by
researchers and tested in experimental systems before such integrated

systems can be put into production use.

This chapter presents a brief discussion of major terms and
concepts related to use of computers in design and manufacturing,

emphasizing applications that involve mechanical parts.



1 __Introduction |

Most literature on "CAD" concerns not computer aided design, but
rather, computer aided drafting. Ironically, in its most general form,
design may involve no drafting at all. Furthermore, much of this
literature should be better categorized as camputer graphics. This
misuse of terms becomes worse when design objects are mechanical parts
whose functional significance, unlike, for example, logic circuits or
software, crucially depends on their geometric shapes. We feel it is
important to emphasize clearly the differences among graphics, drafting,
and design, since they are distinctly separate methodologies used in
many diverse disciplines, sometimes with overlapping application

domains.

Vision is a non-sequential wide-band channel of communication for
human beings. Visual -effects, thus, become a vital means of information
exchange, especially when information's volume and complexity .pass the
threshold of intelligible sequential processing. Since design very
often involves large volumes of information, graphics and drafting (as
an informal graphic modeling scheme) play a central role in design.
Graphic representation is a fundamental means of communication in the
design to manufacture cycle of production. Therefore, it is only
natural that the most visible (no pun intended) aspect of CAD/CAM
systems is their graphic capabilities. However, geametry, the
underlying foundation of graphics, plays a more fundamental role in
design and manufacture of mechanical parts than as only a pictorial
representation scheme. Gecmetry encompasses every aspect of fabrication

of mechanical parts, fram drafting, the traditional methodology for part



design and defihition, to modern manufacturing processes using
computerized numerical control machines. The close tie of drafting with
graphics, its mathematical basis of projective geametry, and its
significant role in design, can lead to a confusion that, unfortunately,
is intensified by misuse of terms both in literature and in the CAD/CAM

industry.

Pictorial representation of design objects (or of symbols
designating design entities) involves graphics, irrespective of the
significance or nature of represented entities. Definition of a design,
especially of a mechanical part, often closely follows traditional
drafting practices, again, somewhat independent of the nature of the
design entity. The role of geometry in formal models of design objects
within a CAD system, however, depends on the nature of those cbjects.
For example, when design objects are electronic elements or circuit
boards, contribution of their geometric properties to their function is
relatively insignificant. Consequently, in an abstract model for
representation of such entities within a CAD system, geometry plays at
most a minor role. Such a model primarily deals with concepts of
voltages, currents, impedance, etc., and only secondarily may involve
simple geametric or topological properties such as lengths or
connecticns. On the other hand, in modeling of mechanical objects,
often all relevant information is geametric in nature. As a result, in
addition to its significant part in pictorial representation schemes,
gecmetry plays the fundamental role in modeling formalisms used for
Computer Aided Design of mechanical objects.



The view pramoted in this dissertation regarding integration of CAD
and CAM is that CAD should be oriented toward CAM. Consequently, we are
proposing a manufacturing-oriented design methodology that leads to a
representation model and a design language suitable for an integrated
CAD/CAM system. We believe it is essential to understand and consider
tﬁe impact of manufacturing realiti.es on the design process of
mechanical parts in order to 1lay the proper foundations for an
integrated CAD/CAM system. In a truly integrated CAD/CAM system, part
definitions should be in terms of components and primitives which have
meaningful counterparts in manufacturing. This permits, or indeed
leads, designers to understand and evaluate the implications of
manufacturing processes on‘ feasibility, functionality, and cost of their
designs before they are released for fabrication. Consequently, more of
the subtle problems that often become apparent only at manufacturing,
can potentially be dealt with during design when consistent solutions
(as opposed to often hasty last-minute patch-works) are still possible.
We refer to this approach as "CAM-oriented CAD methodology"” and will
pursue it further in Chapter IV by proposing a new medeling scheme for

design and definition of mechanical parts.

) Grachics, Drafti 1 Desi

Graphics is the art of making drawings (as in architecture or
engineering), producing graphic arts design, or using typography. In
short, graphics is the art of producing visual effects; it is
distinguished (in a fuzzy way) from other visual arts such as painting,
photography, and (artistic) drawing through its closer tie with

mathematics, although this sametimes means rno more than use of geametric



entities,-abstraci:ions, reqularity, or uniformity.

Drafting is the act of producing engineering drawings, i.e. of
representing objects graphically with mathematical precision. Although
such graphic representation of an object cannot be a complete
description of that object and, in itself, is not sufficient for all
engineering purposes, drafting, nevertheless, is used as a major tool in
every engineering discipline. Drafting is a subfield of graphics where
pictorial communication is for the most part confined to the rigidity of
mathematical transformations of projective gecmetry. The result of a
drafting process is an engineering drawing, which basically consists of
a geametric description of an object in the form of one or more Planar
projections; additional required information may still be represented

graphically on the same drawing, as in architecture.

Desigan is the process of planning and delineating an objéct, a
scheme, an action, a mechanism, or an abstraction, primarily by
sketching (not necessarily literally) its outline. The designing of an
object begins with a designer's initial conception and ends with a
variety of documents defining the object. The input to this process is
usually a somewhat vague specification of the object, but its output
must be precise. Indeed, one may describe design as a non-linear
programming problem wherein the designer attempts to coonstruct an
"object" or a "system" in such a way as to optimize some ecriterion
function subject to certain constraints. Unfortunately, the criterion
function and many constraints are often poorly defined, and thus the

design effort involves both mathematical and heuristic approaches.



Organizations have traditionally stressed separation of the design
process fram subsequent activities, including feasibility studies and
manufacturing, as reflected strongly in both departmental organizations
and production cycles. Althouch there are sound historical reasons for
persistence of this traditional separation, in practice, many iterations
between design and subsequent processes are caused by designers’ lack of
understanding of constraints and activities involved in manufacture of

their design objects.

A designer is and should be concerned primarily with function, form

and fit. Hel

designs a new object which is to perform a given function;
this is his most important goal. Since his design is not meant to
remain an abstraction but to perform the given function, he must also be
concerned with the form in which his design is to be materialized. A
third limiting factor on a designer's creativity is imposed by the fact
that the end product of his design should £it into its intended

envirorment (both physically and socially).

In design of mechanical parts, function, form, and fit, all
manifest themselves in terms of parameters affecting the real world of
three dimensional physical objects. The mutual interdependence of
function, form, and fit presents a puzzle to mechanical part designers
who must simultanecusly satisfy all three design criteria. This is in
contrast to the case of software or electronic design where a design
object's function, form, and fit represent three rather-loosely-

dependent smaller problems which can be separated and solved

1 "He" and "his" are intended to be generic.



individually. Architectural desiqn involves still more complexity
because it includes additional concern for aesthetic values which are
extremely difficult to quantify, and for the fit of design objects,
particularly, into their intented social envirorments. This challenges
architects into human factor issues that frequently outweigh other
technical problems both in volume and complexity.

Strictly speaking, there is no mandatory link between design and
drafting, much less between design and graphics. Drafting is simply one
convenient means of communicating the output of a design process,
particularly in the case of mechanical parts; it is a language in which
much of the precise definition of a part can be expressed and documented
in a way that is "easily" understood by (trained) human beings, such as
manufacturing engineers. Without additional information, a drawing is
not a complete description of an object. However, drafting is a
convenient means of defining geametric properties of objects because it
provides a "natural”, concise, and structured description which is

precise enough for mathematical deduction of certain latent information.

Nevertheless, the "naturalness" of the choice of drafting as the
language in which the outcome of a design process is to be documented is.
in part due to a self-perpetuating system of training which has deep
historical and social roots. Even if more appropriate means of part
definition were introduced today (and they are emerging now, in fact),
the conventional "blue prints on paper™ will remain with us for quite
same time, due in part to social issues like fulfillment of legal

requirements, contractual agreements, and technical publications,

11



As in most .other fields, computers have been introduced into
grarhics, drafting, desidn, and manufacturing to facilitate or autcmate
traditional practices without any significant attempt at their
integration. CAD and CAM as acronyms for Computer Aided Design and
Computer Aided Manufacturing, have been misused in both literature and
in the "market", just like other fashionable terms in their time. CANM,
for example, quite often is equated with computer systems which help to
generate Numerical Control (NC) tapes, although NC is only a small ﬁart
of CAM and antedates both computers' use in graphics and the terms "CAD"

and "CAM",

Once a problem is defined, a solution may be found for it, and if
the solution method can be generalized to deal with a commonly-recurring
class of similar problems, then the solution method can be made into a
"rool". A tool, by its virtue, is capable of solving a specific problem
regardless of the context in which the problem arises. Therefore, the
criteria by which tools are classified and related to applications
should be based not on usability of a certain tool in a given
application (since any tool may find its way into a wide variety of
unrelated applications), but rather on the magnitude of the direct

contribution of a tool to the main problems in an application.

Computer systems too are problem solving tools and should be
classified according to whether or not they contribute directly to the
main task(s) of an application, as opposed to helping with (or
automating) any number of subsidiary tasks. In this view, a computer
drafting or graphic system with or without NC, can rightfully be

pramoted as a CAD/CAM system rouchly to the same extent that a text



processing system can be, since design and manufacturing only partially
involve the tasks of graphic representation, drafting, NC tapes, and
text processing.
3 Production Cycle

A complete manufacturing production cycle involves more than
creation of a concise description of a product; in general, it starts
with a crude informal specification which will then be refined into a
part definition by a designer. This definition often involves
engineering drawings and must go through an analysis phase to quarantee
that it satisfies intended requirements and specification of the part.
Part definition, drafting, and analysis characterize a typical
conventional design process which may include several iterations among

these subtasks before a part definition is finally released to

subsequent phases in a production cycle.

The hanufacturing phase of the production cycle follows the design
phase and involves process planning, tool design, and NC tape
preparation. Process planning consists of specification of a (desirably
optimal) order of the individual steps and manufacturing processes
required for fabrication of a part. Process plans are determined by
manufacturing specialists according to various standards and on the
bases of geametry, material, and tolerances of a part, within the range
of capabilities of available manufacturing machines, tools, and

operations.
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Ideally, a computer provided with a sufficiently accurate
cdefinition of a part should be able to produce such manufacturing
process plans. Use of computers in this capacity is called Computer
Aided Process Planning (CAPP). To this end, a technique called Group
Technology (GT) classifies objects into families of similar parts. In
addition to CAPP, GT classifications have several important applications
in design and manufacturing. For example, they permit a designer to
search company records for parts similar to the one he contemplates to
design; locating such parts provides him with valuable information that
can lead to considerable time and cost savings in both design and
manufacturing. Potentially, CAPP can benefit fram GT classifications.
Through associating generic process plans with families of parts (e.q.
turned piece, sheet metal, etc.) and assigning codes to identify
specific (orders of) manufacturing operations based on individual parts'
geametry, the actual manufacturing process plan for a given part can be
characterized by a finite-digit code. Despite availability of dozens of
GT and CAPP codes, CAPP is sfill aﬁ its infancy and no fully autcmatic

manufacturing process planning system is currently in use.

When a reasonable process plan for fabrication of a part cannot be
determined (and this is often due to unavailability of a specific
manufacturing tool or process, or to the unjustifiability of the use of
such a tool or process), either special tools and processes must be
designed to meet the requirements, or the part definition must be
returned to the design phase for revision. Tool design and subsequent
re-tooling of a shop is generally a costly effort which must be avoided

unless very strongly justified, Preparation of NC tapes, which are



programs for Numerically Controlled machine tools, can conceptually be
viewed as a convenient and far less costly form of tool and process

design.

Other tasks in a production cycle which may somewhat overlap design
and manufacturing include assembly, testing and inspection, bill of

material processing, inventory, and f£inally, technical publication.

4 Integrated CAD/CAM Systems

A CAD/CAM system must (at least) "aid" autamation of two principal
phases in a production cycle: design and manufacturing. People have
spent much effort in "bridging the gap between CAD and CAM" by applying
sametimes  sophisticated heuristics to unveil "latent" information
necessary for autcmation of production cycles. These approaches
include, for example, attempts to autcmate two of the better understood
tasks in manufacturing: process planning and NC. The implicit
information sought by such heuristics is generally contained in object
descriptions produced through a design process and, we believe, should
be available in a directly usable form in the model of a truly

integrated CAD/CAM system,.

We believe that the best way to "bridge the gap between CAD and
CAM" is to avoid creation of the gap in the first place. The nature of
the problems involved in autamation of a production cycle do not allow
successful treatment of CAD and CAM in isolation. This view has very
significant implications on the modeling of objects -— an easy-to-
generate, concise, complete, and unambiguous description of an object is

no longer necessarily a suitable one for an integrated CAD/CAM system,



because it may not be in a form directly usable for manufacturing. The
basis of our proposal for integration of CAD and CAM is, therefore, a
solid definition model for CAD/CAM systems that integrates the processes
and constraints of manufacturing into the design and description of
mechanical parts. In doing so, we feel that we also provide design
engineers with primitive concepts that very closely relate to their

conceptualization of design objects.
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CHAPTER II
Requirements of a CAD/CAM System

This chapter sketches a brief outline of the major requirements and
~architectural components of an integrated CAD/CAM system. Of the
various approaches to design and representation of three—dimensiocnal
solid objects, we believe solid modeling (see Chapter III) best fits the
requirements of integrated CAD/CAM systems. However, solid modeling is
by no means sufficient; it is only the proper embedding of a powerful
solid modeler within an appropriately-structured, functionally-rich
enviromment that qualifies as an integrated CAD/CAM system. Far fram
being a system design, this chapter merely dJdepicts the functional
environment within which we envision a suitable solid modeler to

operate.

Modeling operations that a CAD/CAM system places at designers'
disposal must be more structured and more sophisticated than elementary
shape construction primitives of a simple solid modeler such as CSG (see
Chapter III). The view thereby presented to designers by such more
sophisticated operations in turn, constitutes another CAD modeling
scheme for design and definition of solid objects. Operations supported
through this user-level model must be meaningful to both dJesigners and
manufacturers. This results in part definitions which are in terms of
components with meaningful counterparts within a production cycle. We
refer to this methodology as CAM-oriented CAD and pursue it further in
Chapter IV.

17



Rather than trying to establish the cliched "bridge between CAM and
CAD", we believe our CAM-oriented approach to CAD offers significant

benefits to the design-to-manufacture cycle of production.
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1___Model and Model Database

At the heart of a Computer Aided Design system, there must be a
conceptualization of what is being designed. This conceptualization can
be formalized as an Abstract Data Type which defines both the underlying
domain of ‘"values" of the type (together with "literals" denoting a
subset of these values) and the set of operations that can be performed
on this domain. The model of a CAD system is such an ADT view of this

conceptualization.

Although there may be a substantial amount of software between a
designer and the implementation of the model of a CAD system, the model
is what a designer sees. He perceives the model representation of a
design object and expresses his actions in terms of the set of
cperations supported by the model, i.e. the modeling language. Clearly,
the farther away the model is from ™atural® concepts with which
designers deal, the greater the effort required for perception and .
manipulation of the model. A closely related issue ié how faithfully
the model represents reality. The "accuracy” of a model may be measured
by the amount of relevant information about a design object kept in the
model, and also, the amount of information kept in the model that is
directly relevant to the design process. Lack of sufficient relevant
information in the model results in incomplete or ambiguous
representations, or creates impossible objects which must be checked and
possibly rejected after their creation. Any piece of information
contained in a model should be of significance to its users. Existence
of not-directly-relevant information in a model reveals a missing level

of abstraction between the model and its users, i.e. unsuitability of
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the existing model for the existing application.

In order to model a subset of the real world properties of design
objects so as to aid generation, deduction, correlation, and checking of
detailed information describing design objects, a CAD/CAM system
requires a suitable model and a data base for storage and retrieval of a
representation of that model. Every othe:'r function in the system can be
viewed as an independent application which uses and modifies the model

database.

It is quite conceivable that such applications would choose to see
the information content of the model database in different fashions
according to their own requirements. This is analogous to a database
shared by a number of different applications, where each must see a
certain "view" of its information content. Similarly, a CAD/CAM system
should support different views of its model for different applications.
Furthermore, the model should be informationally complete with respect
to requirements of all such applications. Among important applications
in a CAD/CAM system are (graphic) representation of the model, a
designer end-user interface, manufacturing process planning, and
numerical control programming. Geametric properties of a mechanical

part are of prime interest in all such applications.

The three—dimensional nature of mechanical parts cannot be conveyed
unambiguously in a two-dimensional model. Of the various approaches to
three—dimensional design, we feel solid modeling best £fits our
requirements. The amount of information kept in such a model allows

efficient analysis and flexible display of properties of objects.
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Nevertheless, we regard solid modeling as necessary but not sufficient
for a truly integrated CAD/CAM system. The full set of activities
within an integrated CAD/CAM system requires a model for fabrication of
solids, not just modeling of solids. The most accurate model for a
solid object, the object itself, is not necessarily the most appropriate
form of its description for manufacturing purposes. The model database
in an integrated CAD/CAM system must contain enough descriptive
information about design objects to efficiently respond to queries
involving their geametry, and also be capable of directly supporting

manufacturing-related applications such as process planning.
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2 End-user Interface

An end-user interface provides a means for expressing users'
intentions in a form tailored to their needs, as determined by the
nature of their applications and by their personal preferences. At the
same time, it must fully utilize any specialized hardware and software
features that may be available on users' work-stations to achieve their

goals.,

In principle, the modeling language should suffice for all users’
needs at least as long as they are dealing with modeling activities.
However, we regard the modeling language not so much as a user-oriented
language, but primarily as a language in which users' manipulation of
design models can be expressed unambiguously. Therefore, one of the
goals of an end-user interface is to permit designers to perform their
design and modeling activities in a convenient manner and throuch a
friendly lanquage. In addition, users of a CAD/CAM system must be given
facilities for "housekeeping" tasks (such as accounting, maintenance and
security of the model database), utilities (such as protocols for
communication among users and between machines), and procedures for in-

house standards by which they must communicate.

An ideal end-user interface takes advantage of resources and
facilities available at individual work-stations to provide a pleasant
and friendly enviromment for end-users. A work-station itself is more
justifiable as user-community property (if not a personal one), rather
than system property, and users rather than system designers should

decide how their work-stations operate. They should also have the
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capability of re-tailoring them to their changing requirements. A
CAD/CAM system designer influences the user-system communication through
the structure of the modeling langquage, and by deciding what the overall
system capabilities are and what the modeling lanquage can do; the
choice of how to perform modeling operations and how to use system

capabilities should be left open for end-users.

Architectural isolation of work-stations fram functionality of a
system can also be justified from a system's point of view: with the
ever increasing diversity of work-station terminals and advanced
capabilities available through utilization of micro-processors, it is
impractical for a CAD/CAM system designer to consider sufficient end-
user related options, especially since his system design will likely
outlast its initial hardware. Alternatively, it is quite advantageous
for a system designer to define clearly what a CAD/CAM system can do in
the most "device-independent” form possible. Structuring a system into
several autonamous functional layers whose interdependence is limited to
mutual communication at a functional level, makes the system easier to
understand for both users and implementors. It also has the advantage
of allowing both implementation flexibility and application versatility,
especially in the part of the system where change is most likely and to
which end-users are most exposed, i.e. the user interface. Extraneous
enhancements, alternative shortcuts, and operational details pertinent
to a particular piece of hardware, a user community, or some specific
application must affect only the outermost architectural layer of such a

system,
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Available hardware and intelligence on work-stations should be
utilized to minimize user intervention, and in particular, mechanical
intervention. To this end, dynamic expansion of keyboard entries,
menus, light-pens, styli, function keys, and voice recognition devices
are but a few techniques that could be incorporated into a user-
interface. It should be straightforward to tailor an interface to the
specific needs of an application and to the special features of a work-
station if (and only if) proper analysis is done by qualified and
application-kncwledgeable human factors personnel. This requirement has

often been neglected or camouflaged by "bells and whistles”.

On the other hand, lack of facilities on a less expensive work-
station should not introduce an impossible-to-cross barrier to
usefulness; it should rather mean a reduction of service due to the lack
of special features, with absolute compatibility preserved at a

functional level.

2.1 Modeling Language Interface

The purpose of a modeling language interface is to make model
manipulation as convenient as possible for end users. Depending on the
type of user, hardware available, and the nature of an application, a
variety of dialects of a modeling languages may be supported on a
CAD/CAM system. Generally, menus are preferable to procedural
interfaces; however, they limit flexibility for more experienced users
who would like to get more involved with the system. Informative
messages, verbosity, and a limited set of "next action" choices are

valuable means of assistance and education for a novice or an occasional
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user, whereas to a proficient user, they are useless wastes of time and

bothersame road blocks.

Lengthy input sequences should be avoided or broken down into
meaningful smaller ones. Also, the nature of the input parameters must
be relevant to the application, i.e. users should be expected to supply
information in forms convenient for them, rather than in forms directly
usable in the model. It is the task of a medeling language interface to
reformat, extract, and combine such user—oriented input to generate

information required by a modeling operation.

To this end, utilization of graphic input is a major technique.
However, graphic input must be differentiated from constructicn of a
graphic model (as in drafting). In contrast to two—dimensional systems
where a model is directly composed of graphic entities that users
create, the role of graphic input in a system based on solid modeling is
only to provide parameter values required by the modeling operations;
with or without such graphic input capability, it is always the modeling
operations that dJdefine and construct a model. For example, in a DSG-
based system (see Chapter IV), the modeling language interface can
provide users with a "transparent overlay" on which they can make fast
working sketches similar to markups one would make on a workpiece.
Then, for example, instead of giving parameters that define the position
and orientation of a planar—cutter directly, a user can draw a line on
such an overlay, position (turn and translate) the workspace to place
the workpiece at the desired location and orientation, and then indicate
that the line should be used as the source of the parameters defining an

application of a planar-cutter. It is important to emphasize that such
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drawing sketches are not parts of a model, nor are they bound in any way
to specific modeling operations; they are merely "graphic expressions”,
ji.e. short-hand conventions, which are evaluated by a modeling language
interface and permit a more natural means of supplying parameters to

modeling operations.

The open-ended requirements alluded to above, sketch a boundary for
a modeling langquage interface. A modeling language interface should not
functionally expand or augment a modeling language; rather, it should
utilize modeling language capabilities in a situation—dependent fashion
in order to present a high level convenient set of operations to end

users.

2.2 Model Representation

The other direction of the user-system communication involves model
representation. The task of the system component which handles model
representation is to determine how a design model and any additional
non-graphical information can be presented at designers’ work-stations.
Within the constraints of available hardware, users should generally be
able to define multiple viewports and to dynamically allocate and
release areas of their graphic screens to viewports. The content of
each viewport should also be user—definable, e.g. orthometric,
isametric, or perspective views of the design object, with or without
information 1like hidden lines, dimensions and tolerances, menus,

messages, context, etc.
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2.3 User-System Interaction

The interface between users and the system as a whole, must meld
quite well with the modeling language inté:face so that users are
presented with one homogeneous communication language throughout
interactive sessions and not with different sets of communication
standards. Among the responsibilities of the user-system interaction
interface are logon/logoff procedures; accounting, f£iling, and
archiving; application selection and execution; and model data base

security and access provisions.
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CHAPTER III

Approaches to CAD/CAM

This chapter presents an overview of the field of mechanical
CAD/CAM, covering both its theoretical bases of modeling and its present
practical realities materialized in the form of today'é ‘available
commercial and experimental systems. The non-balanced ratio of topics
involving CAD to those on CAM in this chapter, is in fact a
representative picture of the unbalanced scale of work done on CAD

compared to that devoted to CAM, both in theory and in practice.

Section III.l is a study of the more traditional representation
techniques for physical objects, scrutinizing them as candidate modeling
schemes for an integrated CAD/CAM system. Section III.2 is a natural
continuation of -Section III.1l and examines other solid representation
methods. Separation of the material in Sections III.1 and III.2
reflects the fact that the methods of Section III.2 are more recent,
both in their development and in their being used as representation
schemes in CAD/CAM systems. The significant difference between the two
classes of methods, however, is that modeling schemes of Section III.2
are unambiguous, whereas representation techniques of Section III.l are

inherently ambigquous models of solid objects.

Section III.3 sketches a brief overview of available systems and
their capabilities by reviewing a number of "typical"™ CAD/CAM systems

aimed at mechanical applications.
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] . ¢ Solid obj

This section considers the more traditional approaches to
representation of solid objects. Engineering drawing, the workhorse of
communication between designers and manufacturers for the past
centuries, and its obvious extension to three dimensions, the so-called
wire-frame model, comprise the subject of the present section. In
addition to popularity, these methods share another characteristic:
their ambiguity. In the case of engineering drawings, their ambiguity
imputes to them a degree of robustness that allows them to capture more
than just the representational aspects of mechanical parts, to the
extent of becoming models for manufacturing as well as for design.
Althouch drafting is too informal a model to be useful as the backbone
of integrated CAD/CAM systems of the future, it, nevertheless, is
capable of addressing certain manufacturing related issues far bDbetter
than other models currently do. An examination of drafting, then, is
beneficial for sketching a perspective within which some of the problems

that must be resolved in an integrated CAD/CAM system can be identified.

1.1 Engineering Drawings

The primary aim of an engineering drawing, or indeed of any other
type of definition of an object being designed, is to provide the
information required to manufacture that object. A drawing is mostly an
indirect description of "what" a designer intends to have built (as
opposed to a description of "how" it can be built) which, due to the

lack of better means of communication, is expressed in the form of a



collection of projections. Strictly speaking, such a collection does
constitute a model of an object. However, in general, this "medel” is
too informal and ambiguous, and several serious problems arise when one
attempts to use engineering drawings as the main form in which object
descriptions are kept, particularly, in an autcmated system.
Traditionally, production cycles have relied on the "common sense” and
intelligence of trained human beings to resolve these problems. Our
technological achievements serve as the proof that this arrangement
often works successfully; the mere existence of the rank of drawing
checkers in traditional production cycles, and, still, the costly
iterations between design and manufacturing show that this means of
communication scmetimes fails. An autamated system cannot rely on
"common sense"; part descriptions in such a system should be in a form
suitable for straight-forward formal deduction of properties which are
of interest for its fabrication, and engineering drawings camnot fulfill
this requirement for a variety of reasons, as we will show in following

sections,

1l.1.1 Projective Geometry and Drafting

Drafting is based on projective geametry, which deals not with
attributes and properties of an object (i.e., metric and topological
relations between geometric entities comprising the object's shape)
directly, but rather with what becomes of such attributes and properties
after they go through a process called projection. Engineering
applications commonly use planar projections, i.e. projections of
objects onto planar surfaces. Each such projection is called a view,

and an engineering drawing consists, essentially, of a number of views.



Frequently, more than one view is required tc give a "reasonable"
description of an object because a great deal of information is
(intentionally) suppressed through every projection. Drafting text
books state that a syfficient number of views, section views, details,
and notes should be given in an engineering drawing to clearly define
the represented object. In drafting, each view in turn must be
mundanely defined in terms of elementary geometric entities, e.dq.
points, lines, and curves. There are numerous types of planar
prajections, each more suitable for certain purposes than others, and
same drafting texts include extensive surveys of such techniques [BOC63,
LUZ59, FRE66, ARBR8l, MEL82b]. Not every set of 1lines and curves,
however, is a legitimate view of a real object, and it is not always
easy to check whether such a set is a valid view. Figure III.1 shows an
interesting and well known example of an invalid view (in the sense that

it cannot be that of a real solid object).

"
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Figure III.1 - An Impossible Planar Projection View
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Fiqure III.2 - Inconsistent Views

There is a certain amount of redundancy of information in any
engineering drawing because no two projection views of a three-
dimensional object are absolutely independent. This redundancy serves
to maintain some (complex) inter-view consistency relationship and
implies that not every set of legitimate views can define a real solid,
as seen in Figure III.2. Another problem with projective geometry is
that objects which are smoothly curved in two directions, e.g. a sphere,
cannot be dJdefined precisely by any finite number of projections,
although exact definitions of such objects can be approximated to any

desired precision by large numbers of projection views.

Scme of the problems in working with engineering drawings arise
from the issues discussed above. It should be noted, however, that
drafting is not exactly the same as projective gecmetry. Drafting
practices have evolved through the years as a means of communication
between designers and manufacturers and at times defy the rules of
projective geametry. For the sake of brevity and convenience, drafting

standards sometimes decree "erroneous" and/or "conflicting” views, not
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Fiqure III.3 - Misrepresented Holes

to mention suppression of information that can be inferred "obviously”,
or that can be deduced fram notes and text. Whenever clarity may be
enhanced through such measures, it is considered good drafting practice
to apply them. In particular, the following examples illustrate why it
is so difficult to extract information from an engineering drawing in an
algorithmic fashion. Figure III.3 shows the front and side views of a
turned piece. Notice that to highlight the part's axial symmetry, the
positions of the two top off-center holes in these views are
misrepresented. Figure III.4.a shows two views of a simple cylindrical
rod beveled at one end. Fiqure III.4.b shows the "true" top view of
this object as per rules of projective gecmetry. Figure III.4.c shows
the top view of the rod as represented in a real-life engineering
drawing and is another example of what 1is known as "oreferred-" or
"conventional-views". These intentional "errors” afe somewhat typical
of errors sanctioned by some official drafting practices standards and

what is referred to as "conventicnalization" (of views).
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{a) Frent ang sice views of a ceveled rod
(b} True top view

(c) Conventicnalized tcp view

Figure III.4' - Misrepresented Top View

Partial views, Figure III.5, representing only the relevant parts
of a view, and about a dozen different types of sectiocn views (e.g.
full, half, broken-out, revolved, removed, offset, rhantam, etc.) are
other points of departure from projective geametry where drafting adopts

more informal schemes for the sake of clarity.
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Figure III.5 - Partial Views
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1.1.2 Manufacturing Issues in Drafting

An important aspect of drafting is that an engineering drawing is
more than a representation of an object; it includes numerous hints for
manufacturing of the part it describes and thus can be regarded as an
informal (ambiguous and incomplete) model for manufacturing of the
object it represents. Drafting text books emphasize that manufacturing
processes involved in making of a part should be of prime concern in
drafting of its engineering drawings. Certain aspects of a drawing,
such as representation of detailed features of a part and, to some
extent, the choice of dimensions, depend on manuf acturing

considerations.

Many drafting text books include an entire chapter on "shop
processes”, almost invariably, immediately preceding the chapters on
dimensioning and tolerancing. Presented material under this topic
covers techniques such as pattern making, sand casting, forging,
lathing, milling, grinding, shaping, honing, and broaching, and the
effect of these basic manufacturing methoeds on engineering drawings.
Manufacturing processes are commonly classified into five categories for
draftsmen's purposes [FRES8, FRE66, and GIE67]. Drawing requirements
for each category are scmewhat different as can be seen in a summary in

[FRE58 and FRE66] reproduced here as Figure III.6.

Dimensioning standards differ scmewhat depending on the nature of a
part, manufacturing processes involved, and organizations' preferences.
However, every drafting practitioner would agree that the prime purpose

of dimensioning is not to define the part represented in a drawing
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Figure III.6 - Manufacturing Issues in Drafting

mathematically, but rather, to aid manufacturers in fabrication of the
part. To illustrate the difference, consider Figure III.7. Figures
III.7.a and III.7.b show a single shape dimensioned in two different
ways. Both dimensioning schemes are mathematically complete in that
they present enough information for dJeduction of any desired metric
property of the shape. Most practitioners would; however, consider the
drawing in Figure III.7.a as poorly dimensioned since the one in Figure

III.7.b is more directly useful to a manufacturer of the part.

General rules for proper dimensioning state that each dimension
should be given clearly and in only one way, i.e. no duplicate or
redundant dimensions; no dimension should be given except those needed
for fabrication, inspecticn, and assembly of parts; dimensions should be
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Figure III.7 - Proper and Improper Dimensioning

given between points or surfaces which have a functional relation to
each other; dimensions should be attached to the view where the shape is
best shown in true (scaled) size and, finally, it should not be
necessary for manufacturers to calculate, assume, or measure a

dimension,
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1.1.3 Deciphering a Drawind

The fact that an engineering drawing represents certain geametric
properties of an object after they have gone through the process of
projection means that a draftsman or a designer must be keenly aware of
projections and, in fact, must always perform this process on his
conceptual image of an object before expressing it in a drawing.
minderstanding" a drawing also, at least partially, involves the process
of projection, or in fact, its Ainverse. Inverse projection, 1i.e.
finding the geametric entity whose projections yields a set of given
views, is far more difficult than projection itself. Yet, people who
deal with engineering drawings, somehow manage to, in effect, solve this
problem and munderstand” drawings, even in spite of certain possible
errors and inconsistencies. It is precisely the task of drawing
checkers to catch such errors and inconsistencies in drawings and also
to check for certain "manuf acturability” criteria, all of which require
2 thorough understanding of the "meaning” of a drawing. In a
computerized drafting system, it is quite reasonable to expect the
computer to play the role of a drawing checker. In its most general
form, however, such a task is an extremely complex one and invelves
sophisticated heuristics and pattern recognition techniques and falls

into the mysterious realm of artificial intelligence.

We mentioned earlier that certain objects cannot be precisely (i.e.
unambiguously) defined by any finite number of projections. Furthermore,
it is not known whether reasonably general classes of (curved) objects
can be represented unambiguously by a finite set of projections

[REQ80b] . We do not know of any results on reconstruction of an object
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(or the set of all possible objects) fram a given set of projections, in
the general case. Several attempts, however, have been made to extract
fran a drawing certain properties of interest about an object, or to
reconstruct it from engineering drawing type representations, under some
special case assumptions. For example, it is known to be possible to
unambiguously construct the set of edges of any planar-faced polyhedron
fran a sufficient number of its planar projections. Together with the
hidden-line information <contained in an engineering drawing
representation in the form of dashed lines, this can yield an
unambiguous reconstruction of such a polyhedron. In [PRE81], a set of
algorithms for construction of a planar-faced polyhedron from its planar
projections is presented. In [WES8l] an earlier work on construction of
polyhedral solids from their wire-frame representations [MARBO] is
extended to derive solid models fram projections. This iﬁteresting
algorithm works on projections of (planar-face) polyhedra and accepts
cross-sections, overall, and detailed views subject to some set of
"standard" drafting conventions. In an attempt towards autcmated
manufacturing process planning, the CAD/CAM Group at UCLA has developed
algorithms for analysis of engineering drawings to extract certain shape
characteristics that are significant factors in determination of a
part's process plan [KAMB3]. Subject to a relatively small set of not-
too-restrictive assumptions, these algorithms in effect "understand”
drawings of mechanical parts and autamatically produce their CAPP codes
(see Chapter I). Imposition of "standards" and structure on engineering
drawings, which can be validated as a drawing is being constructed, can
make computerized understanding of engineering drawings practical for

real-life special, but important, cases. However, insuring validity of
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a drafting-style definition of an object in general, seems to be as
complex as other poorly-understood cognitive tasks performed scmewhat
casually by human beings, and, at least for the near future, remains

“unsolvable,

A more pramising approach to construction of valid representations
of solid objects is to define objects for the computer in a more direct
fashion, i.e. abandon drafting as the language of communication between
the designer and the computer. This approach has the additional benefit
of alleviating the need for designers to constantly perform projections

! once an object is defined

before they can express themselves.
unambiguously in a computer system, the system can perform a wide range
of tasks involving that object. For example, the main objective in using
such a system may still be production of engineering drawings, in which
case the system can perform the routine task of projection on a fully-
defined object and produce any number of desired views in a straight-
forward manner. Use of computers in such a capacity requires an
"understanding” of the design object on the part of the computer beyond
a mere superficial representation such as a collection of lines and
curves, that bear an almost symbolic resemblance to the design object,
expressed through the riddle of drafting. The collection of information
comprising such an understanding is called a model of solid objects.
Several approaches to geametric solid modeling have been introduced, and

Section III.2 presents a brief review of this subject.

1l It also has the disadvantage of requiring people who have
developed a habit of constantly performing projections, to stop
and rethink!
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1.2 Wire-Frames

A direct adoption of the concept of "primacy of edges", so
fundamental in drafting, to three-dimensional space leads to the so-
called wire-frame model of solids. A wire-frame model consists of a set
of space curves (wires), each of which represents a "hard edge" of the
solid object, i.e. a curve on the boundary of the object along which the
derivative of the surface is discontinuous. Wire-frames are easy to
generate and work with, are simple to store and manipulate in computers,
and are sometimes very useful as visual aids. However, they do not
capture enough of the shape properties of physical objects to convey the
notion of solidity. This gives rise to a number of problems when wire-

frames are used as models for solids.,

In a wire-frame modél, one can find no hint of any kind of a
surface; surfaces are ﬁndefined entities whose intersections form edges
which are explicitly represented as space curves. The shapes of surfaces
whose boundary edges are represented by such curves, however, are left
to be determined by observers' imagination. An engineering drawing not
only represents every hard edge of an object but also shows a
"silhouette” of the object in every view, often providing quite helpful
hints to the shape of an object's bounding surfaces. Without the
concept of projection, "silhouettes™ are not possible and thus, in
general, wire-frames are even less informative than engineering drawings
in describing objects' bounding surfaces. In particular, curved
surfaces cannot be dealt with in a pure wire-frame model. For example,
the only "wires" that one can associate with a finite circular cylinder

are two parallel circles; this is also the same representation as that

41



of , among other things, two hemispheres. In cases of "very smoothly
curved® objects, such as spheres, there are no edges to represent at
all. As a remedy, in practice, people add wires where there are no real
edges in objects, in order to approximate the shape of curved surfaces;
these unreal edges are scmetimes referred to as soft or fake edges and
may be thought of as contours resulting from hypothetical planar

sections of an object.

) a
b i
(a) Wire—frame

(b) Correspending sclids

Figure III.8 - An Ambiguous Wire-Frame

Another consequence of absence of surfaces in wire-frame models 1is

that, in general, the notions of "inside" and "outside" are lost. Even



when the shapes of surfaces are known (e.g. by oconvention or by
approximation to planes), certain wire-frame models are still ambiguous,
i.e. the same representation corresponds to more than one solid object.
A classic example is shown in Figure III.8.a. Assuming that every face
of the object represented by this wire-frame is planar, one can
associate every one of the solids depicted in Figure III.8.b with this
representation. (There are infinitely many more possibilities without
the planar-face assumption.) In [MAR80] an interesting algorithm is
reported which finds all planar-faced polyhedra that have a given wire-
frame representation. Figure III.8.b was in fact produced by running an
unreleased implementation of this algorithm under GDP/GRIN on the wire-

frame of Figure III.8.a.

Absence of surfaces also makes it impossible (in fact, irrelevant)
to talk about hidden lines. This, except for relatively simple objects,
makes wire~-frame representations too cluttered to be an effective visual
aid, and the additional burden of including scft edges to represent

curved surfaces only magnifies the problem.

Incompleteness of wire—-frame representations limits their value for
most CAM purposes. Wire—frépqﬁmodels are often augmented by (relatively
simple) surface definition facilities to provide a more "complete”
geametric model. With or without this augmentation, wire—frames are
frequently used purely as a CAD tool, e.g. a faster means (than
drafting) to generate ocorrect and consistent projection views of an
object. There are also certain applications, such as (semi)autamatic
generation of finite element models, where wire-frames provide

reasonably sufficient representations.
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The term "solid modeling” refers to a class of gecmetric models
that upambiguously represent the shape of solid objects. The keyword
"unambiquously” separates solid modeling from other representation
methods such as engineering drawings and wire-frames. Many different
schemes have been devised to represent and model real solids. In
[REQ80b, RED80c, and Rsaazj extensive reviews of most such models and
approaches are presented and [HII82b] proposes a taxoncmy of solid
modeling systems according to their internal representation schemes and
data structures. In this section we first briefly classify solid
modeling techniques according to the above-mentioned references and then

focus on several successful and well-developed representation schemes.

Briefly, [REQ80b] distinguishes between seven basic methods for

construction of unambiguous representations of solid objects:

bd

te1/g |
S B

Figure III.9 - Family of Parts

1. Primitive Instancing

Primitive instancing is based on the notion of families of

objects. Each member of a family is distinguished by a fixed



number of predefined parameters and is called a primitive
instance of the generic primitive represented by the family. For
example a family of bolts can be represented by a tuple
<BOLT,bd,hh,1> where BOLT is a type identifier and bd, hh, and 1
are body diameter, height of head, and length, respectively, as

in Figure III.S.
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Figure III.10 - Tabular Dimensioning

Primitive instancing has been used in the context of Group
Technology in manufacturing and is the same concept used in many
catalogs, technical references, and handbooks to define standard
parts using a single drawing and tabular dimensions, as in Fiqure
III.10. Primitive instancing presents an important abstraction
scheme which is vital in many CAD/CAM applications, e.q.
standardization of parts, material planning, and parts and
material processing. The same conceptual view as presented by
primitive instancing (family of parts) can be supported in other
more structured approaches to solid modeling in the form of

"macro definitions”.
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2.Spatial Occupancy Enumeration

In this technique, space is divided into a grid of three-
dimensional cells (usually cubes), and a so0lid is represented by
a list of the cells which it occupies. Because relatively
accurate representations in this scheme would require a fine grid
and this in turn results in bulky lists of cellg, spatial
occupancy enumeration is not used in mechanical CAD/CAM other
than, as a possible internal "trick" to enhance performance of

certain geametric algorithms.

Cell Decomposition

In this method, a solid is decomposed into simple cells with
no holes and whose interiors are pairwise disjoint. | Cell
decomposition can be regarded as a generalization of the spatial
occupancy approach where location, size, and shape of the cells
are not fixed or prespecified. Cell decomposition is wused in
certain geametric algorithms which, for example, check whether a
solid object is a single connected piece, etc. [REQ77c]. Cell
decomposition is also important as the basis of finite element
analysis methods.

Constructive Solid Gecametry

In Constructive Solid Geametry (CSG), solids are defined as
combinations of "solid building blocks" called primitive solids,

through operations similar to volume addition and subtraction.
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5.

(See Section III.2.2.)

Sweeping

The basis of sweeping is that a solid or a bounded surface
moving through space along a trajectory curve sweeps a "volume",
A solid may therefore be represented by a pair <moving-body,

trajectory>. (See Section III.2.3.)

Interpolation

Interpolation is a generalization of "lofting" refers to a
technique used for approximation of surfaces by a set of
longitudinal contour curves, Lofting is wused mainly in
applications where the surface primarily stretches in one
direction, e.g. representation of an aircraft fuselage, ship
hull, etc. Generalization of lofting to description of three-
dimensional solids, involves defining a solid as the union of all
lines pg whose end points p and g lie in two given two—
dimensional sets P and Q, respectively. Interpolation is seldom

studied or used in CAD.

Boundary Representation

In this method, a solid is represented indirectly by
explicit representation of its topological boundary, i.e. its

bounding surfaces. (See Section III.2.l.)
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In addition to approaches mentioned above, it is possible to design
solid representation schemes using a combination of these methods.
synthavision [GOL79], GLILE [EAS80] , GMSCLID ([BOYBO, BOY82], BUILD-2,
DESIGN, and ROMJLUS [HIL82a] are examples of systems using such hybrid
schemes. Same of these systems, €.g. GMSOLID and DESIGN, actually use a
hybrid (and redundant) scheme for representation of modeled objects
(BOY79b, HIL82a]. Other systems in fact use a single representation
scheme for modeling of objects internally, but support other modeling

schemes at their user interface level as well.

The following sections further discuss boundary representation,

CsG, and sweeping approaches to solid modeling.

51 8 Boundary Representation

Boundary representation is a method for describing a solid object
in terms of its topological boundary. This boundary is itself divided
into a finite number of faces or surface patches, each of which in turn
can be defined and represented in a variety of ways. One popular
method, for example, is to represent each face in terms of its boundary
edges. Figure IIL.1l shows an object and its boundary representation

definition.

Recause boundary surfaces are really what one "sees" of an object,
boundary representation seems to be a reasonable approach to definition
of solid objects. Usually, it is intuitively clear to a designer what
faces comprise an object's boundary, especially when decomposing
planar-faced objects, where almost everyone would come up with the same

set of faces. A succinct definition of a "face", however, 1s necessary
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Figure III.1l - Boundary Representation of an Object

in the general case. Essential conditions that should be satisfied by a
face are formally defined, e.g. in [RER80b], and a number of definitions
for various types of faces, leading to different decompositions, are
presented in [SIL8l]. The latter reference also contains a discussion
of the mathematical properties of these faces and their associated
boundary representation schemes, Furthermore, it discusses algorithms
for conversion between representation schemes associated with different
types of face definitions. Nevertheless, there are no definitely
ncorrect” set of rules for decomposition of an object's boundary into a
set of faces, and the choice of a particular decomposition is in fact
application-dependent. For example, coonsider the object in Figure
IIT.12. The division of this object's boundary intoc faces around the

locality where the block and the cylinder meet is, in a sense, a matter



Figure III.12 - Ambiguous Faces

of taste. (Dashed lines in Figure III.12, for example, show two
"matural” borders that may be consiéered as the separating edges of some
such arbitrary faces.) Scmetimes additional considerations such as
primitive surface types available on a system, relative sizes of
components, manufacturing processes, or a part's function, serve as
hints at better or best face decampositions. But, since such issues are
generally foreign to the model itself, they cannot, in general, be dealt

with in a uniform manner.

Ready availability of definitions for surfaces, edges, and
relations among them makes boundary representation a very desirable
modeling scheme for graphic representation [GIL78, NEW79, LANSBO]. For
this reason, boundary representation is sometimes used as an internal
intermediate form for generation of drawings on graphic displays,
althouch the gecmetric mecdel presented to users of the system may not be
the same. GMSOLID, for example, keeps a boundary representation model
of design objects in parallel to its primary CSG model, because the

former is a more efficient representation for certain tasks including,



in particular, graphic display of design objects [BOY79b, BOYS0, BOYB2].

Fram a designer's point of view, since in this scheme primary
attention is placed on surfaces, which are higher level geametric
entities than curves, boundary representation is a higher level method
of definition than wire-frames. Unfortunately, however, definition of
an object through its boundary faces is still rather bulky and often
requires dealing in great detail with space points and curves in order
to define a face or a surface patch. Depending on a particular system's

user interface, this can at times become quite tedious and involved.

Definition and representation of surfaces (and their two-
dimensional counterparts, curves) is in itself a specialized field of
analytic geametry and grarhics with a wide range of applications., It is
instructive to consider three classes of applications discussed in
[BEZ82] where "free formed" curves and surfaces are required. First,
there is the class of applications where shape plays a basic functjonal
role in scme technical phenomenon whereby its characteristics are
determined by scientific theories and engineering experiments. Examples
include many engineering curve fitting applications, modeling of
chromosome shapes [MER82], design of the shapes of propellers, ship
hulls, aircraft wings, turbine foils, engine manifolds, etc. Second,
there is a class of applications where the most important property of a
shape is its aesthetic value, as in the "skins" of car bodies,
furniture, household appliances, etc. Finally, a third class of
applications deals with shapes which are not to be seen and therefore
require no aesthetic properties, and further, need to satisfy only a

"loose" set of functional requirements, such as not colliding with a
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nbving part. The significant characteristic of this class of shapes is
that they should be easy to fabricate. Examples include inner panels of
car bodies, etc, These distinct classes of applications give rise to

different curve and surface definition techniques.

Curve and surface representation techniques can be grouped into the
two general categories of interpolation and approximation.
Interpolation methods are usually used in the first and third classes of
applications, above, whereas approximation techniques are mainly applied
where aesthetics is the dominant factor. Specialized methods have been
developed for definition of so-called "sculptured surfaces", a term that
(usually) refers to dJoubly-curved surface patches, emphasizing the
different characteristics of the final shape [FAU79, BAR82, GIL78,
NEW79, FOR72, FEN80, GOR74a, GOR74b]. Most of these techniques use a
definition of the boundary of a patch (usually, as a set of four, rarely
three, connected spacé curves) or an equivalent set of constraints,
together with a surface interpolant function that determines how such a
frame is "fleshed out"™ into a surface. In the case of interpclation
methods such as in Ferguson-Coons patches [FAU79, GIL78], this
interpolant function gquarantees that the constructed surface passes
through a given set of three-dimensional points. On the other hand,
approximation techniques, e.g. Bezier surfaces [GOR74b, GIL78, NEW79],
use a given set of three-dimensional points as control points affecting
the shape of the surface as if they were magnetized points deforming the

surface by force of attraction.
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The underlying mathematics of the above-menticned approaches is
rather involved, and a significant draw-back of systems based on these
surface definition methods is the lack of a truly ﬁser-oriented
interface shielding users fram such tedious details as twist vectors and
surface derivatives. An attempt to overcome this difficulty is a

recursive surface definition method reported in a recent paper [VEE82].

Al
1

Figure III.13 - Klein Bottle

Validity of a boundary surface representation model as a realizable
physical object is a significant issue. Not every set of faces or
patches defines a real solid. Figure III.13 shows a well known example
of an unrealizable object, an interesting self-intersecting bounded

surface with no identifiable inside and outsidez, known as a Klein

2 The picture in Figure III.13 is, of course, a two—-dimensional
representation of a three—dimensional surface which is an
approximation of the four-dimensional object called the Klein
bottle. This "object" was in fact defined as a network of
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bottle. Several schemes for insuring and checking the validity of
boundary models are known [EAS79, BAE78, REQSOb], and are commonly used
in practice for the special case of planar-faced polyhedra. In
particular, a set of low-level shape operators that define and combine
faces, edges, loops and vertices, known as the Euler operators (because
o they are derived from the pioof of the Euler's law) are somewhat popular
[EAS79] . These operators are used, for example, in GLIDE [EASBO] .
Well-formedness conditions are embedded in the Euler operators, which
permit only construction of consistent structures of bounded surfaces
that define boundaries of realizable objects. Curved surfaces introduce
more complexity into the issue of well-formedness, and generalization of
validity schemes that deal with planar-faced polyhedra to cover curved-

faced objects is both complex and computationally expensive [REQ8OD] .

Among different approaches to solid modeling discussed in this
section, boundary representation is the closest to a geametric model
directly usable for CAM. The reason for this is simple: many
manufacturing processes deal with surfaces, e.g. machining operations
cut surfaces; edges and vertices emerge as consequences of the meeting
of surfaces and cannot be manufactured independently. This means that
while edges and vertices, among other things, may be of prime concern
during design and analysis, manufacturing cannot deal with these "side-
offects" in isolation fram surfaces. Many manufacturing processes
require detailed information, e.g. ca;culation of tool paths, which can

be extracted rather easily fram an explicit surface definition. The

Ferquson—-Coons surface patches on the NGS system, which shows that
this system does not recognize such unrealizable definitions. See
Section III.3.3 for NGS.
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necessity for identifying surfaces in a final model of design objects
for CAM applications forces systems based on other solid modeling
schemes to perform a conversion to boundary representation at some point
before, for example, they can attempt to generate NC programs.
2.2 Constructive Solid Geometry

The fundamental concept of Constructive Solid Geometry (CSG) is
that a (complex) solid object can be represented as "additions” and
"subtractions” of simpler solids4. Solids are modeled as sets of E3
points; however, not every set of B points represents a realizable
physical object. A definition is therefore needed for sets of E points
that represent physical solids. A number of such definitions are
possible, but CSG is based on the concept of regular semianalytic sets
which, in their general form, are referred to as half-spaces.
Informally, a half-space is the set of points on and on one side of a
possibly unbounded surface which can be defined by a boolean combination
of analytic functions (anmalyticity of functions is in fact a stronger
condition than necessary; see Section IV.1.2). Examples of half-spaces
include points on and on one side of a plane, points on and on one side
cf a (bounded or unbounded) cylinder, etc. Bounded, regular
semianalytic sets are called r-sets, and in CSG, it is the r-sets which
model real-world solid objects. (Section IV.1l.1 explains the necessity

for these conditions, their significance, and their implications.

4 Section IV.l includes a more elaborate discussion of certain
formal properties of CSG. On the other hand, the present more
general discussion applies to every modeling scheme, including the
Realizable Shape Calculus of Section IV.2, that shares the same
view of shape composition as CSG.
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Limitations of r-sets as formal models for solid objects are discussed
in Section 1IV.l1.2.) Examples of r-sets are the set of points on and
inside of a bounded cylinder, the set of points on and inside of a
bounded polyhedron, etc. "Addition" and "subtraction” of solids are
modified boolean set operations union, difference, and intersection
which preserve regularity of the sets and, of course, semianalyticity;
these operations are called regularized set operations. (See Section
Iv.1.1l and [REQ77b] for formal definitions.)

There are two CSG schemes, one based on general primitive half-
spaces and the other, based on bounded primitive solids. The first
scheme permits unbounded half-spaces (such as the one associated with an
unbounded plane) and, in addition to regularized union, difference, and
intersection, it also permits a reqularized version of the set
complement operation. This scheme is more general than the second, but
since the result of regularized set operations on general half-spaces
are not necessarily r-sets, boundedness of the resulting "solids" must

be checked separately.

The second scheme deals exclusively with r-sets and since the
complement of an r-set is not an r-set, regularized complement is not
permitted. In this scheme a solid is modeled as regularized union,
intersection, and difference of a given set of predefined r-sets called
primitive solids. Each primitive solid itself can be defined in terms
of general primitive half-spaces and regularized set operations in the
first scheme; but, since r-sets are closed under regularized union,
intersection, and difference, unlike in the first scheme, validity of

the resulting representations in €SG schemes based on primitive solids
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Figure III.14 - CSG Definition of a Bracket

is guaranteed. As seen in Figure III.14, CSG representation of a solid
object can be actualized in the form of a tree structure whose leaves
are primitive solids (or general half-spaces) and whose branch nodes are

reqularized set operations.

CSG representations of solid objects are complete and can be made
unambiguous (see Section IV.1), but they are not unique (there are
infinitely many other possible representations for the bracket of Figure
III.15, for example). CSG schemes have shown promise as suitable models
for solid objects and a number of powerful experimental and commercial
CAD systems based on CSG are in current use, including PADL ([PAD74],
GMSOLID [BOYS0, BOYS82], GDP/GRIN [WES80a, FIT8la], and Synthavision

[GOL79] which use primitive solids and TIPS [OKI73, OKI76] which uses



half-spaces.
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Figure III.15 - CSG Def inition of a Bracket Using Primitive Solids

Primitive solids based CSG schemes tend to yield the most compact
representations for simple solid objects in ccanparison to, for example,
boundary representation or half-space based CSG schemes. However, for
complex solids the number of leaf nodes in a primitive solids based CSG
tree tends to be equal to the number of their distinct surfaces and not
only this advantage of compactness of representation fades away, but an
additional burden of irrelevant information also creeps in. The reason
behind this is that as objects' shapes get more and more complex, the
number of primitive solids in their definitions increases, while the
shapes of these constituent primitives tend to bear less and less
resemblance to the f£inal shapes of objects. Instead, the contribution
of primitives to the final shape becomes more and more local,
approaching the extreme of one primitive solid contributing one face per

distinct surface. On the other hand, the amount of information
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Figure III.16 - Manufacturing-Oriented CSG Definition of a Bracket

contained in the definition of a (primitive) solid is generallyl more
than that of the definition of any of its faces, and this is true
regardless of Ehe fact that representation or definition of a
(primitive) solid may be made even more compact than that of its
pounding surfaces. This means that by using a primitive solid to define
a surface (instead of defining the surface more directly) one includes
into the model scme irrelevant information which makes the model more
complicated than necessary. For example, consider the bracket of Figure
III.15 again. Many people would actually define this bracket as
depicted in Figure III.16, rather than Figure III.15, which happens to
be a more "nmatural®™ definition since it is much closer to the actual way
in which the bracket is built. Note that the length of the cylinder in
Figures III.15 and III.16 and length, height, and width of block B in
Figure III.16 are in fact irrelevant information; they must be greater
than a required minimm, but any definite number greater or equal to

this minimm is "as good as" (and as irrelevant as) any other.



Furthermore, the "shape information" defining four out of six faces of

block B and their orientation angles, is also irrelevant.

The presence of this type of irrelevant data in CSG models not only
causes mental obstacles for designers who must nevertheless generate
them, but more seriously, produces a complex problem for application
programs using such models which must, quite non—-trivially, ™discover”
and discard this information. In practice, the expense of discarding
irrelevant information is paid at the time of conversion of CSG trees to

boundary representation.
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Figure III.17 - An Unnecessarily Complex CSG Definition

Another draw-back of approaches based on primitive solids is that
arbitrary sculptured surfaces become awkward or impossible to represent.

In addition, definition of solid objects in terms of primitive solids is



somewhat Munnatural™ for many people compared to more traditional
methods. At the same time, CSG representation of a part may bear no
relationship to the operations required for its fabrication either. In
particular, the union operation causes the most difficulty because in
its general form, it has no corresponding manufacturing process., As a
first example of the type of problems that arise, consider the bracket
of Figure III.15 again. Strictly speaking, the CSG definition of this
bracket in Figure III.15 is "as good as" any other such simple CSG
Gefinition, such as the one in Figure III.16. In an integrated CAD/CAM
system, however, the definition of Figure III.16 would be the preferred
definition because it resembles the actual machining process of
fabrication of the bracket, and because it is much more suitable for
extraction of information such as specification of the required raw
stock and the manufacturing process plan. With no criteria built into
the modeling scheme (CSG), however, neither definition can be
"analytically" distinguished as the better or the best among many

equally acceptable definitions for a part.

A more serious problem associated with the union operation in CSG
is illustrated by the CSG tree in Figure IIL.17, which with an
appropriate set of metric data defines, in a "messy" style, the same
bracket as in Figure III.15. In this figure, a designer starts by
subtracting cylinder 1 fram block 0; this 1is an error and is later
corrected by the designer who now proceeds to make the correct heole by
subtracting cylinder 2. Next, block 3 is added to form the L-shape and
then the designer attempts to correct his initial mistake by "filling-

up" the first hole using block 4. addition of this block, however, also
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partially fills up the oorrect hole which must be "drilled" again.
Subtraction of cylinder 5 accamplishes this, but it also makes the
earlier subtraction of cylinder 2 redundant. The problem with the
resulting tree is that it is by now a counter—intuitive and "dirty”
representation full of redundancy. To underline the issue here,
consider the problem of defining a process plan based on the tree in

Figure III.17.

A reason why an operator like union is desirable is that it
somewhat resembles assembly operations. But regularized union is far
more powerful and general than an "assembly operator", and unless
restricted, it can lead to definition trees orders of magnitude messier
than our simple example above, and many times more complicated than
corresponding "proper" CSG trees defining the same parts. (At the same
time, regqularized union fails to consistently satisfy our iﬁtuitive

expectations of an assembly operator. See Sections IV.1.3 and IV.1l.4.)

An alternative to imposition of restrictions on application of
union is to develop methods of "simplifying” CSG trees to equivalent
trees where volumetric features are represented in a "standardized
style” or a "normal form". Some results are available on feature
extraction from and decomposition of volumetric representations [WOO76,
woo82] . A recent algorithm, for example, decomposes a boundary
representation into an alternating sign series of volumetric entities,
j.e. an alternating addition/subtraction of solid components [WOC82].
Solid components are computed by the algorithm as the convex hull of a
partial result which diminishes as the series converges to the original

object. It is not clear, however, whether these approaches can be



generalized to deal with additional constraints on, for example, shape
and number of solid components; criteria of interest in simplification

of a CSG tree or its conversion to a normal form.

Aside fram its shortcomings (see Section IV.1l), CSG is a formalism
for modeling of solid objects, irrespective of the way in which they can
be manufactured or functionality of their components. A CSG definition,
in general, should therefore be seen as a "declarative" representation
of an object's shape in the sense that the set operators (union in
particular) in a CSG tree cannot be interpreted as operations producing
solids out of solids, but rather, as statements of factual relations
between somewhat arbitrary shape components which do not necessarily
have any functional or manufacturing-related significance or association
with’ one another. As such, CSG can be dubbed a "calculus of shapes”
that may strengthen the backbone of solid modeling systems, but, would
better be kept away from end-users, not just because of issues like
naturalness, friendliness, or orientation of its operators, but also
because its power needs to be tamed with structure and discipline. This
can be achieved by reintroducing some type of a "context" which is

completely abandoned by CSG through its high level of abstraction.

2.3 Sweeping

The principle of sweeping is intuitively very simple: a set of
points called the moving object or the sweeping set, moving through
space along a curve called the trajectory, sweeps a "volume"; thus a

sweeping set and a trajectory curve can represent a solid object.
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(a) and (b): Two-dimensional surfaces and sweeping path curves

(c) and (d): Corresponding three—dimensional entities resulting from sweeping

Figure III.18 - Invalid Objects Created by Sweeping

The sweeping set could be rigid, 1i.e. maintain the metric
properties of its members as it moves along the trajectory curve, OC
non-rigid, i.e. get deformed as it moves. Non-rigid sweeping is used,
for example, in modeling of curved objects in a system for three-
dimensional image analysis where objects like toy dolls and animals are
decomposed into a set of tube-like shapes, called generalized cylinders.
each of which is defined by a space curve and a circular cross section

function on this axis curve [AGIT76] .

A three-dimensional solid can pe defined by sweeping a two- or a
three-dimensional solid set along a trajectory. Sweeping a three—
dimensional solid always produces a valid three-dimensional solid. This
type of sweeping is very importapt in modeling of material removal
processes, such as machining, where a solid cutter sweeps along &
cutting path removing the swept volume. Sweeping of solids is also

important for dynamic interference checking.



Figure III.19 - Multiple Sweeping Definitions for an Object

The conditions under which the result of the sweeping of a
hamogeneous two—-dimensional solid (a bounded surface) is guaranteed to
be a homogeneous three-dimensional solid (i.e. a valid object) are not
known [REQ80b]. For example, if the trajectory curve is "parallel” to
(a segment of) the sweeping set, the resulting solid will include

"dangling” faces, as shown in Figure III.18.

when the sweeping set is a planar rigid solid polygon (possibly,
with curved edges and holes) and the trajectory is a line segment not
parallel to the polygon's plane, the scheme is called translational
sweeping., Likewise, when the trajectory is a circular arc, the scheme
is called rotational sweeping. Validity of the results of translational
and rotational sweeping as three-dimensional solids can be ascertained

by checking the validity of the sweeping sets as planar solid polygens.

One of the problems with sweeping is that representations of solids
are not unique. This is true even in the restricted case of
translational sweeping, as seen in Figure III.19. Another draw-back of
this technique is that sweeping representations are not quite suitable
for direct manipulation by many important algorithms, including for

example, shape modification operations.,
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Figure III.20 - An Object with no Translational Sweeping Definition

Translational and rotatlional sweeping are sometimes very convenient
to use. The domain of translational and rotational sweeping is,
however, limited and not every solid can be represented by these
schemes, e.g. the object in Figure III.20 cannot be defined by
translational or rotational sweeping alone. Rotational sweeping is
particularly important in modeling of turned parts, Translational
sweeping is important in modeling of sheet metal parts. Rotational
sweeping definition of turned parts happens to be compatible with the
actual lathing process of their fabrication. This makes it possible to
use the rotational sweeping model of these parts for both CAD and CAM
applications. For example, different contours of a rotaticnal part can
be extracted fram such a model directly. Analysis of these contours is
important in determination of the number, type, and the cutter path of
the turnings required for machining of the piece. Certain sheet metal
manufacturing processes can also take advantage of a translational

sweeping definition of sheet metal parts.

Translational and rotational sweeping schemes are sometimes used in
conjunction with other solid modeling schemes to provide both the
convenience of sweeping when it seems natural, and the richer domains

not covered by pure sweeping alone. For example, GDP/GRIN and GMSOLID,
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two CSG based systems, permit users to define their own primitive solids
through sweeping [FIT8la, BOY80]. These solids are then treated like
any other primitive solid and can be combined with other solids using
reqular CSG-type operations. Adoption of sweeping in such systems,
nevertheless, is essentially as a convenient input mechanism rather than
an altermate representation model, in that solids defined through
sweeping are "evaluated" on input and kept in a different format,

usually, boundary representation.
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3 __Typical CAD/CAM Systems
In this section we consider a number of typical CAD/CAM systems
aimed specifically at design and manufacturing of mechanical parts. Our

primary purpose is to gain a perspective of the evolution of CAD/CAM

systems and to see the direction of this evolution,

First, we will consider CADAM because it is one of the earliest
systems developed and has been in use for over a decade, and because it
is typical of an entire family of systems based on traditional drafting
methods. Straightforward extension of this type of systems to three
dimensions gave rise to another family of CAD/CAM systems that primarily
use wire-frames. The need for three—dimensional sculptured surfaces
specifically in the aerospace industry, produced a different family of
systems that deal with true three-dimensional surfaces, typical of which
is the NGS system discussed below. l'I'he necessity of "solid modeling”
(i.e. representing objects and their contained volumes) brought about
systems like PADL, GDP/GRIN, and GMSOLID which are discussed below.
PADI, is the forerunner of these systems and typifies a Constructive
Solid Geametry approach to definition of mechanical objects, while
GDP/GRIN and GMSOLID each have interesting aspects in their user

interface and internal representation methods.

3.1 CADAM

CADAM was originally designed and developed by the Lockheed-
California Campany to facilitate the production of engineering drawings
using classical two-dimensional projective geametry [CADBO]. It is a

software package over 80% of which is written in Fortran and the rest in



Assembly, and runs on IBM 370-type main-frame using, primarily, IBM
3250-type vector refresh graphic terminals. Views as orthographic
projections of an object are a central concept in CADAM; special
facilities are included to assist in construction of views, including
oblique and iscmetric, once a first view is created. Although until
recently, CADAM was a strictly two-dimensional system, prime attention
has been paid to design of mechanical parts. A finite element modeling
package and three-dimensional splines and ruled and bicubic surfaces
have been added rather recently, but up to its current release, CADAM
still remains a two-dimensional system in spirit. A full three-
dimensional version of CADAM is soon to be released which will maintain
upward compatibility with previous two-dimensional releases, while

providing the same set of functional capabilities as wire-frame systems.

Internally, CADAM is an interactive interrupt-driven package
intented for a middle to large main-frame. Users' interactions with
CADAM are through an alphanumeric keyboard, a set of function keys, and
a vector refresh terminal on which menu items and graphic entities can
be selected by a light-pen. CADAM's data oonsists of elements like
points, lines, arcs, ellipses, splines, dimensions, notes and text,
surfaces and three-dimensional curves, and points, details, and view
transformation matrices. Formats in which information is kept is a
compromise between modifiability and efficiency of graphic
representation. CADAM's "data base", which contains all such
information pertinent to a single drawing is not a true data base, but
rather, it is a "flat file", i.e., a sequential collection of data that

does not represent inter-element relationships.
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Since CADAM was developed in the late 1960's and has evolved for
over a decade in real production enviromments, its user interface is
quite rich and pleasing in function. However, the interface itself,
j.e. the syntax of user-system communication, leaves much to be desired
with its inconsistent behavior fram function to function, inconsistent
prampts, messages, and menus, and sometimes, not-very-logical grouping
of functions under function keys and in menus. As compared to other
systems, CADAM makes very good use of menus and light-pen, to the extent
that typing is only occasionally required. The light-pen performs two
different tasks in CADAM: picking an existing entity visible and
accessible on the screen, and pointing to an approximate location or a
direction; in CADAM Jjargon these operations are called selecting and

indicating, respectively.

A CADAM drawing is a 20,000 x 20,000 units virtual piece of paper
which a user sees through a "window". Functiony key WINDOW permits users
to position their windows (i.e. terminal screens) such that they see
desired parts of their drawings in the size and orientation they choocse.
Operations performed under WINDOW in no way affect a drawing itself, but
rather, they modify a user's view of his drawing, i.e. what he sees

throuch his window.

Drawings are independent entities which are stored individually
into users' private libraries. A drawing itself consists of a number of
views, which presumably represent planar projections of an object each
with its own independent coordinate system. Views, of course, may be
invalid "projections", since they may not actually correspond to one

another or to a real object and can contain three-dimensional entities.



Views consist of elements and, while their relative scale, orientation,
and position on a drawing are independent of one another and can be
changed whenever desired without affecting other views, CADAM retains
views' logical relationships based on the lines of sight and projection

planes used to create them.

Twenty six out of the thirty two keys available on the function
keyboard are used in CADAM, With the exception of two function keys
("Yes/No" and INDICATE) whose effects are "instantaneous”, pressing a
function key changes CADAM's mode of operation. Each mode is named
after its corresponding function key, and, under each function (mode)
there is a menu of sub-functions available, and scmetimes, certain menu

items have sub-menus of their own.

CADAM operation consists of cycles of pressing a function key,
selecting one or two menu items, and then supplying required parameters
or operands to the operation thus specified. Parameters and operands
are given by using the light-pen, by pressing a function key called
"Yes/No" to accept a default value, and rarely, by typing in a value, a

name or some text,

Function keys POINT, LINE, CIRCLE, and SPLINE make it possible to
define basic geametric entities in a wide variety of ways. Function key
TYPE changes the line-type (sametimes called "font"™ in other graphic
systems) of an element to dashed, phantom, solid, or N/C, and its weight
~ to high, medium, or low. RELIMIT and CORNER modify existing gecmetric
entities; e.g. an element can be broken into two pieces, each becoming a

separate entity, under RELIMIT, which also provides the ability to trim
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or extend an element up to another intersecting entity. Generally, any
two elements that (potentially) intersect can have their intersection
finished with a convex, concave, pigtail, or sharp corner under function
key CORNER, with the parts of elements extending beyond this
intersection trimmed, if so desired. CORNER also includes menus for

easy construction of machine and sheet-metal jog shapes.

Function key OFFSET duplicates elements at given offset distances.
Aggregates of elements may be formed into a group under the function key
GRAUP and may subsequently be referenced collectively under a number of
other function keys. GROUP also makes it possible to translate, rotate,
scale, and mirror elements or groups. DETAIL and SYMBOL create and use
aggregates of elements which are referenced by an index and are stored
in a common. symbol library or are local to a drawing. DIMENSION places
dimensions on drawings; CADAM, naturally, "knows" the geametric
properties of elements, and a user must only tell CADAM what element is

to be dimensioned and where is the dimension to be placed.

Function keys MISC and MISC-2 provide features like creation and
editing of notes and text, cross hatching and filling, arrows, deltas,
balloens, etc., while the N/C function generates numerical control
programs directly from geametric information available in a drawing.
SURFACE creates three-dimensional splines and ruled and bicubic surface
patches, although its capabilities are limited and somewhat tedious to
use. Function keys ANAL and ANAL-2 provide facilities for analysis of
individual elements, computation of volume, weight, and density,
calculation of area and other sectional properties of a closed contour,

and limited capabilities for beam-load, torsion, lug shear and bearing,
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crippling, and fluid delivery analyses.

Function key FILES performs housekeeping functions such as logging
in and out, starting a new drawing, saving, recalling, and plotting a
drawing, etc. SHOW "hides" or erases elements. AUX-VIEW creates new
views and selects a particular view as the current view, and includes
menu items for projection of elements from one or simultaneously two
other views onto the current view. With these features, one can
essentially create any orthographic or oblique projection views,
including, in particular, isometrics. However, although simple tasks
such as construction of orthametric views are relatively simple and
convenient to perform, the process of creation of more complex views
such as iscmetrics is conceptually difficult and requires rather tedious

user involvement.

Function key ORIGIN creates auxiliary coordinate systems within a
view, but unfortunately, such auxiliary axis blocks are not consistently
usable under some other function keys. MESH provides facilities for
creation of two—- and three-dimensional finite element models and also

includes a not vet released three-dimensional piping package.

At its lowest level, CADAM uses standard IBM software for vector
refresh graphics (GAM) and is thus somewhat device independent.
However, the system architecture is capable of presenting only two
facets to its users: an external appearance as a package of hardware and
software, and an internal representation of the data in its data base.
In other words, users of CADAM can either utilize it as a complete

system or, if they require some modification (e.g. in order to interface
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CADAM to other application packages or to include certain specialized
functions), they suddenly must deal with the internal details of the
information representations in CADAM., Sophisticated modifications that
might involve CADRM's interrupt protocol and its overlay structure, such
as changes in the use of the light-pen, function keys, or the
alphanumeric Keyboard, are formidable for a user to consider because of
their drastic global interrelationship with the overall system

structure.

Because CADAM's architecture is not layered into functionally
independent components with formally dJdefined interfaces, interaction
among program units of CADAM is generally unstructured, and logical
functions are dispersed. Such an architecture provides no intermediate
points of entry and cannot support communication at any level below its
surface. Therefore, the only "easy" way for exchange of information
between CADAM and the external world, other than its top 1level, is
through its data base. Again, since data base related functions of
CADAM do not form a logical unit and inter-element relationships are not
recorded, the data base is a flat file with no safequards against

violation of integrity and semantics of represented models.

A samewhat recent enhancement to CADAM is the Interactive User Exit
(IUE) which permits on-line invocation of user-written application
packages during an interactive CADAM session [IUES2]. IUE or any
similar enhancement cannot provide a new level of communication because,
in principle, the problem is an architectural barrier that can be
crossed only by a major structural redesign; IUE simply supports

interactive user-application communication with CADAM at the same two
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possible levels,

Although CADAM supports some three-dimensional design, its
orientation is toward two-dimensional computerized drafting where the
end result is a set of orthographic projections comprising engineering

drawings to be used for manufacturing.

3.2 HWire-Frame Systems

Although wire-frames are very popular feature of commercial CAD/CAM
systems, there are no commonly used pure wire-frame systems, due to
inherent problems and limitations of this model. Wire-frame based
systems augmented by certain somewhat 1limited surface geometry
capabilities are common, however, with or without extensive drafting-
oriented functions extended to three-dimensions. Most commercially
available three-dimensional turnkey CAD/CAM systems .fall into this
category, as they lack coherent autamatic capabilities for insuring
integrity of solid objects, and, usually, are not very sophisticated in

their handling of free-form surfaces.

Extension of two—-dimensional drafting functions to three dimensions
can be done in a number of ways. One is to work directly with three
coordinate values, instead of two. This approach, however, is not
always convenient, especially for people who are used to two—dimensional
thinking. Many systems, consequently, provide another mode of operation
where, essentially, one coordinate can be "factored out" dynamically
from the user-system communication. This is done, simply, by
introducing the concept of a "current work plane” which permits users to

carry on a two-dimensional dialeg with the system relative to a local
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coordinate system on the work plane, while a transparent conversion to
the master three-dimensional coordinate system is performed

autamatically.

For example, a new three-dimensional release of CADAM extends its
two—dimensional functionality to three dimensions by permitting users to
select a design plane as "current". The current plane may be changed at
will, and every defined entity is stored as a three-dimensional
geanetric element. All of the functionality of two-dimensional CADAM is
available as it applies to the current plane., In addition, many CADAM
functions are extended to deal with off-plane three-dimensional entities
as well. For example, an additicnal feature under function key OFFSET
permits off-plane offset of geometry. Basic geametric entities such as
points, circles, etc., can be created in three dimensions directly, and

intersections of elements can be found in the out-of-plane mode.

It is beyond the scope of this section to detail operations of
specific systems, since they are close enough to that of CADAM in
philosophy. Functionally, most three-dimensional software package and
turnkey systems additionally provide a repertoire of drafting operations
similar in concept to those available in two-dimensional CADAM, and a
variety of surface construction facilities in the same spirit as those
available in surface oriented systems such as NGS (which is described in
Section III.3.3). Three-dimensional viewing functions are sametimes
included in work-station hardware and projection capabilities for
construction of orthametric, isometric, oblique, and various types of
perspective views are also often supplied. A pleasant feature of some

of these systems, e.g. Calma [DDM80] and Computervision [DVS82], is the
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ability to tie projection views to the three-dimensional model
dynamically such that modifications to the model or to an appropriate
number of views autamatically are reflected both in the model and in all

other projection views.

Another departure from CADAM-type of functionality in many systems
is in their user interface. Many systems provide some type of macro
definition capability at their command level, and, usually, those
utilizing a digitizing tablet also permit dynamic assigmnment of commands
and macros to flexible user-definable menus on the tablet. Scme other
systems, e.g. Applicon [AGS78], also permit assigmment of macros and
commands to function keyboards similar to CADAM's. An additional level
of user-system communication is provided in systems such as McAuto's
Unigraphics [GRA80], where the power of the system as a geometric and
- graphic package is made available through a programming language
envirorment as well. In Unigraphics, this language is called GRIP
(GRI8O]. GRIP is a Fortran-like language which permits creation and
manipulation of geametric and non—-gecmetric entities, file management
operations, arithmetic operations, interrogation of the Unigraphics
data base, display of messages and menus, and interaction with users.
GRIP programs can be compiled and integrated into a running Unigraphics
system. GRIP, thus, can be used to customize a system's interface
through modifications ranging from simple enhancements to standard
system functions all the way to inclusion of elaborate primitive
instancing family of parts programs that autamatically generate ccmplete
gecmetric models and engineering drawings while leading interactive

users for input of critical family-specific parameters. Such tasks,
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entities are represented in terms of spline polynomials and surface
patches. In particular, conic sections and conic surfaces are not
available analytically and are approximated by splines and Ferguson—
Coons patches, respectively. Every gecmetric entity (or collection of
entities) must be given a name upon definition. These entities are
stored separately in a "data base" (called a work-area) and the system,
in general, is not aware of their inter-relationships. Autamatic
filleting and duct definition (with Ferguson-Coons patches), calculation
of patch-patch intersection, numerical control tape generation, volume,
cross-sectional area, and many other analysis functions are included.
Data base interaction allows entities to be accessed, modified, saved,
and protected. Display functions include three-dimensional rotation,
translation, windowing, hidden-line removal (with sculptured surfaces),

and several others.

Each user's defined gecmetric entities reside in a private work-
area which remains intact between sessions. This applies only to
present "stand-alone” implementations; reorganizations to adapt NGS to
generalized data base management systems require no conceptual level
modifications, and such a system's inherent integrity and consistency
checks would then apply to NGS-defined geometry. NGS commands can be
classified into four categories: geametric entity creation commands,
entity management commands, commands for computation of geametric
properties, and other miscellaneous camands. Commands in the first
category permit creation of points, lines, piecewise-polynomial curves,
planes, bounded planar regions, Ferguson-Coons patches, Bernstein-Bezier

patches, fillets, and axially-symmetric surfaces by revolution of
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piecewise-polynamial curves. Furthermore, geametric entities can be
created by intersecting other entities and by mirroring, moving, and
rotating existing ones. In addition, special effects can be created

through user-supplied three-dimensional transformation matrices.

Entity management commands are similar to directory management
operations in most ;.nteractive systems. They permit listing, deleting,
and renaming of entities, make it possible to group and store entities
into files, and to retrieve them back. In addition, several geametric
entities can collectively be given a name thus forming a new super—
entity. The third category of cammands permits computation of any curve
length, any finite surface area, any bounded region's volume, volume and
surface centroids, minimum distances between entities, and moments of
inertia. Other miscellaneous commands allow various display (e.d.
scaling, three-dimensional windowing, etc.) and plot functions including
removal of hidden lines, editing of descriptive texts associated with

entities, and NC programming.

The user interface of NGS is poor; each command must laboriously be
typed in, the command syntax is very simple and inflexible, there are no
menus, macros, or function keys, and there are no means for "graphic
input" to the system. This makes the system rather cumberscme to use
and disguises the fact that, underneath, NGS is a powerful surface

oriented system.

Gecmetric "solids" are defined and stored as a collection of
surfaces [NGS80]. For example, an engineer could interpolate a

Ferquson-Coons surface or fit a Bernstein-Bezier patch onto a 4 by 3



rectanqular grid of three-dimensional points by entering
FCNET or BBP LOFTSURF (4 3) poj.ni:l,r pointz, o po:i.ni:l2

(where each pointi is entered as its corresponding X, ¥, 2 coordinates)
and an analytic representation of the surface would ke saved as LOFTSURF
in the engineer's work-area. Both of these surface types are defined by
and stored as boundary information (and implicit associativity
relationships between patches in the case of a Ferguson surface),.
LOFTSURF could subsequently be modified and re-fit, intersected with
other three—dimensional entities, analyzed, or plotted. There are,
however, no provisions in the system for checking the well-formedness of
collections of surfaces and unrealizable objects like the Klein bottle
of Figure 1III.13 can be generated in NGS (see Section III.2.l). Thus,
by the taxonametric classification proposed in [HIL72b], NGS is a member
of the family of surface oriented systems and does not qualify as a

solid modeler based on boundary representation.

Assumptions about end-users and the overall approach in NGS are |
appropriate for sculptured surface definition and manipulation and,
hence, for lofting. CADAM, on the other hand, provides much more
powerful mechanical drafting capabilities for ©production of
manufacturing drawings. While the underlying mathematics of NGS is
necessarily complex, its user interface is much more primitive than
CADAM's, and certain drafting functions, such as dimensioning, are not
available in NGS at all. There is a software package available that
allows transfer of drawings between CADAM and NGS.
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3.4 CSG-Based Systems

Rather recently, a number of "solid modeling systems” have evolved,
both as research tools and as production CAD systems, which at least
partially, are based on a CSG modeling scheme. PAIL, GMSOLID, and
GDP/GRIN (which apparently, is about to be officially renamed IBMSolid),
are three of the CSG-based systems reviewed below. Other such systems
include TIPS [OKI73, OKI76], Synthavision [GOL79], GLIDE [EAS80],
RUILD-2, DESIGN, and ROMJLUS [HIL82a], for some of which CSG is not the

only and/or primary internal solid representation model.

3.4.1 EADL

PADL, for Part and Assembly Description Language, is a language
designed by the Production Autamation Project, University of Rochester,
for defining solid objects using a primitive solids based CSG model
[PAD74, WVOE78]. The first processor for this language, PALL-1, was
implemented fram 1975 through 1977, mainly as an experimental system to
demonstrate feasibility of new ideas and algorithms, and to serve as a
tool for education. PADL-1l consists of scme 70,000 lines of Fortran,
about half of which are comments, and accepts PADL statements either in
batch or fram a keyboard interactively, producing line drawings of

objects on graphic terminals or plotting devices.

PADL has two types of statements: definitional statements and
commands [VWE78]. Definitional statements define a name and associate
an object or a value to that name in a Fortran—-like assignment statement
syntax. Definitional statements are not, however, assignment statements

in the same sense as in reqular programming languages, and PADL names



are not variable names, since once a name is defined and associated with
a value or an object, redefinition or reassociation of that name is not
permitted. The order of definitional statements is, therefore,
irrelevant, i.e. a name may be used before it is defined and associated
with a value. The right-hand-side of a definitional statement is, in
general, an expression. There are two types of expressions, object
expressions and value expressions. Value expressions deal essentially
with numbers (and special numeric sub-types called distances,
tolerances, and distance—chains), and the usual arithmetic operations
are provided, together with three special operators for manipulation of
numeric sub-types. Object expressions are those resulting in an object,
i.e. a solid. Object manipulation operators consist of those for CSG
operations of union, intersection, and difference, an assembly operator
which collects objects under a single name, and a move operator for

translational positioning of objects.

Commands can appear anywhere in a PADL program and are executed
immediately, if possible. There are three types of commands in PADL-1:
utility commands such as those for saving and recalling PADL definitions
into and fram files, editing cammands which permit a BASIC style editing
of PADL source statement definitions, and finally, graphic commands that
permit display (on a C(RT) and drawing (on a plotter) of a graphic
representation of objects. Various parameters and qualifiers to these
graphic commands permit creation of different orthametric projection
views and iscmetrics with desired scales, autamatic posting of

dimensions, treatment of hidden lines, etc.
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Figure III.2l - Projections of a Part Produced by PADL

PADL-1 offers two primitive solids, blocks and cylinders. The
edges of blocks and the axes of Cylinders must be parallel to the axes
of the master coordinate system in PADL-1, i.e. all primitives must be
orthogonal. Figure III.21 shows the three standard orthametric views of
an L-shaped bracket, together with a sectioned isometric, produced on
PADL-1; PADL statements and cammands that define and display these views

are shown in Figure III.22.

PADL~]1 is not a suitable system for real production enviromments,
and it was not meant to be. In addition to the limitations caused by
the fact that only two primitives are supported and that they can only
be combined orthogonally (no. rotation), the syntax is inflexible and




402 H
a3 : FIRST DEFINE TWO BLOCXS TO FORM THE BASE AND TOP

096 : AND THEN UNION TEEM. NOTE THAT THE TWO BLOCKS
2007 : INTERPENETHATE. (THE ORIGIN [S THE DEFAULT LOCATION.)
98 :
al19 ABASE = SD(LENGTH. BASEHEICHI, WIDTHD
829 LENGTH = 4
030 BASEHEIGHT = 1
949 WIDTH = 2
043 -
030 aTOP 3 @B(TOPLENGTH., HEIGHT., WIDTRE)
060 TOPLENGTH = 2
079 HEIGHT = 2
073 :
100 48LSHAPE = 3BASE .UN. &TOP
192 i .
104 : NOW DEFINE THE HOLE AS A SOLID, LOCATE IT PROPERLY.
1000 ;+ AND DIFFERENCE IT FROM GLSHAPE. (NIL IS A NULL DISTANCE.)
1048 H
110 GHOLE = SCY(DIAM. BASEEEIGHT?
AT (LERGTH -' HLOC, NIL, ZLOC
120 DIAM = 0.625 : PM(.005)
130 XLOoC = 9.73 : PM(.991)
140 ZLoC = XLoC
142 :
159 GPART = &LSHAPE .DIF &HOLE
152 :
154 ; ASSIGN A DEFAULT TOLERANCE TO ALL DISTANCES ROT
156 ; EXPLICITLY TOLERARCED ABOVE
158 .
160 S$DEFTOL = PM(.01)
162 H
164 ; NOW PRODUCE FIG. 2 VIA A DISPLAY COMMAND
168 ' .
179 DISP(BPARTY ., 03R., DLABEL: AUX(SECT(8PART.$Z2.90.73)
From: [VOE7B]

Figure III.22 - PADL Definition of a Bracket

awkward to use. A user-friendly interface replacing its harsh syntax
with a "graphic syntax" of picking, pointing, and menus, allowing
flexible manipulation and editing of entities without exposing users to
PADL's textual definitions is a necessitys. Addition of more
primitives, e.g. cones and spheres, to PADL-1 is conceptually simple and
would increase geametric coverage of the system. Removal of the
orthogonality restriction and inclusion of a rotation operator, are both
conceptually straightforward and necessary. The latter, however,

requires conceptual medifications to the so-called dimensional trees of

S An attempt to create such an interface to PADL is a presently on—
going project at McAuto, Cypress, California.



PADL~1, which are the basic structures for representation of dimensions
and tolerances [RHQ77a)l. Handling of dimensions and tolerances in the
general case requires the ability to access and "name" the bounding
faces of objects. This, in particular, is in conceptual conflict with
the premise of primitive solid building blecks, and raises yet another
question as to the appropriateness of primitive solids based CSG as a

model for end-users.

Another PADL processor, PADL-2, was developed between 1979 and 1981
by the Production Autamation Project. On the opposite philosophical
extreme of turnkey systems, PALL-2 is an evolving collection of software
modules written in Fortran, aimed at providing a common core ef
representational and computational facilities for a variety of solid

modeling systems suitable for different application envirorments.

An example of an integrated system utilizing PADL-2 modules is a
demonstration software system, called P2/MM, which adds various input
translation/editing and graphic output facilities to the PADL-2 package.
An interesting input interface to P2/MM, in particular, is an extension
of a package from Leeds University which accepts rough two-dimensional
outlines drawn by a curser on a CRT, fits the outline with straight
lines and circular arcs, and autamatically produces PADL-2 definitions
for solids resulting from translational sweeping of such closed contours
in terms of combinations of blocks, wedges, and cylinders [ERO82]. The
main user-interface in P2/MM, however, is a PAIL-1 style textual
language with slightly improved syntax and some additional capabilities,
including a subprogram-like generic object definition facility.
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Geametric coverage of PADL-2 is broader than PADL-1 and, with its
richer set of primitive solids, can represent any solid bounded by any
combination of arbitrarily-oriented plamar, cylindrical, spherical, and
conical surfaces. A variational subsystem for handling of dimensions
and tolerances is planned for PADL-2, but it is not to be implemented in

the near future [BRO82].

3.4.2 GMSOLID

GMSCLID is a solid modeling system which has benefited fram the
PADL experiment. In 196, General Motors began develogment of a system
called CADANCE (for Computer Aided Design And Numerical Control Effort)
which came into production use in 1971. CADANCE is oriented towards
three-dimensional curves and surfaces and is used primarily in sheet
metal body-panel design at GM [MYE82]. The underlying approach of
CADANCE is, however, not suitable for certain applications which require
volumetric entities. An example at GM is the problem of packing luggage
into the trunk of a newly designed car. This broucht the attention of
GM Research Laboratories to solid modeling and lead to development of
GMSCLID in the late 1970's, based on scme of the results of the PAIL
project [BOY79%a, BOY80, BOYB2].

GMSOLID is a CSG-based production-quality solid modeling system
with powerful design and analysis capabilities. Utilization of light-
pens, menus, function keys, and multiple view ports with windowing,
zoaming, and moving capabilities, together with support for additional
graphics as well as system and application utilities, create a

functionally rich and uSer—friendly interface to the system. In
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addition to its graphics interface, there is also a command language
interface available for GMSOLID, and the two interfaces are compatible,
thereby permitting users to set up and schedule camplex background jobs
through the graphic interface and continue with other interactive tasks
or terminate the interactive session and have the results ready by the

next session [BOYB2].

Internally, QMSOLID Keeps two concurrent representations of design
objects: a CSG tree structure and a boundary representation [BOY79Db,
BOY82]. Availability of a boundary representation makes it possible to
also cater to applications where explicit representations of faces,
edges, and vertices are required (in addition to those for which GCSG
trees are more suitable). A boundary evaluator subsystem is responsible
for generation of the boundary representation of solids composed of
other solids through CSG operations. This process involves creation of
new geametric entities, i.e. surfaces, edges, and vertices, removal of
old ones invalidated by a later operation, and merging of coincident
entities into one. Because this is potentially a time-consuming
process, GMSCLID makes it possible to delay boundary evaluation until a
user attempts an operation which requires an up-to-date boundary
representation, and then evaluation can be carried out in the
background, if so desired, permitting the interactive session to

continue.

Surfaces in GMSOLID are quadratic, i.e. second-order polynomials in
X, y, and z, and its set of basic primitive solids consists of blocks,
cylinders, cones, and spheres. An interface to CADANCE permits some of

the facilities which already exist in that system to be used through



GMSOLID. For example, a user can define a planar closed contour using
lines and arcs in CADANCE and then request GMSOLID to create a solid by
"extrusion”, i.e. translational sweeping, of this contour [BOY79b,
BOY82]. This interface also allows access to the existing CADANCE data

base.

3.4.3 GDE/GRIN (IBMSolid)

GDP, for Gecmetric Design Processor, is a general volumetric
modeling system developed at the IBM T. J, Watson Research Center. GDP
grew out of research on high-level langquages for programming computer-
controlled robotic or mechanical assembly at this center, the result of
which was definition of a language called AUTOPASS (for AUTOmated Parts
Assembly System) [MYE82, WES80a]. In the course of this work, it became
evident that solid modeling played an important role in a robot's

awareness of its physical enviromment,

In an earlier work [GRO76], a package of PL/I procedures was
Geveloped that allows hierarchical definition of gecmetric objects in
terms of PL/I procedures with very general use of variables. This
differs fram the underlying approach of PAIL, for example, in that in
this approach the nodes in the hierarchy defining a part are themselves
procedures, whereas a PADL part definition is recorded entirely as a
data structure. Object definitions are, therefore, not "static" as in
PADL and are interpretively executed, thus permitting association of
generalized semantics to object description trees. Together with heavy
use of variables, this provides a means for modifying the semantics

associated with an object without modifying its procedural description.
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Fram: [(WES80a)]

Figure III.23 - Primitive Solids in GDP

GDP uses a procedural representation scheme based on the work in
‘[.GRO‘IS] to create initial geametric descriptions. Users design objects
by combining primitive solids using CSG-like operations [WES80a]. This
is done by making PL/I calls to four generic subprograms which permit
building positive (solid) or negative (hole) geametric entities and
creation of parts and aggregates. The supplied set of primitive solids .
includes cuboids (blocks), cylinders, wedges, cones, hemispheres,

laminae (flat, sheet metal type of objects), and revolutes (volumes of



revolution). See Figure III.23. 1In addition, users can define and use
their own solids by supplying appropriate object procedures, which may
in turn call other user-supplied object procedures or use the system's
primitive solids. Solids can also be created as deformation of other
solids through non-hamogeneous three-dimensional scaling, e.g. an egg-
shaped solid can be defined by scaling a sphere using three different
scale factors along x, y, and z axes., All solids in GDP are modeled by
polyhedral approximation. Since fineness of approximation, i.e. number
of planar faces, is simply one of the variables associated with the
definition of an object, it can be changed at any time before a solid is
mergeds, without requiring a structural modification to its definition
tree. This permits interactive users to begin with a low facet number,
resulting in crude approximations but efficient computation and faster
response, and to request a higher number of polyhedral faces only when

required.

GRIN [FIT8la], for GRaphic INput subsystem, is an interactive
graphic interface to GDP that runs under VM/CMS and uses an IEM 3277
alphanumeric terminal with Tektronix storage tube Graphic Attachment.
Future expansions of GRIN will allow use of other grarhic terminals,
specifically, IBM 3250 type vector refresh scopes. In addition to
entity creation functions, GRIN provides convenient facilities for
display and windowing functions such as translation, rotation, zooming,

hidden-line removal, and multiple views, together with graphic editing

6 Merging of solids occurs when they are combined to create another
solid. The only way to change the facet number of a (component of
a) merged solid is to "ummerge", change the facet number, and
merge back.
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operations such as those for replicating, mirroring, copying, rotating,
moving, and naming of objects. Entity creation functions in GDP/GRIN
allow entry of points, lines, and arcs (approximated by line segments)
to serve as references for creation and positioning of solids, permit
instancing of primitive solids, definition of solids through
translational and rotational sweeping of planar polygons, and, finally,
fetching of object definitions fram disk libraries [FIT82]. A dozen
tree editing functions permit traversal and editing of tree structures

that define objects.

If a light-pen is available, GDP/GRIN functions can be invoked by
selection of menu items. The same host of facilities are also available
throuch a simple set of comnmands that can be typed on a keyboard.  GRIN
currently has an interface to CADAM which can be used to transfer
geametric definitions to CADAM for additional drafting-type processing,
such as posting of dimensions. A command level macro facility (with
1imited capabilities) and an on-line help feature make GRIN a flexible

and user-friendly interactive interface.

while the underlying approach in GDP permits inclusion and
treatment of general attributes of objects, GDP/GRIN presently focuses

only on geametric and graphic properties of objects.
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CHAPTER IV

An Operational Approach to Solid Modeling

This chapter pursues an operational approach to geometric solid
modeling and proposes a manufacturing-oriented modeling scheme, called

DSG, as the skeleton for a manufacturing-oriented design language

suitable for an integrated CAD/CAM system.

Section IV.l establishes the underlying mathematical formalism for
DSG. It begins by a closer re-examination of CSG as a logical model for
mathematical representation of solid objects and, in doing so, unveils a
number of inconsistencies. The remainder of this section develops an
alternative coherent mathematical scheme, called Realizable Shape

Calculus (RSC), for consistent representation of physical solids.

Section 1IV.2 justifies an operational, manufacturing-oriented
approach to design and definition of mechanical parts and defines and
discusses major features of DSG in terms of RSC. Although this
discussion assumes RSC as its underlying mathematical model for
representation of solid objects, the methodology and concepts proposed
and advocated by DSG are independent of this formalism and can be
applied to implement manufacturing-oriented design lanquages based on
other geametric modeling systems as well. However, implementation of
DSG concepts on a modeling scheme other than RSC (e.g. CSG) could

possibly be restricted by its more limited mathematical expressiveness.
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Finally, Section IV.3 provides several examples of DSG part
definition and in conclusion, Section IV.4 discusses the benefits and
implications of our manufacturing-oriented methodology and exposes its

potentials in some of the areas which are topics for further research.

The notation used in this chapter is consistent with Appendix A,
which covers certain fundamental definitions and topological properties
of Euclidean three-dimensional space, E3. The symbol g represents the
empty set. If X is a set then X', i, B(X), int(x), and ext(X) are,

respectively, its complement, closure, boundary, interior, and exterior.
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] Formal Models of Solid obs

The most significant characteristic of a real solid object is its
geametric shape. Therefore, it is quite natural to model solid objects
as subsets of E:3 whose geametric properties correspond, in an abstract
and idealized fashion, to those of the modeled objects. Not every
subset of E:3 is a reasonable model for a real solid. It is essential to
establish a definition for "real solid objects”, i.e. determine the set
of properties and conditions with which we expect to characterize the
notion of "real-world solidity", before a suitable formal model for
solid objects can be developed. One such set of properties is discussed

in [RE80c] and [RER77c] and is rephrased below:

1- Rigidity
Rigidity refers to the property of invariance of shape under

translation and rotation.

2~ Homogeneous three-dimensionality
A solid must occupy a "volume”, i.e. it must have an interior,
and it cannot have isclated or "dangling" boundary segments or

"infinitely thin cracks”.

3= Finiteness

A solid must occupy a finite portion of space.

4- Closure under physical operations
A set of physically conceivable operations on solids must produce
solid objects; e.g. relocation, addition, and removal of solids

must yield solids.

ng
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5- Boundary determinism
The boundary of a solid object must determine unambiguously its

"inside" and "outside".

In addition to capturing the above set of properties, a modeling
scheme for representation of solids, just like any other computer model,
must be capable of associating a finite description (symbol) to every
representable entity. It is proposed in [REQ80c] and [REQ77c] that
subsets of E° which satisfy these conditions are suitable models for

real solids.

a b c
) il o
— - E mm=a
d t
g

(a) solid bleck; (b) Solid blocks with dangling face: {c) Slock with dangling edge;
(d) Block with isolated points; (e) and (£) Blocks w.th infinitely thin cracks
(a void line and a void surface); (g) Block with infinitely thin holes

(veid isolated points)

Figure IV.1l - Legal and Illegal Set Mcdels for Real Solids

Homogeneous three-dimensionality means that subsets cf E with
isolated points, dangling edges and/or faces, or infinitely thin cracks
and/or holes are unacceptable. See Figure IV.l. Disconnected regions,

however, are ©permitted as "assemblies". The rigidity condition



guarantees closure of solids under translation/rotation. This condition
also excludes fluids, i.e. liquids, gas, and powdered solids, because in
general, they fail to preserve their gecametric shapes after relocation.
Another common connotation of rigidity is the invariance of shape in
time. However, requiring this condition can lead to problems due to
decay of solids, chemical reactions (e.g. rusting), and gravitational
deformations which we do not intend to consider in gecmetric modeling.
Constructive Solid Geometry  (CSG) shows that the shape of any three-
dimensional solid piece can be represented by (reqularized) union,
intersection, and difference of a suitably rich set of primitive solids
(see Secticn III.2.2). These operations, therefore, typify a minimum
set of operations besides translation/rotation, under which a solid
model should be closed. Boundary determinism prevents such unreal
surfaces as a Klein bottle (Figure III.13) and requires well-behaved
boundaries with realizable mathematical properties, e.g. bounded area in

a bounded domain.

l.l R-sets

In [REQ77c] it is argued that a suitable model for real solids is
the set of all (congruence classes of) subsets of E which are bounded,
closed, reqular, and semianalytic. Such sets are called r-sets. This
section examines the implications of using r-sets to model solid
objects, and Section IV.1.2 shows their shortcomings. In order to
overcomes these shortcomings, a new mathematical model for
representation of physical solids will then be introduced in Section
IV.1.3. This representation together with a suitable set of operations

discussed in Section IV.l.4, comprise a calculus of realizable shapes, a



modeling scheme in the same spirit as CSG, but with a wider range of

application.

We begin with a reexamination of the conditions imposed on r-sets.
The boundedness condition is, of course, an important requirement that
corresponds to the finiteness property of real solids. There are,
however, certain special cases where it is meaningful to consider
"unbounded solids". In CSG, the more general term "half-space" is used

to refer to "solids" which may be unbounded [REQ77D].

The boundary of a solid object separates the object from its
envirorment. Thus, it is natural to model the boundary of a solid
object as the topolegical boundary of the subset of E3 that represents
that object. A set is closed if it contains its own boundary (see

1 cet if

Appendix A). A subset of E3, say X, is called a closed-regular
it is equal to the closure of its interior, that is if X = int(X). The
formal condition of closed-regularity can be viewed as a relationship
between a set and its boundary that to some extent reflects our
intuition about the relationship between an object and its boundary.
(For more discussion on this issue, see Section IV.1.3.) Closed
regularity excludes subsets of E3, such as those in Figqures 1IV.l.b, ¢,
and d, where (a portion of) the boundary does not separate "inside" from

"outside”.

Boundedness and closed-reqularity are not sufficient to guarantee

correspondence of subsets of E3 to real objects. For instance, with no

1 In solid modeling literature, the term "regular" usually implies
closed-regular, but for clarity, we will avoid such abbreviation.
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Fram: [COVES]

Figure IV.2 - Infinite Oscillation

further restrictions, the boundary of a closed-reqular, bounded set can
exhibit unacceptable properties such as an infinite number ocf non-
dampening oscillations in a bounded damain, as seen in Figure IV.2.
Such "wild" boundary behavior is an impossible characteristic for a real
solid. (For example, consider the "surface” resulting from extrusion of
the graph in Figure IV.2. The area of this surface is unbounded in any

bounded neighborhood of x=0.)

In practice, restrictions on the shape and type of surfaces that
can be handled by a system (e.g. using polyhedral or polynomial
approximation) preclude such ill-behaved models. For a generalized
solid modeling scheme, however, a formal definition of acceptable shapes
is required. To prevent pathological behavior of boundaries while
supporting a wide class of realizable shapes, [REQ77c] defines boundary

well-behavedness throuch the notion of semianalyticity. A function



F: E° - B is called analytic in a domain if it can be expanded into a
convergent power series about every point of the domain. A set of
points in E.‘3 is called analytic if it can be expressed as
{ (x,y,2) | F(x,y,2) £ 0}, where F is an analytic function and X, y, and
z are the coordinates of a point. A set is called gemiapalytic if it
can be expressed as a finite boolean combination (through union,
intersection, and complementation) of analytic sets., The
semianalyticity condition of r-sets prevents unrealizable boundaries

such as the one in Figure IV.2.

In addition to a formal representation for solid objects, a solid
modeling scheme must be able to express various kinds of relationships
between objects' shapes as they undergo certain physical processes of
interest. Typically, one is interested in combining shapes in such a
way as to represent the result of processes like "gluing”, material
removal, and assembly, and to solve such shape-related problems as

interference checking and adjacency.

An obvious set of mathematical operators suitable for such a task
consists of the set cperations of union, intersection, difference, and
complementation. However, r-sets are not closed under these operations
and unrealizable models can result from their application, as seen in
Figure IV.3. A modified version of the set operations that preserve
closed-regularity and, of course, semianalyticity, are the reqularized
set operations described in [REQ77c], which are fundamental to CSG. In

CSG, the regularized union (U'), intersection (7)), and complement (¢ )

*
of two sets X and Y are defined as XU Y=1int(XU Y),
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{a) Intersection of two touching blccks yields a plane

(b) Difference of two touching blccks vields a nen-clesed blcck

(c) Complement of an r-set is not bounded

Figure IV.3 - Inadequacies of Set Operations

* : * ; ; i *
N v=intxNY), and ¢ X = intX') . Reqularized difference (=)

can be defined analogously, oOr through regularized intersection and
complement, i.e. X Fy-xN" " v (see Figure IV.11 for a depiction
of the effect of these operations on r-sets). The class of closed-
regular semianalytic sets (half-spaces) is closed under these operations
[(REQ77b]. In particular, r-sets are also closed under regularized
union, intersection, and difference, but reqularized complement of an
r-set is not an r-set (because it is not bounded). This simple set of
operations is mathematically expressive enough to permit composition of
a wide variety of shapes, given a small number of elementary r-sets
called primitive solids (see Figures III.15 and IV.13, for example), and
if we believe that all r-sets represent realizable shapes, closure of
r-sets under these operations guarantees that the result of any

combination of realizable solids is in fact a realizable solid.



1.2 Limitations of r-sets

The r-set model of solid objects includes sets shown in Figure IV.4
which represent different special cases where the result of a CSG
operation, e.g. (reqularized) union, on r-sets yields an r-set whose

boundary is not a two-dimensional manifold.z

===
b 82
= Jaame

(2) Edge=-face () Vertex-vertex (e} Vertex-edge (g) Face-—face

(b) Ecge-edge (d) Vertex-face (f) Edge—edge (h) Face-face

Figure IV.4 - Non-manifold R-sets

2 A subset X of £ is a two—dimensional manifold if every point in X
has an open neighborhood homeamorphic to an open disc and
satisfies another condition (too technical for our purpcses to
mention).
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strictly speaking, such non-manifold sets in CsG, represent
unrealizable objects, or perhaps, physically unrealizable arrangements
of realizable objects. In either case, their unrealizability is due to
existence of an "infinitely thin solid region", e.g. a solid edge or
vertex. Nevertheless, such r-sets are intentionally permitted in CSG,
because they can be interpretéd as somewhat reasonable models for
assemblies of objects [RE77¢c]. Figure IV.4.2, for example, can be
accepted as a model for two parts, one resting on the top of the other;
with proper modifications, similar meaningful interpretations can also

be associated with other sets in Figqure IV.4.

Accepting these r-sets as assemblies means that they should be
regarded as composed of disconnected pieces. This interpretation
implies that vertices and edges with non-manifold neighborhoods should
samehow be considered as not belonging to objects. The tendency to
exclude these ancmalous boundary segments is further justified by the
fact that in CSG, solid regions with such "abnormal™ intersections are
formally considered to be non-interfering; for example, the reqgularized
intersection of every pair of r-sets in Figure IV.4 is empty. However,
if vertices and edges with non-manifold neighborhoods were to be
excluded, then the sets in Figure IV.4 representing individual pieces
would be non-closed sets which are not r-sets, by definition. This
shows that the pairs of r-sets in Figure IV.4 represent ambiguous cases

to which no fully consistent interpretation can be associated in CSG.

The same inconsistency also becomes apparent by observing that, in
the real world, when two objects, say A and B, do not interfere, their

aggregate (union) consists of at least two disconnected regions (in the



sense that there is no path, i.e. curve, fully contained in their union,
i.e. AU B, that can connect a given pair of points not in the same
region). Pairs of r-sets represented in Figure IV.4 are examples where
CSG and r-sets fail to reflect this real-world ©property of
disconnectedness, To underline the significance of this issue,
consider, for example, an algorithm for computation of the effect of
exerting a force £ to the top part of the object in Figure IV.4.a,
opposing a gravitational field g for t seconds. The result of this
algorithm would, no doubt, depend on its programmer's interpretation of

this geametric model, and is therefore formally ambiguous.

Although it is possible to introduce a rule which would give the
"correct" interpretation for such non-manifold models in CSG (i.e.
implement an algorithm which would recognize them as disconnected),
abiding by this rule (i.e. invoking the algorithm in every relevant
occasion) would necessarily be a completely voluntary compliance on the
part of users (algorithms as well as humans) in such a scheme. The
reasen is that this rule is neither enforced nor preserved Dby the
operations within the modeling scheme itself. A "good" logical medel
(or abstract data type) cannot afford to rely on its users to comply

with its interpretation or integrity rules; it must enforce them.

A second problem associated with the r-set model of solids, shared
also by any solid modeling scheme based on closed sets, is that certain
assemblies of objects cannot be represented consistently. For example,
Figure 1IV.5.a shows (the front view of) a thin block resting on the top
of a larger block with the same depth. The sets represented in this

figure comprise a legitimate model for an assembly of two disconnected
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Figure IV.5 - Assembly vs. Part

pieces; this model is at least as legitimate as the ones in Figure Iv.4,
which are permitted in cSG and are meant €O be interpreted as
assemblies. However, the mset" shown in Figure IV.3.a is not an r-set
at all (because this representation cannot be that of a closed set)3.
The r-set model of this "assembly” is shown in Figure IV.5.Db, which in

fact, does not represent an assembly! In the real world, the assembly

3 A few words on depiction of set-models of solids in general, is in

order. Drawings such as those in Figure IV.5 are graghic
representations of sets, which in turn, we interpret as models for
solid objects. The common—-sense convention in line-drawing
representation of sets, which 1is observed throughout  this
dissertation, is that lines (or curves) depict the loci of points
with certain distinctive topological attributes associated with
boundary points of sets. The loci of such points (and only such
points) are depicted as lines and curves, regardless of whether or
not they belong to the sets in question. Therefore, whereas
Figures IV.5.b and ¢ can indeed be depicting closed sets, Figure
Iv.5.a, cannot be a depiction of a closed set, because it includes
a line segments that with the closed-set interpretation of this
drawing, becomes the locus of non-boundary points, i.e. should not
have been drawn.



 of Figure IV.5.a would have certain properties quite different from
those of the very similar object with the same overall shape, made out
of a single connected piece (or several pieces "glued" together), shown
in Figure IV.5.b. (See also the example shown in Figure IV.7, discussed

in the following section.)

A "patchwork" measure that would allow this type of adjacent
assemblies to be representable in a modeling scheme based on closed
sets, is to represent adjacency by a distance smaller than a given
threshold d>0. With such a measure, the assembly of Figqure IV.5.a would
be modeled as shown in Figure IV.5.c. Unfortunately, this patchwork

solution suffers fram two major flaws:

1- For every given value for the threshold distance d, below which
two close objects are to be considered "touching" in a modeling
scheme, one can always construct counterexamples involving
objects with yet smaller dimensions which would thus not be
representable in that scheme. A remedy is to let the threshold d
be variable rather than a preselected constant. Although it is
conceivable to devise a modeling scheme wherein the actual value
of d is context—dependent (e.g. takes into account the relative
sizes of neighboring objects), such measures would make the
scheme toc complex, especially when the issue of tolerances is
also considered. Besides, the semantics of an "assembly" with
such a context-sensitive threshold is inherently ambiguous when
"context" is subsequently changed, e.g. two objects are cut in

size after they are defined to be "touching”.
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2- Given that the sets of Figure IV.4.b, for example, comprise
(albeit, still arguably) a model for an assembly, i.e. for two
disconnected touching blocks, the fact that a slicht translation
of the top block to the right would produce a connected piece,
instead of an assembly of a block partially resting on the other
(represented through any rpatchwork” solution suggested above,

for example), is both inconsistent and counterintuitive.

We thus conclude that the important class of touching assemblies
cannot be represented consistently in any solid modeling scheme based on

closed sets.

A third problem with the r-set model of solids is that it excludes
certain reasonable boundaries due to the semianalyticity condition.
Recall from Section IV.1l.l that semianalyticity means that the boundary
of a set can be divided into a finite number of segments, each of which
is analytic in its domain, i.e. can be expanded into a convergent power
series. Recall also that the reason for imposing this condition was to
permit only well-behaved boundaries, meaning those that are continuous
and "smooth". In order for a function to be expandable into a power
series, all of its derivatives must necessarily exist at the point(s) in
question, 1i.e. it must be "smooth" and continuous. However, existence
(and continuity) of all derivatives is not sufficient for expandability
of a function [COU65]. Therefore, by requiring the stronger condition
of expandability into power series, r-sets exclude certain reasonable
shapes. A classic example of a function with continuous derivatives
which is not expandable into a power series is the function £, defined

as:
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e L/x if X #0
0 if x=0

The graph of y=f(x) is shown in Figure IV.6.

Figure IV.6 - A Non-expandable Continuous Function

Function £ and all its derivatives are continuous in every
interval, even at x=0; however, because all of its derivatives vanish at
=0, this function is not expandable into a power series [CQU65]. As
seen in Figure IV.6, this function is quite reasonably smcoth and well
behaved everywhere, yet (the three-dimensional analog of) this function

is disallowed as the boundary of an r-set.

Same of the problems discussed above, arise fram the fact that r-
sets are closed, i.e. contain their own boundaries. To resolve these
problems, it is then natural to seek an alternative to closed sets where
boundary points are excluded fram a set. Such an alternative does
exist: A set is gpen if it does not contain any of its boundary points.
(Note that a non—closed set is not necessarily open; see Appendix A.) It

is indeed tempting to attempt to develop a formal model for solid

108



objects quite similar to r-sets but based on open sets; in other words,
to model physical solids by open-regular, semianalytic sets. For the
sake of arqument, let us consider such a model and study its

characteristics.

The concept of open—regularity can be defined analogously after
closed-regularity: A subset of E3, namely X, is called open-reqular if
it is equal to the interior of its closure, i.e. if X = int (X). Open-
reqular sets are the duals of closed-regular sets and essentially share
many of their interesting properties, e.g. the relationship between a
set and its boundary which prevents dangling boundary segments and is of
particular interest to us. For example, the representations in Figure
IV.1 which were not valid as closed-regular sets, are not acceptable as
open-regular sets either. Imposition of the semianalyticity condition
on open-regular sets produces open half-spaces. The "open version" of
r-sets, which we call ro-sets, can be defined after r-sets as bounded,
open-regqular, semianalytic sets. Likewise, one can define an "open
version" of the regularized set operations under which open half-spaces
and (excluding regularized complement) ro-sets are closed. This
development results in a modeling scheme .analogous to CsG but based on

open sets, to which we refer as OCSG.

0CSG, however, suffers fran the same problems as CSG does, and ro-
sets are only slightly better models than r-sets for solid objects. The
problem of ambiguous interpretation of non-manifold models with r-sets
ijs resolved in the ro-set model of solids: Considered as ro-sets, the
representations shown in Figure IV.4 have the unique interpretation of

being disconnected and thus are consistent models for assemblies of



objects. (Note that, although the boundaries of these sets are still
non-manifold boundaries, the sets themselves are manifolds since they do
not include these boundaries.) On the other hand, the other two problems
with r-sets, mentioned above, still remain with ro-sets. Clearly, ro-
sets and r-sets are both capable of representing the same class of
three-dimensional shapes since they are both based on anmalytic
functions. Therefore, (the three-dimensional analog of) shapes such as
in Figure IV.6 are just as non-representable with ro-sets as with r-

sets.

Like r-sets, ro-sets too cannot consistently represent touching
assemblies. Although it is possible to consistently represent the class
of touching assemblies using open sets (s-sets defined in Section
Iv.1.3, for instance, are capable of doing so), open-regular sets do not
" posses this property due to their regularity. For example, Figure
Iv.5.a may be a depiction of two touching open sets and thus can be
interpreted (uniquely) as a model for a touching assembly. However, the
"set" in Figure IV.5.a is not open-regular and therefore is not an ro-
set4. Interestingly, the ro-set model of the assembly in question is
very similar to its r-set model and, again, is represented by Figure
IV.5.b. The same "patchwork" measures as discussed earlier for r-sets,
can be used with ro-sets in order to permit modeling of touching

assemblies, but again, they lead to schemes that suffer from the same

shortcomings.

4 See footnote 3 in page 105 regarding graphic representation of
sets, and substitute "ro-set” for "closed set" in the text of that
footnote.
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We summarize the results of this section by concluding that:

1- Closed sets cannot be used to consistently model assemblies of

objects.

2- Reqularity (closed or open) is too restrictive a condition to
insure "separating boundaries” with no dangling segments or
"infinitely thin cracks", because it disallows consistent

modeling of assemblies.

3- Analytic functions are too restrictive for mathematical

definition of realizable shapes.

1.3 S-sets

In this section we present an alternative model for mathematical
representation of physically-realizable solid objects that covers a
wider class of reasonable shapes than do r-sets, and at the same time,
lack their inconsistencies. We refer to the subsets of E3 that fit our
proposed definition as s-sets (for "solid-sets"). Not only s—-sets are
more reasonable models than r-sets for mechanical parts, they are also
consistent models for assemblies, as we show in this section. Taking
advantage of this point, Section IV.1.4 presents a CSG-like solid
modeling scheme based on s-sets which in addition to operations
equivalent to the regularized set operations, includes a new "assembly
operator”. Although s-sets are referred to throughout the present
section, formal definition of s-sets, Definition 1.4, appears at the end
of this section. However, a first reading of the following discussions

that develop concepts leading to Definition 1.4, requires no more



detailed understanding of s-sets than the above introduction.

We take the position that the boundary of an object is incidental
rather than exjistential, i.e. it is a side-effect of the existence of
the object rather than an independent physical manifestation.
Furthermore, the notion of "physical boundary" as well as the definite
boundary of an object according to any reasonable definition of the
term, both become quite "fuzzy" at microscopic scales. Hence, we
contend that in macroscopic modeling of objects' shapes, one should
regard "boundary” as an abstract concept rather than a physical entity,
whose ideal geametric shape and position can only be approximated to a
given precision. In other words, one should treat boundary as a non-
entity that asymptotically delimits an object. We thus model physical
solid objects as open sets of material points bounded by surfaces,
edges, and-vertices which they do not own (i.e. contain), and which
separaté them fram another open set of void5 points in space. The two

immediate consequences of this view are:

1- Surfaces, edges, and vertices are abstract delimiters (i.e.
without real counterpart) that separate two inherently analogous
regions of space, namely, an occupied and a veid region. Such
abstract entities are thus meaningless (therefore do not exist)

out of this context.

5 "Void" only in the sense that they belong to an object's spatial
envirorment, rather than to the object itself.

112



2-Since objects do not own their boundaries, they cannot "share"
them either, e.g. two blocks can be moved arbitrarily close to
each other, but they cannot be connected at a corner, or at an
edge (or even nat a surface", as discussed in the example of

Figure IV.7.C, below) .

Because bounded open sets always have boundaries which are not
contained in the sets, the iﬁtegrity of an object as an independent
jgentifiable entity, is always preserved when it is modeled by an open
set; the same is not true with closed sets, as evidenced by examples in
Figure IV.5 and in Figure IV.7, below. This property of open sets
allows us to model the important concept of physical adjacency, without

which a consistent model of assemblies of objects is not possible.

since exclusive use of open sets precludes connectivity (of sets)
through boundary sharing, our proposed modeling scheme (based on s-
sets), can use this topological property to model physical adjacency.
Two open sets with a common boundary segment are theoretically at zero
distance fram one another, but clearly, real objects cannot be placed at
nsero distance" apart; no matter how close twe adjacent real objects
are, there is always a positive distance, the value of which is very
context—-dependent, between their boundaries. Nevertheless, it is both
unreasonable and impractical to deal with the exact distances between
physically adjacent objects in modeling of touching assemblies because,
unless such distances play a functional role in the assembly (which they

virtually never dos), any definite value would be equally irrelevant and

6 An example of where such distances can play a functional role, 1is
in integrated circuits where "adjacent layers" are separated by



misleading. The undeterministic concept of physical adjacency, with all
its formal ambiguity and context sensitivity, seems to be an important
notion in the real world that within a given application context, is
virtually never ambiguous in practice. To properly model this notion,
physical adjacency, we need to model the non-deterministic concept of
the distance between two objects which are "as close to each other as
possible". The most appropriate "symbol"™ in a modeling scheme for
representation of this "indefinitely small" value is zero, because,
unlike other real numbers, this symbol cannot be taken literally to
represent a distance between two objects in the real world. Hence, we

adopt the following definition:

1.1 DEFINITION: Physical Adjacency

Sets with common boundary segments, i.e. zero distance apart, are
models for assemblies of objects which are "as close to each other
as possible", within the proper application context. [J

Although the above definition is far from being formal, its
underlying legic is so intuitively clear and naturally obvious that it
has always been used (indirectly and even less formally) in virtually
every type of solid representation technique from engineering drawings
to present solid modeling systems. On the other hand, no geometric
solid modeling scheme has offered a formal basis for consistent
inclusion and treatment of assemblies as objects. For example, although
most CSG-based systems such as PADL [PAD74], GMSOLID (BOY8BO, BOY82], and

functionally significant distances. But, it is dJdoubtful whether
inclusion of such cases in the category of mechanical assemblies

can serve any purpose.
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GDP/GRIN [WES80a, FIT8la], provide operations and commands for building
assemblies of objects, their underlying formalism, CSG, in itself is not
capable of dealing with assemblies in the same manner (see Section

Iv.lcz) L

- ] C_

Figure IV.7 - Touching Assemblies Modeled by Closed Sets

To make this point clear, consider as an example, the two blocks
depicted in Figure IvV.7.a within the interpretation context of CSG.
Using (regularized) union as the assembly operator in CSG, Figure v.7.a
shows an assembly of the two blocks at a considerable distance apart.
Figure IV.7.b shows them at a closer distance and at a different
relative orientation. Figure IV.7.C represents the same two blocks
assembled "at zero distance” fram each other, i.e. physically adjacent.

Note that the physical integrity of the two objects is violated by



adjacency, i.e. the "two" blocks are now gne object in Figure 1IV.7.c.
On the other hand, in PAIL or GDP/GRIN, whereas representation of
assemblies of far apart objects (as those in Figures IV.7.a and b) are
identical to their CSG representations, touching assemblies, such as a
block resting on the top of another, have a different representation (as
in Figure 1IV.8.a) than their CSG models (Figure IV.7.c). In theory,
then, the touching assemblies defined in PALL or GDP/GRIN, cannot be
operated on by CSG operators because, technically, they are not half-
spaces, whereas the CSG models for the same assemblies are not

recegnized as such by these CSG-based systems.

Furthermore, consider the transition of the two blocks in Figure
IV.7.b to the configuration of Figure IV.7.c in CSG. One can argue that
objects!’ shapes are apparently <changed as a result of
translation/rotation alone (the “t#o“ blocks in Figqure IV.7.c-are still
"non-interfering" because their regularized intersection is empty).
This example, then, shows that either CSG violates the rigidity property
of real solids (see Section IV.1l), or that it proposes that two objects,
while maintaining their separate identities, can be connected at exactly
a surface, without any mutual interference (e.g. one can still "slide"
on the other). Finally, note that Figure IV.7.c is also the CSG model
for, among other things, the sets of objects depicted in Figures IV.7.d,

e, and £, when "assembled" properly.

The above problems can be avoided in a solid modeling scheme based
on open sets because the boundary of an open set can maintain its
independence and integrity of shape through every modeling operation,
other than the ones that explicitly modify its boundary. Such
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Figqure IV.8 - Touching Assemblies Modeled by Open Sets

operations, in turn, can be carefully devised so as to represent
manufacturing processes that modify an object's shape. (The OCSG scheme
discussed in Section IV.1.2 provides a counter-example where this
correspondence of modeling operations to manufacturing processes is not
observed.) The four different assemblies discussed above, all of which
would be represented by the set shown in Figure IV.7.c in a closed-set
based modeling scheme like CSG, are depicted in Figure IV.8 as modeled
by (non-regular) open setsa. (Note that except for the open vs. closed
difference, the sets in Figure IV.8 are representations for the same

assemblies in CSG-based systems.)

The intention of Definition 1.l was to express the condition under
which two solid objects are considered physically adjacent (Laes
touching). This same intention is rephrased formally in Definition 1.2,

as it applies to the s-set model of solids.

3 See footnotes 3 in page 105 and 4 in page 110.



1.2 DEFINITION: Touching Assemblies

Two physical solids represented mathematically by s-sets A and B
are touching if (and only if) ((ANB) =¢) A (ANB) #¢). O
Note that rather than defining an independent concept, Definition
1.2 is in fact a logical consequence of Definition 1.1 and our choice of

s-sets as mathematical models for solid objects.

Open sets exhibit the kind of relationship and interaction with
their enviromment that is desirable for modeling of the interaction and
relationship of physical objects in their real-world envirorment.
However, the boundary of an open set may be just as ill-behaved as that
of a closed set. We saw in Section IV.1.2 that a definition of boundary
well-behavior based on analytic functions is too restrictive. The
intention of this definition was to formalize the notion of a realizable
surface, rather indirectly, through the continuity and smoothness
properties implied by expandability of functions into power series.
Definition 1.3, below, provides a more direct definition for a
realizable surface through the concept of "smooth deformations” of
planar surfaces. In an earlier work [ARB82a] a similar definition was
given for patchwise smooth surfaces. Definition 1.3 and the one in
[ARB82a] are fundamentally the same in that they both cover surfaces of
the same class of single-piece objects. The difference between the two
is in part 4 where Definition 1.3 permits unions as well as
intersections of open sets to construct patchwise smooth surfaces, and
consequently, includes surfaces of assembled objects such as those in

Figure IV.8 directly.
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1.3 DEFINITION: Patchwise Smooth Surface

A Patchwise Smooth Surface is defined recursively by a finite
number of applications of the following rules:
1- The empty set is a patchwise smooth surface.
2= A plane is a patchwise smooth surface.
3- The image of a plane under an arbitrary function F 1is a
patchwise smooth surface if:
a) P is a one-to—one mapping from E° onto E°,
b) The function F, its inverse, and all their derivatives
exist (and are continuous).
4- For i =1,2, let S, be an open set of points in E> such that
|3(Si) is a patchwise smooth surface. Then, p(S:L U 52) and
B(s; N 8,) each is a patchwise smooth surface. [

Since Definition 1.3 is recursive, the boundary of the result of
any finite combination of unions and intersections of open sets with
patchwise smooth surface boundaries, is itself a patchwise smooth
surface. Note also, that this dJdefinition considers an aggregate of
patchwise smooth surfaces as a patchwise smooth surface; thus, for
example, two parallel planes are acceptable as a patchwise smooth
surface., Therefore, whereas shapes which are not homeomorphic to a
plane (e.g. disconnected surfaces, patches intersecting at sharp
angles, tori, etc.) cannot be produced by smoothly deforming a plane as
in part 3 of Definition 1.3, such shapes can indeed be constructed

recursively in part 4 of this definition.

Part 3 of Definition 1.3 states the conditions under which a
function F is oonsidered to be a "smooth deformation”. Conceptually,
this definition is not far fram analyticity condition of r-sets. (The

function £(x) = sin(l/x) of Figqure 1IV.2, for example, is neither



Figure IV.9 - Dampening Infinite Oscillations

continuous in the neighborhood of x=0, nor can it be made continuous by
assigning any value for £(x) at x=0 [(COU65].) However, analyticity
prevents certain reasonable shapes, as we saw in Section IV.1.2, while
our weaker conditions for smooth deformation permit a wider class of
surfaces to be modeled. Unlike analyticity, smooth deformations also
(intentionally) allow three-dimensional equivalents of shapes like those
shown in Figqure IV.9 whose "reasonability®™ may be considered as
debatable. Such shapes exhibit an infinite number of oscillations, e.q.
in the neighborhood of zero, and one may argue that they are thus
unrealizable and undesirable. However, one must recognize that no
geametric shape is in fact realizable in its ideal form. Abstract
geametric shapes (e.g. a plane) can only be approximated to a given
precision in the real world. Therefore, a shape is unrealizable only if
its geametric properties cannot be approximated by real-world objects

within reasonable precisions,
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Having linked "realizability™ to "a given precision", one can then
argue that a surface with infinite but dampening oscillations, such as
the result of extrusion of the grapgh in Figure 1IV.9, is indeed as
realizable as, e.g., a plane. The reason is that any given precision
imposes a bound on the number of oscillations of such a surface and
makes it realizable. (Whether or not such surfaces are practically
useful is a different question.,) Three dimensional equivalents of
gecmetric shapes such as those in Figures IV.6 and IV.9 are examples of
patchwise smooth surfaces that cannot be defined through analytic
functions., Although such shapes, as well as any other realizable shape,
can indeed be approximated by analytic functions, Definition 1.3 permits
direct and precise modeling of a wider class of realizable shapes than
analytic functions do.

We can now give the formal definition of s-sets as:

1.4 DEFINITION: S-set

An s-set is a bounded open subset of E3 whose boundary is a

patchwise smooth surface. [J

S-sets, as we have shown in this section, are suitable formal
models for real solid objects. A related concept is that of three—
dimensional shapes which model "almost-real solids" in the sense that,
although they are legitimate shapes, they cannot be realized only
because they are not bounded. We refer. to these shapes as s-half-spaces
since they are the counterparts of half-spaces in CSG (see Section

III.2.2) and form a superset of s-sets.
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1.5 DEFINITION: S-half-space

An s-half-space is an open subset of ou whose boundary is a
patchwise smooth surface. [J

Clearly, s—-sets are a proper subset of s-half-spaces.
1.4 Realizable Shape Calculus (RSC)

This section proposes a new geametric solid modeling scheme, called
Realizable Shape Calculus (RSC), in the same spirit as CSG, but based on
s-sets. We call this scheme a calculus of realizable shapes because, as
CSG, RSC expresses factual relationships between arbitrary shape-
components of a part and thus, should best be regarded és descriptive,
as opposed to procedural or algebraic., A twin RSC scheme, analogous to
the CSG scheme based on generalized half-spaces, is also possible with
s=half-spaces. The advantages of this new modeling scheme, RSC, over

CSG are:

1- Unambiguous consistent representation of connected pieces
Because s-sets are open, they cannot be connected at their edges
or vertices. Consequently, there is only one possible
interpretation for shape configurations such as those in Figure
IV.4, namely, that of Definitions 1.1 and 1.2. Furthermore, this
interpretation is consistent both throughout the modeling scheme

and with our real-world experience and expectations.
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2-Uniform coverage and treatment of assemblies
RSC covers assemblies of objects as well as single pieces, in a
uniform and consistent manner. This means that every operation
def ined on a piece is also formally defined on any conceivable
assembly, yielding consistent results. CSG, on the other hand,
is not capable of formally representing the class of touching
assemblies. Accordingly, in addition to a "gluing” operator as

in CSG, RSC formally defines an assembly operator.

3- Wider potential coverage of shapes
Since patchwise smooth surfaces cover a wider range of realizable
surfaces than semianalytic functions do, the class of shapes that
can potentially be dealt with in RSC (without resorting to

approximation in the model) is broader than in CSG.

An important class of mechanical design problems involve assemblies
of parts and certain of their interesting properties, e.g. balanced
distribution of weight, "fixed" (i.e. "bolted") vs. "floating" (i.e.
"resting”) assemblies, etc. Of course, it is beyond the scope of a
geametric solid modeling scheme to attempt to differentiate between such
classes of assemblies. But, it is essential for such a model to be able
to represent uniquely and unambiguously, all such assemblies in a manner
quite distinguishable from single-piece parts. RSC is the first
mathematically sound solid modeling scheme to permit a coherent and

consistent treatment of assemblies.
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Figure IV.10 - CSG and RSC Operation

Figure IV.10 summarizes the definitions of various operations in
CSG (the regularized set operations) and those of their counterpart
operations in RSC. Following the accepted convention, the regularized
set operators are designated by a * superscript; analogously, we
represent our RSC operators with a + superscript. The domain and range
of CSG operations are the set of half-spaces as defined in CSG (see
Section III.2.2). Likewise, the domain and range of RSC operations are
the set of s-half-spaces (see Definition 1.5). Thus, in Figure IV.10, X
and Y represent half-spaces whereas R and S stand for s-half-spaces.
The set of all half-spaces is closed under the regularized set
operations [REQ77b]. Similarly, it can be shown that the set of all s-
half-spaces is closed under the RSC operations. Bounded half-spaces

(i.e. r-sets) are closed under the reqularized set operations in Figure

124



1v.10, with the exception of c*. Analogously, bounded s-half-spaces
(i.e. s-sets) are closed under all RSC operations except for c’. IncCsG
X U* Yy =X U Y, whereas, in RSC, U+ and U are two distinct operations.
Furthermore, we can prove that R ﬂ+ s=R[1s and ¢ R= int(ﬁT) =
int(R') = ext(R). Consequently, R =% =R ext(s) =RN (' =R~ S.
For s-half-spaces Q, R, and S, the following set of properties also
hold:

1- c+ (c+ R) =R

2- R =8 if and only if cFrR=c" s
Coammutativity law:

3- RU ' s=sU'R
Associativity law:

.- rut (sutQ = @®U S U Q

Distributivity laws:

1}

- rAuote =@®@Ns) tF ®RNQ

- rut sNQ = ®U s N RU Q)

De Morgan's law:
7- R U ") =RNS

= (it Nt =rRU s

Figure IV.1l depicts the effect of the CSG and RSC operations
defined in Figure IV.10 on some example r-sets and s-sets. Although, as
seen in Figure IV.1ll, the RSC operations of U" and U can produce
different results, this is not always the case. These operations yield
different results only when objects' boundaries coincide on a ‘"surface
segment". When objects are far apart or have common vertices, edges, or

"yolumetric segments”, ut and U produce the same s-sets. Therefore, it
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Figure IV.1ll - CSG and RSC Operaticns on R-sets and S-sets

may be desirable to restrict the application of these operations through
conditionals so that they correspond, respectively, to a "gluing” and to
an assembly operation defined as:

RUS ifRNs=4g
R+ S = ; ;
undef ined otherwise

Likewise, one can restrict the application of U* on two s-half-spaces R
and S, to cases where the intersection R[] S exists and is a three-

dimensional manifold.

It is interesting to observe that the assembly operator + can, for

example, be applied to the objects represented in Figures IV.1l2.a
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Figure IV.12 - Assembly vs. Fusion of Parts in RSC

through d, but not to those in Figqure IV.12.e, and that the results of
such applications are, consistently, two disconnected blocks in various
configurations with intuitively obvious unique interpretations. The
restricted version of the gluing operator U+, on the other hand, is
applicable only to objects 1ike those represented in Figures Iv.12.d and
e and not to objects like those in Figures IV.12.a through C. Gluing
the cbjects of Figures 1v.12.d and e has the intuitive interpretation of
"fusing” them into a single connected piece. (The result of application
of the unrestricted ut to the objects shown in Figures IV.12.a throudgh c

is identical to that of +.)



) Deformi 1id Geomet

This section proposes an operational (as opposed to descriptive)
approach to solid modeling based on a scheme for three-dimensional shape
definition that we call Deforming Solid Geometry, or DSG. DSG is a
methodology for describing mechanical parts and assemblies through a

L J
sequence of operations resembling those in manufacturing.

This methodology is based on the premise that mathematical
expressiveness of a formalism alone is seldom sufficient to warrant its
application to "real" problems. The reason is simple: to keep its
complexity tractable, its range of expressiveness expansive, and for the
sake of intellectual “neatneés“ and elegance, a formal deductive system
is often based on a few highly-abstract axioms. This creates a gap
between a formal system and the real-world problems within the context
of which the deductive system was borne; a gap that, hopefully, can
always in theory, be closed by rigorous deductions and systematic
application of the axioms of the system, However, the burden of
stretching the axioms of a formal system by deductive reasoning to reach
and cover tangible entities and meaningful relationships which are
entangled intc a "real-life" problem, imposes a limit on the complexity
of problems that can be solved effectively in that system. Thus, for
example, although no modern computer is a mathematically more expressive
model of computation than the simplest Turing machine, no one ever
thinks seriously of solving a real computational problem on a Turing
machine, and the Turing machine solution of even such relatively
elementary problems as parsing, would be hopelessly intractable and

incomprehensibly complex.
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On the other hand, simple, elegant logical-models are useful for
understanding of the nature of phenomena at play withinlcanplex systems.
Compared to more life-like, less abstract models, such a model is
sametimes able to provide a deeper insight by revealing more of the

latent intricacies of a system.

In the previous section, we proposed a new coherent formal solid
modeling scheme, RSC, mathematically expressive enough to model
geametric properties of any conceivable part or assembly. However, the
assurance that any part or assembly can potentially be modeled in RSC,
solves no real design problems, and we contend that RSC (or any CSG-like
scheme, for that matter) is hardly enough ammunition for a designer of
complex mechanical objects. In Section III.2.2, we concluded our review
of CSG with the comments: "... CSG is a formalism for modeling of solid
objects, irrespective of the way in which they can be manufactured or -
functionality of their components” and "... the set operators ... in a
CSG tree ... [are] statements of factual relations between somewhat
arbitrary shape camponents which do not necessarily have any functional
or manufacturing-related significance or association with one another”.
The same critique, of course, also applies to our shape calculus, RSC,
with its wider mathematical coverage. But, functional significance and
associations of a part's components, as well as many manufacturing-
related issues are (should be) the highest priority concerns of

designers.

In Chapter I, we argued that an integrated CAD/CAM system is more
than a CAD subsystem linked to a CAM subsystem; we argued that to

develop a truly integrated system, one must start thinking in an
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integrated fashion, and build a framework within which, not only a
designer cannot design unrealizable objects, but also, wherein he would
have to sense, judge, and deal with the manuf acturing-related
implications of his design decisions. Such a framework should make it
easier for designers to recognize and "design around" the foreseeable
problems. DSG is an attempt to formulate such a framework; it can be
seen as a modeling scheme, not in the same class as RSC and CSG {(or
boundary representation, sweeping, etc.), but which presents a better-

structured and purpose-oriented view of shape composition.

An instructive and motivating analogy exists between programming
languages and solid modeling schemes; they both provide a simple set of
entities and operations, to be used to (creatively?) compose more
sophisticated entities. The increasing impetus of programming language
constructs that semantically mean what they syntactically appear to
suggest, provides a supportive argument for use of shape modifying
constructs in a solid modeling scheme that resemble "semantically”
significant (i.e., real-world) counterparts. Modern high-level
programming languages present better-structured and purpose—-oriented
views of computing that not only result in better-structured, purpose-
oriented programs in less time with less effort, but also, tend to
incite better-structured and goal-oriented programming. The value of
such superior programming skills and methodologies goes beyond
production of more elegant solutions to otherwise solvable programming

problems; they permit more complex problems to be tackled.
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Proliferation of CAD/CAM in the production of mechanical parts will
eventually lead to automated factories; before then, however, truly
integrated CAD/CAM systems must be developed. These systems will enable
practitioners to grasp a petter and more comprehensive picture of the
activities and processes involved in fabrication of parts in general and
will pemmit informed decisions on many technology—dependent,
manufacturing-related issues early in the design phases of new parts.
We contend that such decisions truly constitute as much an integral part
of the design of a mechanical object as do blue-prints traditionally.
We believe that, Jjust as structured programming and disciplined
programming languages and methodologies have shown to have a significant
positive impact on maintainability of software (the most preciocus asset
of computerized organizations of teday), structured, disciplined design
methodologies can make vital contributions to maintainability of such
integrated mechanical designs, the most precious assets of autamated
factories of the future. Furthermore, maintainable, integrated design
may prove to be the only sensible means for tackling design, production,

and maintenance of camplex mechanical systems.

Consider as an example, the rather complex part shown in Figure
Iv.13. This fiqure represents a part def ined on GDP/GRIN which is used
as an example in: [FITBla] to demonstrate how such complex objects can ke
designed using this system. Naturally, as in any other CSG-based
system, there are several different ways to design this part. The
particular approach taken in [FIT8la] serves their purpose well: it
demonstrates the degree of flexibility and capabilities of the system.

Following this approach, one quarter of the outer shape of the object is



Frem: (FIT8l]

Figure IV.13 - A Part Defined on GDP/GRIN

first "designed", ignoring its block-shaped top. After two mirroring
and a number of subtractions, the outside shape is completed as a full
solid. The inside shape is "designed" separately as another solid
object and is then subtracted fram the first piece. Finally, the top

block is added on.

The above sequence of operations certainly produce the desired
shape. But, we contend, they are far from what can be considered as an
integrated design of a mechanical part because they do not reflect even
the slightest concern for the manufacturing-related problems which
eventually must be faced for the part's fabrication. Just as software
engineering contends that the goal of programming should not solely be
production of programs which execute, or even those that execute
correctly, we content that the goal of a design process should not
solely be definition of shapes, or even definition of manufacturable
shapes. 2An integrated manufacturable design, just like a well designed
program, must also be verifiable, maintainable, and modifiable, in their

broadest sense. Computers, no doubt, can tremendously aid in production
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of such integrated designs by providing the proper design tools in an
integrated CAD/CAM envirorment.

The prerequisite for an integrated design approach is a structured,
disciplined, manufacturing-oriented design language that combining a
variety of geametric modeling schemes (e.g. RSC, sweeping, etc.) into a
meaningful context, presents a consistent purpose-oriented view of
design and manufacturing., DSG, we believe, is a step toward such a
design language, and as such, represents a shift away from the (no
doubt, necessary) line of effort in solid modeling that lead to
mathematical formalizations like CSG and RSC. It is the purpose of DSG
to transform the image of a design process from being oonceived as a
mere restatement of shape specifications of a part in terms of geametric
entities, (back) into an activity through which a high-level abstract
fabrication plan is delineated, the result of which is certifiably a
manufacturable piece that meets those specifications. Not only this
view of a design process is consistent with the drive toward factory
autamation and integration of CAD and CAM, we believe that a truly
integrated CAD/CAM system would indeed require and impose such an
approach to design. After all, autamation of manufacturing, indeed
eliminates (natural) intelligence and common sense from production
cycles through replacement of humans with robots. As this trend
continues, in order to avoid design and creation of problems whose
subsequent solution would require this lacking common sense, it becomes
increasingly crucial to compensate by making the one intelligent link in
the cycle who is yet least likely to be replaced, the designer, more

aware of the robotic behavior of other links.
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2.1 Querview of DSG

In modeling schemes like RSC, geametric shape is the only primary
concern and shape modification operations are intentionally "ignored" to
the extent that the only potential manifestation of their existence is
as (often quite non-intuitive and arbitrary) relationships between
shapes, expressed in terms of set operations. (Consider, for example,
expressing the relationship between the shapes of a cylindrical rod
before and after a bending operation in RSC or CSG.) Shape modifying
operations, thus, loose their virtues as operations in such modeling
schemes. To make designers aware of the manufacturing-related
implications and design (as well as manufacturing) -related consequences
of their decisions, DSG incorporates abstractions of shape-meodifying

operations with the same emphasis as it deces shapes.

Conceptually, the starting point in the design process of a part in

? piece of raw stock, called an

DSG, is a sufficiently large, shapeless
"initial workpiece", This material is then "sculpted" into its final
form using tools and operations that are abstractions of cutters,

machine tools, and other processes used in manufacturing.

DSG consists of W, the set of all workpieces, T, the set of all
tools, and a set of operations defined on W and T. In order to motivate
the definitions that follow, consider a simple example where a piece of
a block is to be removed by a planar cutting tool. DSG's model for this
process consists of two workpieces, a tool, and an act of "application”

(of the tool).

9 In the sense that its shape and size are presently of no concern.



A workpiece is an abstract data type that contains all pertinent
information regarding a part, at least its geometric shape and its
position and orientation in its spatial neighborhood of interest. The
original block in the above example is therefore modeled by a workpiece
in DSG. Likewise, the information defining the final piece after the
cut constitutes the workpiece which is the result of the application.
The information defining the shape of the cut (a plane in this example) ,
its position and orientation, and which section (or side) is to be
discarded after the cut, together form an abstract data type called (an
instance of) a tool, in this case, a planar cutter. Informally, the
ngide" of a tool whose piece is to be discarded is called the yoid
region of the tool. Apply is a function that relates (an instance of) a
tool and a workpiece and yields a resulting workpiece which is obtained
from the original workpiece by discarding parts of this workpiece which

£all in the void region of the tool.

In addition to apply, other operations are also defined on tools
and workpieces. Scme operators make it possible to compose mOI€ complex
tools out of simpler ones. Such composition operators can be viewed as
abstractions of an extremely flexible machine tool or a manufacturing
robot which can be programmed to perform complex and lengthy sequences
of simple operations and manufacturing processes. Other operations,
e.g. forming processes such as bending, rolling, and shaping can also be

considered, as we shall see later in this chapter.

To think in terms of tools and workpieces, with its strong
manufacturing orientation, is not as unnatural and foreign to designers

as it may appear on the outset. Experience shows that the most popular
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Figure IV.14 - Difference vs. Intersection

operation used in CSG-based solid modeling systems is the (regularized)
difference [JOYBl]. (Union, on the other hand, is not used as often,
and furthermore, it is more apt to be misused as in Figure III.1l7
[JC¥8l].) The reason, we contend, is the close similarity of this
operation to the material removal processes in manufacturing. We
believe that preference of abstract operations with physically
conceivable equivalents over directly unrealizable mathematical
transformations, shows a bias in our "logical thinking" in favor of
abstractions that map more directly into simple, identifiable concepts
in the real world. For example, very few people would design the
slotted cylinder of Figure IV.1l4.a given the one in Figure IV.l4.b using
an intersection as depicted in Figure IV.l4.c; the "natural" way to get
the cylinder of Figqure IV.l4.a from the one in Figure IV.14.b is by a
difference operation as shown in Figure IV.14.d. Even when it is "less
econamical™ to use such "natural choices”, many people still do. For

example, to get the cylinder of Figure IV.14.a from that shown in Figure
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IV.l4.e, many people would still use two difference operations to "chop
off"™ the ends of the cylinder, rather than use a single intersection

operation as in Figure w.1l4.£.

Although the most successful aspect of CSG-based systems in
practice is in modeling of material removal operations, CSG (or RSC) is
not a very good model for such processes. In modeling of material
removal operations in CSG, a problem arises fram the fact that there is
no distinction between what, in effect, models a material removal
process (e.g. the block in Figure IV.14.d) and what represents a piece;
every solid (or its complement) can become the model for a material
removal process if it appears as the second operand of the regularized
difference (or intersection) operator. The problem is that when used as
the model of a cutting process, a solid (or its complement) is quite
often . an overspecification of the process which carries certain
superfluous information. Such irrelevant information can cause

difficulties, as discussed in Section T11.2:2,

The distinction between tools and workpieces in DSG, arises fram
the natural distinction between manufacturing tools and workpieces in
the real world. Furthermore, such distinction in our model permits
clear separation of two significantly different processes: tool design
and part design. The concepts of tools and workpieces also make it
possible to view one of the commonly neglected and poorly handled issues
in autamated design, the handling of tolerances, fram a perspective
meaningful and natural to both designers and manufacturers. DSG views
tolerances not as part definition parameters as, for example, in

variational geametry [LIG82a], but rather as deviations fram the desired
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naminal description caused by the imprecise nature of manufacturing

processes, i.e. application of DSG tools and operations.

The rest of Section IV.2 develops and presents in more detail the
fundamental aspects of our proposed manufacturing-oriented design
language model, DSG. This discussion assumes RSC as its underlying
mathematical formalism for representation of solid objects. However, it
should be pointed out that reliance on RSC is merely as a convenient
means for concrete presentation of ideas and the manufacturing-criented

design methodology advocated by DSG, should be judged on its own merits.

Section IV.2.2 defines the concept of a workpiece and the way it is
used in DSG to represent real-world solid objects. Section IV.2.3
classifies manufacturing processes into different categories, depending
on their common geametric attributes, The next two sections explore
further into two such categories of operations and how they can be
incorporated into a geametric model of solids. Section IV.2.6 is
concerned with telerances and how they can be meaningfully handled

within the operational framework laid by DSG.

2.2 Horkpieces

A workpiece in DSG 1is an abstract data type which defines a
mechanical part or assembly, at least in terms of its geametric shape,
position, and orientation. With RSC as the underlying modeling
formalism, the geametric information content of a DSG workpiece is
representable by an s-half-space (see Section IV.1l.4). Thus, the set of
all workpieces, W, includes representations for any conceivable

mechanical part or assembly.
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Because a workpiece is geametrically defined as an s-half-space
rather than an s-set, W also includes representations which, strictly
speaking, are not realizable because they are unbounded. This, of
course, is intentional. The meaning that we assign to such unbounded
"symbols" in our abstract data type is that they represent (bounded)
real-world objects, certain dimensions of which are of no concern,
provided that they are greater than a (to be determined) minimum. Thus,
for example, an unbounded cylindrical shape in DSG represents a
"sufficiently long" bounded cylinder in the real world (e.g. a rod),
whose (minimum) length will be determined later. In particular, we
define the initial workpiece, I, to be one that contains every point in
E:3, with the interpretation that it represents a bounded, shapelessm,
sufficiently large piece of raw stock whose (minimum) dimensions (and
consequently, shape) will be determined later through the operations
that transform it .-'.'f;;lto a desired final shape. Additionally, the
workpiece that corresponds to the empty set is called the null
workpiece. Whereas bounded workpieces correspond to s-sets that
uniquely represent physically realizable objects, unbounded workpieces
in DSG represent equivalence classes of realizable objects whose certain

yet-to-be-determined dimensions may assume a'range of values.

A consequence of allowing unbounded workpieces in DSG is the
problem of deciding whether or not a given workpiece is bounded,
meaning, whether or not it is least sufficiently defined as to
correspond to a unique object (rather than an equivalence class of
objects). Observe that a three-dimensional shape is bounded, i.e. can

10 In the sense that its shape and size are presently of no concern,
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be fully contained in a sphere of finite radius, if and only if its
orthographic projections on two intersecting projection planes are
bounded (i.e. can be fully enclosed in circles of finite radii). Since
there exist known algorithms for deciding whether or not a two-
dimensional shape is bounded (see, for example, [KAMB3]), it is always

possible to determine whether a workpiece is bounded.

Checking for boundedness of a workpiece and whether or not it is
null, are some of the operations defined on workpieces that inguire
about certain of their attributes. The following section discusses
other more interesting operations that perform various shape

transformations on workpieces.

2.3 Qperations on Workpieces

Having established the concept of a workpiece as the data type
which represents physical objects in DSG, this section concentrates on
permissible coperations on this data type. For this purpose. we need to
look into manufacturing processes. Manufacturing processes can roughly

be classified into three categories:

1- Positioning Operations
These operations consist of translation and rotaticn which are
characterized by the fact that they result in no shape
alteration. Accordingly, the DSG version of positioning
operations can be defined in terms of the three-dimensional
translation/rotation operations on sets of points (see Appendix
B), and can trivially be restricted such that they cannot be

applied where they would result in colliding objects.
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Assembly and Interference Checking

The characteristic of this class of operations is that they
involve more than one object whose individual shapes are not
modified by their application. In DSG, we model assembly by the
assembly operator of RSC, + (see Section IV.1.4). Interference
checking involves computation of the intersection of volumetric
entities. These volumetric entities are either solid objects, or
volumes swept by solid objects as they move through space. Since
such volumes themselves are valid three—dimensional cbject shapes
which thus can be represented by s-half-spaces (see Section
ITI.2.3), interference checking in DSG essentially involves the

RSC operation of intersection.

shape Modifying Operations

The last class of manufacturing operations consist of those that
modify the shape of a part (or assembly). We roughly subdivide
these processes into two classes of material removal and forming
operations. Material removal operations are an important class
of manufacturing processes which due to their relative logical
simplicity, are better understood in geametric modeling to the
extent that they are about the only concern of the majority of
CAD/CAM systems. We believe it is essential to separate material
removal and forming operations into different classes, because
their inherent differences prevent the same modeling approach to
be successfully applied to both. The distinction between the two
types of operations is that whereas in material removal processes

the final shape of the modified locality of an object is rather



independent of its attributes and original shape, results of
forming operations heavily depend on the prior attributes of (the
affected localities of) objects. 1In other words, material
removal operations "assign" predetermined shapes to the affected
locality of a part, whereas forming processes "interact" with a
part to determine their results. »

For example, a milling operation can be abstracted as a planar
cutter. Application of such a cutter to any piece produces a
planar shape (whose exact extent and dimensions, of course,
depend on other case-specific parameters). Therefore, issues
like roughness, plasticity, etc. can be hidden away and the
planar shape of the cut can be viewed as an inherent attribute of
an abstract planar cutter, meaning that it is a geametric
attribute that is invariant from one application of the tcol to
the other. A bending operation, on the other hand, has no
inherent invariant shape attributes; consider the "similarity"
between the shapes of a sheet metal and a rod after they are both
bent by 60°. (There are similar geametric relationships, e.g.

the bend-angle, but not enough to constitute similar shapes.)

Positioning and assembly operations will not be discussed further.
Sections IV.2.4 and IV.2.5 consider shape modifying operations and how

they can be incorporated into our design language, DSG.
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2.4 Ma;sﬂalzmalm;ms

DSG's approach to the modeling of material removal operations in
principle, is not far fram that in CSG or RSC; the orientation and
emphasis, however, is different. Consider, for example, the simple CSG
operation shown in Figure IV.l4.d. There is no question that the block
in this figure represents not a solid, but rather a material removal
operation. However, the only useful information regarding this
operation conveyed by the block, is that it leaves a planar cut surface
perpendicular to the axis of the cylinder; every other information
contained in the definition of the block is superfluous, irrelevant, and
misleading. To do away with such superfluous information, what seemsS to
be appropriate is to model this material removal operation by a planar
half-space. But solid modeling with generalized half-spaces is even
more abstract than dealing exclusively with primitive solids and by our
arqument in the beginning of Section IV.2, even less appropriate for a

high-level design language.

The following subsections start afresh from a different view-point
than half-spaces and develop an abstract model for material removal
operations which will end up to be very close to RSC operations and s-

half-spaces (see Section IV.2.4.2).

2.4.1 Tools

A tool is an abstraction of a sequence of possibly interleaved
manufacturing processes with the net effect of a potential modification
to the geametric shape of a workpiece through removal of its material.

Examples of such sequences include amy combination of cutting, milling,



grinding, and certain types of surface finishing, possibly interleaved
in time with other operation sequences. In Section IV.2.3, we arqued
that material removal operations are characterized by the fact that they
can be associated with predetermined geometric shapes. The net effect
of a material removal operation, thus, can be represented in terms of
three sets defining: (1) the section of space whose material is removed,
N, (2) the locus of points on the boundary created by such removal, F,
and (3) the section of space whose material is left intact by the
operation, P, Clearly, N, F, and P are interdependent (the most obvious
relationship is that since they constitute a tri-partition of space,
only two out of three need to be defined), but we temporarily delay

consideration of such issues and simply define tools as tri-partitions

of E’3:

2.6 DEFINITION:

A cutting tool or tool for short, is a triple <N,F,P> where N, F,
and P are sets of points constituting a tri-partition of the
three-dimensional Euclidean space. Furthermore, if t = <N,F,P> is

a tool, thenvt=NU F is called the void regiopn of tool t. ([
As an example of a tool, consider a plane that divides the space
into the three regions of Sl, S ! and S, respectively designating the
set of points on the opposite sides and on the plane itself. The triple

t= <Sl's'sr> is a tool whose void region is Sl U s.

A tool is simply a specification of a material removal operation.
For this specification to materialize, the operation must be performed

on a workpiece. In DSG, we model this through the function apply:
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5.7 DEFINITION: Apply

Application of a tcol t €T to a workpiece u € W, represented as
Apply(t,u) yields another workpiece W € W which is obtained fram u
by removal of the part of u that £alls in the void region of &;

1.8c APPlY(tfu) =u- vt- D

2.8 DEFINITION:

Application of atocl t€ToON2 workpiece u € W is called proper
if Apply(t,u) #¢. An improper application removes the entire
workpiece. Application of a tool t on a workpiece u 1is called
useless if Apply(t,u) = U, ij.e. t does not modify the workpiece.
a
Figure IV.17 shows a proper non-useless application of a planar cutting
tool to a block-shaped workpiece. Fiqure IV.1l7.2 shows the tool
intersecting with the workpiece, Figure Iv.17.b shows removal of the
part of the block that falls in the void region of the tool, and

finally, Figure 1vV.17.c shows the final result.

Translation and rotation are two other operations defined on tools,
with the effect of individually translating/rotating the sets of the
triple. in [ARB82a], Wwe discussed three operations called
complementation, disjunctive, and conjunctive composition, for combining
tools into other tools. The intention of these operations is to permit
modeling of physically conceivable combinations of material removal
processes. Thus, complementation reflects the fact that given a
material removal process that voids the contents of a particular region
of space, it is generally conceivable to devise another process that

removes the contents of the camplement of that region (however, there
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exist exceptional cases which we shall consider later). Disjunctive
composition of two tools means that given any two material removal
processes, it is always possible to devise another process whose net
effect would be identical to successive application of the two (this
third process can trivially be constructed by combining the two in a
tandem). Conjunctive camposition produces a tool out of two tools using

complementation and disjunctive composition.

Rather than defining these operations directly in terms of set
operations as in (ARB82a], we first formalize the concept of valid tools
and then will define the same valid tool composition operators in terms

of RSC operations.

2.4.2 Valid Tools

The.intention of defining a tool as a tri-partition was to reflect
the identifiable characteristics that one can associate with a material
removal operation, i.e. the loci defining the shape of a cut, and the
voided and intact regions of space. However, Definition 2.6 is clearly
unsatisfactory because it ignores the inter-relationship of these
characteristics and imposes no restrictions on the shapes that can
result from application of tools. Definition 2.9, below, is a
refinement that comes very close to a perfect geametric model for

feasible material removal processes in manufacturingr

2.9 DEFINITION: Valid Tools

A tool t = N,F,P> is a valid tool if the following conditions
hold:
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(1) P is an open set

(2) F =B(P) = B(N) is a patchwise smooth surface
The set of all valid tools is represented by ‘I'v and the two
degenerate valid tools with N = E> and P = E° are denoted as B
and t_, respectively. Q

By Definition 2.8, we can readily conclude that:
1. Application of t toany workpiece is useless.
2. Application of t_ to any workpiece is improper.

3. Application of any tool to the null workpiece is both useless and

improper.

Figure IV.15 - Two Half-cylinders

Definition 2.9 states that the region of space which remains intact
under a material removal operation is an open set. Since the
intersection of two open sets is also open (see Appendix A), this is in
accordance with our intention to medel physical solids by open sets and
prevents dangling faces and edges. Furthermore, this definition implies
that N is also an open set., It is clear why F must be a patchwise
smooth surface; no physical process can produce a three-dimensional

shape which is not (a real-world approximation of) a patchwise smooth
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surface. The implication of requiring F = B(P) = B(N) is that the cut
surface in a material removal operation must become a part of the
boundary of the cut piece (F = B(P)), and that, at the same time, it
must be adjacent to (accessible through) the region of space whose
material is being removed (F = B(N)). In other words, this condition
states that a material removal process cannot create "infinitely thin
cracks" such as shown in Figure IV.15 (more on this figure below). In a
sense, this condition together with the requirement that our sets are
open, amount to a different formalization of the useful relationship
that the open-reqularity ocondition (see Section IV.1.2) establishes

between a set and its boundary.

The F = B(P) = B(N) property makes it possible to uniquely define a
valid tool <N,F,P> by N (or alternatively, by P). Thus, we adopt the-
convention of representing a valid tool by a single set. Therefore,
t=<&> is a short-hand for the valid tool t=<N,B (N) ,ext (N)> (note the
implication that N is open and B(N) is a patchwise smooth surface).

Then, the void region of a valid tool t=<> is VE = N.

The tool composition operators can now be directly defined on valid

tools in terms of RSC operations:

2.10 DEFINITION: Camplementation

The complement of the valid tool <N> is -<N> = <t N> = <ext(N)>.
O
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2.11 DEFINITION: Disjunctive Composition

The disjunctive camposition of valid tools <Nl> and N> is

% _ +
Q> N> = Wy U N>, a

2.12 DEFINITION: Conjunctive Composition

The conjunctive composition of wvalid tools <1\Il> and <N2> is
QO*A> = (11N> O

It is not difficult to verify that the set of valid tools is closed

under complementation, disjunctive, and conjunctive composition.

We now examine the relationship between valid tools and s-half-
spaces and show why s-half-spaces are too general for modeling of
material removal operations. Consider the set represented in Figure
IV.15. This is a valid s-set representing an assembly of two half-
cylinders, and therefore it is a valid s-half-space. However, as
discussed earlier, the s-set represented in Figure IV.15 is not a valid
tool because it includes an "infinitely thin crack” which cannot be
manufactured by any material removal operation. Intuitively, valid
tools are s-half-spaces without such thin cracks and are thus a proper
subset of the latter. Although shape composition using s-half-spaces is
guaranteed to result in realizable shapes, using valid tools instead to
model material removal processes has the advantage of requiring an
explicit assembly operaticn in the definition of objects like the one in
Figure 1IV.15, which in fact are assemblies, and which cannot be

manufactured through material removal operations alone.
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Well-structured design requires operational 'primitives which
perform a single function each. Applying valid tools, as opposed to
subtracting (*+) s-half-spaces, prevents achieving the effect of (at
least) one RSC assembly operation (+) and a removal operation {—+) by a
single removal, and enforces the requirement that importaht assembly
operations must be defined explicitly in a design and cannot be implied.
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Fiqure IV.16 - Inaccessible Holes

One major problem still remains with using valid tools to model
material removal processes. Valid tools include those which as the
cylinder in Figure 1IV.16.a, correspond to no sequence of feasible
material removal processes, involve no "assembly", and yet result in
perfectly realizable shapes and valid objects. The problem with such
objects is that they include holes which are not reachable from outside
and thus cannot be manufactured through material removal. However,
these objects are real and can be fabricated through other manufacturing
processes, e.g. their two halves can be made separately which can then

be fused together.
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To prevent such unrealizable applications of wvalid tools, it is
certainly possible to insist that the void region must be connected (and
always remain connected to "outside" after application of tools).
Imposition of this condition disallows definition of objects such as the
one in Figqure IV.16.a through material removal operations alone.
However, even with this restriction, another class of very similar
objects, e.g. the one in Figure IV.16.b, whose "unreachable holes" are
connected through extremely narrow necks to the objects' envirorment,
would still be definable through application of valid tools alone; yet
these objects are equally impossible to £fabricate through material
removal and must be manufactured through other means such as fusion of

their halves,

The above examples show that, unlike the case of the implied
assembly operation, we cannot devise additional restrictions within our
modeling scheme to prevent cases of "implied fusion", i.e. to prevent
the RSC operator -* fram implying a "magical™ RSC gluing operation (U+).
This result should be neither surprising nor disappointing; a
topologically oriented modeling scheme, such as RSC or CSG, cannot be
expected to differentiate on the basis of purely metric criteria. What
makes fabrication of the object shown in Figure IV.16.b impossible
through material removal alone, is the relative size of its hole's neck
as compared to a cutting device; if the neck were wide enough, it would
indeed be possible to cut the hole through the neck. On the other hand,
it is quite conceivable to practically avoid such undesirable part
definitions in a real DSG-based system by insisting that designers
should use predefined tools, and/or by relatively straightforward



checking of simple metric relationships upon application of tools.

c

Figure IV.17 - Application of a Planar Cutter

Let us now define a valid tool generator function as any function
whose range is a valid tool. As an example, observe that in E3 a vector
can be used to define a plane. Thus, if v is a vector, let Pv denote
the plane to which v 1is normal. We can then define a tool generator
function PLANE-CUT:V —> 'I'V (where V and T, are the set of all vectors in
B and the set of all valid tools, respectively ) such that PLANE-
QIT(v) = N> where N_= 'the set of points on the side of Pv that contains
vector v. It is easy to show that for all v € V, PLANE-CUT(v) is in

fact a valid tool.

The cutting operation of Figure IV.17 can now be expressed as a
proper non-useless application of a tocol <> = PLANE=CUT(v) to the

block-shaped workpiece B. The end result of this application, shown in
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Fiqure IV.17.C is defined as apply (Q¥>,B) = B = Vas = B-N=B - N
Observe that a block can jtself be created by six non-useless, Pproper

applications of planar cutters to the initial workpiece.

A powerful tool generator function is a rotational tool generator
which is an apstraction of a lathe. Let us define such a tool generator
and call it LATHE. LATHE requires a planar curve defining a contour of
a turned piece, an axis in the same plane as that of the curve, and a
region designation for the tool, defining the curve as an outer or an
inner contour. The result of this function is a valid tool described as
Q>, where N is one of the two sets of points comprising the volume
bounded by the surface of revolution of the contour curve around the
axis; N contains the axis if the curve is designated as an inner
contour; otherwise, it does not. LATHE can easily require additional
properties that would guarantee conformity of the shape of the contour
curve to rphysical limitations of available machine tools, e€.9d. minimum

distance between the axis and curve, groove widths, step distances, etc.
2.5 Forming Operations

In Section IV.2.3 we defined forming operation as those whose shape
modifying effect is dependent on the attributes of the affected piece.
Generally, the most jmportant of such attributes, €.9. rouchness,
temperature, pressure, etc. are non—geametric in nature. Therefore it
is futile to attempt to model such operations in general, throush a
purely geametric scheme like RSC.  However, useful special cases of
forming operations which are dominantly dependent on geometric (i.e.

shape related) attributes, can in fact be modeled geametrically. One



such model is proposed below for an important class of manufacturing

processes which we call simple bending.

Although the following discussion is aimed at development of a
model for a specific class of forming processes, it addresses certain
important issues that need to be considered in the modeling of other

forming processes as well.

2.2.1 Simple Bending

This section presents a simplified model for a variety of
manufacturing processes whose net effect can be described as a single—
axis bending of a workpiece. The simplifying assumptions upon which
this model is based are:

1- The non-geametric properties of a workpiece have no or negligibly
marginal effect on its final shape as determined by the bending

operation.

2- The workpiece maintains the shape of its axial cross-sections
along the bend-length and throughout the bending process (see
below) .

The first assumption is necessary to permit purely-gecmetric
modeling of any manufacturing forming process. In particular, it allows
us to ignore the effect of such workpiece attributes as plasticity and
temperature which could contribute to the outcome of a bending process
in such a way as to, for example, dJdetermine which of the shapes in
Figures 1Iv.18.b, ¢, d, and e would be the result of bending the piece

shown in Figure IV.18.a.
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Figure IV.18 - Results of Various Bending Operations

A = bend-ancle
@ = curl-angle
I = bend-radius
a = bend-axis

b= bend-(arc) length

Figure IV.1%8 - Simple Bending

Figure IV.19 presents our terminology for bending operations.
Using this terminology, axial cross-sections of a workpiece are cdefined
on its final shape as the intersections ¢f the workpiece with planes
that pass through the bend-axis (a) and are (inclusively) contained
within the curl-angle (é). The second assumption, above, states that
such axial cross-sections are all identical gnd are the same as the

intersections of the workpiece along the bend-length (b), with normal



planes parallel to the bend-axis prior to the bending operation. 1In
other words, it assumes that the shape of a workpiece (i.e. its
intersection with normal planes) along the bend-length is a constant
before the bending, and it remains a constant after the operation, and
that these two constant shapes are the same. Consequently, the
geametric transformation that maps such before-bending cross-sections to
their after-bending counterparts, is an identity mapping in simple
bending.

We refer to manufacturing bending processes for which the above
assumptions are reasonably valid as simple bending. The implication of
our first assumption is that a bending operation (or indeed any class of
forming operations) can be modeled by a unique set of geametric
transformations, and that the parameters to these transformations are
certain purely-gecmetric attributes. The nature (and complexity) of
these transformations, however, 1is quite arbitrary. The second
assumption, on the other hand, enables us to model a class of forming
operations (simple bending) by a set of relatively simple gecmetric
transformations. Thus, whereas the first assumption does permit us to
devise a model for bending processes based on a transformation that
converts the shape in Figure IV.18.a to either one of those in Figures
Iv.18.b, ¢, d, or e (it merely states that such a transformation cannot
be based on non-geametric attributes), our second assumption implies
that only transformation of the shape in Figure 1IV.18.a to that of

Figure IV.18.b constitutes a simple bending.
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Figure IV.20 - Shapes with Varying Cross-sections

Many manufacturing forming operations such as bending of axially
symmetric parts and sheet-metal bending and rolling can be reasonably
well approximated by our siup_le bending model. Bending of certain
specialized shapes, however, does not fit in this model. Figure IV.20
shows same examples. The problem with these shapes is that they defy
the second assumption of simple bending: their intersections with normal
planes along the bend-length are not jdentical to one another. It is
quite conceivable to devise a uniformly-deforming transformation to
maintain the shape of each such intersection through a bending
operation.  Thus, by scmewhat relaxing the second assumption of simple
bending, a more general model for bending processes can be defined to
cover a wider class of shapes, including those in Figure Iv.20. We do
not intend to consider such alternatives further at this time because,
firstly, a sufficiently large class of useful shapes and processes can
be approximated by simple bending, and secondly, incorporation of a more
complex geametric transformation increases the canplexity of our model

without resulting in significant conceptual improvements.
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Figqure IV.21 - DSG Implementation of Simple Bending

In principle, simple bending is modeled in DSG through rotational
sweeping and rotation. A simple bending of a workpiece in DSG is fully
defined by a bend axis and a curl-angle. All other significant
parameters defined in Figure IV.19 can be derived from these twe. One
of the two opposite ends of the workpiece (relative to the bend-axis)
can be defined as fixed for the duration of the bending operation.
Consequently, one or both ends of the workpiece would be free to
dislocate due to bending. The geametric transformation of simple
bending can be implemented in DSG through rotational sweeping and RSC

operations in four steps:

1- Bisection
The workpiece is bisected by a tool made out of two planes apart
by a distance equal to the bend-length, both parallel to the

bend-axis and normal to the workpiece (Figure IV.2l.a). If one
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end of the workpiece is designated as fixed, then its
corresponding bisecting plane passes through the bend-axis;

otherwise the two planes are equidistance fram the axis.

2- Rotation
One (or both) of the pieces of the workpiece which 1is (are)
designated as free is (are) rotated along the bend-axis by (one

half of) the curl-angle (Figure TV.21:D)»

3- Sweeping
The axial cross-section of the workpiece is rotationally swept
along the bend axis by the curl-angle to £i1l1 up the gap caused

by bisection and rotation (Figure IV.21.C).

4- Fusion
The three touching pieces are fused together by an RSC ut

operation (Figure Iv.21.4d).

Note that the above steps describe the geometric transformation
that derives the final shape of a workpiece as the result of a simple
bending operation. These steps or their intermediate results are not
seen by either designers ot manufacturers. This is an important pcint
because it demonstrates how a meaningful high-level geometric
transformation that closely models a manufacturing process can be
implemented as an integral operation in DSG. In this case, DSG defines
an easily understood transformation (bending) in terms of the essential
parameters (bend-axis and an angle) which are directly relevant to its

real-world manufacturing counterpart.



Figure IV.22 - Sharp Angle Due to Zero Bend Radius

Several variations and enhancements to this scheme for bending are,
of oourse, possible. In particular, note that we permit a bend-radius
of zero whigh produces a bend length of zero. This results in "sharp
angles" which are not truly possible in the real-world, at least not
through bending (see Figure 1IV.22). Exclusion of such cases and
validation of the proportional dimensions of a workpiece are among the
straightforward improvements that can be considered. But even in its
simplest form, simple bending in DSG 1is a powerful operation that
meaningfully combines two gecmetric modeling schemes (sweeping and RSC)
to present an image 6f a useful and important class of manufacturing
processes in a context easily understood by both designers and

manufacturers,

2.6 Tolerance

Tolerance refers to the extent of inaccuracy that can be sustained
or tolerated in a design without jeopardizing its functionality. Thus,
tolerance is different than precision which is the degree of exactness
to which a quantity can be measured. If an inaccuracy can be measured
(precision), it is in fact always possible to devise a manufacturing

process to eliminate it. Therefore, in theory, any "reasonable"
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precision can be met in manufacturing and there is no need for
tolerancing. Nevertheless, the concept of tolerancing becomes a genuine
design issue because it is the designers' job to know that all
manufacturing processes are inherently inaccurate and althouch they can
be combined in such a way as to produce accurate results to within amy
possible measurement precisiocn, doing so could indeed be exorbitantly
costly and absolutely unnecessary. For example, a deviation of 1/16" in
a 60"x30" desk-top is by no means an obstruction to its functionality

and therefore it is senseless to insist on its eradication.

In this view, it is the inaccuracies of manufacturing processes
which emerge in design in the form of tolerance and (must) become a
concern of designers to be judiciously weighted on the basis of their
impact on functionality and fabrication costs. In contrast to gecametry
and shape, tolerance is much less of a "free choice" for a designer;
whereas he is free to choose almost any shape ot dimension to realize
the functionality he contemplates, he is more severely limited by
pragmatics and cost implications in his choice of tolerances in order to

preserve this functionality.

In traditional hand drafting, dimensions and tolerances that appear
on an engineering drawing are generally wafter-thoughts”. As a result,
inconsistent dimensions and tolerances leading to impossible or
unnecessarily expensive fabrication plans, are quite common and are
sametimes caught very late (if at all) in production cycles. Since
virtually all mechanical CAD systems keep and, to some extent, check the
geametry of parts, it is generally difficult to produce inconsistent

dimensions in Camputer Aided Drafting/Design systems. On the other



hand, very few CAD systems incorporate a geametric model capable of
representing tolerances in general and, consequently, tolerance in these
systems is still mostly an "after-thought” whose consistency and
reasonability remains unverified.

The current literature on models for dimensioning and tolerancing
J':.s sparse. In PADL-1l, a hierarchical tree is used to represent the set
of dimensions along each of the three principal axes [RHD77a]. This
technique relies on the principle of orthogonality in PADL-1 (see
Section III.3.4.1) and it is not clear whether it can be successfully
generalized to incorporate arbitrary geametric shapes positioned
arbitrarily to compose a part. In order to model dimensions and more
importantly, tolerances, it is necessary to identify an object's
boundary elements (faces, vertices, and edges) upon which dimension and
tolerance constraints are to be imposed., This information is not
readily available in a CSG definition of a part and must be (nom—
trivially) evaluated [SII81] before tolerances can be assigned to

functionally meaningful dimension—chains in PADL.

Rigidity matrices of [HIL78a] and, along the same line, variational
geanetry [LIN81, LIG82a, LIG82b] are examples of more general
mathematical models for dimensioning capable of dealing with tolerances.
In [HIL78a] three types of "stiffeners" are used as constraints on
linear dimensions, angle dimensions, and planarity of a set of geametric
components which comprise a "flexible-joint frame" model of a solid
object. These stiffeners can be combined into more complex constraints
reducing a frame's degree of freedom. The rigidity matrix corresponding

to such a frame indicates whether a represented object is under, over,
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or exactly constrained (i.e. defined) and can be used to study the
geametric effect of "small loosenings® of some of its stiffeners (i.e.
tolerances) . Variational geametry [LIN81, LIG82a, LIG82b] incorporates
a generalization of the rigidity matrices of [HIL78a] into an approach
to part definition similar to that of [FIT8lb]. In this approach,
hand-drawn sketches are used as a rough definition of a part's
"topology".  Such sketches are then fitted with straight lines and arcs
and the result is then used in conjunction with a set of parametric
dimensions to define a solid object. Tolerance, shape, and certain
functional characteristics of a defined part are represented as
mathematical constraints in terms of equations binding the part's
parametric dimensions. Sufficiency and consistency of such a part
definition, as well as consequential geometric effects of "varying"
certain parameters, can then be checked through solving a system of

simultaneous equations.

variational gecmetry provides a mathematical framework for study of
such interesting topics in CAD/CAM as families of parts and tolerances.
However, this framework alone is not sufficient for a complete treatment
of tolerances because it is limited to modeling of gecmetric aspects of
tolerancing only. On the other hand, even more so than in case of
dimensioning (see Section II1I.1.1.2), the primary goal in tolerance
specification is not shape definition, but rather, characteristic
specification of the manufacturing operations which fabricate shapes.
vVariational geametry makes it possible to study the geanetric effects of
changing parametric dimensions of a part subject to a set of

constraints. As such, this and other similar schemes, e.g. rigidity



matrices of [HIL78a], form a necessary foundation for modeling of
tolerances. In reality, however, not all dimensions of a part can be
set or changed freely or similarly, although it may appear so
mathematically. Manufacturing processes and the o:;der in which they are
applied impose a "priority™ on certain dimensions and tolerances and
create a "consequentiality relationship” among certain .shape-components
of mechanical parts. This relationship must be considered and verified
in an integrated design in order to achieve a practically feasible and
econamically optimal fabrication plan, Such complex relaticnships
cannot be fully represented in terms of simple constraints as those in

variational geametry.
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Figure IV.23 - Precedence of Operations Imposed by Tolerances

For example, consider Figure IV.23 which shows the front view of a
part with two different (incomplete) dimensioning and tolerancing
schemes, requiring the same tight tolerance t. At the outset, it may
seem that the two schemes are equivalent or even, that scheme B which
implies only one tight tolerance should be more economical for

manufacturing. However, a closer examination reveals that not only
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scheme A is less costly, but that the two schemes imply two quite
different manufacturing process plans, implementation of one of which
(the one corresponding to scheme B), may in fact be well beyond the
practical limitations of the common manufacturing tools and processes.
The true nature of the problem can be appreciated only when the
manufacturing process plans implied by the two schemes are considered.
Both plans, naturally, involve a few machining (lathing) and bending
operations. The crucial point, however, is the order in which these
operations are performed. Because of the fact that the tight tolerance
involved here cannot be met throuch a bending operation, scheme B
implies that the rod must be bent before its final machining, whereas
scheme A permits a manufacturer to perform the lathing operations first
and then bend the rod. A very sericus problem now unveils: dependinglon
the actual dimensions of the part, it may in fact be impossible to lathe
a bent piece as per scheme B. Moreover, when and if possible, such an
operation is very 1likely to be much more expensive than a regular
lathing process such as what is required for scheme A. The fundamental
issue here, 1is the presence of a tight tolerance in scheme B, over a
length whose fabrication involves an inherently imprecise process, i.e.
bending. Scheme A, on the other hand, places the same tight tolerance
over lengths whose fabrication involves two more-precise operations of
lathing and end-facing (cutting). It is not possible to even begin to
appreciate and deal with the variety of subtle points such as those
alluded to in the above example, with tolerance modeling schemes like
variational geametry or the ones that can be incorporated into a purely
shape-oriented model such as CSG [REQ77a] or RSC, where the fundamental

protagonists (i.e. manufacturing operations) are not racognized,



represented, and treated properly. Techniques such as rigidity matrices
[HIL78a, b and c¢] and variational geometry, however, constitute a
suitable mathematical basis for the study of the geametric effects of

dimensioning and tolerancing.

We believe that a proper model for dimensioning and tolerancing
should be based on an operational cause-effect view of part production:
(positional) dimensions define the nominal locations affected by
manufacturing processes, whereas tolerances are caused and imposed on a
design by the manufacturing processes selected for its fabrication.
Since it is the responsibility of designers to ascertain that a part's
functionality is most economically preserved by tolerances which result
from manufacturing operations, designers' contribution to manufacturing
process planning must go beyond "conservative" specification of a set of
"idealized" tolerances. Designers must verify tolerances, not only to
confirm their consistency and accordance with a part's functionality,
but also to validate their economical justifiability in view of their

implications on the part's manufacturing process plan.

The operational framework of DSG presents an appropriate foundation
for modeling of tolerances not only in terms of their mutual consistency
and effect on geametry, but more importantly, in terms of their impact
on fabrication cost and process planning. Detailed development of a
sound formal model for tolerancing is a recognized necessity which is
beyond the scope of this dissertation. Certain important aspects of
tolerancing, however, can be successfully handled through DSG by
associating a tolerance with every defined tool and operation.

Application of tools and operations in the ocourse of definition or
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modification of shapes, would then both define consistent dimensioning
schemes, and impose their associated tolerances on the affected shapes.
In this way, such issues as feasibility, consistency, and cost can be
autanatically handled in a DSG-based system through safeguards and

validity checks initiated by designers' tool selections.



: 0 DSG

The following examples are intended to illustrate how a DSG-based

system would be used by a designer in order to define a mechanical part.

As a first example, consider definition of a piece of raw stock
shaped as a hexagonal rod. Such a piece can conceptually be "carved”
out of the initial workpiece by application of six planar cutters at 60°
angles to each other, followed by two other planar cuts perpendicular to
the first six in order to end-face the stock. The information required
for positioning and application of these cutters can be entered
interactively through a graphic interface into a DSG modeler. A
designer can, for @example, draw a two—dimensional hexagon and
subsequently use it as a means of supplying the information that defines

11

the position and orientation of the first six planar cutters (see

Figure IV.24.a).

A design scenario could be as follows: The designer first selects
the initial workpiece (or equivalently, a sufficiently large block) from
the system's raw stock menu. By selecting a planar cutter with proper
tolerance (see Section IV.2.6) from the menu of tools, he then informs
the system what tcol he intends to apply. The user-interface processor

now knows the specific modeler function to be invoked and the

11 Note that this hexagon is and never will be a part of the object's
model; it is merely a "graphic expression" which gets evaluated by
the interactive graphic user-interface into the necessary
parameters expected by the DSG modeler. In order to avoid
confusion, such graphic expressions would better be represented in
a distinct color, if possible, or a specific line-type. We use
dashed-lines to show any graphic symbel which is not a part of
solid models.
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Figure IV.24 - Definition of a Hexagonal Red

information it requires as parameters. In our example, this function is
PLANE=UT defined in Section 1IV.2.4.2 and expects a vector as its
parameter. Selection of an edge of the two-dimensional hexagon together
with a "direction"” indication by the dJesigner, provide the user-
interface processor with sufficient information to create a suitable
vector (Figure IV.24.b). Supplied with this vector, PLANE~UT geﬁerates

a valid tool (see Section IV.2.4.2) whose application to the initial



workpiece results in another workpiece which is bounded only on one side
(see Fiqure IV.24.c). Similar applications of PLANE-CUT using other
edges of the two—dimensional hexagon yields the workpieces shown in
Figures 1IV.24.4 through h. Mearwhile, the (partially completed)
workpiece can be moved and rotated at will, in order to provide the
designer with his desired view. A 90° rotation of the (still unbounded)
rod in Figure IV.24.h around the y-axis positions the rod properly for
end-facing (Figure IV.24.i). Two more applications of PLANE~CUT, a
proper distance apart (Figures 1IV.24.j and k), result in the object

shown in Figure IV.2S.

Figure IV.25 - Hexagonal Rod

Since application of each tool modifies the geometric shape of the
workpiece, assigns a tolerance to its modified locality, and at the same
time, specifies a sequence of (interleaved) manufacturing operations
which can materialize such desired effects, the final model is that of a
consistently-toleranced solid object which is well-defined both
geametrically and in terms of a feasible, abstract fabrication plan. At

this point, definition of the hexagonal rod can be stored into the
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system's raw stock menu (possibly, together with a set of constraints
relating characteristic dimensions of its shape for validation checking
upon use), in which case it can be autamatically verified to insure that

it indeed defines a finite piece.

Figure IV.26 - L~-Shaped Bracket

As another example, consider definition of an L-shaped bracket
shown in Figure IV.26. A scenario for this definition could start with
selection of a sufficiently large piece of block-shaped raw stock from
the menu. Several applications of planar cutters produce an exact sized
block with desired tolerances. Next, an L-shaped corner—cutter
(conjunctive composition of two perpendicular planar cutters) with
proper tolerance produces the bracket. Finally, the hole can be
ngrilled" by application of a cylindrical cutter with proper diame.2r

and tolerance.



Figure IV.27 - A Lathing Contour

As a third example, consider a simple lathing operation on a part
such as the one in Figure IV.25. The lathing contour and axis for this
operation can be defined through the interactive graphic interface as in
Figure IV.27. This information, together with a tolerance and another
parameter indicating that this is an outer contour, is then passed to
function IATHE (see Section IV.2.4.2). LATHE in turn, can verify that
the requested operation and tolerance are indeed feasible before it
generates a valid tool. Applicatisn of this tool to the workpiece shown

in Figure IV.25 results in the object shown in Figure IV.28.

172



r—"&-——y

B —
- |

Figure IV.28 = Two Views of a Turned Piece

4 Conclusions

DSG proposes use of abstractions of manufacturing tools and
processes during the design of mechanical parts; it does not advocate,
however, that a design process should define or even simulate a part's
actual manufacture, In other words, the DSG model of part definition
falls somewhere between a simulation model of its manufacturing, and on

the other extreme, the highly abstract shape composition model of RSC.



In general, every abstraction eliminates certain information fram
the model it produces. Depending on the degree of abstraction, however,
such eliminated information can be considered "hidden" or "lost". This
distinction is important in modeling because although neither lost nor
hidden information is contained in a model itself, hidden information
can generally be seen and manipulated indirectly through implication,
whereas lost information cannot be accessed through the model. For
example, the details and the precise order in which real manufacturing
operations are performed to fabricate a part are eliminated fram both
RSC and DSG models of the part. However, this information is hidden in
OSG in the sense that the existence of a set of shape modifying
cperations subject to real manufacturing constraints is acknowledged
and, in fact, constitutes an integral part of this model. This same
information is 1lost in RSC (or CSG) in the sense that, in general, a
part definition in RSC reflects no hints to or oconcerns for real
manufacturing constraints. Consequently, DSG's procedural style of part
definition and similarities between DSG operations and those in actual
manufacturing should provide a more suitable basis for autcmated process

planning than CSG or RSC definitions do.

CAPP codes (see Chapter I) in effect define equivalence classes of
parts based on certain characteristic attributes of their geametric
shapes., These characteristic attributes are defined in such a way as to
determine a certain sequence of manufacturing operations each. A part
definition in CSG provides no relevant information other than the part's
geametric shape. Association of CAPP codes to such a purely-geametric

definition, in general, requires some quite non-trivial heuristics. On
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the other hand, 0sG defines equivalence classes on (sequences of)
manufacturing processes and operations, based on the shapes and
tolerances they produce. gach such equivalence class is represented in
DSG by an abstract tool or operation. A carefully defined set of tools
in a DSG-based system can in fact come quite close to gefining the same
equivalence classes of shapes as does a specific CAPP-coding scheme.
Conceptually, 1in such a system, the DSG definition of a part can by
itself substantially determine its CAPP code. Thus such DSG definitions
become an aid to autanated manufacture of parts by providing the same

geametric information as contained in an equivalent CSG definition, in a

w
4

more—directly-usable format for CAM.
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Figure IV.29 - An Assembly of Wedges

Given a DSG part def inition, process planning involves selection of
a particular (sequence of) manuf acturing operation(s) among the members
of the equivalence class of operations associated with each DSG teol

used in that definition. This selection is based on a number of



parameters, same of which can be geametric in nature. A judiciously
defined set of tools in a DSG-based system should minimize the number
and complexity of such gecmetric parameters. For example, the assembly
of Figure 1IV.29 can be defined in DSG by application of a cylindrical
cutter drilling a hole in a block. This definition, however, does not
correspond to a feasible manufacturing process plan and therefore at
process planning, instead of a drilling operation, another member of the
equivalence class associated with this cylindrical cutter must be
"selected”, i.e. one that corresponds to a more elaborate sequence of
material removal operations which together produce the assembly. The
criteria for selection of this sequence of operations over a simple
drilling is geametric in nature, and automatic derivation of these
operations can be camplex. A DSG-based system can choose not to allow
such definitions in the first place, by imposing validity checks on
tools upon their application (e.g. the hole's diameter must be smaller

than the size of the block in Figure IV.29).

The choice of permitting a designer to use a cylindrical cutter to
define the assembly of Figure IV.29, vs. forcing him into defining this
assembly in terms of more elaborate, but realistic manufacturing
operations, typifies the two ends of the spectrum of abstraction wherein
DSG part definitions lie. It is conceivable to develop a DSG-based
system flexible enouch to permit a wide range of abstraction in part
definitions. In such a system, early stages of a design can use more-
abstract, simpler operations to initially define a shape (e.q. a
cylindrical cutter to produce the assembly of Figure 1IV.29). Later

(maybe at process planning), such unrealistic operations can be
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(semi) autamatically located within a definition and substituted with

(i.e. "compiled” into) more elaborate sequences of operations.

A potential disadvantage in using DSG as a design language is that
the operational structure and discipline imposed by DSG on designer.s can
restrict their creativity. The seriousness of this point, of course,
remains to be evaluated in practice. However, the need for
standardization in design and for a structured and disciplined design
methodology has been acknowledged by many researchers, €.9. [GJc8a,
SAM76], and one can argue that any discipline is a restriction on
creativity. Furthermore, no design can in fact be considered complete
unless at least the (sometimes elaborate) details needed for its DSG
definition are worked out. Thus, the extra effort (if any) required for
completion of a DSG part definition (as, for exanple, compared to an RSC
definition) is in fact an effort spent on completion of an integrated

design, rather than to gvercome scme artificially created barrier.

There is more to the issue of creativity in design than our brief
discussion above. An overwhelming majority of real-world designs can
indeed be categorized as nroutine design". AS opposed o "creative
design", routine design involves a part whose functionality is quite
clearly understood, its shape is almost precisely defined, its
manufacturability is guaranteed, its fabrication plan is quite well
understood, and for which a very accurate production cost estimate is
also available. Examples of this type of design include design of such
common items as bolts, sleeve stops, support brackets, etc. Virtually
all new part designs which are in fact obtained through a modification

to an existing object, also fall into this category. The significant



characteristic of routine design is that it does not involve creation of
new tools or manufacturing processes. On the other hand, creative
design involves creation of truly new parts in order to materialize new
functionalities, Fabrication of such parts may require new and
specialized tools and processes, the precise design of which should
carefully go hand-in-hand with that of the parts themselves.

We contend that DSG is indeed a proper framework for routine design
of mechanical parts. It is only in creative design that simultaneous
invelvement with functionality, geometric shape, and manufacturing
issues may confine designers' creativity. Perhaps what is required for
creative design, then, is availability of two concurrent, compatible,
but different systems: a DSG-based system on which complete detailed
designs can finally be produced, and another system (RSC-based? surface
oriented? based on free-hand sketching? ...) on which preliminary design
"sketches" can be tried out free of manufacturing concerns, until a

reasonably firm geametric shape evolves for a new part.

In Chapter III we reviewed several major representation and
modeling schemes for solid objects. In Section IV.1.4, yet another
solid modeling scheme was proposed. Aside from formal limitations of
scme of these schemes, many of them are indeed practically useful
models, each with a narrow but focused view of geometric shape
composition which makes it suitable for certain specific design
purposes. Amalgamating several geametric modeling schemes in a CAD
system, theoretically increases the system's potential applicability and
expressiveness, But, diversity of incompatible views in such a system

can in fact become an obstacle to its effective usefulness. To provide
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a meaningful multi-approach solid modeling scheme, a broader coherent
view of object definition is required which is beyond that of any single
specialized approach to solid modeling such as RSC, sweeping, boundary
representation, etc.; what 1is needed is a context wherein a number of
these solid modeling schemes can npaturally” £it. We pelieve that a
design language pased on a manufacturing—oriented view of part
def inition provides a proad enouch coherent context within which a

variety of different geametric modeling approaches can concur.

The impetus of integration of CAD and CAM is a conf irmation of the
fact that the artificial isolation of design and manufacturing is no
longer productive in an overall analysis. This integration, however,
cannot be neaningfully achieved unless a manufacturing—oriented context
is laid as the foundation of a design languade wherein fabrication
limitations and economics of design can be defined and dealt with by
designers. Reflecting the operational nature of manufacturing in design
permits controlled and selective exposure of designers to various
hierarchical levels of such details in an integrated design of
mechanical parts. An operational approach to Gesign also makes it
possible to coherently deal with issues like practical applicability of
tools and operations, tolerances, and forging ervelopes, through

associating certain "semantic attriputes" with every tool and operation.

gection IV.2.6 discusses how tolerances can be modeled as semantic
attributes of DSG operations. The problem of computing casting or
forging envelopes for parts, although practically yery important, has
not been studied seriously and is virtually ignored by all CAD systems.

This is, at least partly, gue to the fact that the common purely-



geametric solid models cannot be expected to successfully differentiate
between geametric shape-components on the basis of essentially non-
geametric criteria. The problem of forging envelopes can be stated as
follows: Given the desired shape of a mechanical part (after machining)
together with a set of regquired (non—-geametric) properties such as
strength, rouchness, etc., what is the shape of an initial piece which
can be machined into that desired final shape, subject to the (gecmetric
and non—geametric) constraints imposed by the regquired machining
operations and the part's shape?

A manufacturing-oriented operational model such as DSG makes it
possible to express this problem in terms of concepts defined within the
modeling scheme. The forging envelope problem can be restated in DSG as
follows: Given a shape S with an associated set of attributes As' and
given a DSG operation (sequence) O whose immediate result is S, what is
the "minimum" (i.e. weakest) set of requirements that must be satisfied
by a shape S' on which O can operate to produce S? In other words, f£ind
S' (and As,) such that application of O on S' results in S (and AS) .
Stated in these terms, the similarity between this problem and
correctness proofs of programs based on Hoare's axiomatic semantics of
programming languages is compelling., It is both interesting and
theoretically ©possible to define "semantics" for manufacturing
operations in DSG through axioms that relate shapes and other non—
geametric attributes of their operands to those of their results. A DSG
part definition not only defines a part's geametry, but also gives the
DSG operations which produce that geometry. Evaluation of a part's

forging envelope, then, can be accomplished constructively through a
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sequence of formal deductions using the axiomatic semantics of its
def ining DSG operations, peginning with the final part and going
packward one operation at a time, in the same style as a program‘s

weakest Pr econdition is evaluated using axiamatic semantics of

progr amming languages.

The direction of our future work in CAD/CAM 1s inf luenced py our
pelief that meaningful integration of cap and CAM requires deeper
understanding of manufactur ing production cycles and, 1in pa:ticular,
further study of manuf actur ind processes from a design perspective. We

intend to pursue this research alond the followind lines:
1- mplanentation of a prototype psG-based intedt ated CAD/CAM system

autanated derivation of manufacturing process plans from DSG part

3]
1

def initions
3- Study and modeling of tolerances

4- Study and modeling of shaping, forging, casting, and other

interesting manufacturing processes






APPENDIX A

Properties of Metric Spaces

The distance between two points x = (xl,xz,...,x and y =

)
n
(Y1/¥gree+s¥y) in the n-dimensional Euclidean space E is defined by the

2oty x )%, The function 8(x,y) is

function §&(x,y) = \{(yi—xl)
non-negative for every pair (x,y) and has the following properties for

any three points x, y, and z:

i - 8(xy) =0<=>x=y

ii - 8(x,y) = 8(y,x)

iii = 8&(x,2) £ 8(x,y) + 8(y,2)

Abstracting the notion of distance from Euclidean spaces, a metric
space is defined as a set X together with a non-negative function § on
X x X satisfying the above three conditions [EDMBO]. In such a metric
space, function & is called the metric and members of X are called
points., We are not interested in metric spaces in general, rather, we
wish to use same of the fundamental definitions and theorems of metric
spaces as they apply to Euclidean spaces, or more specifically as they
apply to E3.

A.l DEFINITION:

Let X be a metric space with metric 8., If X, is a point of X and
r is a positive real number, the open sphere s;here(xﬂ,r) with
center X5 and radius r, is the subset of X defined by

s;here(xo,r) = {xlS(x,x0)<r}



An open sphere is always non—empty, because it at least oontains
its center. Similarly, the closed sphere sphere[xo,r] with center
Xq and radius r, is the subset of X defined by

sphere(x,r] = {xlS(X;XO) Lr}

A closed sphere too, is always non—empty, because it at least con-
tains its center.

A.2 DEFINITION:

Let X be a metric space. A subset G of X is called an open set
if, given any point x € G, there exists a positive real number r
such that sphere(x,r) C G. [J

A.l Theorem:

In any metric space X, the empty set ¢ and the full space X are
open sets [SIM63]. [J

A.2 Theocrem:

In any metric space X, each open sphere is an open set [SIM63].
a

A3 Theorem;:

Let X be a metric space. A subset G of X is open if and only if
it is a union of open spheres [SIM63]. [

A.4 Theorem:

Let X be a metric space. Then (1) any union of open sets in X is
open; and (2) any finite intersection of open sets in X is open
[SIM63]. [
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A.3 DEFINITION:

Let X be a metric space, and let A be a subset of X. A point x in
X is calledalj_mi;mim;ofAif each open sphere centered on X
contains at least one point of A different from X. a

A.4 DEFINITION:
--&»

Let X be a metric space. A subset F of X is called a closed set
if it contains each of its limit points. 0O

A.5 Theorem:

In any metric space X, the empty set ¢ and the full space X are
closed sets [SIM63]. )

A.6 Theorem:

Let X be a metric space. A subset F of X is closed if and only if
its complement F' =X - F is open [SIM63]. a

A.7 Theorem:

Let X be a metric space. Then (1) any intersectiocn of closed sets
in X is closed; and (2) any finite union of closed sets in X is
closed [siM63]. [

A.5 DEFINITION:

Let X be a metric space, and let A be a subset of X. The closure
of A, denoted by E, is the union of A and the set of all its limit

point. O



A.8 Theorem:

Let X be a metric space, and let A and B be subsets of X. Then
[SIM63, REQ78]:
(1) A is the smallest closed superset of A, i.e. every closed
superset of A contains A.
(2) A is closed if an only if A = &,
(3) A is equal to the intersection of all closed supersets of

O

A.6 DEFINITION:

Let X be a metric space and A a subset of X. A point x in X is
called a boundary point of A if each open sphere centered on x in-
tersects both A and its complement A'-= X - A. The boundary of A,
represented as g(A), is the set of all boundary points of A. [J

A.9 Theorem:

Let X be a metric space and A and B subsets of X. Then [SIM63,
RED78] :

(1) B@a) =B@A")
(2) Ba) =aNA"

(3) B(A) is a closed set

(4) A is closed if and only if B@a) C A
(5) A=2UB(®)

(6) B(AUB) CB(A) U B(B)

(7) BANB) Cp@) UBB

(8) B(A - B) CB(A) UB(B
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A.7 DEFINITION:

Let X be a metric space and let A ke a subset of X. A point in A
is called an jnterior point of A if it is the center of same open
sphere contained in A. The interior of A, denoted by int(A), is
the set of all its interior points. The exterior of A, denoted as
ext (A), is the complement of A. [J

A.10 Theorem:

Let X be a metric space, and let A and B be subsets of X. Then
[RED78] ¢

(1) A = int(A) if and only if A is open.

(2) if A C B then int(A) C int(B).

(3) ext(a) = int(a')

(4) int(a)' = A"

(5) int(@a 1 B) = int(a) (] int(B)

(6) int(A) U int(B) C int(A U B)

(7) int(d) C int(A)

(8) int(A - B) = int(A) - B

(9) A = int(a) U B(a)
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APPENDIX B

Translation and Rotation

B.l DEFINITION:

Translate:RealxRealxRealxS —> S, where S is the set of all subsets
of E3, returns Translate(a,b,c,u) =V where:

v = {g| p €uand xq - xp + a, Yq = YP + b, zq = zp + ¢}

and X, Y, and Z represent the coordinate values of their subscript
points. 0O
B.2 DEFINITION:

Rotate:RealxRealxRealxS —> S, where S is the set of all subsets of
33, returns Rotate(a,b,c,u) =V where:

= {q| peEu and [ququZq] = [XPJYPIZP] X MR}

X, ¥, and Z represent the coordinate values of their subscript
point, and My is the three dimensional rotation matrix performing
a rotation around the X-axis by angle ¢, followed by a rotation
around the Y-axis by angle b, follwed by a rotation around the Z-
axis by angle a [GIL78]:

My M2 ™3

M= oy T2 T8
My M2 M3
mq = cos a.cos b
Mo = sin a.cos b
M3 = -sin b
myp = -sin a.cos ¢ + cos a.sin b.sin ¢

cos a.cos ¢ + sin a.sin b.sin ¢

By



My3 = COS b.sin ¢
myy = sin a.sin ¢ + cos a.sin b.cos ¢
My, = —COS a.sin ¢ + sin a.sin b.cos ¢
My3 = COS b.cos ¢
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