GRAPHS AND POLYHEDRA

Binary Spaces and Cutting Planes

Biblothaek
Centrumvoo \Wislhanda en Informatica
Amgivegam






GRAPHS AND POLYHEDRA

Binary Spaces and Cutting Planes

Proefschrift

ter verkrijging van de graad van doctor
aan de Katholieke Universiteit Brabant,
op gezag van de rector magnificus,
prof. dr. R.A. de Moor, in het open-
baar te verdedigen ten ocverstaan van
een door het college van dekanen aange-
wezen commissie in de aula van de
Universiteit op vrijdag 11 maart 1988
te 16.15 uur

door
ALBERTUS MARIA HENRICUS GERARDS

geboren te Heerlen



Promotor: Prof. Dr. A. Schrijver.



ACKNOWLEDGMENTS

I am very much indebted to Professor dr. Alexander Schrijver for in-
troducing me to the fields of Combinatorial Optimization and Polyhedral
Combinatorics, for his stimulating and encouraging guidance and for the
pleasant hours we spent doing mathematics.

I thank Bill Cook, Andras Frank, Laszld Lovasz, Andras Sebd, Paul
Seymour, Eva Tardos and Klaus Truemper for several stimulating discus-
sions. Some of the results in this thesis are based on joint articles.

Research leading to this thesis was done at the Faculty of Actuarial
Sciences and Econometrics of the University of Amsterdam and at the De-
partment of Econometrics of Tilburg University. Until 1984 it was suppor-
ted by the Netherlands Organization for the Advancement of Pure Research
(Z.W.0.} through the Stichting Mathematisch Centrum.

The text was typed by Corina Maas and Anita Kuling. Corina Maas also
took care of the corrections and the numerous changes in the original
manuscript. I thank both for their excellent and quick work. I thank
Yvonne van Delft and Jan Pijnenburg for drawing all the figures and de-
signing the cover.

Finally I thank all other colleagues and my friends and relatives for
their encouragement and for giving me time to write this thesis. In parti-
cular, I thank Yvonne, Mark en Rob for always being there, even when I was

physically or mentally absent.

Bert Gerards,
January 1988



—_— ——— e —




aan Yvonne, Mark en Rob

en mijn ouders






(ix)

CONTENTS page:
Summary of results 1
Chapter 1. Preliminaries 5
1.1. Algorithms and Complexity [
1.2. Polyhedral Theory 12
1.3. Graphs and Signed Graphs 24
1.4, Binary Matroids = Binary Spaces 30
Chapter 2. Cutting Planes by
2.1. Cutting Planes - Finding the Integer Hull of a Polyhedron 48
2.2, The Chvatal Rank of a Matrix 53
2.3. Matrices with the Edmonds-Johnson Property 56
Chapter 3. Signed Graphs with no Odd—Kq 77
3.1. Signed Graphs and Binary Matroids 78
3.2. Decompositions 83
3.3. Orientations 95
3.4. Shortest 0dd Circuits and Packing 0dd Circuits 97
3.5. Homomorphisms to 0dd Circuits and 3-Colourability 106
3.6. An Extension of Kénig's Theorem to Graphs with no Odd-[{q 109
Chapter 4, T-joins 131
4.1. Introduction to T-joins in Graphs 132
4.2. A Common Generalization of two Theorems of Seymour on T-joins 136
4.3. T-joins and Binary Matroids 143
4.4, Decompositions 146
4.5, Orientations 155

4.6. Shortest T-joins and Packing with T-joins 158



(=)

References 167

Subject Index 179

Summary (in dutch) 187



SUMMARY OF RESULTS

This thesis is partly based on (parts of) the following articles and
reports: Cook, Gerards, Schrijver and Tardos [1986], Gerards [1985, 1986]
and Gerards and Schrijver [1986], and on a forthcoming report by Gerards,
Lovasz, Schrijver, Seymour, Shih and Truemper. Below we give a summary of
the main results in this thesis.

It should be noted that in this summary we sometimes use a formulation
different from the text in this monograph. As Chapter 1 is only an intro-
duction to the four fields in mathematics (Computational Complexity, Poly-
hedral Theory, Graphs and Signed Graphs, and Binary matroids = Binary
Spaces) relevant for this thesis, we restrict ourselves to the three other

chapters.
CUTTING PLANES (CHAPTER 2)

Consider a polyhedron P = {xERnle < b} (A rational). We are interes-
ted in describing PI := convex hull (PnZn) by a system of inequalities.
A eutting plane for P is an inequality

c'x < 18]
with c€Z"

and § 2 max{ch]xEP}.

The set of all vectors satisfying all cutting planes for P is denoted by
P'. We define P(O) := P, and P(i+1) 1= (P(i)}' (i=0,1,...), and say that P
has Chvdtal rank t if t is the smallest integer such that P(t) = convex
hull (PnZ"). Chvatal [1973] and Schrijver [1980] proved that each polyhe-
dron has such a (finite) Chvatal rank. In fact it can be bounded by an
integer depending on A only (so independent of the right hand side b). A
short proof of this is given in Section 2.2.

The central result however in Chapter 2, and in this thesis is



Theorem 2.3.3 (Gerards and Schrijver [1986])
n

Let AEZ™™ such that Y |Aij| < 2 for each i=1,...,n. Then the following
j=1 -

are equivalent:

(i) {xERn|dl ¢ x ¢dy, by ¢ Ax ¢ b)) has Chvdtal rank at most 1 for all

d,, d,€2" and b,, b,€Z";
(1i) The signed graph underlying A contains no odd—Kq. ]

Here a signed graph is an undirected graph with a partition of the

xn i n

edges into odd and even edges. If A€Z™ " satisfies E A
i=1

i=1,...,m, then the signed graph underlying A is constructed as follows.

ijl ¢ 2 for each
First construct the undirected graph with as nodes the columns of A. For
each row of A with two non-zero entries we have an edge joining these two
columns in which these two non-zero entries occur. We call an edge even if
the corresponding row sum is 0, if not we call the edge odd. An odd—Kq is
a signed homeomorph of Kq (the complete graph on U4 nodes) such that each
circuit coming from a triangle in Ku is an odd eirecuit (i.e. a circuit
with an odd number of odd edges).

Theorem 2.3.3 shows that recognizing whether or not a matrix AEmen
satisfying 2 lﬂij‘ ¢ 2 for each i=1,...,m, satisfies Theorem 2.3.3

j=1
amounts to recognizing graphs with no odd Kq. This is one of the reasons

for further investigation of such signed graphs in Chapter 3.
SIGNED GRAPHS WITH NO ODD-Kh (CHAPTER 3)
Examples of such signed graphs are:
- Signed graphs in which all odd circuits have a node in common;
- Signed graphs which can be embedded in the plane such that at most two
faces are bounded by an odd circuit.
Essentially, these are the only examples. Each signed graph with no odd-Kk

can be "decomposed" into these examples and two small special signed

graphs (Theorem 3.2.4). This result implies a polynomial-time algorithm



for recognizing signed graphs with no odd-Ku. The proof is based on decom-
position results for binary matroids (= binary spaces) due to Seymour
[1980] and to Truemper and Tseng [1986], applied to a binary matroid asso-
ciated with a signed graph.

Beside the decomposition result mentioned we prove:

Theorem 3.3.1

A signed graph G has no odd-Ku and no, so called, oddng (ef. Section
3.1) if and only if we can replace the odd edges by directed edges, such
that going along any circuit the number of forwardly directed edges and
the number of backwardly directed edges differ by at most 1. []

This is derived from Tutte's characterization of regular matroids (=
binary spaces representable in euclidean space = totally unimodular matri-
ces, cf. Section 4.1, which contains a short proof of Tutte's result).

Theorem 3.3.1 has several interesting implications. In Section 3.5 we
use it to obtain a short proof (due to A. Schrijver) of the following

extension of a result of Albertson, Catlin and Gibbons [1985].

Theorem 3.5.1 (Gerards [1985])

Let G be an undirected non-bipartite graph such that there is no odd—Kq
and no odd—Kg (considering all edges odd). Then there exists an map ¢ from
the nodes of G to the nodes on the shortest odd circuit of G such that
if uv is an edge, then p{u)e(v) is an edge. []

Theorem 3.3.1 also plays an important role in proving the following
extension of Konig's min-max relation for stable sets and edge-covers in
bipartite graphs (cf. (3.6.1), Kénig [1931, 1933]).

Theorem 3.6.3 (Gerards [1986])

Let G be an undirected graph, without isolated nodes, such that there igs
no ocici—K_,:l (considering all edges odd). Then the
maximum cardinality of a stable set in G
is equal to the
minimum cost of a collection of edges and odd cireuits covering the
nodes of G.



(Here an edge costs 1 and a circuit of length 2k+l costs ki) 1l

A weighted version of this result, and of a similar result for node-covers

also holds (cf. Theorems 3.6.3 and 3.6.8).
T-JOINS (CHAPTER 4)

In Section 4.2 we prove the following extension of a result of Seymour

[1981].

Theorem 4.2.2
Let G be a connected undirected graph such that (considering all edges
odd) there is no odd—Kq and no, so-called, odd-prism (cf. Section 4.2,
Figure 4.2). Then for each even set T of nodes the

minimun cardinality of a T-join in G
is equal to the

maximum number of pairwise disjoint T-cuts in G. []

Here a set F of edges is a T-join if a node u of G meets an odd number of
edges in F if and only if WET. A T-cut is a set of edges of the form
{uv|u€U, v€U} where U is a set of nodes with |unT| odd.

In Section 4.3 until 4.6 we derive results for T-joins which are dual

to the results derived in Sections 3.1 and 3.4,



CHAPTER 1. PRELIMINARIES

This chapter contains four preliminary sections, viz. on: Algorithms
and Complexity, Polyhedral Theory, Graphs and Signed Graphs, and Binary
Matroids = Binary Spaces. This chapter intends to be an introduction,

rather than an extensive treatment. Therefore proofs are omitted except in
Section 1.4.



1.1. ALGORITHMS AND COMPLEXITY

A main objective of studying objects like those studied in this mono-
graph, is finding efficient algorithms. In fact, most of the results imply
efficient algorithms. (However, detailed descriptions of these algorithms
will not be explicitly given.) We here give a brief and intuitive intro-
duction to algorithms and complexity. For a detailed treatment we refer to
Aho, Hopcroft and Ullman [1974] and Garey and Johnson [1979].

We consider an algorithm as a recipe, i.e. as a list of instructions,
such that if we apply this recipe to an "input" we get after a finite
number of applications of the instructions, an "output". The running
time of an algorithm is the number of "olementary" steps it takes, as a
function of the size of an input. This definition of running time depends
on what we consider as an elementary step. Often a single bit operation on
a computer or a move of the head of a Turing Machine is considered as
an elementary step.

The size of the input is the number of digits needed to encode the
input. For example, if we encode a natural number n in binary notation its
{input) size is about 2log{n); the size of a rational number is the size
of its denominator plus the size of its numerator. Of course, the input of
an algorithm need not be a number; for instance, it can be a graph. As the
input size of a graph we take the number of nodes plus the number of ed-
ges.

If the running time of an algorithm is bounded from above by a polyno-
mial in the input size, we call the algorithm a polynomial-time algorithm.
The search for polynomial-time algorithms has led to a classification of
problems into easy and (possibly) hard problems. To explain this we re-
strict ourselves to a specific type of problems: so-called decision pro-
blems. A decision problem is a problem which allows for each input a 'yes'

or 'no' answer. Let us give some examples.



(CONNECTED GRAPH) Given an undirected graph G, is G connected?

(LI) Given a system of linear inequalities Ax ¢ b, with AEZ™™ and b€Z",

is there an x€Q" such that Ax < b?

(HAMILTONIAN CIRCUIT) Given an undirected graph G has it a Hamiltonian
circuit (i.e., is there a permutation vl,...,vn of the nodes of G such

9
that v, v My AV and A all are edges of G)7

1Var v2v3,...
To distinguish between a specific question like "has xl-2x2 <3, 3 £0a
solution?" and the collection of all questions defined by LI, we call "has

x1-2x2 .3, %y < 0 a solution?" an i{nstance of the problem LI.
PROBLEMS

The class of all decision problems which can be solved by a polyno-
mial-time algorithm is denoted by P. It is easy to see that CONNECTED
GRAPH € P.

WELL-CHARACTERIZED PROBLEMS

Khachiyan [1979] showed that LIEP. However even before that it was
already known that LI is reasonable to some extent. To explain what we

mean by that we consider Farkas Lemma:

(1.1.1) Farkas [1894]: Let A€Z™™ and b€Z”. Then exactly one of the follo-
wing holds:
(i) There exists an x€Q" with Ax £ b
{ii) There exists an yEZm with yTA =0,y 20 and yTb < 0.

It follows from (1.1.1) that we can attach to each instance Ax {bof
LI a guarantee for the status (having a solution or not) of the system
Ax ¢ b. Namely if Ax < b has a solution, then a guarantee of that fact is

a vector



x€Q" with Ax ¢ b.
If Ax ¢ b has no solution a guarantee of that fact is a vector
y€Q® with y'A = 0, y 2 O and y'b < 0.

This means, that for each instance of LI we can provide, beside the
answer ("yes" or "no"), a "proof" of the correctness of the answer. We
call such a "proof" a certain certificate for the instance of LI. In gene-
ral, a certain certificate for an instance of a decision problem is a list
of symbols reflecting a proof of the correctness of the answer ('yes' or
'no') of the instance. The length of a certain certificate is the number
of elementary steps to read and check the certain certificate.

A decision problem P is called well-characterized if each instance of
P has a polynomial-length certain certificate; this means that the length
of that certain certificate is a polynomial in the size of the instance.
The certain certificates for instances of LI given above can be taken of
polynomial length. Hence LI is well-characterized. It should be noted
that, in defining well-characterized problems, we did not require the
existence of a polynomial-time algorithm to find a certain certificate for
any instance of the problem. If such algorithm exists for some problem
then clearly that problem is in P. although, as mentioned before, LI€?, it
is open whether or not all well-characterized problems are in P. In parti-
cular, it is open whether or not the decision problem "given a natural
number p, is it prime?" (which is well-characterized, (Pratt [1975]), is
in 2.

Problems in P are well-characterized. Indeed, suppose we have a poly-
nomial-time algorithm for a problem P. Then a certain certificate for the
answer to an instance is the instance itself. This certain-certificate has
polynomial-length as it can be checked by the polynomial-time algorithm
for the problem.

The fact that a problem P is well-characterized is often established
by a so-called good characterization. To explain this notion we turn back

to LI and consider the following equivalence:

(1.1.2) Let A€ZW M and bEZ". Then the following are eguivalent:



(i) There exists an x€Q" with Ax ¢ b.
(ii) The matrix [A|-A|I] has a non-singular submatrix BEmem, with

B7'b » 0.

So (1.1.2) provides a characterization for a system of linear inequa-
lities to have a solution. Mathematically there is nothing wrong with this
characterization, but from the point of view of computational complexity
it has a drawback. The reason is that (1.1.2) only tells us (two ways) how
to show easily that a system of linear inequalities has a solution. How to
show that a given system of linear inequalities, is not so obvious from
(1.1.2). Farkas Lemma (1.1.1) does not have this draw-back. For that
reason we call Farkas Lemma a good characterization for LI.

In general, if P is a decision problem we call a characterization
good if it establishes polynomial-length certain certificates for the
instances of P. The term "good characterization" has been introduced by
Edmonds [1965b].

NP AND co-A7P

By NP one denotes the class of decision problems for which there
exists a polynomial-length certain certificate for each instance having a
'yes' answer. (NP stands for 5blynomially solvable by a Nondeterministic
Turing machine, cf. Garey and Johnson [1979].) Of course, well-characte-
rized problems are in NP. But there may be problems in ﬂ?, for which there
exists no good characterization. Consider HAMILTONIAN CIRCUIT. If a graph
is hamiltonian, then any hamiltonian circuit may serve as a certain certi-
ficate. Hence HAMILTONIAN CIRCUIT € KP. On the other hand, no polynomial-
length certain certificate for the fact that a graph has no hamiltonian
circuit is known. In other words, it is open whether HAMILTONIAN CIRCUIT
is well-characterized.

By co-AP one denotes the class of all decision problems for which
there exists a polynomial-length certain certificate for each instance
having a 'no' answer. Obviously, AP n co-A? is exactly the class of well-

characterized problems.
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NP-COMPLETE PROBLEMS

We call a problem P NP-complete if PENP and for each problem pref?
there exists a polynomial-time algorithm which transforms each instance T
of P' to an instance I of P such that the answer to I' is the same as the
answer to I. Cook [1971] showed that ﬂchomplete problems exist. In parti-
cular, he showed that SATISFIABILITY (cf. Garey and Johnson [1979]) is
NP-complete. Our example, HAMILTONIAN CIRCUIT is AP-complete too, and
there are many others (cf. Karp [1972], Garey and Johnson [1979], and the
periodically published list "NP-complete problems: an ongoing column" by
D. Johnson in the Journal of Algorithms). No polynomial-time algorithm is
found for any NP-complete problem. Note that if there exists a polynomial
algorithm for one XP-complete problem, then any problem in NP is polyno-
pially solvable. So, in that case KNP = P. In fact ﬁﬁLcomplete problems are
notorious for their intractability in practice. This leads to the conjec-
ture that P = ¥P .

Finally, let P be a problem (not necessarily a decision problem) .
Problem P is called NP-hard if the existence of a polynomial-time algo-
rithm for P would imply NP = 2.

OPTIMIZATION PROBLEMS, MIN-MAX RELATIONS AS GOOD CHARACTERIZATIONS

Suppose we have a problem with instances:

(1.1.3) Given set X, and function f,: X; — R, find an Qexi such that

fi{g) = min{fi(x)|xEXi} or decide that no such X exists.
(with i element of some index set I).
We call such a problem an optimization problem, or more specifically,

a minimization problem. (Similarly we have mazimization problems.) The set

Xi is called the solution set of (1.1.3). Any member of Xi is called a
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feasible solution of (1.1.3). If Qexi attains the minimum in (1.1.3), we
call X an optimal solution of (1.1.3). The value min{fi{x)ixEXi} is called
the optimum value of (1.1.3).

A min-mar relation for (1.1.3) is a theorem like:
(1.1.4) min{fi{x)ixEXi} = max{gi(yHyEYi} (i€I1).

Often a min-max relation is a good characterization for the decision

problem:
(1.1.5) Given QEXi, is X an optimal solution of (1.1.3)7?

Indeed, a certain certificate for % being optimal is a §EY1‘ with fi(QJ =
gi{gj. A certain certificate for QEXi being non-optimal is an QEXi with
fi(§) < fi(ﬁ). Depending how the optimization problems in (1.1.4) are
formulated, one can obtain polynomial-length versions of these certain
certificates. (Indeed X and § should have polynomial size. Moreover mem-
bership of X in Xi and §EYi should be verifiable in polynomial-time. Fi-
nally evaluating fi(ﬁ), Fi{§) and gi(§} should take only polynomial-time.)

We call optimization problem (1.1.4) well-characterized if decision
problem (1.1.5) is well-characterized. So if with an optimization problem
there is a min-max relation, then (under some extra conditions on the
formulation of the problem and the min-max relation, see above) the opti-
mization problem is well-characterized.

An example is the linear programming problem and the linear program-
ming duality theorem (von Neumann [1947], Gale, Kuhn and Tucker [1961],
cf. Theorem 1.2.6 of this monograph). Also many combinatorial optimization
problems have a min-max relation. (e.g. Theorem 3.4.1 (with special cases:
Theorem 3.4.2 and Theorem 4.6.1), Kénig's Theorem ((3.6.1)) (with exten-
sions: Theorem (3.6.3) and Theorem (3.6.8)), and Theorem 4.1.1 (with ex-

tension: Theorem 4.2.2).
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1.2. POLYHEDRAL THEORY

This section is devoted to polyhedra, optimizing a linear functional
over a polyhedron (linear programming), and integral polyhedra (which
arise often in combinatorial optimization problems). The introduction we
give here is very condensed. Almost all proofs are omitted, and we only
mention the results relevant for this monograph. For a comprehensive study
we recommend Schrijver [1986].

First we make some notational conventions on numbers, vectors, matri-

ces, etc..
NUMBERS, VECTORS AND MATRICES

We denote the sets of reals, of rationals, and of integers by R, Q and
Z respectively. The set of non-negative reals is denoted by R, . Similarly
we write ﬂ+ and Z, (=N). If o€R then ] denctes the largest integer not
greater than a. Similarly fu] denotes the smallest integer not smaller
than o.

Vectors are always considered as column vectors. The set of n-dimen-
sional vectors with entries in a set S is denoted by s™. For example we
write Rn, R?, {O,l}n etc. The set of mxn-matrices (m rows, n columns) with
real variables is denoted by ™R, 1r AERmxn, then r{A) denotes the rank
of A. A" denotes the transpose of the matrix A. Row vectors are typically
written as x. '

We write x 2 0 if xER?. We write x 2 y if x-y 2 0. A system of m in-
equalities in n variables is typically written as Ax { b {with AERmxn,
beR™). If x€R™, then |x| := ([xlj,...,[an)T: similarly [x] :=
o [

In combinatorial optimization we often use vectors indexed over some
finite set S. Then we typically do not assume some numbering 1.....15[ of
ISI 1¢ kS, and
s€S then Xy denotes the entry of x indexed by s. Similarly we write

T
AERS , to denote a matrix where the rows are indexed by a finite set S

the entries of the vectors. So we write RS rather then R

and the columns by a finite set T. We use Ast for the entry in the row of

A indexed by s€S, and the column of A indexed by t€ET. If S is a finite set
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and TCS then the characteristie vector X of T is the vector in {O,l}s

with Ao = 1 if and only if eET.
POLYHEDRA AND POLYTOPES

A halfspace in Rn, is a set of the form {xERnlaTx ¢ B} where aERn,
a # 0, and BER. A polyhedron in R” is the intersection of finitely many
halfspaces. So PCR" is a polyhedron in R" if and only if there exists a
matrix AERmxn, and a vector bER™ (mEN) such that P = {xERniAx < b}. We
call an inequality walid for PCRn, if Xep implies a'x < B. A halfspace H
is called rational if H = {xERnlaTx < B} with aEQn, PEN. The intersection
of a finite number of rational halfspaces is called a rational polyhe-
dron.

A polytope P in R" is the convex hull of finitely many vectors in R™.

So PCR" is a polytope if there exists a finite number of vectors

X,,...,%x_ER™ such that
1 m
i} n
P = conv{x;,..,x } := {.E Aixilxi > 0 (i=1,...,m), I =1}
i=1 i=1
If KiyveooaX are in Q" we call P a rational polytope. Polytopes obviously

are bounded sets, whereas polyhedra can be unbounded (Rn itself is a poly-

hedron). However the two concepts are very close:

Theorem 1.2.1 (Minkowski [1896], Steinitz [1916], Weyl [1935])
Let PCR". Then P is a (rational) polytope if and only if P is a bounded
(rational) polyhedron. D

More generally:

Theorem 1.2.2 (Motzkin [1936])
Let PCR", Then P is a (rational) polyhedron if and only if P=Q+C where Q
is a (rational) polytope in R" and C is a (rational) finitely generated

cone in Rn D
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Here a finitely generated cone is a set of the form
n
¥ N Il
{iglxixilxi > 0 (i=1,...,m)} with x,,...,x €R".
the cone rational.). As usual Q + C:= {q+c|q€Q,cEC}.

(If x ...anQ“ we call

1%

A face of a polyhedron P is a subset of the form {x€P|aTx = B}, where
a'x ¢ B is valid for P. A face F of P is called proper if F#P. (Note that

P and & are faces of P.)

Lemma 1.2.3
Let AERmxn. bERY. Then F is a non-empty face of P := {xERn1Ax < b} if and

only i{f F = {xEP1A1x = bl} # @, for some matriz [Allblj obtained from
[Alb] by deleting (zero or more) rows. [:]

In other words: any face of a polyhedron P can be obtained by setting to
equality some of the inequalities in the system defining P.

Of particular interest are the (inclusionwise) minimal nonempty faces
of a polyhedron, and the maximal proper faces (the facets) of a polyhe-

dron.
MINIMAL NONEMPTY FACES, VERTICES

Let P := {x€R"|Ax < b}. Let F be a minimal nonempty face of P. Then it
can be shown that there exists a subsystem Alx < bl of Ax { b such that
ol {xERn|A1x = bl}. (Clearly, we may assume the rows of Al to be linearly
independent.) So a minimal nonempty face of P is an affine subspace of R".
If F contains a single vector, Xp say, then we call Xp a vertexr of P. If
one minimal nonempty face of P is a vertex then each minimal nonempty face
of P is a vertex. In that case we call the polyhedron P pointed. (More

generally, all minimal nonempty faces have the same affine dimension).

Lemma 1.2.4
Each nonempty polytope is pointed. Moreover, each polytope is the convex
hull of its vertices. ]
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If P = {xERn[Ax < b} is a pointed polyhedron, then A is of full co-
lunn-rank. Moreover % is a vertex of P if and only if x€p and there exists
a nonsingular nx*n submatrix Al of A such that x = Allbl (b1 being the

subvector of b corresponding to Al).
FACETS

A facet of a polyhedron is an (inclusionwise) maximal nonempty proper
face of P. There is a strong relation between the facets of a polyhedron
and a defining system of linear inequalities of that polyhedron. To ex-
plain this relation we restrict ourselves to full-dimensional polyhedra. A
polyhedron is full-dimensional if it is not contained in any hyperplane
{xERn{aTx = B} {aERn\{O}]. Let P be a full-dimensional polyhedron, and

Fl""’Fs be its facets. Then there exists a system of inequalities
T

T L T
a,x < ﬁl,....asx < Bs defining P such thi: Fi : {x€P|f%x = Ei} for
i=1,...,s. Moreover any defining system a,x é 31,...,atx g Bt satisfies:
for each i=1,...,s there exists a j=1,...,t and a A > 0, such that a;, =

~ ~ . . . o 1 a
kaj and Bi = Aﬁj. So the inequalities a;x £ ﬁl,...,asx < BS essentially

occur in any defining system of the polyhedron.
LINEAR PROGRAMMING

Linear programming means optimizing a linear functional over a polyhe-

dron. A typical way to formulate a linear programming problem is:
(1.2.5) max c'x

s.t. Ax < b,

n mxn m " " n s L1
where cER", AER » and bER". ("s.t." stands for "subject to".) Instead of
maximizing ch we also could consider minimizing ch.) Matrix A is called
the econstraint matriz of (1.2.5). An important result in linear program-

ming is the so-called linear programming duality theorem:

Theorem 1.2.6 (von Neumann [1947]; Gale, Kuhn and Tucker [19517])
Let AER™™, beR™, c€R™. Then maz{c'x|Ax ¢ b} = min{y'bly’A = ¢, y 3 0}
provided that both optimization problems have a feasible solution. [:
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(Note that essentially Theorem 1.2.6 has the same content as Farkas Lemma

(1.1.1}).)

Remarks:

(i) If one of the two problems in Theorem 1.2.6 has a feasible solution
then the optimum of that problem exists if and only if the other
problem also has a feasible solution.

(ii) The minimization problem in Theorem 1.2.6 is called the dual (linear
programming) problem of (1.2.5).

Any problem of type
T T T
{1.2.7) max C1Xy * Co¥y + c3x3
s.t. Allxl + Rlzxz * A13x3 é
AyyXy * BypKy + Aygxg =Dy
A31x1 + A32x2 + A33x3 2
Xy > 0, x3 < 0.
can be seen as a special case of (1.2.5). The dual problem then is
equivalent to:
£ T, T. T,
{(1.2.8) min ylbl + ¥2b2 + Y3b3
T T T
S.t. yifyy * Yohyy * ¥3hg 2 ¢
T T g
Yihio * Yohop * ¥3h3p T G
T T T
A + A + A £
Yitig * Vofpg TW3Rs3 285
¥y 2 0, y3 < 0.

In case A, b and ¢ are rational it easily follows from Theorem 1.2.6
that the duality theorem for linear programming forms a good charac-
terization for the linear programming problem. So the linear program-
ping problem is well-characterized. (The fact Theorem 1.2.6 gives a
good characterization, follows from the fact that both (1.2.5) and

its dual have optimal solutions x respectively y such that the size
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of x and y is bounded by a polynomial in the sizes of A, b and c.
This follows from Cramer's rule (and Lemma 1.2.3).) Note that in
essence the remarks above are the same as saying that LI is well-
characterized, and has Farkas Lemma as a good-characterization (cf.
Section 1.1).

The most prominent algorithm for linear programming is the simplex
method due to Dantzig [1951]. This method turned out to be efficient in
practice, but no version of it could be proved to be a polynomial-time
algorithm. In fact, most versions are not (e.g., Klee and Minty [1972]). A
polynomial-time algorithm for linear programming is the so-called ellip-
soid method Khachiyan [1979], cf. Grétschel, Lovasz, and Schrijver
[1987]). This algorithm is based on the ellipsoid method for nonlinear
programming by Shor [1970a,b,1977] and Yudin, and Nemirovskii [1976].
Besides settling the longstanding open problem whether or not linear pro-
gramming is polynomially solvable, the ellipsoid method has important
implications for combinatorial optimization. Later we will come back to

these implications (due to Grétschel, Lovasz and Schrijver [1981]).

To explain the importance of polyhedral theory for combinatorial opti-

mization we next consider as a typical example the matching problem.

EXAMPLE: THE MATCHING PROBLEM

Let G be a graph. (For graph terminology, see Section 1.3.) A match-
ing in G is a subset M of E(G) such that each u€V(G) is endpoint of at
most one edge in M. The weighted matching problem is:

E(G)

{1.2.9) Given c€Z , find a matching in G such that 3 ¢ is maximal.

eEM
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This problem can be reformulated as an integer linear programming problem:

(1.2.10) max c'x

5.8 x, 20 (e€E(G) )
x_ < (uev(G));

e€é(u) ¢~
x €2 (e€E(G)) .

We would like to use the polynomial-time solvability of linear pro-
gramming to solve (1.2.9). The first approach is to solve the linear pro-
gramming relaxation of (1.2.10) (obtained by dropping the integrality
conditions). However typically we will find a non-integral optimal solu-

tion. The reason is that not all the vertices of

Q:= {xERE{G}|x > 0, eEE(G); 2 X
o e€é(u) ©

1

1, uEv(G)}

are integral. All vertices of Q are integral if and only if G is bipartite
(Birkhoff [1946], von Neumann [1953]). So if G is non-bipartite the linear
programming relaxation may not solve the original problem.

This problem does not arise if we define
Pli:= conv{xM€RE(G)|M is a matching},

and formulate (1.2.9) as max{ch|xEPli} . The latter is a linear program-
ming problem, as Pliis a polytope (the matching polytope), and hence a
polyhedron (Theorem 1.2.1). However to apply linear programming techni-
ques, we need a description of Piiin term of inequalities. Edmonds [1965c]

showed that the following is such a description:

(1.2.11) x, 20 e€E(Q);
X <1 u€V(G);
eES(u) © T (i
3 %, ¢ Uz L U < v(G), |u] 2 3 and odd.
eCl

So in principle we can solve (1.2.9) as a linear programming problem.

But if we give (1.2.11) as an input to any linear programming algorithm we
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encounter a new difficulty. This input is far to large. The number of
inequalities of the third type in (1.2.11) is exponential in the size of
the original problem (1.2.9). (And if G is & complete graph all these
inequalities correspond to facets.) However, this difficulty is not so
serious. Edmonds [1965c] avoided it by writing down during any stage of
his algorithm only ]E(G}[ of the inequalities in (1.2.11) explicitly (Note
that any vertex of the polyhedron of dual feasible solutions has at most
|E(G)| non-zero variables.) Edmonds' algorithm for the weighted matching
problem is a polynomial-time algorithm. There is another way to avoid
writing down all the inequalities in (1.2.11) explicitly. Padberg and Rao
[1982] gave a polynomial-time separation algorithm for Pil' A separation
algorithm for a polyhedron PCR" is an algorithm for the following separa-
tion problem for P:

{1.2.12) Given §€Rn. decide whether or not %€P. If not find an inegquality
a'x < B, valid for P, such that a'x > B.

A nice feature of the ellipsoid method is, that instead of a complete
list of inequalities for a polyhedron, it needs only a separation algo-
rithm for the polyhedron, in order to optimize over it. If the separation
algorithm is polynomial-time, the optimization algorithm thus obtained is
a polynomial-time algorithm too (Gr&tschel, Lovéasz, and Schrijver [1981]).
It is particularly important for combinatorial problems, as the related
polyhedra, like the matching polytope, typically have many facets. (For
combinatorial applications see also Grétschel, Lovasz, and Schri jver
[1981].) Moreover Gr&tschel, Lovasz, and Schrijver showed that in fact the
existence of an polynomial-time algorithm for optimizing over a class of
polyhedra is equivalent to the existence of an polynomial-time separation

algorithm for the class of polyhedra.
INTEGRAL POLYHEDRA

An integer linear programming problem is an optimization problem of

the following form:
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{1.2.13) max c'x
s.t. Ax § b

x€Z".

Many combinatorial optimization problems can be formulated as integer
linear programming problems. However, integer linear programming problems
are generally hard to solve. In fact, integer linear programming is
NP-hard {Cook [1971]). It is polynomially solvable if the number of vari-
ables is fixed (Lenstra [1983]). As in the example above, one can try to
apply linear programming techniques. Let P be a polyhedron. Then the inte-
ger hull of P is the convex set PI:= conv(PnZn).

Theorem 1.2.14 (Meyer [1974])
Let P be a rational polyhedron in R". Then PI is a rational polyhedron.

0

The problem of finding a system of inequalities defining PI will be
discussed in Section 2.1. In this section we restrict ourselves to the
case PI = P. We call a polyhedron PCR"® integral if P = PI.
polyhedron is integral if and only if P is rational and each minimal face

Equivalently, a

contains an integral vector. In particular, if P is pointed, then P is
integral if and only if P is rational and all its vertices are integral
vectors.

Of particular interest for integral polyhedra are totally unimodular
matrices. A matrix is called totally unimodular if all its subdeterminants
are 0,1 or -1. So, in particular, all the entries of a totally unimodular

matrix are 0,1 or -1. The following result is well-known:

Theorem 1.2.15 (Hoffman and Kruskal [1956])

Let AEmen. Then the following are equivalent:

(i) {xERn|a <xgb,cg Ax ¢ d} is integral for each a,b€Z"; c,dez™;
(ii) A is totally unimodular. |

We also want to mention a version of this theorem which is perhaps not

so well-known: We call a matrix AEmen unimodular if for each matrix B
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consisting of r linearly independent columns of A (r:= r(A), the rank of
A), the greatest common divisor of all r x r subdeterminants of B is equal

to 1.

Theorem 1.2.16 (Hoffman and Kruskal [1956])

Let AEZ™ ™. Then the following are equivalent:

(i) For each b€Z", {x€R"|Ax < b} is integral;

(ii) For each c€Z", {y€R®|y'A=¢", y > 0} is integral;

(iii) A" is unimodular. dJ

Both theorems characterize classes of constraint matrices for which
certain polyhedra are integral. The following theorem gives a characteri-
zation for a fixed polyhedron to be integral. (We come back to totally

unimodular matrices in Section 1.4.)

Theorem 1.2.17 (Edmonds and Giles [1977])
4 rational polyhedron P is integral, if and only if each rational suppor-
ting hyperplane of P contains an integral vector. []

Here a rational supporting hyperplane in Rn. is a subset H =
{xERn[aTx = B} with aEZn\{O}, pell, such that HAP # & and ax < B is valid
for P.

Theorem 1.2.15 can be reformulated as the following corollary.

Corollary 1.2.18
Let AEmen. beQ™. Then the following are equivalent:
(i) {x€Q"|Ax < b} is integral.
(i1) For each c€Z", for which max{c x|Ax < b} exists, we have
mazx{c x|Ax < b}EZ. J

Later in this monograph, we use the following version of Corollary 1.2.18.

Corollary 1.2.19

Let AEQmKn, BEmek; beQ™. Then the following are equivalent.
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(i) For each cez”, for which max{chIAx + By { b} exists, we have
max{c x|Ax + By ¢ b}EZ.

(ii) For each c€Z™, for which max{ch|Ax + By ¢ b} exists, there exists
an optimal solution (Q,?)ERm x Rk with XE€Z".

Proof (that Corollary 1.2.19 follows from Corollary 1.2.18): Define P:=

{x€r"|3 k[Ax + By ¢ bl}. Then P is a rational polyhedron. The equiva-
vER
lence to be proved is exactly the equivalence in Corollary 1.2.18 for P.

O]

A system of inequalities Ax ¢ b, with ﬂEﬂmxn. beQ"™, is called totally

dual integral if the minimum in
max{chlax < b} = min{yTny 2 0, yTA = cT}

has an integral optimal solution for each c€Z" for which the minimum

exists. The following theorem directly follows from Corollary 1.2.18.

Theorem 1.2.20 (Edmonds and Giles [1977])
Let Ax { b, be a totally dual integral system of inequalities. If b is
integral, then {xERn|Ax < b} is integral. []

Not any system defining an integral polyhedron is totally dual inte-
Tl

gral. Indeed, {(x,.x,) €R"|2x; + x5 £ 2. %) 2 0. x

2, x

> > 0} is an integral
1 > 0, Xy 2 0} = 3. Hence
the dual problem min{2y1|2yl—y2 = 3, vy~ y3 = 1; Yir Yoo y3 > 0} has no

polyhedron. However max{3xl + x2|2xl * X,

[[FaY

integral optimal solution. On the other hand:

Theorem 1.2.21 (Giles and Pulleyblank [1979], Schrijver [1981])

Let PCR™ be a rational polyhedron.

(i) (Giles and Pulleyblank) There exists a totally dual integral sy-
stem Ax ¢ b, with AEmen, beQ™ such that P = {xERnIAx < b}. Moreover,
b ean be chosen integral if and only if P is integral.
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(ii) (Schrijver) If P is full dimensional, then there exists a unique

minimal totally dual integral system Ax ¢ b with AEZ™ ™, beQ™;

N 1

and P = {x€R"|Ax < b}. Moreover b€Z" if and only if P is integral.
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1.3. GRAPHS AND SIGNED GRAPHS

We assume the reader to be familiar with the basic notions and results
of graph theory (cf. Bondy and Murty [1976], Wilson [1972]). Below we give
some notational conventions and basic definitions. We denote the node-set
of an (undirected) graph G by V(G), and the edge-set by E(G). We allow
loops and parallel edges. A graph with no loops and parallel edges, G is
called simple. An edge e connecting u and v is typically denoted by uv, u
and v are called the endpoints of uv. We call u and uv incident. And we
call u and v adjacent if uv€E(G}).

We assume the following notions to be known: path; (spanning) tree
and forest; bipartite; complete (the complete simple graph on n nodes is
denoted by Kn); complete bipartite (the complete bipartite simple graph
with colour classes of size n and m is denoted by Kn.m); connected; compo-
nent; graph isomorphism (denoted by ".."): graph homeomorphism; subgraph;
deletion and contraction (the graph obtained from G by deleting {contrac-
ting) edge e is denoted by G\e (G/e respectively)); induced subgraph (Glu
denotes the subgraph of G induced by UCV(G)); planar graph, a planar
dual of a planar graph G (a planar dual is denoted by G*).

We want to distinguish between the notions circuit and cycle. A cir-
cuit of length k is a graph C with V{(C) = {vo.vl....,vk_l} (vi # vy if
i # j) and E(C) = {vovl, ViVoresrs Vi oV ge vk_lvo}. A eycle is a graph
in which all degrees are even (the degree of a node u is the number of
edges with endpoint u). If UCV(G), then §(U):= {quE(G}quU, vEV(G)\U} is
the coboundary of U.

The node-set of a directed graph D, is denoted by V(D), its arc-set by
A(D) an arc going from u (the tail of the arc) to v (the head of the arc)
is typically denoted by 63 or $§. We allow loop-arcs (GG) as well as pa-
rallel arcs. (53 and ;3 are not considered to be parallel). Terms like di-
rected path, and directed circuit are assumed to be familiar to the rea-
der.

V(G)}*E(G)

The node-edge incidence matrix MGER of a graph G is defined

by

1 e = uv, for some v # u
e = u
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for each u€V(G), eEE(G). The edge-node incidence matrix of G is ME. The

node-are incidence matriz NDERV(D}xA(D} of a directed graph D is defined
by
....._)
1 a = vu, for some v # u
—_
(N.) = -1 a = uv, for some v # u
D'u,a
0 else.

for each u€v(D), a€A(D). The arc-node incidence matrixz of D is N;. A func-
tion fERA(D) with NDf = 0 is called a cireulation in D.

Let G be an undirected graph. A (k-)node cutset of G is a set UCV(G),
(with |U] = k and) such that G| {V(G)\U) is not connected. In that case G
10 G2 with the following properties:

V(G )nV(G,) = Us V(G )W(G,) = V(G); V(G;) # U # V(G,);

E{Gl)ﬁE(Gz) = & E(Gl}UE{GZ) = E(G).

We call two such graphs G, and 62 the two sides of the cutset U. {(Note

has two subgraphs G

1)

1
that Gl and G2 need not be uniquely determined. If several choices are

possible we just choose G1 and 62 arbitrarily.)

G is k-connected if G has no A-node cutset with £ < k. If U is a node
cutset and S, TCV(G), we say that U separates S and T if UnS = @ = UnT and
no component of G|(V{G)\U) contains elements both from S and from T. The

following result is used several times throughout this monograph.

Theorem 1.3.1 (Menger [1927])
Let G be a graph, and s, tEV(G), such that stfE(G). Then the maximim num-

ber pairwise internally node disjoint paths from s to t is equal to the

minimwm cardinality of a node-cut set separating s and t. []

Here, two paths Pl and P2 from s to t are internally node disjoint if
V(Pl}nV(Pz) = {s,t}. There are many versions of Menger's Theorem (cf.
Schrijver [1983], Reichmeider [1984]). One of these versions is the well-
known max-flow min-cut theorem of Ford and Fulkerson [1956].
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Another result we use several times in this monograph is:

Theorem 1.3.2
Let D be a directed graph, and XERA(D}. Then the following are equivalent

(i) X Aa > 0 for each directed eircuit C in D;
a€A(C) -

_)
(ii) There exists a nERV{D) with m -m < L_q for each uv€A(D).
uv
If X tn (i) is integer valued, then mw in (ii) can also be taken integer
valued. [j

SIGNED GRAPHS

A signed graph is a pair (G,IL), where I is a subset of the edge set
E(G) of G. The edges in I are called odd, the other edges even. A circuit
C in G is called odd (even, respectively) if EOnE(C} is odd (even, re-
spectively) we call a finite set X odd if |X| is odd.) We call a signed
graph bipartite if [ = §(U) for some UCV(G). For example (G,d) is bipar-
tite. Moreover, (G,E(G)) is bipartite if and only if G is a bipartite
graph in the usual sense. It is easy to see that a signed graph is bipar-
tite if and only if it contains no odd circuits. Let (G,I) be a signed
graph, and let UCV(G). Obviously (G,E) and (G,La§(U)) have the same col-
lection of odd circuits (A denotes the set-thecretic symmetric diffe-
rence). We call the operation I = IA§(U) resigning (on U). We call two
signed graphs (G,I) and {(G',L') equivalent (notation: (G,EK) ~ (G',L')) if
there exists a set UCV(G), and a bijection g from V(G} to V(G') and a
bijection v from E(G) to E(G') such that
(i) e is an edge from u to v in G, if and only if y(e) is an edge from

p{u) to p(v) in G'.
(ii) w[Ias(U)] = L',
We say that (G,I) reduces to (G',L') if {(G',L') can be obtained from (G,E)
by a series of the following operations:
- deleting an edge from G (and from I).
- contracting an even edge in G.
- resigning.

In this monograph a central role is played by the signed graph indi-

cated in Figure 1.1. Wriggled lines stand for pairwise openly disjoint
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paths, each containing at least one edge; the term odd in a face indicates
that the bounding circuit is an odd circuit. We call such a signed graph

an odd-Kq.

odd

Figure 1.1

An example of an odd—Ku is ﬁq:= (KQ,E{KQ)) where KQ is the complete graph

on four nodes.

Remark:
(G,L) is an odd-Kq if and only if it can be constructed by the follow-
ing operations:
- resign Eq to a signed graph (Kk.z');
- then replace each edge e in Kq by a path Pe (this yields G};
- finally choose ICE(G) such that for each eEE(Kq): |EnE(Pe)| is odd if
and only if e€L'.

The following is easy to prove.

Lemma 1.3.3
Let (G,L) be a signed graph. Then (G,L) contains an odd-Ku as a subgraph
if and only if (G,IL) reduces to ~h. []

We next show a technical Lemma, which will be used in Chapter 2 (Theorem
2.3.3) and in Chapter Y4 (Theorem 4.2.2) (see also Gerards [1987]).
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Lemma 1.3.4
Let (G,L) be a signed graph with no odd—Ku as a subgraph, and with no one-

node cutset. Let C be a non-separating odd circuit in G with C#G. If C

satisfies:

(i) v(C)nV(C') # @ for each odd-circuit C' in (G,L);

(ii) C contains at least three nodes with degree at least three,
then C has a subgraph IC such that:

(i') Ic is a path, V{IC) # g;

(ii') Any odd eircuit C' in (G,L) contains IC as a subgraph;

(iii') There exists an odd circuit C' in (G,E) such that V(C)nV(C'} =
V(I,) and E(C)nE(C') = E(I.). ]

Before we prove Lemma 1.3.4 we explain the notion: "non-separating cir-
cuit".

Let G be a graph, and C a circuit. We call two edges e, FEE(G)\E(C)
equivalent with respect to C if e=f or there exists a path VoVq
v with Yo

=e, v f and vl,...,vk_1¢V(C}. The equi-

1V g Vi i k-1"k ©
valence classes of this equivalence relation are called the bridges of C
(In particular, a chord uv of C (i.e. u, vEV(C), uvfE(C)), forms a bridge
of C.). A circuit C is called non-separating in G if it has at most one

bridge. If C has more than one bridge, C is called separating.

Proof of Lemma 1.3.4
Clearly V(G)\V(C) # &. (If V(G) = V(C) then C has exactly one chord,

uv say, as C#G and C is non-separating. Now for IC we can take one of the

two paths on C from u to v.) Let T be a tree spanning V{G)\V(C) (which
exists, as C is non-separating). Now delete all the edges contained in
V(G)\V(C) which are not in T. Resign such that INE{T) = &, and then con-
tract the edges in T. As the edges contained in V(G)\V(C) form a bipartite
graph (by condition (i)), each odd circuit in the original signed graph
contains an odd circuit in the reduced signed graph. Conversely each odd

circuit in the contracted signed graph is contained in an odd circuit of
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the original signed graph. Hence we may assume that (G,L) is the contrac-
ted graph, i.e., V(G) = V(C)u{w} for some node w.

Let C' be an odd circuit in G which has a minimum number of edges in
common with C. Define Ic by V{IC) = V(C)nV(C') and E(Ic) = E(C)nE(C').
Obviously Ic satisfies (i') and (iii'). Suppose (ii') is not satisfied by
Ic. Let C'' be an odd circuit not containing Ic. By the minimality of
|E(C')nE(C) |, we have that E(C')NE(C)NE{C'') = &. Now there are five pos-

sibilities indicated in Figure 1.2 below:

Figure 1.2

In each of them, (G,L) contains an odd—Kq. The existence of edge wv in the

right most figure above follows from (ii). []
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1.4. BINARY MATROIDS = BINARY SPACES

All matroid theory we need in this monograph concerns binary matroids.
Therefore all notions will be defined for binary matroids only. For the
theory of matroids in general we refer to Welsh [1976]. Mostly we use the
terminclogy of Welsh's book.

Let E be a finite set. We consider the set GF‘(2}E in the obvious way
as a linear space over GF(2). A binary space on E is a linear subspace of
GF(Z}E. So, in particular, GF(2)E is a binary space on E.

A binary matroid M consists of a finite set E = E(Ml) and a binary
space, B(M ), on E. We call B(M ) the cycle space of M . An alternative
definition is: a binary matroid is a collection of subsets of a finite set
closed under symmetric differences. Obviously these two definitions are
equivalent. It will be convenient to intertwine the algebraic terminology
of the first definition with the set-theoretic terminology of the second
definition. We shall do this without explicitly specifying which termino-

logy we use.
CYCLES, CIRCUITS AND INDEPENDENT SETS, THE DUAL MATROID

A member of B(M ) is called a cyele of M . Inclusionwise minimal non-
empty cycles are called circuits. Each cycle can be partitioned into cir-
cuits.

A set E'CE is called independent if E' contains no circuit. The dual
matroid M * of M is defined by E(M*) := E(Ml) and B *) := g{li)L
{where vtoi= {x!xTy = 0 for each y€V}).

If {e} is a circuit, we call e a loop. If {e,f} is a circuit, e and f
are called parallel. A co-cycle in M is a cycle in M *. Similarly we use
the terms co-circuit and co-loop. If e and f are parallel in IU*, we say

that e and f are in series in .
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BINARY REPRESENTATION

A matrix M with rows from GF{Z)E is called a (binary) representation
of the binary matroid M if B(M ) = N(M) := {x|Mx = 0}. We also say: M
represents M over GF(2).

Denote the submatrix of M consisting of the columns indexed by E'CE by
M|E'. Then the rank riéE') of E' is the rank of M|E'. Clearly, set E' is
independent if and only if riﬁE') = |E'|. Obviously, 'rank' does not de-
pend on the actual representation M, as riﬂE'} is equal to the maximum
cardinality of an independent subset of E'. (Note that, by Steinitz' ex-
change theorem for linear spaces, all inclusionwise maximal independent

subsets of E' have the same cardinality.)
BASIC, STANDARD REPRESENTATION

A basis of M is an inclusion wise maximal independent set of E(l).
All bases have the same cardinality, namely PLEE(JL))‘ called the rank of
M. Let Mbe a binary matroid of rank r, and let B be a basis of Al . Then
the standard representation of M cver GF(2) with respect to & is the {uni-
que) representation [Ir|A] of M , where Ir is the rxr-identity matrix, and
the columns of Ir correspond to the elements in 3. {From now on we delete

the subscript r from Ir')

Lemma 1.4.1
Let M be a binary matroid with standard representation [I1|A]. Then

[AT|I] is a standard representation of M *.
Proof: N([I|A])* = K([AaT|1]). O

From this we immediately see that the bases of M * are exactly the

complements of the bases of Ml .
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BASIS-EXCHANGE, PIVOTING

How can we go from one standard representation to any other? The ans-
wer is: by a series of pivots. Let A be a matrix over a field F. In this

monograph pivoting A on an entry &€ # 0 of A over F means replacing

(1.4.2) A = |-5 l il - | o
2|

D - E_lxyT

D b4

(¢ is called the pivot element. The specific position of € in (1.4.2) is
just an example. The pivot element can be anywhere in A. The row (column)
of A containing E is called the pivot row (column}.} Now let B be a basis
of a binary matroid Ml with standard-representation M = [1]|A]. Index the
rows of M, by the elements of B such that the ones in I are exactly in the
positions Mee (e€B). Let e€B, and f¥B. Then (B {e})u{f} is a basis if and
only of Aef = 1. If Aef

1 pivoting A on Aef and interchanging the column
indices e and f, yields a standard representation of M with respect to the

basis (B\{e})u{f}.

Example:

1 o ot 1 1] . 1 0 oo 1 1
e[{) 1 ol1 o ;]—%[0 1 oj1 o 1.
o o 1f1 1 0o o o 11 1 o0

e f f e

The fact that any standard representation can be transformed to any
other standard representation by a series of pivots, follows from the
following well-known "basis exchange" property: If B and B' are two basis
of a (binary) matroid then for each fEB'\B there exists an eERB' such
that (B\{e})u{f} is a basis too.



33

MINORS

Let Ml be a binary matroid, and let e€E := E(dl ). The matroid M \e
obtained from M by deleting e is defined by E(d \e) := E\{e}, and B(Il \e)
:= {CCE\{e}|c€B(M )}. The matroid M /e obtained from M by contracting e is
defined by E(M /e) = E\{e} and (M /e):= {CCE\{e}|CEB(I ) or cufe}EB(Il)}.

Algebraically, deleting e from M neans taking the binary space ob-
tained by intersecting B(M ) with the hyperplane Xy = 0 {and then deleting
the component Xq form all vectors x). Contracting e from Al can be inter-
preted algebraically by projecting B(Il) on the hyperplane B ® 0 {and
again removing component Xy from all vectors x). The following are easy to
prove: M\e = (M*/e)*, M /e = (M*\e)*, and M \e = Il /e if and only if e
is a loop or a co-loop in .

We call a matroid resulting from M by a series of deletions and con-
tractions a minor of M . (Note that the order in which the deletions and
contractions are carried out does not effect the resulting minor.) How to
carry out deletion and contraction on a representation, M say, of a binary
matroid 7 Deleting an element e from ilcorresponds to just deleting the
column, me say, indexed by e from M. Contracting e amounts to taking a
non-zero entry Mie in L pivoting M on Mie’ and deleting the pivot row
(indexed by i} and the pivot column L from the resulting matrix.

Two binary matroids 111 and i£2 are called isomorphic (notation:
iilnritz} if there exists a bijection p: E{J&l) — E(ﬁtz) such that
BUL ) = {plc]|ceBU )}

Let M ana M’ be binary matroids, and x€E(M ). Then by saying "M has
no M -minor using x" we mean: there are no sets E EECE(ii} such that
xfE,VE, and M ~ M\E,/E,.

1°*

GRAPHIC MATROIDS

The terminology used above is somewhat hybrid. Terms like "indepen-
dence" obviously come from linear algebra, whereas terms like 'circuit'
and 'cycle' remind of graphs. We show that graphs indeed yield binary

matroids.
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Let MG be the node-edge incidence matrix of an undirected graph G.
Then the binary matroid represented over GF(2) by MG {considered as a
binary matrix), denoted by MG), is called the circuit matroid of G. The
circuits and cycles in G are exactly the circuits and cycles in ﬁﬂG). The
dual, M *(G) of M(G) is called the co-circuit or coboundary matroid of G.
The cycles of M *(G) are exactly the coboundaries in G.

Let M be a binary matroid. If M is isomorphic to M(G) for some undi-
rected graph G, then we call M graphic. If M~ IL*(G) for some G then I
is called co-graphic. Obviously, if G, ~ G, then 1{(01) ~ L{(Gz). The con-
verse is generally not true. However, Whitney [1932] proved that if G1 is
3-connected, then G, ~ G, if and only if bﬁGI} ~ ﬁﬂGz). M(G) is co-graphic

1
if and only if G is planar (Whitney [1933]}.

REGULAR MATROIDS

A binary matroid Ml is called regular if and only if there exists a

E{M)

matrix N with rows from R such that independence of elements in Mis
equivalent to independence over R of the corresponding columns in N. We
call such an N a real representation of I, or a representation of M
over R. For any basis B in a regular matroid M there exists a real stan-
dard representation [I|A] of M with respect to & (so the columns of I

correspond to the elements of B).

Theorem 1.4.3

The dual as well as each minor of a regular matroid is regular.

Proof: If [I|A] is a real standard representation of a regular matroid M ,
then [AT|I] is a real standard representation of M *. Moreover, deleting
an element of a regular matroid obviously yields a regular matroid. So

each minor of a regular matroid is regular. (Note that Mje = (M*\e)*.)

[
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GRAPHIC MATROIDS ARE REGULAR

Let G be an undirected graph, with node-edge incidence matrix M{(G).
Orient the edges of G in an arbitrary way (i.e. replace each edge by a
directed arc). Denote the directed graph thus obtained by D. Now it is

easy to see that the node-arc incidence matrix N, of D is a real represen-

D
tation of LKG). Hence graphic matroids, and co-graphic matroids, are regu-

lar.
NON-REGULAR MATROIDS, THE FANO-PLANE

Not all binary matroids are regular. Indeed, consider the well-known

Fano-plane

V1

L

V3 Vg Vg

Figure 1.3

We call a collection V of points from {vl,...,v7} independent if |V| ¢ 2
or [VI = 3 and the three points in V are not on one line of the Fano-plane
(cf. Figure 1.3). This independence defines a binary matroid, denoted by

F.. A standard representation of F7 is

7

1 0 0/t 1 o0 1
[I|M(F?)] := o 1 oj]1 o 1 1.
o 0o 1o 1 1 1
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A representation of F7 over R would imply that the configuration in Figure
1.3 could be drawn in the euclidean plane with straight lines only. As we

all know this is impossible. So F? is not regular.
TUTTE'S CHARACTERIZATION

Tutte proved that in a sense F7 is the only non-regular binary ma-

troid.
Theorem 1.4.4 (Tutte [1958])

Let M be a binary matroid. Then M is regular if and only if M has neither

W

F_ nor F., as a minor. []
1 7
To keep the exposition transparant we postpone the proof of Tutte's theo-
rem, as well as of the results stated below, to the end of this sectiocn.

In fact we prove the following equivalent version of Tutte's theorem.

Theorem 1.4.5
Let A be binary matrix. Then the following are equivalent:
(i) A has a totally unimodular signing.

(ii) A cannot be transformed to

2 @ 4
M(FT} =11 0 1 1
o 1 1 1

by applying (repeatedly) the following operations:

- deleting rows of columns;

- permuting rows or colwmns;

- taking the transposed matrix;

- pivoting over GF(2). O

A {0,+1}-matrix A is called a signing of a binary matrix A if and only if
A = A (modulo 2).

The link between Theorem 1.4.4 and Theorem 1.4.5 is the following
theorem, due to Tutte, stating that in a sense "regular matroid" = "total-

ly unimodular matrix".
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Theorem 1.4.6 {Tutte [1958])

Let M be a binary matroid with binary standard representation [I|A]. Then
W is regular if and only if A has a totally unimodular signing A.

In that case [1|A] is a representation of M over R. ]

A useful generalization of this theorem is:

Theorem 1.4.7
Let M be a binary matroid. Let W pe a (not necessarily standard) represen-

tation of M over GF(2). Then M is regular if and only if there exists a
signing N of M representing M over R. Moreover, each x€N(M) as a signing

yeN(N). ]

Remark:

Let T{dl ) be the matrix with rows all elements of B ) (M binary).
Then Ml is regular, if and only if, T(M) and T(M*) have a signing E(M ),
£(M *) respectively, such that E(ii}{(ii*)T = 0. The latter property is
called the orientability of a matroid (cf. Minty [1966]). "Only if" in the
above equivalence easily follows by applying Theorem 1.4.7 to M = T'(Ml*).

OUTLINE

The remainder of this section is devoted to the proofs of the four
theorems stated above. After some preliminaries on bipartite graphs, pi-
voting and total unimodularity we first prove Theorem 1.4.5. Next we prove
Theorem 1.4.4 and Theorem 1.4.6 together. After proving two characteriza-
tions of totally unimcdular matrices (Theorem 1.4.12), we prove Theorem
1.4.7. Finally we sketch a proof of Theorem 1.4.6 independent of Theorem
1.4.5.

THE BIPARTITE GRAPH OF A MATRIX

Lemma 1.4.8
Let G be a connected simple bipartite graph. If deleting any pair of dis-
tinct nodes in the same colour-class yields a disconnected graph, then G

is either a path or a circuit.
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Proof: Suppose G is neither a path nor a circuit. Then G has a spanning
tree with at least three endpoints. At least two of these endpoints are in
the same colour-class. Deleting these two nodes from G results in a con-
nected graph. []

We apply this lemma to proving Theorem 1.4.5 on the bipartite graph of
a matrix. Let A be a matrix (over any field). Denote the index-set of the
rows (columns) of A by R{A) (C{A) respectively). The bipartite graph,
G(A), associated with A has colour-classes R(A) and C(A). There is an edge

from rER({A) to s€C{A) if and only if the entry Ars is non-zero.
PIVOTING

Let A be a matrix over a field F. Consider the pivot operation (1.4.2)
(ez0):

e | v -¢ | Al
A = > B =
X D X D-g xyT
Then the following assertions hold:
{1.4.9) (i) pivoting B on -& yields A;
(ii) if A is square then det A = -¢ det(D-sﬁlxyT};

(iii) if A is totally unimodular then B is totally unimodular;

(iv) if G(A) is connected then G(B) is connected.

[The proofs of (i), (ii)} and (iii) are straightforward. To see (iv), con-

sider that if G(B) is disconnected then G(A)} is disconnected too.]

UNIQUENESS OF TOTALLY UNIMODULAR SIGNING

If A is a binary matrix that has a totally unimodular signing, then
this signing is not unique (unless A is the all-zero matrix). Indeed,
multiplying some rows and columns of a totally unimodular matrix by -1

vields a totally unimodular matrix again. Theorem 1.4.11 below states that
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this is the only freedom one has in making a totally modular signing of A.

To prove this we need the following easy lemma.

Lemma 1.4.10
Let A be a nxn-matrix, with {0,t1} entries only. If G(A) is a circuit,
then A is totally unimodular if and only if the rumber of -1's in A is

congruent to n modulo 2. []

Theorem 1.4.11 (Camion [1963])

Let M1 and M2 be totally unimodular matrices, with Ml = M2 (modulo 2)7
Then Ml can be obtained from M2 by multiplying some rows and columns of
M, by -1.

Proof: (Paul Seymour) Construct a signed graph (G,I) as follows:

G := G(Ml} {=G(M2)). We call an edge in G even if the corresponding en-
tries in Ml and M2 are the same. The other edges are odd (i.e, are in I).
By Lemma 1.4.10 each chordless circuit in G is an even circuit in (G,L).
Hence, so is any circuit. This means that the signed graph (G,I) is bipar-
tite. Take UCV(G) such that £ = §(U}. Multiply by -1 all columns and rows
of M, with index in U. This yields M,. L]

We are now able to prove Theorem 1.4.5.

Proof of Theorem 1.4.5 (Gerards [1987])

Let A be a binary matrix. The existence of a totally unimodular

signing is invariant under the operations in Theorem 1.4.5 (ii) (by 1.4.9
{iii)). Moreover M(F?) has no totally unimodular signing. Hence (i) im-
plies (ii). So it remains to prove the reverse implication.

Suppose A is a {0,1}-matrix, satisfying {ii), with no totally unimodu-
lar signing. We may assume that each proper submatrix of A has a totally

unimodular signing. So the bipartite graph G(A) is connected. (If not,

B 0
A =

0] C

for certain matrices B and C (up to permutations of rows and columns),

implying that at least one of B and C has no totally unimodular signing.)
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G(A) is not a path or circuit {(as otherwise A has trivially a totally
unimodular signing). Hence, by Lemma 1.4.8, A or AT is equal to [x|y|N]
(up to permutation of columns), where x and y are two column vectors and
where G(N) is connected. By assumption, both [x|N] and [y|N] have a total-
ly unimodular signing. Moreover, by Theorem 1.4.11, these two signings can
be chosen so that in both cases N is signed in the same way. Hence A has a

signing A' = [x'|y'|N'] satisfying:

(*) (i) G(N') is connected,

(ii) both [x'|N'] and [y'|N'] are totally unimodular.

Claim: We may assume that matriz [x'|y'] has a submatriz of the form

[14)-

Proof of the Claim: By {(1.4.9) (iii) and (iv), pivoting A' on an entry in

N' does not influence property (*)}. Now, pivot A' on an entry in N' such
that the smallest submatrix M with determinant not equal to O, 1, or -1,
is as small as possible. Then M is a 2x2-matrix. (If not, pivot on an
entry lying both in M and N', cf. (1.4.9) (ii)).) So M is of the form as
in the claim (if necessary multiply x', y', or a row by -1). Moreover, by
(*)(ii) M has to be a submatrix of [x'|y'].

end of proof of claim

Denote by « and B the row-indices of the two rows of A' in which the
submatrix of the claim occurs. Since G(N') is connected there exists a
path in G(N')} from o to B. This path cannot have length 2 (as such a path
would correspond to a column of N' with two £l1's in the rows o and B,
contradicting the fact that both [x'|N'] and [y'|N'] are totally unimodu-
lar). From this it follows that A' has a submatrix of the form depicted in
the figure below. (If necessary permute rows of A and columns of N', mul-

tiply them by -1, or exchange x' and y'.)



41

af 1 1 1 0... 0 0
Bl1|-1 |0 0 01
11

By pivoting on the underlined entries, deleting the rows and columns
containing these pivot elements, and multiplying some rows and columns by
-1 (and if necessary exchanging x' and y'), we get a submatrix of the

form:

It is still the case that deleting any of the first two columns yields a
totally unimodular matrix. This implies that a = 1 and b = 0. Hence & can

be transformed to M(FT)' contradicting our assumption. N

Proof of Theorem 1.4.4 and Theorem 1.4.6

Both theorems follow from the following observations:

- Suppose a binary matrix A has a totally unimodular signing A. Then a
subdeterminant of A is nonzero, if and only if the corresponding subde-
terminant of A is nonzero. This means that [I|A] is a real representa-
tion of the binary matroid represented over GF(2) by [I]|A].

- If Mhas an F7 or F; minor, then by Theorem 1.4.3 M is not regular (as
F& is not regular).

- Taking a minor of a binary matroid represented by a binary matrix [IIA],
corresponds to deletion of rows and columns from A, combined with pivot-
ing in A, Replacing the matroid by its dual corresponds to taking the
transpose of A. []
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In order to prove Theorem 1.4.7 we need the following characterization
of totally unimodular matrices, due to Ghouila-Houri [1962] and Gomory
(cf. Camion [1965]).

Theorem 1.4.12
Let A be a matrix with entries 0, 1 and -1. Then the following are equiva-
lent.
(i) A is totally unimodular;
(ii) For each {0,1}-matrix B there exists a signing B such that
BA has {0,%1} entries only (Ghouila-Houri [1962]);
(iii) A has no subdeterminant equal to 2 or -2 (Gomory, (cf. Camion

[1962])).

Proof':
(i) = (ii): Let A be totally unimodular. Let B be a {0,1} matrix. We may
assume that in fact B is a row-vector yT.

Consider P := {x|0 ¢ x ¢y, lty™a] < x'A < [4y'Al}. As 1y€P, P # o.
So, by Theorem 1.2.15 there exists an integer vector xEP. Setting Y=y -
2% it is easy to see that y A is a {0,tl}-vector.
(ii) = (4ii): It suffices to show that if A is a square integral matrix
with det A = 2, there exists a B violating {ii). Therefore, let A be a
square integral matrix, with det A = $2. Then 2A_1 is an integral matrix
(Cramer's rule). Let B be the {0,1}-matrix such that B = 2A“1 {modulo 2).
Let B be any signing of B. Then Ba = 2A_1A = 2I = 0 (modulo 2). Suppose BA
has {0,+1} entries only. Then BA = 0, so as A is nonsingular, B = 0. Hence

F il integral {2A_1 = B (modulo 2)). However this contradicts

det A”Y = 1.

(iii) = (i): It suffices to show that if A is a square {0,:1}-matrix,
such that all proper subdeterminants of A are 0, 1 or -1, then

det A € {0,%1,%2}.

Let A be a minimal counterexample to this. As all 2x2-matrices with
{0,%1} entries have determinant O, 1, -1, 2, or -2 (as is easily checked),
A has size at least 3. Now pivot A on some entry Aij # 0 then delete row i
and column j. Call the resulting matrix M. All proper subdeterminants of M
are {0,#1} (1.4.9(iii)). Moreover det M = * det A. This contradicts the

fact that A is a minimal counterexample. E]
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Using Theorem 1.4.12 we prove Theorem 1.4.7.

Proof of Theorem 1.4.7
Let llbe a regular matroid, represented over GF(2) by A. Let A, be a

non-singular submatrix of A with r(AIl) = r{A). We may assume that A has

the following form

-1
11 A12

of M over GF(2). Let B be a totally unimodular signing of A_1A12 {Theorem

(So A, = A A lA 2.) Then [ I|A ] is a standard representation

22 21111

11

1.4.6). For i=1,2, let D. such that D. B is a matrix
il 1 il

with entries 0, + 1 only {(cf. Theorem 1.4.12(ii)). Then the matrix

be a signing of Ai

is a signing of A. Moreover D represents M over R, as D is nonsingular

(as a real matrix). Indeed det D11 = det A11 #0 (modul;12}, so det
D11 # 0.

To prove the second part of Theorem 1.4.7 we may assume that M is a
standard representation [I|D]. So M has a totally unimodular signing
[I|B]. From this it is not hard to see that it suffices to show that each
binary vector % has a signing § such that B§ is a signing of DX. This is

an immediate consequence of Theorem 1.4.12 ((i}e(ii)). []

We conclude this section with a sketch of a proof of Theorem 1.4.6,
which does not depend on Theorem 1.4.5. Let [I|B] be a real standard re-
presentation of a binary matroid [l represented over GF(2) by a binary
matrix [I|A]. It suffices to prove that we can multiply the rows and co-
lumns of B by nonzero reals such that we obtain a signing B of A. Indeed,
suppose we can, let B be the resulting signing. Then [I|B] is also a real

representation of Ml . So a subdeterminant of B is nonzero if and only if
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the corresponding subdeterminant of A is nonzero. This means in particular
that all even subdeterminants of B are zero. So by Theorem 1.4.12 B is
totally unimodular.
To see that B exists observe the following:
(1) Each subdeterminant of B is nonzero if and only if the correspond
subdeterminant of A is nonzero.
(ii) G(B) = G(A)} (from (i)).
(iii) If UgVye VyUs, UsVse v2u3.....ukvk.vku1 is a chordless circuit in
G(B), then the submatrix

Mivs Wy

B B, 0
2V, Y2V
u,v

32

. .

0 B g B
k'k-1 "k'k

(which exists in B) has determinant zero (by (ii) and (i}).
(iv) Let D be the directed graph cbtained by replacing each rc€E(G(B)) by

72 and o (r€R(B),c€C(B)). Define weR*P) by w_, 1= -u_, :=

rc cr
log |Brc| (r€R(B),cEC(B)).

From {iii) it follows that all directed circuits in D have length
zero (for length function w).

(v) Let o (rER(B)), and Ec {cEC(B)) be such that o, + BC =
w_, (rcEE(G(B))). (The numbers o ﬁc exist by (iv) and Theorem

rc &

1.3.2.) By multiplying each row r of B by e T and each column ¢ of

B by e € we get the desired matrix B.
CONCLUDING REMARKS
Above we gave an exposition of almost all basic notions of binary and

regular matroids to be used in this monograph. The exception is Seymour's

decomposition theorem for regular matroids (Seymour [1980]). We state this
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theorem in Section 3.2 (Theorem 3.2.1). Seymour's theorem says that gra-

phic matroids are in a sense the only examples of regular matroids.
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CHAPTER 2. CUTTING PLANES
A central problem in polyhedral combinatorics is the following:

Given a polyhedron {xERn|Ax ¢ b}, find a system of linear inequa-
lities Mx < d such that {xERnlMx ¢ d} is the convex hull of

{x€Z"|Ax < b}.

In Section 2.1 we describe an iterative procedure (developed by Chvatal
and Schrijver) for this problem. The number of iterations needed in this
procedure is finite (Chvatal [1973], Schrijver [1980]). Moreover, it can
be bounded from above by a function of A only (i.e., independently of b)
{Cook, Gerards, Schrijver en Tardos [1986]). In Section 2.2, we give a
short proof for that result. In the final section of this chapter, Section
3.3, we give a class of matrices A for which the number of iterations in

the above mentioned procedure is at most 1.
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2.1. CUTTING PLANES - FINDING THE INTEGER HULL OF A POLYHEDRON

From Meyer's Theorem (Theorem 1.2.14) we know that the integer hull PI
of a rational polyhedron P in R” is a polyhedron too. So PI =
{xERn|Mx < d} for some matrix M and vector d. We now describe a finite
procedure to find M and d, which is developed by Chvatal [1973] and
Schrijver [1980].

Let ﬂ% be the set of all rational halfspaces containing P. We define
the Chvdtal closure P' of P by

(2.1.1) P'= n H..

Remark:

Let H be a rational halfspace in R". Then, clearly there exists an
aEZn. and «€R such that the greatest common divisor of the components of
vector a is equal to 1. In that case HI = {xERn|aTx § b{]}, as is easily

verified.
Obviously the convex set P' satisfies
(2.1.2) PCP'CP.

The following result shows that P' is a "better" approximation of PI than
P itself (unless P=PI).

Theorem 2.1.3
Let P be a rational polyhedron in R". Then the following hold:

(i) P'=P if and only if P=PI;

(ii) P' is a rational polyhedron.

Proof: Let Ax ¢ b be a totally dual integral system defining P, with
AEZ™™, (cf. Theorem 1.2.21). Then P' = {x€R"|Ax < |b]}. Indeed, it is
obvious that P'C{x€R”|Ax ¢ |b]}. Conversely, if a x ¢ « is valid for P

with a€Z" then a=y A, « > y'b for some yEZT. Hence a x ¢ le] is valid for



49

{x€R"|Ax ¢ |b]} as Ax ¢ [b] implies a'x = y'Ax < y'[b] < lv'b) ¢ lef. So
P' is a rational polyhedron. Moreover, by Theorem 1.2.17, P' = P if and
only if P = Pr. ]

The best that can happen in case P # PI is that P' = PI. However this

is generally not the case.

Example 2.1.4

Let P(a): = {[xl,xz]T€R2|2ax1—x220. 2axl+x2 < 2a, %, ¢ 0} for a€N. Then
Pa)] = {[x,, x,]7€R°|0 ¢ x, < 1, x, = O} (=t P(0)). However P'(a) O

Pla-1) # Pl(a} for a > 1.

1

We define the following sequence of polyhedra:

P(O}' = P

(2.1.5) . .
pli), - (9(1'1)}' if  i=1,2,...

From Theorem 2.1.3 if follows that:

p = pl0)5 P(l)D...DP(i)DP{i+l]D...DPI;
(2.1.6)

plf) o pla*) 4o g eny a¢ pM) P
Moreover we have:

Theorem 2.1.7 (Chvatal [1973]. Schrijver [1980])
Let P be a rational polyhedron in R". Then there exists a t€N such that

plt) - P ]
We call the smallest t such that P(t} = PI the Chvdtal rank of P.

So we can iteratively determine systems of linear inequalities descri-
bing P(l). P(E).... . After a finite number of iterations one has P(i) =
P(i+1} {which can be checked using linear programming methods), which

means that the system describing P(J‘}I describes PI. That this procedure
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can be carried out in a finite number of steps follows from the following

lemma.

Lemma 2.1.8
Let A€Q™™" and let bEQ™. Then there exists a finite algorithm that deter-

mines a matrix Ml and a vector dl such that
{x€R®|Ax ¢ b} = {x€R"|M;x ¢ d;).

Proof: Let Y denote the set of all yERm, such that yTAEZn. 0<y <1, and
such that the rows aI of A with ¥; # 0 are linearly independent. It is
easy to see, by Cramer's rule, that y is a finite set, which can be deter-
mined by a finite algorithm. Moreover, the system {yTA)x < yTb, yEY is a
totally dual integral system for {xERn|Ax < b} (= : P). Hence P' =

(xeR™| (y"A)x ¢ ly'b]. vev}. O

The procedure indicated by (2.1.6) can be viewed as a polyhedral ver-
sion of Gomory's cutting plane method for integer linear programming
(Gomory [1958, 1960, 1963]).

It should be noted that Theorem 2.1.7 and Lemma 2.1.8 do not give a
polynomial-time algorithm to find a description of PI in terms of linear
inequalities. There are two reasons for this. The first reason is that the
number of facets of P' can be exponential in the size of the description
of P. {(see, for example, (1.2.11}); this system describes P' in case P is
the polyhedron described by the inequalities in the first two lines of
(1.2.11)). Secondly, the Chvatal rank of a polyhedron can be exponential
too. Indeed, the input size of P(a) in Example 2.1.4 is O(log(a)). The
Chvatal rank of P(a) is at least a.

On the other hand, there is some indication that solving max
{c"x|x€PNZ"} (which is NP-hard, Cook [1971]), is not so hard in case P has
low Chvatal-rank. To see this observe the following two facts.

(2.1.9) Let xDEPnZn. Then in case x. is not an optimal solution of

0
k3 - . i . ey
max{c xlePﬁZn} this can be proved in polynomial-time by giving a

better feasible solution: yOEPnZn, cTyO > cho. (The fact there
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exists an Yo of polynomial size follows from the remark following

Theorem 2.2.2.)

{2.1.10) Let x.€P'. Then, in case x. is an optimal solution of

0 0
max{chIXEP‘}, optimality of Xy can be proved in polynomial-time

by giving integer vectors m;, rationals ﬁi' and non-negative
numbers ¥ {i=1,...,n) such that:

- x€P = me < Bi {this can be proved using a polynomial-time
linear programming algorithm};
n
%
2 ymg;
i=1

1
g
n

n
.
mexg = 1ylel
i=1

(If P = {xERnIAx < b}, then using a description for P' as given in the
proof of Lemma 2.1.8, one can prove that the sizes of m,, Xi and Bi can be
taken polynomial in the size of A and c).

This means that integer programming over polyhedra with Chvatal rank 1 has
a good characterization. (For the case that P is not given by a system of
inequalities but by a separation algorithm, and for generalization to
higher Chvatal rank see Boyd and Pulleyblank [1984], and Schrijver [1986,
Section 23.6]).

COMPUTATIONAL COMPLEXITY OF THE CHVATAL RANK

How hard is it to decide the Chvatal rank of a polyhedron? The answer
to this question is open. Even the decision problem "Given a matrix AEmen
and a vector bEZm. has the polyhedron {x€Rn|Ax < b} Chvatal rank O (i.e.
is the polyhedron integral)?" is only known to be in co-N?P. It is open
whether this problem is AP-complete, well-characterized or (and) in 2.
(The fact that it is in co-NP is easy to prove.)

On the other hand the decision problems "Given a matrix AEZ™™ has
{x€R"|Ax ¢ b} Chvatal rank O for each bEZ"?" and "Given a matrix AEZ™™
has {xERnldl < x < d2; b1 < Ax ¢ b2} ChvAtal rank 0 for each dl' dzEZn:
bl' szZm?" both are in P. [Indeed, from Theorem 1.2.16, Theorem 1.2.15
respectively, it follows that solving these problems amounts to decide

wether or not A" is unimodular, A is totally unimodular respectively. The
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fact that these problems can be solved in polynomial time follows essen-
tially from Seymour's decomposition theorem for regular matroids (Seymour
[1980], cf. Theorem 3.2.1). For details and references we refer to
Schrijver [1986, Section 19.4, Chapter 20, and Theorem 21.6 (due to
Truemper [1978]}].]

This motivates the question: "Given a matrix AEZ™™ has {xERniAx < b}
Chvatal rank at most t for each b€2m?". Unfortunately, in general not much
is known on this question. However, for each matrix A there exists a teN
such that the answer to the question becomes "yes" (Section 2.2). More-
over, in Section 2.3 we consider two classes of matrices A such that
{xEdl $x £ dy bl < Ax ¢ bz} has Chvatal rank at most 1 for each integral
dl’ d2, b1 and b2. One of these classes is due to Edmonds and Johnson
[1970], the other class is due to Gerards and Schrijver [1986]. In both

cases membership-testing for these classes is in P,
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2.2. THE CHVATAL RANK OF A MATRIX
In this section we prove

Theorem 2.2.1 (Cook, Gerards, Schrijver and Tardos [1986])
Let AEZ™™. Then there evists a t€EN such that

(x€R"|Ax ¢ b}, = {x€R"[ax ¢ b}(")
for each bEZ". ]

In fact, Cook, Gerards, Schrijver and Tardos prove that the number t

3
B +ln5n&(A)n+1. (A(A) denotes the

in Theorem 2.2.1 can be taken equal to 2
largest absolute value of a subdeterminant of A.) The proof of this result
which we give below does not yield this explicit value. The result of
Theorem 2.2.1, which is implicitly proved earlier by Blair and Jeroslow
[1982] (cf. Cook, Gerards, Schrijver, and Tardos [1986]), makes the fol-
lowing definition meaningful. Let AEmen. Then the Chvdtal rank of A is
the smallest integer t such that {xERnle < b}I = {xERnle < b}(t) for all

bEZ™. The strong Chvdtal rank is the Chvatal rank of

The proof of Theorem 2.2.1 makes use of the following result.

Theorem 2.2.2

Let P be a rational polyhedron in R". Then there exists a finite set L in
Z" such that for each wEZ" and ZE€PNZ" one of the following holds

(i) w'z = max{w x|xEPnZ";

(ii) there exists a z'€L such that w z < w' z' and 2 + z'€EP. []
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[Theorem 2.2.2 easily follows from Meyer's theorem (Theorem 1.2.14) and
Motzkin's theorem (Theorem 1.2.2). In case P = {x€Rn|Ax S b}, where A is
an integral matrix, L can be chosen independently of vector b {Graver
[1975], cf. Blair and Jeroslow [1982]). In fact we can set L =

(<" |zi| < nA(A) (i=1,...,n)} (Cook, Gerards, Schrijver and Tardos
[1982]).]

Proof of Theorem 2.2.1

Suppose the result is not true. Then there exists a matrix AEZ™™ and
sequences {bk}k€ﬂ’ {wk}kEN and {Bk}kEﬂ in Z%, 7" and Z respectively such
that for each keEN:

(i) w; X
(ii) w x ¢ B, is not valid for {x€R"|Ax & by

([P

. -, n
B, is valid for {x€R" [Ax ¢ b };
k
}( ¢

Obviously (by taking subsequences, if necessary) we may assume that
{x€2n|Ax < bk} is empty for each k or is not empty for each k. So we have

two cases:
Case I: {xEZn|Ax <b } @ for each kEN.

We may assume that {xERnIAx < bk} # @ for each kEl. {Indeed, by Theo-
rem 2.1.7 and assumptions (i) and (ii) above only a finite number of
{x€R | Ax <b } can be empty. So, by taking a subsequence, we may assume
that none of these polyhedra is empty.) Let x ER with Axk g bk By repla-
cing bk by bk AkaJ we may assume that 0 ¢ {xk)i < 1 for each kEN,
i=1,...,m. Hence we may assume that for each i=1,...,n the sequence

oy dyen *
into two (possibly empty) subsystems Cx ¢ ) and Dx ¢ dk such that {Ck}kEH

s, componentwise, bounded from below. Split the system Ax ¢ bk

is bounded, and {dk}kEH is componentwise unbounded. By taking subsequences
again, we may assume that ¢ = ¢ for all k€N and some fixed c and that

{dk}kEH tends componentwise to infinity. Hence {xEZn1Cx ¢} =2 (if not

{xEanAx S k} # @ for some k€N). Let t be the Chvatal rank of
{xEﬂnle ¢ c} (Theorem 2.1. 7). Then w X < Bt is valid for {xER |cx < c}
{xERn|Cx {c }(t} 3 {xERn]Ax {b }(t}. Which contradicts assumption (ii)

above.
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Case II: {xEZn]Ax < bk} # @ for each kEN.

Without no loss of generality we may assume that OE{xEZn|Ax S bk} for
each kEN. As in Case I we may assume that we can split Ax ¢ bk into two
systems Cx ¢ cp and Dx ¢ dk' such that C = ¢ for all k€N and some fixed
c, and that {dk}kEH tends componentwise to infinity. Let t be the Chvatal
rank of {x€Q"|Cx ¢ c} {Theorem 2.1.7). Then by assumptions (i) and (ii)

above w;x < Bk is invalid for {xeﬁn|Cx < c}I for each k 2 t (as

{x€Q”|cx < e} () 5 (xen™|ax < bk}(t}). Let xkE{x€2n|Cx < ¢} with wx >
Bk’ and xkEL for k > t, where L is the finite set of Theorem 2.2.2 for

polyhedron {xEZnICx < c}. As L is finite and {bk} tends componentwise

keN
to infinity there exists a KEN such that xkE{xEZn1Ax < bk} for k > K,

which contradicts assumption (i) above.

Conclusion: Both in Case I and in Case II we derived a contradiction,
which proves Theorem 2.2.1. ]
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2.3. MATRICES WITH THE EDMONDS-JOHNSON PROPERTY

We say that a matrix AEZ™™ has the Edmonds-Johnson property, if it
has strong Chvatal rank at most 1. Edmonds and Johnson [1970, 1973] de-
rived from Edmonds' characterization of the matching polytope (Edmonds
[1965¢c], cf. (1.2.11)) that if AEZ™" such that

(2.3.1) Y |a..]l ¢2 (3=1,....n),
1

then A has strong Chvatal rank at most 1, and hence has the Edmonds-
Johnson property.
The Edmonds-Johnson property is not maintained when passing to trans-

poses; i.e. (2.3.1) may not be replaced by
I

(2.3.2) Y la, ] <2 (i=1,...,n),
=1 7

as the matrix

M(Kq):=

O O O B = =
O = = O O =
= O = O B O
= = O = O O

{the edge-node incidence matrix of the undirected graph Kﬂ} does not have
the Edmonds-Johnson property. Consider O <x $1; 0¢ M(Kq)x < 1.) In this
section we show that, M(Kq) is essentially the only counterexample among

the matrices satisfying (2.3.2).

Theorem 2.3.3 (Gerards and Schrijver [1986])
Let ACZ™™, satisfying (2.3.2). Then A has the Edmonds-Johnson property if
and only if A cannot be transformed to M{Ku) by a series of the following

operations:



57

(2.3.4) (i) deleting or permuting rows and columns, or multiplying
then by -1;
(it) replacing the matrix
1 T
il D

by the matrix

(D - fg'l. O

The operation {2.3.4)(ii)} is called contraction (compare with the
subsection MINORS of Section 1.4). The proof of Theorem 2.3.3 is at the
end of this section. In this proof we make use of the fact that the Gomory
cuts which essentially are needed to describe P' if

P = {xERn|al {x ¢ a,, b1 < Ax ¢ b2} such that AEZ satisfies (2.3.2),

and a,, szZn; bl.b2€2m. are of a specific type. To describe this type of
Gomory cuts we use the terminology of graph theory.

Any integral matrix A satisfying (2.3.2) can be considered as a bidi-
rected graph: the columns of A correspond to the nodes of this graph, and
the rows to the edges. A row containing two +1's corresponds to a ++ edge,
connecting the two nodes (columns) where the +1's occur. Similarly, there
are +- edges and -- edges. Moreover, there are ++ loops (if a 2 occurs)
and -- loops (if a -2 occurs), (and + loops and - loops for rows with
exactly one + 1, but they will be irrelevant in this discussion). It will
be convenient to identify the matrix with this bidirected graph. We denote
the set of nodes (= columns) of a bidirected graph A by V(A) and the set
of edges (=rows) by E(A).

A e¢ircuit in a bidirected graph is a square submatrix C of the form
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+1 %1 ()

or [+ 2]

1 21
|+1 0 =1

(possibly with rows or columns permuted).

Associated with a bidirected graph A, we define a signed graph L(A) by
considering ++ edges, -- edges, ++ loops, and -- loops as odd edges (loops
respectively), and +- edges as even edges. In doing so we can use the
terminology and results from, signed graphs for bidirected graphs. In
particular a circuit in a bidirected graph is odd of it contains an odd
number of ++ edges and -- edges.

So a matrix A satisfying (2.3.2) can not only be considered as a ma-
trix, and a bidirected graph, but also yields a signed graph. Throughout
this section we shall intertwine the terminoly of matrices, bidirected
graphs and signed graphs. For example: a bidirected graph is bipartite if
and only if it is totally unimodular, as is well-known and easy to prove.

If A is a bidirected graph, xERV(A}. bEZE{A) we denote:

(2.3.5) x(e) := entry in position e of Ax (so x(e) = = X, X, if e

connects u and v).

So Ax ¢ b is equivalent to: x(e) ¢ be for e€EE(A). If C is an odd circuit

in A, the corresponding odd ecircuit inequality is, by definition:

(2.3.6) 3 I x(e) ¢+ T b
e€E(C) e€E(C)
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So, it is a special type of Gomory cut for the polyhedron
{xERV(R)|Ax ¢ b}. In fact, for bidirected graphs, the odd circuit inequa-

lities imply all Gomory cuts:

Lemma 2.3.7

Let A be a bidirected graph, and let bEZE(A}

. Then the system

(2.3.8)  Ax

T
Cc X

s

b
18] (1f cez'P)

[P

. and Ax < b implies c'x £ §),
has the same scolution set as the system

(2.3.9) Ax

¥ X x(e) ¥ z beJ (C odd circuit)
e€E(C) e€E(C)

A A
o

Proof: It suffices to show that each solution of {2.3.9) satisfies each
inequality c'x < 18] of (2.3.8). Choose '™ such that Ax { b implies
ch é §&. By the linear programming duality Theorem 1.2.6, {or by Farkas'
Lemma (1.1.1)), yTA = cT, yTb S § for some yERf(A). By Carathéodory's
Theorem, we may assume that the positive components of y correspond to
linearly independent rows of A. As each non-singular submatrix of A has
half-integral inverse (as is easily checked), it follows that y is half-

E{A)).

integral (i.e. 2y&Z Let A' be the submatrix of A consisting of those

rows of A which have positive component in y. We consider two cases
Case I: A' contains an odd ecircuit C (say).
Let ¥ := ¥xg () and let ¥ :=y-§y>0. If § =0, we know that

cx=3% X x(e) <2 ¥ bl =lyv] < [8].
eEE(C) = " ece(c) © o

i ?#0. applying induction on > |ye|. we know that {§TA)x < L;Tbj
eEE(A) h
follows from (2.3.8). Hence:
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¢x = (yA)x = (FA)x + (37A)x < [§"b) + [§7b) < ly"b)

([P

L]
Case II: A' is bipartite.

Then A' is totally unimodular, and hence (Theorem 1.2.16) Ax ¢ b im-
plies c'x = (yTA)x S LyTbJ < LSJ. []

There is a strong relation between the operations (2.3.4) and reduc-
tions of L{A). Deletion of rows of A means deletion of edges of I(A).
Deletion of columns of A means deletion of the corresponding node and the
edges incident with it from A. Multiplying a column of A by -1 means re-
signing E(A) on the corresponding node. The other operations in (2.3.4) (1)
do not change E{A).

What means contraction {operation 2.3.4(ii))? If we apply operation
(2.3.4)(ii) and the first row in the initial matrix is a +- edge, we get
the contraction of an even edge in I{A). If the first row is a ++ edge or
a -- edges, then cperation (2.3.4)(ii) means resigning on the first node
(to make the first edge (row) even) followed by the contraction of the,
now even, edge in I(A).

Thus we obtain the following equivalent form of Theorem 2.3.3 (cf.
Lemma 1.3.3)

Corollary 2.3.10
A bidirected graph A has the Edmonds-Johnson property if and only if L{A)

does not contain an odd—Ku. [j

A consequence of Corollary 2.3.10 is the following. An undirected
graph G is called t-perfeet if the convex hull of the characteristic vec-

tors of stable sets in G is defined by:

(2.3.11) X, 20 (vEV);
xv+xw g 1 (VWEE} H
? x < L%|V(C)]J (C odd circuit in G).

vev(c) ¥
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(A stable set in G, is a collection of mutually non-adjacent nodes in G.)

Then Corollary 2.3.10, together with Lemma 2.3.7, directly gives

Corollary 2.3.12
If (G,E(G)) contains no odd-K,, then G is t-perfect. ]

This extends results of Chvatal [1975], Boulala and Uhry [1979], Sbihi
and Uhry [1984], and Fonlupt and Uhry [1982] (see Section 3.6 for a dis-
cussion). There exist however t-perfect graphs which do not have the

Edmonds-Johnson property, like the graph in Figure 2.1.

Figure 2.1

In Section 3.6 we shall extend Corollary 2.3.12 by proving that
(2.3.11) is totally dual integral for graphs with no odd—Kq. Here we use
structural properties of signed graphs with no odd-Kq. which are derived

in Sections 3.1, 3.2, and 3.3.

Remarks:
(i) It follows with the ellipsoid method that if A is a bidirected
graph with the Edmonds-Johnson property, and bEDE(A) and

wEDV(A). we can solve the integer linear programming problem

(2.3.12) max{w'x|Ax < b, xez' M)}



(2.3.13)

(2.3.14)

(2.3.15)
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in polynomial-time. By the results described by Grétschel,
Lovasz, and Schrijver [1981], to show polynomial solvability of
(2.3.11) it suffices to give a polynomial-time separation algo-
rithm for the convex hull of the solution set of (2.3.11). So we
need a polynomial-time algorithm for the following problem
tvienes blaiveeesd grashid and SR
Az < b

. Decide whether or not,

3 Y z{e) < I bl (C 0dd circuit)
e€E(C) ® " e€E(C) ©

and, if not, find a violated inequality.

We here describe such an algorithm. First check Az { b, if one
of the constraints is violated, then we are done. Otherwise we
must check the odd circuit constraints. It is not hard to see

that for z satisfying Az { b the following two systems are equi-

valent
3 z < | I beJ (C odd circuit),
e€E(C) © T  e€E(C)
YA o >1 (C circuit, 2 b_is odd),
e€E(C) € ~ e€E(C) ©
where (2€RE(A) 35 defined by 4:= b-Az).

+

[Indeed, (2.3.15) is equivalent to

3 ¥ z(e) <t X b -1 (C circuit, 5 b is odd).
e€E(C) © e€e(c) € e€E(C)

1

Moreover, if Az ¢ b, then 3 z zy < L% 2 beJ as soon as C is
eE(C}) T e€E(C)
an even circuit, or Y b_ is even. So we see that (2.3.14)
e
eEE(C)

and (2.3.15) are equivalent, in case Az { b.]

To check (2.3.15), split each node u in A(V) into two nodes u

and u_, and make edges as:



(2.3.16)

(ii)

(iii)
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if e€E({A), connects u and v and be is even, make edges u w_ and
u_w_, each with length Le.
if e€E{A), connects u and v and be is odd, make edges u w_ and

u_w,_, each with length Le'

Then circuits C in A with b(C) odd correspond to paths from u,
to u_ for some u. So finding a circuit C with b(C) odd and vio-
lating (2.3.14) is equivalent to finding a path from u, tou_,
of length less then 1, for some u. This can be done in poly-

nomial-time, with a shortest path algorithm.

Using the remark (i) above one can prove that the decision pro-
blem "Given a bidirected graph A, has A the Edmonds-Johnson
property?" is in co-NP. A fact which also follows from Theorem
2.3.3 (Corollary 2.3.10). In fact the decision problem is in P.
However this does not follow immediately from Theorem 2.3.3. (In
itself this thecrem does not even give a good characterization
for recognizing bidirected graphs with the Edmonds-Johnson pro-
perty.) Truemper [1987] showed that for a binary matroid L, and
an element x of ii, it can be tested in polynomial-time whether
or not M has an F?-minor using x. This implies (cf. Theorem
3.1.2 {i)) that a bidirected graph can be tested in polynomial-
time for hawving the Edmonds-Johnson property. The existence of a
polynomial-time algorithm also follows from Theorem 2.3.3 to-
gether with Theorem 3.2.Y4. The latter theorem is a special in-

stance of a result of Truemper and Tseng [1986].

There are three equivalent properties for a bidirected graph A:
a} A has the Edmonds-Johnson property;

b) I(A) contains no odd—Kq;

c) The system:

X
e

> ox
e€E(C) ©

(e€E(A));
(C odd circuit)

(R TR
= O

is totally dual integral. (cf. Theorem 3.4.2).
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Properties a) and c) are very much related, but we were not

able to find a direct way of deriving one from the other. In
fact, if the list of "minor-minimal counterexamples" for the
"weak max-flow-min-cut"-property given by Seymour [1977, p.

200] is complete -which is not known-, then Theorem 2.3.3

would follow as a corollary.
If A has the Edmonds-Johnson property, and the polyhedron

(2.3.17) {xERv(A}idl

[[Fa

x {d b, {Ax <D

2' "1
has Chvéatal rank O or 1 for each integral dl' d2. bl' and b2, then
(2.3.16) also has Chvatal rank O or 1 if some of the components in dl‘ d2,
bl and b2 are + », This follows from the following lemma.

Lemma 2.3.18

Let AEmen, BEkan, and bEZ". Morecver let bl.bz....EZk such that
bi.bi,... tends to infinity for each i=1,....k.

If By 1= {x€R"|Ax ¢ b, Bx ¢ b’} has Chvdtal rank t for each JEN, then P :=

{xERn|Ax < b} has Chvdtal rank at most t.

Proof': Pi is constrained by the system:

-

Ax

T

y Ax

b;

s

[

ly"b] for each yEQT with y AEZ";

™)

Bx < bY 3

[[FaY

(yTA+zTB)x < [yTb+szJJ for each yEﬂT. zEﬂT\{O} with
L yTAi-zTEEZn;

Note that the right hand sides of the inequalities the last two lines of
(*) tend to infinity for j to infinity. Since for t=0 the lemma is ob-

vious, the lemma follows by induction. []
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PROOF OF THEOREM 2.3.3.

I. We show that the Edmonds-Johnson property is maintained under the
transformations (2.3.4), and that M(Kq) does not have the Edmeonds-Johnson
property.

Suppose A' is a bidirected graph with the Edmonds-Johnson property.

1 2 _V(A). E(A)

This means that for each a ,a €7 : bl,bEEZ each zERV{A) that is not

in the integer hull of

(2.3.19) a' ¢ x ¢ a, b’ ¢ Ax ¢ b2

is cut of from (2.3.19) by a Gomory cut
(2.3.20) c'x ¢ |x] with c€Z" and c'x <y valid for (2.3.19).

{z is cut of by c'x { o if c'z > o).

We now check the operations (2.3.4):

(i) Permuting rows or columns, or multiplying then by =-1: trivially
maintains the Edmonds-Johnson property.

(ii) Deleting a column, say corresponding to variable X (uEV(A)): main-
tains the Edmonds-Johnson property (take ai=aﬁ=0).

(iii) Deleting a row, say corresponding to edge e€E(A): maintains the
Edmonds-Johnson property (take bi=—w, b§=+m).

{iv) Replacing [; gT] by [D—FgT]: Suppose the first matrix has the

Edmonds-Johnson property. Let 31, 52, El, £ be integral vectors of

appropriate order, and consider the systems.

(2.3.21) &t <x ¢ g, Bt < [D-fg' Ix < §2

and

esa [ s3] [ < €0 < [
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Let z be not in the integer hull of {2.3.21). It suffices to show
that there exists a Gomory cut {2.3.20) violating z. To this end,
define n=—gTz. It is easily checked that [u,zT]T is not in the inte-
ger hull of (2.3.22). Hence, by assumption there exists an inequali-
ty oh+C X < & valid for (2.3.22), such that mu+cTz>L8J and «,c inte-

gral. Then (CT-ugT)x ¢ & is valid for (2.3.21), as if x satisfies

(2.3.21) then [-ng,xT]T satisfies (2.3.22), and hence

”
(cT—ugT}x = [a.cT] [—gxx] < &,

Similarly, (¢ -ag )z = [a,cT] Bj > 8], so z is cut off from

(2.3.22) by a Gomory cut.
(v) M(K,) has not the Edmonds-Johnson property: Consider the system
i

(2.3.23) 0 ¢x¢ 1, 0 MEK)x <L

The integral solutions are [0,0,0,0]7, [1,0,0,0]17, [0,1,0,01",
[0.0.1,0]T- [O.O.D.I]T. Hence xl+x2+x3+xq ¢ 1 is a facet of the
integer hull of (2.3.23). However this inequality is not a Gomory
cut, as §=2 is the smallest § for which xl+x2+x3+xq ¢ & is valid for

{2.3.23) (since [%,%,%,3]" belongs to (2.3.23)).

II. The remainder of this section is devoted to showing sufficiency in
Theorem 2.3.3. Suppose the condition is not sufficient. Then there exist a

bidirected graph A without an odd—KQ, and an integral vector b, such that
(2.3.24) Ax ¢ b
together with the odd circuit inequalities

(2.3.25) % ¥y ox < lé > beJ (C odd circuit in A)

e€e(c) © 7 L egE(C)

is not enough for determining the integer hull of (2.3.24) (since joining
A with unit basis row vectors, or with the opposite of any row of A, can-

not make an odd-Ku as a subgraph}. Let A be the smallest such matrix (i.e,
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with number of rows and columns as small as possible), and let P be the
polyhedron defined by (2.3.24) and (2.3.25). Clearly A is connected, as
otherwise we can decompose A and get a smaller counterexample. We may
assume that in each row the sum of the absolute values of the entries is
exactly 2: all-zero-rows trivially do not occur, while a row with one + 1

can be replaced by the same row multiplied by 2.

Claim 1: If z€EP and z has an integral component then z is in the integer
hull of (2.3.24).

Proof of Claim 1: Suppose zl(say} is an integer.

Z
Let z= [z}] and A=[a1|B], where a

satisfies

1 is the first column of A. Then z'

Z,.

(2.3.26) Bz' ¢ b-al 1

We show that z' cannot be cut off from (2.3.26) by an odd circuit
inequality derived from (2.3.26). For suppose (y B)x' < LyT(b-alzl]J is
such an inequality, cutting off z', where y is 0, 3-valued, with its 3's
in positions corresponding to an odd circuit in B. This implies yTal=0.
Then

(2.3.27) (y'A)z = y'ayz; + y'Az' = y'Bz' > |y (b-ajz)] = ly"b].

But this is an odd circuit inequality for (2.3.24) cutting off z, contra-
dicting the fact that z is in P.

So z' cannot be cut off from (2.3.26) by an odd circuit inequality.
Hence, as B is smaller than A, z' is in the integer hull of (2.3.26), i.e.

z' is a convex combination of integral solutions of (2.3.26), say of

zi,....zﬁ. Then z is a convex combination of the integral solutions
z
% 1
LR
z! z'
k

of (2.3.24). This proves our claim. end of proof of claim 1
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Claim 2: P has a vertex z with all components non-integral.

Proof of Claim 2: It suffies to show that there exists a minimal face F of

P such that all components of all vectors in F are non-integral (since
this implies that F has dimension 0, i.e., is a vertex). In order to show
this observe that P has a minimal face containing no integral vectors. If
F would contain a vector z with at least one component integral, then, by
Claim 1, this vector z is a convex combination of integral vectors in P,
and hence in F. Contradiction.

end of proof of claim 2

From now, fix a vertex z with all components non-integral.

Claim 3: Az < b, i.e., z satisfies each inequality in Ax { b strictly.
Proof of Claim 3: Suppose, to the contrary that the first inquality

alx < b1 {say) satisfies al is the first row of A). Then

1 1 1
al contains two * 1's: if it would contain a * 2, and b1 is even, Claim 2

z = b1 {where a

is contradicted, while if b, is odd z is cut off by the odd circuit in-

1
equality obtained from a.

Without loss of generality we may assume a,,=:1. Moreover we may as-

11
sume all=1 (if not, multiply the first component of z and the first column

of A by -1). Let

b
(2.3.28) 1 8 anab = [1]

f D i

N
n

. |

N N
-

| S——
=

PR

Then z' satisfies

Fay

(2.3.29) [D-fg'Ix' < B'~fh; .

Moreover z' cannot be cut of from (2.3.29) by an odd circuit inequali-
[yT(b'-fbl}J is such
0. Then

ty derived from (2.3.29). For suppose yT[D—ng]x' <
>

an inequality cutting of z' from (2.3.29), with y
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1 o
{I-ny-l - y-rf.- yT) {f‘ 51] [zl] E
Z
= ([y"fl, [y"flg" + y' [D-fg' 1) [21] =
= [yflz, + [y'flg'z' + y'[D-fg"] z' =
= [y"flb, + y'[D-fg" ]z ¢
¢ [y"elo, + Ly (o'-fb))] =
o T T T bl
= {ry FT = ¥ f, ¥ ) B!
(using zl+gTz'=a;z=b1). So z would be cut off from Ax ¢ b by a Gomory cut,

contradicting the fact that =z€P.

So z' cannot be cut off from (2.3.29) by a Gomory cut. Hence as D-f‘gT
is smaller then A, z' is a convex combination of integral solutions of
{2.3.29), say zi,...,z&. Then z is a convex combination of the integral

vectors

EEEE]

Each of these vectors satisfies Ax { b, contradicting our assumption.

end of proof of claim 3

We call an odd circuit C tight if the corresponding odd circuit inequality

is satisfied by z with equality, i.e., if

p 3 oz(e) =Lt 3 b

e€E(C) e€E(C)

As z is a vertex, Claim 3 implies that z is uniquely determined by the

system of equations:
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(2.3.30) 3 I =x(e) = |3 I beJ (C tight odd circuit).
eEE(C) e€E{C)

Claim 4: Each edge of A is in at least one tight odd circuit.

Proof of Claim 4: If not, deleting the edge gives a smaller counterexam-

ple.

end of proof of claim 4

Without loss of generality we may assume
(2.3.31) 0O < z, <1 (uEV(A)).

This is allowed by replacing z by z-|z] and b by b-Alz]. With this assump-

tion (2.3.31) we can prove

Claim 5: be = +1 if e is a ++ edge;
be = 0 if e is a +- edge;
be = -1 if e is a -- edge.

Proof of Claim 5: We only show the first line - the other are similar. Let
e' be a ++ edge. By Claim 3, be' > z(e') > 0. So be' 2 1. To show the

reverse inequality, let C be a tight odd circuit containing e' (C exists

by Claim 4). Let e' connect nodes u and v, say. Consider the system of

linear inequalities

4

(2.3.32} =x(e) £ b(e) (e€E(C), ere')
<1,
u:

x < 1.
v:

For each x satisfying (2.3.32) we have

1 ¥ x{e) =% % x{e) + ix +ix <1+ 3 ¥ by
e€E(C) e€E(C)\{e'} ¥ e€E(C)\{e'}

Now the constraint matrix of (2.3.32) is totally unimodular. Hence each x

satisfying (2.3.32), satisfies

3 ¥ ox <1+ 3 I b |.
e€E(C) © T EeGE(C')\{e'} el
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Since z satisfies all inequalities in (2.3.32) strictly (Claim 3 and
(2.3.31)), we have

[x beJ =3 I z{e) <1+ |3 X beJ'
e€E(C) efE(C) e€E(C)\{e"}
Therefore be'<2' and hence be,=1. end of proof of claim 5

Now recall the notions of separating and non-separating circuits given

in Section 1.3 below Lemma 1.3.4.

Claim 6: There are no separating tight odd circuits.

Proof of Claim 6: Suppose C is such a circuit. Then we can split the edges

not in C into two nonempty classes E' and E" such that if e€E' and fEE"
intersect, then their common node(s) are contained in C. Let V' (V") be
the set of nodes which are not in C and are covered by at least one edge
in E' (E"). Consider the submatrix A' (A") of A induced by the rows
E(C)UE' and colums V(C)uV' (E(C)UE" and V(C)uV")}. Let z' (z") be the re-
striction of z to V(C)uv' (V{C)uv"). Let b' (b") be the restriction of b
to E(CY}UE' (E(C)UE").

Clearly, A'z' < b' and A"z" < b", and z' satisfies the odd circuit
inequalities for A'x' < b', and z" satisfies those for A"x" = b". More-

over, ¥+ ¥ z'(e) =13 X b'],end} I z"(e) =] X b'], as z'
e€E(C) e€E(C) © e€E(C) e€E(C) ©

and z" coincide with z on V(C) and b' and b" coincide with b on C, and as

3 3 z(e) =3 ¥ beJ'
eEE(C) e€E(C)

Since A' is smaller than A, we know that A' has the Edmonds-Johnson
property. Hence z' is a convex combination of integral solutions of
A'x' < b'. Similarly, z'' is a convex combination of integral solutions of
A"x" £ b". Therefore, there exists a natural number N such that
+

Nz' = zl+,,.+2', Nz" = z"+,,.+z",
N’ 1 N

1
1
i.....z& of A'x'" £ b', and certain inte-
of A"x" = b". Moreover we know, since

for certain integral solutions z

"

gral solutions z",....zN
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i1 Y x'(e) <[ X b ], is attained by z' with equality, the same
eEE(C) e€E(C) ©
holds for zi,....zﬁ. Similarly for z",...,zﬁ.
Let S RERERL N be the edges in C, and consider the corresponding in-
equalities (say)

(2.3.33) x'(eg) b ax'(e) < b,

t
A k

As ¥ Y z!(e) =% 2 beJ' and Y b_ is odd by Claim 5, we know:
e€E(C) * e€E(C) e€E(C)

zi(e1)+...+zi(ek) = bl+...bk—1.

for i=1,...,N. Hence each zi has equality in all constraints (2.3.33)
except for one, where there is a rest of 1. Let A! be the number of indi-
ces i for which zi has rest 1 in the j-th inequality in (2.3.33). Similar-
1y, A; is defined. Then trivially

-1
1T TN

z(e

2l

z{el) =b k) = bk

Similarly, for the k}. Hence A& = k; for each j. So we may assume that zi

and z; have rest 1 at the same edge in (2.3.33). As e ,e, are linearly

1'" """k
independent rows of A, it follows that zi and zz are the same on V(C). So

we can combine zi and z; to one integral solution z; of Ax £ b, so that z;

restricted to A' is zi. and z, restricted to A" is z;. But then Nz =

i

z +...+zN. contradicting our assumption that z is a non-integral vertex of

1
P. end of proof of claim 6

Claim 7: Each tight odd circuit has at least three nodes of degree at
least three.

Proof of Claim 7: Suppose C is a tight odd circuit, with less than 3 nodes

of degree at least 3. Assume C has more than 2 edges. Then C contains a
node u of degree 2. If C is the only tight odd circuit containing u, we
could delete u together with the two edges containing u. In the remaining
bidirected graph, the remaining z, {(vEV(Aa)\{u}) are uniquely determined by
the remaining tight odd circuits (as only one tight odd circuit is dele-

ted). Hence we obtain a smaller counterexample.
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So there exists another tight odd circuit C' containing u. As C' is
non-separating, C and C' together form the whole bidirected graph. But
then A has at least 3 vertices, and exactly two odd circuits, contradic-
ting the fact that z is uniquely determined by the tight odd circuit in-
equalities.

Hence C has at most two edges. But then the odd circuit inequality is

equivalent to x_ = l_% 2 b J for a node v on C, which is tight for =z,
¥ e€E(C) ©

contradicting Claim 2. end of proof of claim 7

Claim 8: A has a node u which is contained in each odd circuit.

Proof of Claim 8: By Lemma 1.3.4 (and Claims 6 and 7) if suffices to show

that if C is a tight odd circuit, then V(C')nV(C)#@ for each odd circuit
C' in A. So it suffices to show that each two odd circuits have a node in
common. Assume C' and C" are odd circuits with V(C')nV(C")=&. As A is
connected, and as each edge is contained in a tight odd circuit, there
exists tight odd circuits Cl""'ck such that

v(c')nV(C, )#a, V(C,)NV(C,)#a, V{Cz)nV(C3}#¢.....
V(ck_l}nv{ck)#z. V(ck}nv(C")¢z.

We may assume that k is as small as possible. Hence V(C'}nV{02)=z. So
without loss of generality, C“=Cz.
As C1 is nonseparating, V(A)\V(C) spans a connected graph. Let T be a
tree spanning V{A)\V(C) such that T contains all edges of E{C') and E(C")
which do not intersect V(C). This is possible, as V(C')nV(C")=g. Next
delete all edges which are contained in V(A)\V(C) and which do not occur
in T. Let A' be the bidirected graph left. Since T is bipartite, we can
apply Lemma 1.3.4 to A'. It follows that V(C') and V{(C") intersect, con-

tradicting our assumption. end of proof of claim 8

If P is a path in A, let Pv = (XE(P}A)v for each vEP. A vw-path P is
called bidirected if Pv' = 0 for each v'€{v,w}. So if P is a bidirected

vw-path then > x(e) = P x +P x_ and by Claim 5, 2 b = 3P +P ).
e€E(P) vvouu e€E(P) © vou
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Claim 9: Let C be a tight odd ecircuit, and let v, wEV(C). If there exists
a bidirected vw-path P in A, then there exists a bidirected vw-path in C
with the same number (modulo 2) of odd edges as P has.

Proof of Claim 9: Let Ql be the vw-path in C having the same number

(modulo 2) of odd edges as P has. Let Q2 be the other vw-path on C.

Suppose Ql is not bidirected. Then z satisfies the following inequalities:

(2.3.34) ¥ ¥ x(e)+iP x +iP x [# I b _+iP +iP
eEE(Q2) Vv wWw = eEE(Qz) e A wJ

(PN

1]

1 ¥ be+%Pv+%Pw—i
eEE(Qz}

(as E(Qz)ﬁE(P} is a cycle containing an odd number of odd edges);

(2.3.35) 3 Y  x(e)-3P.x -3P x < |# ¥ b_-iP -iP +3]
eEE(QI) v v W w E€E(Ql) e v u

=% 2 b -iP -iP .
e€E(Q,) e u- v

[Proof of (2.3.35): Consider the system:

x(e) ¢ b, (e€E(Q)),

-Px <%+ -3P.
wow = w

The constraint matrix of this system is totally unimodular. Moreover z
satisfies each of the inequalities of this system strictly. Finally the
left-hand side of (2.3.35) is not vanishing since Ql is not bidirected. ]

So z satisfies the sum of {2.3.34) and (2.3.35), i.e. ¥ X z_ <
e
e€E(C)
) be—i. This contradicts the assumption that C is tight.
eEE(c)
end of proof of claim 9

Claim 10:
Let vEV(A)\{u}. If P and Q both are bidirected uv-paths, then PuQv=Pqu.
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Proof of Claim 10: Suppose PUQV#PVQu. Then E(P)AE(Q) is a cycle containing

an odd number of odd edges. Hence it follows that

Pz +P z +Q z +Q z = 2 z(e)+ Y z =
uu vv uu vu €E(P) e€E(Q) e
= ¥ z{e}) + 2 ¥ z, <
e€E(P)AE(Q) eEE(P)}NE(Q) N

< 3 b -1+ 2 3 b, =
e€E(P)AE(Q) © e€E(P)NE(Q)

= 2 b+ X b -1= 3P +iP +3Q +3Q -1.
e€E(P) © e€E(Q) © ueovouw

Without no loss of generality we may assume Pu=Pv, Qu=-Qv' So
P (z +z )+Q (z -z ) < P -1. Now one easily verifies that each possible
uu vl Tutu vt o= Ty
choice of PuE{l.—l} and Qu€{1,-1} contradicts (2.3.31), saying that 0 < z,

{1 and O ¢ z, < 1. end of proof of claim 10

By Claim 10 the following vector EERV(A) is well-defined

2 v=u;

zV =1"p v#u, P is a bidirected uv-path;
v
0 else.

Claim 11: If C {s a tight odd circuit, then T z(e) =0
e€E(C)
Proof of Claim 11: By Claims 9 and 10, C exists of three edge disjoint

paths P, Q, and R such that V(P)nV(Q)={u}, P and Q are bidirected, v#w
(where {v} := V(P)nV(R), {w} := V(Q)nV(R)) and Ev,=o for all
v'EV(R)\{v,w}. From this of follows that

X z(e) X z(e) + I zle)+ X Z(e) =
e€E(C) c€E(P) e€E(R) e€E(Q)

= Pz +Pz +Rz +RzZ +0Q% +Q3z =
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(Here we used that Rv =P ,R =Q.) end of proof of claim 11

As 7#0, Claim 11 contradicts the fact that z is a vertex of P deter-
mined by the tight odd circuit inequalities uniquely. This contradiction

finishes the proof of Theorem 2.3.3. ]
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CHAPTER 3. SIGNED GRAPHS WITH NO ODD-KQ

Motivated by the main result of Section 2.3 (Theorem 2.3.3), in this sec-
tion we study combinatorial properties of signed graphs with no odd-Kq, and
related types of signed graphs. First we show, in Section 3.2, that each
signed graph with no cdd-Kq can be obtained by glueing together certain "ele-
mentary" signed graphs. Next, in Section 3.4, we prove that a signed graph has
no odd—Kq and no so-called odd—Kg (cf. Section 3.1) if and only if some speci-
fic orientation of the edges exists. Using this we give in Sections 3.5 and
3.6 new proofs of results due to Seymour, Gerards and Catlin. In Section 3.7,
we use the results of Sections 3.2 and 3.4 to prove a new result extending
Kénig's well-known theorems on stable sets and node-covers in bipartite graphs
to graphs with no odd—Kq.

In proving the results in Section 3.2 and 3.3 we use the theory of regular
matroids. The relation between regular matroids and signed graphs with no odd-

Kq and no odd-Kg is elaborated in Section 3.1.
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3.1. SIGNED GRAPHS AND BINARY MATROIDS

Let (G,L) be a signed graph. The matroid S(G,L) is the binary matroid
represented over GF(2) by:

=
1 X

(3.1.1) 0
MG

4]

where MG is the node-edge incidence matrix of G, and Xy the characteristic
vector of I, as a subset of E(G). Throughout this chapter we denote the
element of E(S(G,I)) corresponding to the first column of (3.1.1) by p. So
E(S(G,L)) = {p}UE(G). The motivation for definining ¥(G,I) is the follow-

ing theorem, which is the main observation of this section.

Theorem 3.1.2
Let (G,I) be a signed graph.
(i) The following are equivalent:
- (G,L) contains no odd-Ka;
- f(G.X) has no F;—minar using p.
(ii) The following are equivalent:
- {G,L) contains no odd~KQ and no odd-Kg;
- ¥(G,L) is regular. ]

The term odd—Kg used in this theorem (which we prove later in this
section) stands for signed graphs of the form depicted in Figure 3.1. Here
wriggled and dotted lines stand for pairwise openly disjoint paths. Wrig-
gled lines must have at least one edge. (Dotted lines may have length
zero.) The symbol odd in Figure 3.1 indicates that the bounding circuit of

the corresponding face is an odd circuit.
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2

Figure 3.1: odd—K3

Before we prove Theorem 3.1.2 and related assertions, we discuss the

circuits, rank function, and minors of J(G,I).

CIRCUITS OF (G,E)
The circuits of f(G,E) are the sets of the following forms:
- E(C), if C is an even circuit in (G,I),
- E(C)u{p}, if C is an odd circuit in (G,L},
- E(Cl}UE(Czl, if both Cl and C2 are odd circuits
in (G,I) such that |V{Cl)nv(02)]§1.

RANKFUNCTION OF 3%G.Z}
Let E'CE(G). Then the following hold:

(3-1.3) tyg(q 5y (B'UlR)) =ty (B') + 1

rj«c}(E!)+1 if E' contains an odd circuit in {G,I);
(311” t‘y(G E){E'] =

rlﬂG)(E'} if E' does not contain an odd circuit
in {G,I).

MINORS OF J(G,E) VERSUS REDUCTIONS OF (G,E)

There is a strong connection between reductions of (G,L) and minors
of F(G,E). First, it should be noted that resigning (G,IL) does not change
FG,1): i.e. F(G,L25(U)) = F(G,E) for any UCV(G). Moreover we have:

- #(G,5)\e = S(G\e,I\{e}) if eEE(G);
- ¥(G,E) /e = F(G/e,L) if eEE(G)\I, and e is not a loop in G;
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- f(6,5) /e = J(G/e,La6(u)) if e€L, e is not a loop in G, and u is an end-

point of e.

In case e is a loop:
F(G,E) /e = F(G\e,I) if eEE(G)\L;
f(G,£) /e ~ F(G,E)/p if €L (since then e is parallel with p in F(G,I)).

To be complete:
F(G,E)\p is the binary matroid with cycle space {E(C)[C is a cycle in G
and |E(C)nE| is even};
J(6,5)/p = Ma).

Since the only "minor-minimal" non-regular matroids are F. and F%

(Tutte [1958], cf. Theorem 1.4.41), we want to know how F? andTF; ariZe as
binary matroids of type J(G,I).

Lemma 3.1.

Let (G,L) be a signed graph, Then:

(1) J(G.E) ~ Fy if and only 1f (G.E) ~ 'Kg

(ii) fG,1) ~ F:} if and only if (G,E) ~ 'Ku. |

Here ﬁg denotes the signed graph in Figure 3.2 (bold edges are odd, thin
edges are even). ﬁq = {Ku,E(Kq}} (cf. Section 1.3).

Figure 3.2
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The proof of Lemma 3.1.5 is easy, as is the proof of the following exten-

sion.

Lemma 3.1.6

Let (G,L) be a signed graph. Then the following hold:

(i) J(G,D)\p ~ F? if and only if (G,L) is equivalent with one of the two
signed graphs in Figure 3.3(a)});

(ii) F(G,L)\p ~ F* if and only if (G,I) is equivalent to one of the three

7
signed graphs in Figure 3.3(b). (Bold edges in Figure 3.3 are odd,

and so are loops. Thin edges are even.) []
! @ mA'Am
Figure 3.3

Using Lemma 3.1.5 and the relation between minors of J(G,I) and reduc-

tions of (G,L) we can easily prove the following result.

Lemma 3.1.
Let (G,L) be a signed graph.
(i) The following are equivalent:
- f(G,T) has an F7—minor using p;
- (G,E) reduces to Kg.
(ii) The following are equivalent:
- HG,L) has an F*-minor using p;

1
- (G,X) reduces to K. OJ

We now prove Theorem 3.1.2.
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Proof of Theorem 3.1.2

Theorem 3.1.2(i) follows directly from Lemma 3.1.5(ii) and Lemma
14,3,
To prove Theorem 3.2.1(ii), first observe the following (easy-to-prove)
property:

(3.1.8) (G,L) contains no odd-Ka and no odd-K2

3 if and only if (G,L) redu-

ces neither to RH nor to K%.
Using this, together Lemma 3.1.5, and Lemma 3.1.6, 3.1.2(ii) easily fol-

lows. []

Remark:
In view of Lemma 1.3.3 and the equivalence (3.1.8) one might expect
3 if and only if (G,I)

reduces to ﬁg“. However it is not, as the signed graph in Figure 3.4 shows

the following to be true: "(G,L) contains an odd-K

(bold edges are odd, thin edges are even).

Figure 3.4
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3.2. DECOMPOSITIONS

There are two special types of signed graphs which do not have an odd-

KH or an oddAK2 These types are:

3
ALMOST BIPARTITE SIGNED GRAPHS

A signed graph (G,L) is called almost bipartite if there exists a node
uEV(G) such that u€V(C) for each odd circuit C.

PLANAR SIGNED GRAPHS WITH TWO ODD FACES
A signed graph is planar with two odd faces if it can be embedded in
the plane such that all but two faces have a bounding circuit that is

even.

The fact that all graphs of either type have no odd-Ku and no odd—Kg
is easy to see. In fact, in a sense these are the only examples of signed

graphs with no odd-K; and no odd-Kz. If such signed graph is not one of
4 3

the above types, it can be decomposed into smaller signed graphs with no
odd-}{q and no odd—Kg (Theorem 3.2.3). A similar result holds for signed
graphs with no odd—Kq (Theorem 3.2.4) and for signed graphs with no odd-Kg
{Theorem 3.2.6). Theorem 3.2.3 yields a polynomial-time algorithm to
recognize whether or not a given signed graph contains an odd-Kq or an
odd—K2
3
To prove Theorem 3.2.3, we use the following famous result of Seymour

[1980].

Theorem 3.2.1 (Seymour [1980])
Let M be a regular matroid. Then at least one of the following holds:
{1) There exists a partition Xluxz of E(M) such that

rydX) + rylX,) ¢ ry(EUM)) + k-1,

where k = 1,2 and lel, B
or k =3 and fxll, B

5
5]

I~ v
=2}
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(2) M is graphic, co-graphic, or isomorphic to the matroid, called
, which is represented over GF(2) by the matrix
0 P

o o o O =
o o o = O
o o = O O
o = O O O
= O O O O
[o T RN
[= T S S
= = = O O
B OH O O
= o O = B

O

Remarks:

Seymour, [1980], states his result slightly different: In (1) he only
requires |Xli. |X2| 2 I if k = 3. However, using the statements (7.4),
(9.2) and (14.2) of his paper one can sharpen this to IX1|, |X2[ > 6 if k
= 3. We use this in proving Theorem 3.2.3. Note that 5&0 =

3(K5,E{K5)}\p, where K_ denotes the complete graph on five nodes.

5

Important in the decomposition of signed graphs with no odd—KL| and no

odd—Kg is the notion of so-called splits.
Assume El' E2 are nonempty subsets of E(G), partitioning E(G). Denote
the set of nodes spanned by El' and E2 respectively, by Vl, V2 respective-

ly. Gi is defined by V(Gi) 1= Vi’ E(Gi} = Ei for i = 1,2.

1-SPLIT:
Let |Van2| < 1. Then (él,ElnE) and (62,Eznz) are said to form a
1-spiit of (G,I). (al.ElnE) and (éz,Ean} are the parts of the 1-split.

2-SPLIT:
Let |Van2| =2, Vlnvz = {u,v}, say. Moreover, let for i = 1, 2, ﬁi be
connected and not a signed subgraph of the signed graph in Figure 3.5.

odd

<>

even

Figure 3.5
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Define (Gl.El) as follows: If {ﬁz.Ezn[) is not bipartite, add to
{él.ElnE) the two edges in Figure 3.5. If (az,Ean) is bipartite, add a

single edge e from u to v. Take e€L. if and only if there exists an odd

uv-path in 02' (A path is odd if itlcontains an odd number of odd edges.)
[G2.22) is defined analogously. Now (Gl,le and (02,22} are said to form a
2-split of (G,L). The signed graphs (Gl.El} and (02,22} are called the
parts of the 2-split. If (Gi,EinE) is not bipartite for i = 1, 2, then we

call the 2-split strong. In Figure 3.6, we give an example of a strong 2-

split.
u u u
)
2-split
—--P-
[ )
v v
(G6,x) (Gxq) (G?E2}
Figure 3.6
3-SPLIT:

Let ]Van2| =3, V,nv, = {ul,uz.u3} say. Moreover, let G, be bipartite

2
as follows: V(Gl} g

v}. E is the

and connected. Finally, let |E2| =z 4. Define G,

VIU{G} (where Vv is a new node)}, and E(Gl) = Elu{ulg, u23. ug
subset of {uZG. u3;} defined by: uiGEE if and only if there exists an odd
path from u; to u; in (GZ.Ean) (i=2,3). We define El i= {Ean)uﬁ. Now

(Gl,Zl} is said to form a 3-split of (G,I). (Gl,El) is called the part of

the 3-split. So a 3-split has one part only.

Lemma 3.2.2

Let (G,L) be a signed graph with a k-split (k ¢ 3) and no A-split for
any & < k. Then the following hold: .

(i) (G,L) contains no odd—Kq if and only if each part of the k-split

contains Mo odd—Ku;
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(ii) (G,L) does not reduce to ﬁg if and only if each part of the k-split

does not reduce to ﬁg.

Proof: Straightforward. (Note that if (G,E) has a k-split (k < 3) and no
A-spit for any 4 < k, then each part of the k-split is a reduction of

(6,5).) ]
Next we arive at the main result of this section.

Theorem 3.2.

Let (G,IL) be a signed graph, with no odd—Kq and no odd—Kg.

Then at least one of the following holds:

(i) (G,L) has a 1-, 2-, or 3-split;

(tt) (G,L) is almost bipartite;

(iii) G is planar with at most two odd faces (with respect to L);

(iv) (G,I) is equivalent with the signed graph in Figure 3.7 below. (Thin

edges are even, bold edges are odd.).

Figure 3.7

Remarks:

If (G,I) satisfies (ii), then ¥(G,IL) is graphic. Similarly, if (G,I)
satisfies (iii), then J{G,I) is co-graphic. (Note that the reverse impli-
cations do not hold in general.) If (G,I) satisfies (i), then (G,I)
satisfies {1) of Theorem 3.2.1. However (iv) has no relation with 5%0. {In
fact 310 # S(G,I) for each signed graph (G,I).) S(G,E) satisfies Theorem
3.2.1 (2) with k = 3, in case (G,I) is the signed graph of Figure 3.7.
Indeed, let El
(cf. Figure 3.7), and E, := E(ﬁ)\El.

be the set of edges of the outer and the inner triangle
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Then
Bfie 2y i) Ry (BPR) = led IR By (E(E)Y = 2.

(This also follows, indirectly, by Seymour [1980:(9.2)] since F(G,T)\p ~
5%2.) On the other hand (G,¥) has no 1-, 2-, or 3-split.

Proof: Let (G,L) be a signed graph with no odd-Ku and no odd—Kg. Assume
(G,E) has no 1-, 2-, or 3-split. Since Jf(G,I) is regular (Lemma 3.1.2
(ii)), we can apply Seymour's theorem (Theorem 3.2.1). We consider four

cases:
Case I: J(G,I) is graphic.

Let G be an undirected graph, such that HT) ~ F(G,E). Denote the edge
in E(G) corresponding to p by e Then M(G) = F(G,E)/p ~ Lﬁa)/ep =
Eﬂﬁ/ep). As G is 3-connected, G ~ a/ep (Whitney [1933]). We might as well
assume that G is such that G = ﬁ}ep. Taking vOE V(G) equal to the node in

which ep is contracted, we easily see that (G,I) is almost bipartite.
Case II: S(G,I) is co-graphic.

Let G be an undirected graph, such that M(G)* ~ S(G,E). Then MG) =
J6,x)/p ~ WE)*/p = iﬂﬁ\ep)* (epEE(ﬁﬂa}} corresponds to p). So G is pla-
nar. As G is 3-connected we may assume, as in Case 1 above, that ﬁ\ep is
the planar dual of G. It is not hard to see that the only odd faces of G
(with respect to L} are the faces of G corresponding to the endnodes of ep

in G, which proves that ¥(G,I) satisfies (iii).
Case III: J(G,E) ~ 3&’10.

~ M * : : "
For any XEE(EHO) we have 5ﬁo/x M (K3‘3}. Since J(G,I)}/p is graphic,
this implies that Case III cannot occur.
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Case IV: f(G,E) satisfies (1) of Theorem 3.2.1.

Assume J(G,E) does not satisfy {ii) or (iii)} of Theorem 3.2.3. Let E1
and E2 partition E{G) such that

(*) ryg.5) (By) * Tyg,p) (Bpulph) = ryg 5y (E(GU{pR}) + k-1

k, |E
6, |E

with k = 1,2 and ]E1|
ork =3 and ]E1|

2| k-1,

A

[ [ (R
I 1w

Let €:= 0 if El is bipartite, and €:= 1 if El is not bipartite. Then, by

(3.1.3) and (3.1.4), (*) is equivalent to:

() Tye (B * Tya) (Ba) = Tyq) (EO)) + (ke)-1.

If |E2| = 0, then k ¢ |E2| +1 ¢ 1. Hence, by (**): e = 0. So (G,I) is
bipartite, which implies {iii). Therefore we may assume |E2[ 2 1. Consider
the two subgraphs G, and G, of G with V{Gl) = V(G2) = V(G), E(Gl) = E

1 >
and E(G,) = E 8. g &

1 :
Let E E ...,E2
nents of G

E be the edge-sets of the compo-

2" yreveangd Moy
1} 62 respectively. Define the undirected graph H as follows:
V(H):= {ul,...,us, vl,....vt},

for each vEV(G) there exists an edge from uy to vj if v is spanned
by E; and by E) (i=1,...,8; j=1,...,t).

(So H may have parallel edges). For i=1,2, let Vi be the set of nodes in
V(Gi) that are not isolated.

Claim 1: |E(H)| =s + t + k- € - 2 = |[V(H)| + k - ¢ - 2.
Proof of Claim 1: ry ¢ (E)) = |v1| - s, ri“G}{Ez) = |v2| -t and ry . (E)

= |v(G)| - 1. (G is connected, as (G,I) has no l-split.) Since IVan2| =
|E(H)| and [vluv2| = |v(G)|, (**) yields the claim.

end of proof of claim 1
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Claim 2: H is a bipartite, connected graph, without isthmuses. (An isthmus
is a coboundary consisting of one edge only.)

Proof of Claim 2: By definition, H is bipartite. If H is disconnected, or
has an isthmus, then (G,L) has a 1l-split.

end of proof of claim 2

Claim 3: H has no two adjacent nodes of degree 2.

Proof of Claim 3: Assume, to the contrary, that u, and vj are adjacent

nodes of H, both of degree 2. If between u, and v, there are parallel
edges, then by Claim 2: V(H) = {ui,vj}. Soi=j=s8=t=1. By Claim 1:
k - € = 2, Since (G,IL) has no 2-split, El or E2 is contained in the signed
graph of Figure 3.5. Hence IElf {2or |E2| £ 2. 8o, from (*}, k 2. As
k - e =2 it follows that k = 2 and € = 0. Hence El is bipartite and E2
the signed graph of Figure 3.5. So (G,I) is almost bipartite. Contradic-
tion.

end of proof of claim 3

Claim U: k = 3, € = 0, and H {s the graph in Figure 3.8(c) below.

X > >

(a) (b) (c)

Figure 3.8

Proof of Claim 4: By Claims 2 and 3: |E(H)| > |V(H)| + 1. Hence by Claim

1: k-¢ -2 2 1. S0k =3, and € = 0. From the previous claims, it fol-
lows that H is (isomorphic to} one of the graphs in Figure 3.8(a), (b),

and (c¢}. So it remains to show that H cannot be one of the graphs in Fi-
gure 3.8(a) and (b). Since k = 3 we have |E1] > 6 and |E2| > 5. If H is

the graph in Figure 3.8(a), then either node x, or node y in Figure

3.8(a), corresponds to an Ei or Eé with at least three elements. This
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would yield a 2-split. If H is the graph in Figure 3.8(b), then we have a
3-split (El is bipartite, as € = 0), which is a contradiction.

end of proof of claim 4

We conclude by investigating the case that H equals the graph in Figure
3.8(c). If nodes Yir 5 and y3 correspond to Ei, Ef and E3 respectively,

1
then we have a 2-split. Indeed, at least one of El has cardinality at
least 2 (as iE | bd 6), and is therefore not contained in the signed graph

of Figure 3.5 (as El is bipartite). So Yir ¥y and y correspond to Eé, Eg,

and E3 respectively. Since (G L) has no 3-split, both |E | and |E | are at

most 3. So, as |El| [E | |E | = 3. Moreover both Ei and Ei are
triangles, as, otherwise, (G,E} has a 2-split. For the same reason El. Eg
and Eg are contained in the signed graph of Figure 3.7. As (G,I) does not
satisfy (iii), (G,I) is equal to the signed graph of Figure 3.7. So (iv)
follows. []
Remark:

The proof technique used in Case IV of the proof above is also used by
Truemper [1986] to characterize those partitions El‘ E, of the edge-set of

a k-connected graph G, that satisfy:

Tie) (By) * Tioy (B2 € Tiyg (B(G)) + k-1
lE(l, IE,] 2 k.

Also the class of signed graphs with no odd~Kq can be characterized in
a way similar to Theorem 3.2.3. This is stated in the following result,
first stated by Lovasz, Seymour, Schrijver, and Truemper [private communi-

cation].

Theorem 3.2.4
Let (G,L) be a signed graph. Then (G,L) contains no odd—Kq if and only if

one of the following holds:
(i) (G,I) is almost bipartite, planar with two odd faces, equivalent with
the signed graph of Figure 3.5, or equivalent with E%;
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(ii) (G,E) has a k-split (k ¢ 3), no d-spiit for O < £ < k, and each part
of the k-split contains no odd~Ku. []

This result, as well as Theorem 3.2.6., is a special instance of a
theoren of Truemper and Tseng [1986]: Let Ml be a binary matroid, and
x€E(M ), if M does not have an F_-minor using x then either Ml is regular,

7
or M~ F*, or M satisfies (1) of Theorem 3.2.1.

7
Theorem 3.2.4 easily follows from Lemma 3.2.2, Theorem 3.2.3 and the

following result, observed by LovAsz and Schrijver.

Theorem 3.2.
Let (G,L) be a signed graph with no odd—Kq. Then one of the following
holds:
(i) (G,IL) has a 1-split or a strong 2-split;
(it) (G,I) ~ Rg;
(iii) (G,I) contains no odd-Kg.

Proof: Let {(G,I) be a signed graph with no odd—Ku. Suppose (G,L) contains
no strong 2-split, but does contain an 0dd»K2. Let {ﬁ.f) be an odd—Kg
contained in (G,I) such that |E(Pl)| + IE(P2)| + |E(P3)[ is minimal.

3 P2 and P, are the paths indicated in Figure 3.9.)

1’ 3

vy By
(6.2)
ug \ ! Vo
\ /
\ /“P
PB \\ b 2
L
Y3 U

Figure 3.9

The odd circuits Ci‘ 02 and C3. as well as the nodes Vir Vo v3, ug.

Uy, and u3 are as indicated in Figure 3.9. (Note that v, may be equal to

v
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ui(i=1,2,3).} Define: Vi v= V{Pi)UV(Ci) (i=1,2,3). If SCV(G), then a path
P from u to v is called an S-path if V(P)nS = {u,v}.

Claim: If P is a V(G)-path, then P is a V,-path, for i=1,2 or 3.

Proof of Claim: Let P be a V(G)-path. Let u and v be the endpoints of P.
Assume P is not a Vi-path (i=1,2,3). Hence we may assume vE{vl,va,v3 .
Moreover we may assume VEVE' So uE{vz,v3}. Finally we may assume uEVl.
{Indeed, if uﬁvl. then u # v,. Interchanging u and v, and renumbering

1
indices yields uEVl, v€V2.} We consider three cases.

Case I: vEV(Cz)\{u2}.
Then G and P together contain an odd—Kq. This yields a contradiction.

Case II: uEV(Pl) and vEV{Pz).

Then G and P together contain a odd—K§ with smaller |E(P, )| + [E(P2}|

+ |E(P3}|. Again we have a contradiction.
Case III: uGV(Cl)\{ul} and vEV{le.

Now there are two possibilities. If the circuit C (see Figure 3.10) is
odd then G and P together contain an odd-Kq. If C is even we find an odd-
Kg with smaller ]E(P1)| + |E(P2)[ + |E(P3)|. So both possibilities yield a

contradiction.

Figure 3.10

end of proof of claim
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Since (G,I) has no strong 2-split, the claim yields, for i=1,2,3:
E(Pi) = @, and Ci consists of two parallel edges, one odd and one even. So
(G,%) ~ Kg. If V{G) = V(G) then, as (G,I) has no l-split and no strong 2-
split: (G,I) = (G,E) ~ ﬁg and the theorem is proved. So let us suppose:
V(G) # V(G). Let vEV(G)\V(G). There are three internally node disjoint
paths Q,;, Q, and Q3 each going from v to a different node on G (as (G,I)
has no 1-split and no strong 2-split). But this is impossible since then

G, Q. Q, and Q3 together contain an odd—Kq. J

Finally we state a decomposition result for signed graphs which do not
reduce to kg.
Theorem 3.2.6
Let (G,L) be a signed graph. Then (G,L) does not reduce to E; if and only
if one of the following holds:
(i) (G,E) is almost bipartite, or planar with two odd faces, or equiva-
lent with the signed graph of Figure 3.7, or equivalent with ﬁq;
(i) (G,I) has a k-split (k < 3), and no £ -split for 0 < £ { k. Moreover
each part of the k-split does not reduce to Eg. [:]
This theorem follows from Lemma 3.2.2, Theorem 3.2.3, and the following

lemma.

Lemmg 3.2.
Let (G,L) be a signed graph without a 1-, or 2-split, such that (G,I) does
not reduce to ﬁg. Then (G,E} ~ K, , or (G,I) eontains no odd-Ku.

Proof: The lemma follows from the following two results.
Let Mlbe a binary matroid, and x€E(M ).

(a) If M contains no F_-minor using x, and Ml /x contains no F -minor,

7 7
then Al contains no F_-minor at all.

7
(b) If Mis 3-connected, and contains no FY—minor. then either M is regu-
lar, or M~ F7. (Ml is 3-connected means: M does not satisfy (1) of

Theorem 3.2.1 with k = 1 or 2.}
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Indeed, applying (a) and (b) to M= SG,I) and x = p yields the lemma.
Statement (a) is straightforward to prove. Statement (b) is one of
Seymour's "Splitter Theorems" (Seymour [1980]). []

ALGORITHMIC CONSEQUENCES

Obviously, the decomposition results in this section yield polynomial-
time algorithms to recognize whether or not a given signed graph contains
no odd-Ku and/or no odd—Kg. So, in particular we have a polynomial time
algorithm to recognize whether or not a given bidirected graph has the
Edmonds-Johnson property (cf. Corollary 2.3.10). The less obvious part of
these algorithms is to recognize whether or not a given signed graph is
planar with two odd faces. However this problem can be solved by using
polynomial-time algorithms which give an embedding of the graph in the
plane or decide that no such embedding exists. (For such algorithms cf.
Auslander and Parter [1961], Hopcroft and Tarjan [1974].)

Clearly, the algorithms for recognizing signed graphs with no odd~Ku
and/or no odd—Kg
matroids based on Seymour's decomposition theorem (Theorem 3.2.1, Seymour
[1980], cf. Cunningham and Edmonds [1980], Bixby, Cunningham, and Rajan

are special cases of algorithms for recognizing regular

[1986], Truemper [1987b]), and of algorithms for recognizing matroids
containing no FT-minor using some specific element (cf. Truemper and Tseng

[1986], Truemper [1987a]).
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3.3. ORIENTATIONS

An orientation of a signed graph is a replacement of the odd edges by
directed edges. If an orientation is such that for each circuit the number
of forwardly directed edges minus the number of backwardly directed edges
is at most k in absolute, we say that the orientation has diserepancy k.
(In counting these numbers we ignore the even edges in the circuit.) Ob-
viously, a signed graph (G,I) has an orientation of discrepancy 0 if and

only if {G,I) is bipartite.

Theorem 3.3.1
Let (G,L) be a signed graph. Then (G,L) contains neither an odd—Kq nor an

odd-Kg if and only if (G,L) has an orientation of discrepancy 1.

Proof: The if part being trivial, we restrict ourselves to the only if
part. For that assume that (G,I) contains no odd-Kq an no odd-Kg. By Theo-
rem 3.1.2(i), #(G,I) is regular. So, by Theorem 1.4.8 there exists a
signing N of

5
1 XZ

3 (cf. (3.1.1))
: Mg

0

which represents J(G,I) over R. We may assume:

-
1 Xy
O ~ ~

N = : N with N = MG (mod 2).
0]

(As we may multiply columns by -1.) Obviously, N represents M G) over R.
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Claim: We may assume that each column of N has one 1 and one -1,

Proof of the Claim: Take a spanning forest F in G. By multiplying some of

the rows of N by -1, we can achieve that each column of N corresponding to
an edge in F contains one 1 and one -1. So the sum of the components of
each of these columns is 0. But these columns span all the other columns
of N {as F is a basis of MG)). Hence, each column has one 1 and one -1.

end of proof of claim

Define the following orientation: Edge e = uvEL is directed from u to
v if ﬁu o= -1 (and so ﬁv N 1). We show that this orientation has dis-

crepancy 1. Take a circuit C in G. Then [acixngEQ(y(G.E)), with o = 1if
C is an odd circuit in (G,I) and oy = 0 if C is an even circuit in (G,I).
By Theorem 1.4.7 there exists a signing [EC'XE] of [uc.xg] such that &C +

x;xz = 0, and Nx. = 0. From this one easily derives that the number of

C
forwardly directed edges minus the number of backwardly directed edges on
C is = EC' This proves that the orientation constructed above has discre-

pancy 1. ]

Remark:

Theorem 3.3.1 can also be proved using Theorem 3.2.3 (and Lemma
3.2.2). We leave the details to the reader. The advantage of this alterna-
tive proof is that it provides a polynomial-time algorithm to find an
orientation of discrepancy 1 on a signed graph with no odd-Ku and no odd-

2
K3.
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3.4. SHORTEST ODD CIRCUITS AND PACKING ODD CIRCUITS

If S is a finite set, J a collection of subsets of S, and wEZS, then a
w-packing with elements of J is a family S+ S,u....5, of elements of ¥
(repetition allowed) such that for each s€S we have that

|{i=1,....k|sesi}] < W

The number k is called the cardinality of the family S.,...,S

a2 k'

Seymour [1977] proved the following result.

Theorem 3.4.1
Let Mbe a binary matroid, and let x€E(Il ).

Then the following are equivalent:
(1) M does not contain an FT—minor using x;
(i) for each wEZf(Ji):

min{ % wefCU{x} is a cirvcuit of M} is equal to the maximum car-
eEC\ {x}
dinality of a w-packing with elements of {C*\{x}|C*u{x)} is co-circuit

in M }. ]

Remark:

For each binary matroid Ml , with element x, the collection
{C*\{x}ic*u{x} is a co-circuit in M}, is exactly the collection of edge
minimal sets meeting C\{x}, for each circuit cu{x} in M . This proves that
the maximum in Theorem 3.Y4.1 does not exceed the minimum in Theorem 3.4.1.
(Needless to say that this is the easy part of the min-max relation, to

prove "min £ max" is the real job.)

Let (G,I) be a signed graph. Then a I-boundary of (G,L) is a subset of
E(G) of the form §(U)AL with UCV(G). We denote the L-boundary &(U)AL by
[U] (e.g. [@] = I). The edge minimal E-boundaries are exactly the collec-
tion of subsets F of E(G) such that Fu{p} is a co-circuit of J(G,I).

Applying Theorem 3.4.1 to f(G,I) and ¥ *(G,I) we get (using Lemma
3.1.2(i) and Lemma 3.1.7(i)):
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Theorem 3.4.2
Let (G,L) be a signed graph
(i) The following are equivalent:
- (G,L) does not contain an odd"Ku;
- for each wEZ?(G], the maximum cardinality of a w-packing with odd

cireuits in (G,I) is equal to the minimum weight 2 W, of a
etB
I-boundary B in (G,L).

(ii) The following are equivalent:
- (G,L) does not reduce to Rg;

- for each wEZE{G) the minimum weight 2 w, of an odd circuit C
e€E(C)
in (G,L) is equal to the maximum cardinality of a w-packing with

T-boundaries in (G,E). []

Corollary 3.4.3

Let (G,E) be a signed graph. Then (G,L) contains neither an odd-Kq nor an
odd—K? if and only if for each wEZE{G) both min-max relations in Theorem
3.4.2 hold. O

In this section we use the orientation Theorem 3.3.1 to give an alter-

native proof of Corollary 3.4.3.

Remarks:

Using Theorem 3.2.5 and Theorem 3.2.7 one can derive Theorem 3.4.2 as
a corollary of Corollary 3.4.3. We skip this derivation, as the techniques
are similar to the techniques used in the proof of Theorem 4.3.2. Qur
purpose is to show how the min-max relations in Theorem 3.4.2 can be for-
mulated as min-max relations for certain min-cost flow problems, in case
(G,L} contains no odd-Kq and no odd-K%.

The derivation of Theorem 3.4.2 from Corollary 3.2.3, using Theorem
3.2.5 and Theorem 3.2.6 can be viewed as a special instance of Truemper's
derivation of Theorem 3.4.1 from the special case of Theorem 3.4.1 where
M is regular (Truemper [1987a], he uses a strengthed form of the decompo-
sition theorem for binary matroids with no F?-minor using some specific
element due to Tseng and Truemper [1986]). The proof of Corollary 3.4.3

can be viewed as a special instance of the proof of Theorem 3.4.1 for the
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special case that M is regular (for such proofs cf. Gallai [1959b], Minty
[1966], Fulkerson [1968]).

PACKING ODD CIRCUITS

E(G)

+

Let (G,E) be a signed graph. Moreover let wEZ . The odd cirecuit

packing problem in (G,L) is
(3.4.4) Find a maximun cardinality w-packing with odd eircuits in {G,I).
The shortest L-boundary problem in (G,I) is

(3.4.5) Find a I-boundary [U] in (G,I) (with UCV(G)), such that 2 w, is
e€[U]
minimal.

From now on, assume that (G,I) has no odd-Ku and no odd—Kg. So, by

Theorem 3.1.1, (G,L) has an orientation of discrepancy 1. Let R be the set
of arcs in such orientation, together with, for each even edge, uv, in

_ . . — — —egx
(G,E) an arbitrarily directed arc, uv or vu. For each arc uv we add a

— —, —
new arc wvu, X:: {vu|quK}. Consider the following circulation problem.

(3.4.6) max ¥ f- 3
" aEKﬁE a aEﬁhE g

s.t. f is a nonnegative circulation in (V.ZUK},
such that for each alEX. a2€K coming from the same edge

eEE(G): fa + fa Sw .
1 2 ¢

(Here aEKnE (Xn[] means that aEK (K respectively) and comes from an odd
edge.)

The linear programming dual of (3.4.6) is
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§

(3.4.7) min z w
e€E(G) © €

s.t. § EDE(G), with the property there exists a nEﬂV(G} satisfying
e >
for each uv€A:

1-5
uv

7
1
1
=

1 + & if uvel;
uv

S if uvgrL.

uv

A
3
<
1
b=
c
s A

-6
uv

Remark:

Formulated as it is, (3.4.6) is not a proper circulation problem.
However it can be transformed into a circulation problem as follows: re-
place each pair alEK, aEEX, comigg from one edge e = uveE(G) by the confi-
guration in Figure 3.11. To arc e we assign a capacity W while all other

new capacities are =.

Figure 3.11

Proposition 3.4.8: The maximum in (3.4.6) is attained by an integer vec-

T

Proof: By the remark above. O

tor T

Proposition 3.4.9: (3.4.4) and (3.4.6) are equivalent.

Proof: For each circuit C in (G,E) we define a circulation FC as follows.
In KUE there are two directed circuits corresponding in a natural way with
C. Select one of these two circuits, such that the selected circuit uses
at least as many arcs from K as from K. Call the selected circuit 8. Now

f‘CG{O,l}ZUK is defined by fg - 1 if and only if a€d.

i Ce

Let Cl""'ct be a w-packing by odd circuits. Then f # g,k B is

a feasible solution of (3.4.6) with objective value:
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C. C.
1_2 f'1=

£
1 agﬁhz 2 aehnr @

N er

i

1

" ~er

(IAnzra @)1 - [Batea@) 1) = e,
1

as K is an orientation of discrepancy 1. (A(ai) denotes the set of arecs in
KUX belonging to Ei.}

Conversely, let f be an integer valued feasible solution of (3.4.6).
Obviously there exist circuits Cl,....C2 in G such that
o) c

1

f=rf + ... + f f. The number of odd circuits among C ,C,_ is at

100+ Cy
least the objective value of f. Since f is feasible to (3.4.6), these odd
circuits form a w-packing. Proposition 3.4.9 now follows from the above

combined with Proposition 3.4.8. ]

Au

E(G), the weight function ?EQ

+

Define, for each SEQ X by:
Se+1 if aEK and a comes from e€f;
Za = Se—l if aEX and a comes from e€[;
s else.
e

Using Theorem 1.3.2 we can reformulate (3.4.7) as:

(3.4.10) min ¥ w &
e€E(G) © ©

S.t. SED?(G}. with the property that there exists no directed

circuit G in AUk, with ¥ .3 <o,
a€A(@) @

Proposition 3.4.11: (3.4.7) has an optimal solution {S.n)E{O,l}E(G)x V(G}.
Proof: From Proposition 3.4.8 and Corollary 1.2.19 it follows that (3.4.7)

has an optimal solution {S.H)EZE(G}x V(G}. From this one easily sees that

also m can assumed to be integer valued (e.g. using Theorem 1.3.2).
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Now let {§.,m) be an integer valued optimal sclution of (3.4.7), with

z Se as small as possible. Let e*€E(G). Define S*EZE(G] by 6;* = SE*—
e€E(G)
1, and 6; = Se if e#e*. Then &* is not feasible for 3.4.10. Hence 8;, < 0,

i.e. Se* - 0, or there exists a directed circuit 8, in AUk such that

)3 2 = 0. Since R has discrepancy 1, this means that
a
aEA(a)

B s & - 3. 8€{0,z1}.
e* = .ea(c) © a€A(@) ?

1

Hence &y ¢ 1, and it follows that se(0,1)59), 0
From Proposition {3.4.11) it follows that
(3.4.12) min(3.4.7) 2 min(3.4.5).

Indeed, let [S.H}E{O.I}E(G)K N{G) be an optimal solution to (3.4.7). De-
fine V := {uEV[G}]nu even}. It is straightforward to check that Se =1 if

and only if e€[V]. So [V] is a I-boundary with 2 W, = > weée.
eE[V] eEE(G)
Using (3.4.12), linear programming duality and Proposition (3.%4.9) we

get:
min{3.4.5) ¢ min(3.4.7) = max(3.4.6) = max(3.4.4) < min(3.4.5).
So we have the following

Conclusion:
If (G,E) is a signed graph with no odd—Kq and no odd-Kg. then the
min(3.4.5) = max{3.4.4) for each w f{G).

SHORTEST ODD CIRCUIT

E(G)

Let (G,I) be a signed graph. Moreover let w&f . The shortest odd

ecircuit problem in (G,I) is:

(3.4.13) Find an odd circuit ¢ in (G,E) which minimizes Y W

e€E(C) e’
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The packing with IL-boundaries problem in (G,L) is:

(3.4.14) Find a maximum cardinality w-packing of I-boundaries in (G,I).

From now on we assume that (G,L) has no odd-Ku and no odd—Kg. So, by
Theorem 3.1.1, (G,E) has an orientation of discrepancy 1. Let Z en X be
defined as before (cf. the paragraph following (3.4.5)).

. . ; g AUk

Define for each o 3 O the following weight function w €Q by

W, o if aEZ, and a comes from e€L;
w::= W, + g if aEX. and a comes from e€L;

W else.

e

From the fact that K has discrepancy 1 it follows that for each o€Q and
each directed circuit 3 in KUX (coming from circuit C in G) the following
holds:

G - [t o if C is odd;

w_ - z w z B
aEA(E) a e€E(C) e 0 if C is even.

From this we see that (3.4.13) can be reformulated as:

(3.4.15) max o

s.t. o€Q, with the property that there exists no directed circuit

¢ in A for which I W% < 0.
a€A(C)2

This, in term, is equivalent to: (cf. Theorem 1.3.2)

{(3.4.16) max ¢

s.t. o€ll, with the property that there exists an nEQV(G) such
—.}
that for each UVEK:

w if uvELl;
uv

LA if uvfE.

[m - m + o
v u

[, - m,l

A s
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Let o* be the length of the shortest odd circuit in (G,L) {with re-

spect to w). As wEZE(G)

, o* is integral. Since min (3.4.13) = max
(3.4.16), there exists a n*EDV(G) such that (c*,n*) is an optimal solution
of (3.4.16). By Theorem 1.3.2 we may assume that m* is integer valued. (In
fact, for aEV{G), we can take m* as the minimum weight, with respect to
wd*. of any directed path in KU% with endpoint u.)}

Now we shall construct a w-packing of I-boundaries with cardinality o*

as follows:

For each i=1,...,0%,
Zi:= {zEZ|z=i+l. i+2,...,i+c* (mod 20*)}
e *
and V,: {uEV(G}|nu€Zi}.

Then [vl],...,[vd*] is a w-packing. Indeed, this follows easily from the

following three:

(i) uve[V ]nL if and only if |{n;. n: + 6*}nZi| = 1;
S = 2 w* * e .

(ii) uvE[V.I\L if and only if [{nu, “v}nzil = 1;

{(iii) for Zys 2262:

l{i:l'___,u*] |{z1,zz}nZi1 = 1} < min{lzl—22|,d*}.
So, we have the following

Conclusion:
If (G,I) is a signed graph with no odd-Ku and no odd—Kg. then min
(3.4.13) - max (3.4.14) for each w€Z-(0).

Remarks:

(i) There exist polynomial-time algorithms which find a minimum weight
odd circuit {in any signed graph, cf. Grétschel and Pulleyblank
[1981], Gerards and Schrijver [1986]). For signed graphs with no odd-
KQ and no odd—Kg the discussion above yields an easy polynomial-time
algorithm for solving the packing with E-boundaries problem at least
as scon as the orientation with discrepancy 1 is known {cf. final
remark of Section 3.3). Indeed, first we find the minimum weight, o*

say of an odd circuit in (G,E). Then we calculate for each u€V(G}), n:
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as the length, with respect to wd*, of the shortest directed path in

KUX with endpoint u. Now we find a w-packing of f-boundaries as fol-

lows: (Note that we have to be careful since o* can be exponential in
the size of the problem.)

D := {d|0 ¢ d ¢ o*, there exists a u€V(G) with n* = d(mod o*)}.

» =
- Assume dl < d2 < .. X dk such that D = {dl,-..,dk}.
- .= - i = e w2 *
Let Ai - di di-l for i = 2,...,k, and Al - d1 dk + g%,
- Taking each I-boundary [Vd ] with multiplicity Ai (i=1,....k), we
i

get a w-packing of I-boundaries. The cardinality of this packing is

> Ky B o*, as is easily verified.
deD
We can reformulate the shortest odd circuit problem in signed graphs

with no odd-Kq and no odd-K; as

(3.4.17) max X, .w_f
a€KUX 88

-5
s.t. f is a non-negative circulation in AUX such that
2o BLIE 3. F. &,
aEZnE a aEXnZ a

(3.4.17) is the dual of (3.4.16). One easily proves that (3.4.17) has

an integer valued optimal solution.
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3.5. HOMOMORPHISMS TO ODD CIRCUITS AND 3-COLOURABILITY

In this section we prove two graph theoretic results, one due to
Catlin [1979], the other to Gerards [1987]. We start with the latter re-

sult.
HOMOMORPHISMS TO ODD CIRCUITS

Let Gl and G2 be two undirected graphs. We call a map ¥: V(Gl) = V(Gz)
a homomorphism from G1 to G2. if p{ul)p{uz)EE(Gz} for each quGl. A parity
preserving subdivision of a signed graph (G,L) is an undirected graph,
obtained from G by replacing each odd {even) edge in G by a path of odd
(even) length. The following result is another characterization of signed
graphs with no odd-Ku and no odd—Kg.
Theorem 3.5.1 (Gerards [1987])

Let (G,E) be a signed graph. Then (G,L) contains no odd—Kq and ne odd—Kg
if and only if for each parity preserving subdivision Gl of G, there

erists a homomorphism from G1 to the shortest eircuit in Gl.

Proof: We leave the if part to the reader. (E.g. for the graphs in Figure
3.12(a), (b) there exists no homomorphism to their shortest odd circuit.
However, for the graph in Figure 3.12(c) such a homomorphism exists!)

To prove the only if part, let (G,L) be a signed graph with no odd—Kq
and no odd—Kg. Let G' be a parity preserving subdivision of (G,L). With no
loss of generality we may assume that I = E(G), and G' = G. By Theorem

——>
3.3.1, G has an orientation, K say, of discrepancy 1. Let A= {uv|vu€g}.

Assume the length of the shortest odd circuit is 2k + 1. Define wEZZUX by:

) [k 1 if a€k,
Wa HE
-k if a€h.

As K has discrepancy 1, KUX has no directed circuit with negative weight

V{G)

with respect to w. So, by Theorem 1.3.2, there exists a p€Z satis-

fying:
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P -9 £ w_, if ﬁ?EKuX.

£k +1if 6363.

-~
A
A
1
A1

~

Hence:

H

2pu - 2pv = 1 (mod 2k+1) if uv€E(G).

Sou = 2pu (mod 2k+1) maps G to a circuit of length 2k+1. []

{a) {b) ]

Figure 3.12

Remarks:

(i) The proof above is due to A. Schrijver. It relies on Theorem 231
and hence on Tutte's characterization of regular matroids (Theorem
1.4.4). A direct and elementary, though more complicated, proof of
Theorem 3.5.1 can be found in Gerards [1987].

(ii) Schrijver observed that Theorem 3.5.1 can be used to prove the min-
max relation of Theorem 3.4.2(ii) for signed graphs (G,L) with no
odd-KH and no odd—Kg and weight functions w which satisfy: {e|we is
odd} = E.
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(iii) Theorem 3.5.1 extends a result of Albertson, Catlin, and Gibbons
[1985] stating that an undirected graph G can be mapped homomorphi-
cally to an odd circuit of length M if no subgraph of G can be fold
to a homeomorph of Ku in which all triangles of Kﬂ have become cir-
cuits of length M (fold means repeatedly identifying nodes at dis-
tance two). Related results can be found in Catlin [1984] and Lai
[1987].

3-COLOURABILITY

The other graph-theoretic result we want to mention in this section

is:

Theorem 3.5.2 {Catlin [1979])
Let G be an undirected graph, such that (G,E(G)) has no odd-Ku. Then G

is 3-colourable.

Proof: Let G be a minimal counterexample. If (G,E(G)) contains no odd—K%,
then there exists a homomorphism of G to its shortest odd circuit, so
certainly to K3. This implies that G is 3-colourable. So (G,E(G)) has an
oddHKg. Hencg, by Theorem 3.2.5, G has a two node cutset. (Obviously
(G,E(G)) + KS.) Now, one side of this two node cutset (possibly after
adding an edge between the two nodes in the cutset) is a smaller counter-
example. [l

Remark:
The technique used in the proof of Theorem 3.5.1 is similar to the

technigue Minty used to prove the following result:

A graph G is k-colourable 1f and only if G has an orientation such that
for each circuit C the number of forwardly directed arcs is at least
%1E(C)| (Minty [1962]).
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3.6. AN EXTENSION OF KONIG'S THEOREM TO GRAPHS WITH NO ODD-KQ

Throughout this section G = (V(G),E(G)) denotes an undirected graph
without isolated nodes. Each time we use some notions from signed graphs,
e.g. odd—Ku and odd-Kg. we implicitly consider the signed graph (G,E(G));
so we consider all edges to be odd.

In this section we give an extension of the following well-known re-

sult.
(3.6.1) If G has no odd circuit,

then o{G) = ¢(G) and T{G) = v(G) (Kénig [1931, 1933]).
As usual, the parameters o, ¢, T and » are defined as:

«{G) := the maximum cardinality of a stable set in G. (SCV(G) is a stable
set if u,v€S implies uvfE(G).)

e(G) := the minimum cardinality of an edge-cover for G. (E'CE(G) is an

edge-cover if for each uE€V there exists an e€E' with endpoint u.)

»(G) := the maximum cardinality of a matching in G. (MCE(G) is a matching

if e, e2€M. e, # e, implies ey and 5 have no common endpoint.)

7(G) := the minimum cardinality of a node-cover for G. (NCV(G) is a node-

cover if uv€E(G) implies u€N or veEN,)
We introduce two new parameters:

?(G) := the minimum cost of a collection of edges and odd circuits in G
covering the nodes of G. The cost of an edge is equal to 1, and
the cost of a eircuit with 2k+1 edges is equal to k. The cost of a
collection of edges and odd eircuits is equal to the sum of the

costs of its members.
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$(G) := the maximum profit of a collection of mutually node disjoint edges
and odd circuits in G. The profit of an edge is equal to 1 and
the profit of a circuit of length 2k+1 is equal to k+l. The profit
of a collection of edges and odd circuits is equal to the sum of

the profits of its members.
The following inequalities are obvious:
«(G) < B(G) ¢ e(G),
(3.6.2)

7(G) 2 »(6) 2 »(G).

Kénig's Theorem (3.6.1} can be extended to the following result. (It fol-

lows from the more general Theorem 3.6.8 stated below.)

Theorem 3.6.3
Let G be an undirected graph, without isolated nodes. If G does not con-
tain an odd—Ku as a subgraph, then «(G) = ?(G) ard T(G) = 3(6). []

To see that Theorem 3.6.3 extends Konig's Theorem (3.6.1), observe
that a bipartite graph G has no odd—Ku, and trivially satisfies e(G) =
e(G), T(G) = t(G) (as G has no odd circuits).

The two equalities in (3.6.1) are equivalent, for any graph G. This

follows from
(3.6.4) «(G) + 7(G) = [v(G)| = e(G) + »(G) (Gallai [1958, 1959a]).

A similar equivalence for the equalities «{G) = p(G) and T(G) = {G) fol-
lows Crom the following result of Schrijver [personal communication],

analogous to Gallai's result above.

Theorem 3.6.5
Let G be an undirected graph without isolated nodes. Then p(G) + $(G) =
lvie)|.
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Proof: First, let el,....em. Cl....,Cn be a collection of mutually node
disjoint edges and odd circuits such that the profit m + _E %(IU(Ci)l + 1)
of the collection is equal to »(G). =

Let Ul = V{G)\_;lv(ci). and let Gl be the subgraph of G induced by
Vl. Then obviously ;-= »(Gl}. Let Fl""'fp(Gl} be a minimum edge-cover
for Gl' Then fl""'fp{Gl)' Cl.....Cn is a collection of edges and odd

circuits covering V(G). The cost of this collection is (using Gallai's
identity (3.6.4)):

n n
eG) + 2 a(lvic) |- 1) = vi] - »(6)) - T a(lvic)] + 1) «
i=1 i=1

n
lvic))| = [v(e)| - 5(q).
i=1

Hence p(G) + »(G) < [vic)]|.
The reverse inequality is proved almost identically. However there is
a small technical difficulty, settled in the claim below.
Let el""'em’ Cl,...,cn be a collection of edges and odd circuits
n
covering V(G) such that the cost m + i{lV{Ci)f - 1) of the collection
i=1
is equal to E[G}. and such that, moreover, n is small as possible.

Claim: For each i,j=1,...,n (i#j); k=1,...,m we have V(Ci)nV(Cj} = @, and
no endpoint of e, is element of V{Ci).

Proof of Claim: Suppose uEV(Ci) (i=1,...,n), such that u is also contained
in another odd circuit among Cl""’Cn' or in one of the edges el,....em.
Let fl.....prE(Ci} be the unique meximum cardinality matching in Ci not
covering u. Then p = i(|V(Ci)|— 1). Obviously SRR fl""‘fp'
CyoeensCyge Ciops c

ing V(G}. Its cost is @(G). However it contains only n-1 odd circuits,

...,Cn is a collection of edges and odd circuits cover-

contradicting the minimality of n.

end of proof of claim.
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n
As before we define Vl = V(G)\ v V(Ci) and G1 as the subgraph of G
i=1
induced by Vl. By similar arguments as used in the first part of the proof

one gets:
s n
e(G) = e(Gy) + .Eli(}v(ci}l— 1)
i=
n n
- vyl - w6 - T Rvep ]+ 1+ T V)]
" i=1 i=1
> [v(e)| - »(6). O

Corollary 3.6.6
Let G be an undirected graph without isolated nodes. Then «(G) = p(G) if

and only if T(G) = »(G). []

As mentioned before we prove a more general weighted version of Theo-
rem 3.6.3 (Theorem 3.6.8 below).

WEIGHTED VERSIONS

We define weighted versions of the numbers o, ¢, ¥, T, 6. and ¥ and

state the obvious generalizations of the results mentioned.

o (G) := maximum { X wu|S is a stable set in G}.

u€s
pw(G) .= the minimum cardinality of a w-edge-cover for G. (A w-edge-cover
for G is a collection CREEERL in E{(G)) (repetition allowed)
such that for each u€V(G) there are at least v edges among
SRR incident with u. The cardinality of REEREL is m.)

vw(G) .= the maximum cardinality of a w-matching in G. (A w-matching is a

collection CREEEL in E(G) (repetition allowed) such that for
each u€E(G) there are at most w, edges among e,,....ey incident
with u.}

7,(G) := minimum {2 wu|N is node-cover for G}.

uEN
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Moreover we define:
A w-cover (w-packing, respectively) by edges and odd circuits is a collec-
tion €pveeni€p of edges and Cl....,Cnl of odd circuits (repetition al-
lowed), such that for each u€v(G):

w
u

2
(g 2 respectively).

|[{i=1,...,m|u endpoint of ei}| + |{i=1.....n|u€V{Ci)}]

n
The cost of SRRERTL- . Cl.....Cn is m + igli(|v{ci)l- 1}, its profit is

n
m+ ¥ i(|V{Ci)| + 1).
i=1

EW(G} := the minimum cost of a w-cover by edges and odd circuits in G.
FW(G) := the maximum profit of a w-packing by edges and odd circuits in G.

Remark:

The notion of "w-packing" is defined in Section 3.4. To bring the
definition above in line with the definition in Section 3.4 define S:=
V(G), and J:= {{u,v}|uv€E(G)}u{V(C)|C odd circuit}. Note however that the
cardinality of a w-packing defined in Section 3.4 is not the same as the

profit of a w-packing.
The numbers defined above satisfy:

(3.6.7) If G has no odd circuit, then uw{G) = PW(G) and T _(G) = v _(G)
(Egervary [1931]),

« (G) < ©,(6) ¢ e (G),
%, (0) 2 5,(6) 2 v (@),
%, (G) + 7 (G) = ¢ (G) + ¥ (G) = p,(G) + v (G) = % w

wev(g) &

(3.6.7) can be proved easily from the cardinality versions stated before

(with w = 1}, using the following construction. Define Gw by:

V(G) = {[u,i]]uev(G); i=1,...,u },
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E(G,) = {[u,il[v,5]|u,vEV(G); weB(G); d=1,....uy3 L PN

Then one easily proves that o (G) = m{Gw). e, (@) = e(G,), vw(G) = »(G),

T,(G) = ©(G), b (C) = e(G), » (G) = v(G), and V(G)) = I w . More-
u€v(G)
over Gw is bipartite if and only if G is. All this yields (3.6.7). Theorem

(3.6.3) can be generalized as well:

Theorem 3.6.8

Let G be an undirected graph, without isolated nodes. If G contains no
odd-K, as a subgraph, then o (G) = p_(G) and T _(G) = v (G) for

4 v(G) W W W w
any weZ . []

We prove this theorem later in this section. It should be noted that
Theorem 3.6.8 does not follow from Theorem 3.6.3 by using Gw. The reason
is that it is possible that Gw contains an odd—Ku even if G does not. This
ig illustrated by the graph in Figure 3.13. (The bold edges, in Figure
3.13b form an odd—Kq.)

% [K,l]
[2.2] [v2]
G
y z [v.1] [z1]
wx=wy:wz:2
[x2]
(a) {b)
Figure 3.13
V(G)

The statement "« (G) = EW(G} for each w€Z " can be reformulated in

terms of integer linear programming.

(3.6.9) Both optima in the following primal-dual pair of linear programs,

are attained by integral vectors if w is integer valued.
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PRIMAL:
max Z W X
wev(g) 4 4
s.t. x_ + X, <1 (uvEE(G) ) ;
x, ¢ Hv(©)] -1) (CET(G));
u€v(c)
xu g 0 (vev(G)).
DUAL:
8*(@) :=min ¥ y + I (V)] - 1)z
w e€E(G) ©  cer(a) ¢
s.t. ¥ Yy o+ 2 zo 2w (uEV(G));
e€E(G) € cer(g) v 7 U
e€u u€v(c)
Vg 2 (e€E(G));
ZC Z 0 (Cer(a)).

(T(G) denotes the collection of odd circuits C = (v{C), E(C)) in
G.)

Before proving Theorem 3.6.8, we prove a special case:

Theorem 3.6.10

Let G be an undirected graph without isolated nodes. If G contains neither

an odd-Kq nor an odd-Ka, then « (G) = ¢ (G) and T (G) = ¥ (G) for each
v(G) 3 W w w w
wEZ . ;

Proof: According to Theorem 3.3.1, G has an orientation with discrepancy
_)
1. Let K denote the set of arcs in this orientation. For each quK we add
. — X —— > .
a reversely directed arc vu too. Denote A:= {vu|uvEA}. Consider the fol-

lowing "circulation" problem:
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(3.6.11) min 2 o
at

t. 2. F - 2. f =0 (UEV(G));
S sk e achlf @

a enters u a leaves u

Y, f 2w (uEV(G});
a€hub 2 -
a enters u
£,20 (a€AUA) ,
and its linear programming dual:
(3.6.12) max 2 W X
u€v(G) LE 3
s.t.m_-m +x £ {quK};
v u v = oy
mo-m o+ x § (vaeh) ;
u v u =
X, >0 {(vEV(G)).

The theorem is proved with the help of the following three proposi-

tions:

Proposition 1: The constraint matriz of (3.6.11) is totally unimodular.
Consequently both (3.6.11) and (3.6.12) have integral optimal solutions
(Hoffman and Kruskal [1956], cf. Theorem 1.2.15).

Proposition 2: Let HEZV(G), xEZV(G} be a feasible solution of (3.6.12).
Then x is a feastble solution of the primal problem of (3.6.9).

Proposition 3: Let fEZKUs be a feasible solution of (3.6.11). Then there
exists a yEZE{G) and a zEZr(G). which form a feasible solution of the dual
problem of (3.6.9), such that:

y o+ T s(lve)] -1z, ¢ Z.F .
e€E(G) € Cer(G) G= ek ®
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Indeed, the three propositions together prove that mw(G) 2 EW(G). By
(3.6.7), this yields aw(G) = EW(G) and TW(G) = gw{G). The three proposi-

tions above are shown as follows:

Proof of Proposition 1:

If we are given a directed graph D = (V(D),A(D)) and a spanning direc-
ted tree T = (V(D), A(T)) on the same node set (not necessarily
A(T)CA(D)), then the network matriz N of D with respect to T is defined as
follows: NE{O,l,—l}A(T}xA{D). For u,vEV(D) let P(u,v)CA(T) be the unique

_,)
path in T from u to v. Then for each a1€A(T}. a, = uveA (D) :

(1 if alEP(u,v), and a, is passed forwardly going along P(u,v)

from u to v;

1= -1 if aIEP(u.v), and a, is passed backwardly going along

P{u,v) from u to v;

N
a).a,

0 if alﬁP(u,v).

Network matrices are totally unimodular (Tutte [1965]). We prove Pro-
position 1 by proving that the constraint matrix of (3.6.11) is a network
matrix. Indeed, let V(D):= V(T):= {VO}U{[u,i]IuEU(G). i€{1,2}},

A(D) := {Tu,1][v,2]|wek}, and
A(T) = {vg[u,17]uev(G)}u(Tu, 110w, 2] |uev(a)}.

Proof of Proposition 2:

Since x is integral we only need to prove that X, tx, <1 for
uv€E(G). Indeed, x + x < (1 -1 +m7 ) + (m_-m)=11if
B v u = v u v u
uvEE(G) (uv€A).

Proof of Proposition 3:

We can write f as £ = Y ADFD. where 4 is a collection of directed
DEA

circuits in ZUK, ADEZ+ for each DEA, and f‘DE{O,l}RUK with fg =1 if and
only if a€D.
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For every even circuit DEA, let M be an arbitrary maximum cardinality
— — D . ] — —
matching in {uv€E(G)|uvED or vu€D}. (In particular, if D = {uv,vu}, then

MD = {uv}.) Define yDGZE(G) by:

D
2

D

0 else.

[k if eEMD;
yo =

Next yEZE(G) is defined by:

—
For each odd circuit DEA, let C.EC{G) be defined by C, = {uv|uveED or
S (Q) D D

vuED}. Define zEZr by:

A,  if C = Cp for some D, DEA, |D| odd;
2~ lo else.

The vectors yEZE{G) and ZEZF(G} form a feasible solution to the dual pro-
blem of (3.6.9). Moreover

5.6, = 3 |AD
a€k &  DeEa - l
> Débkﬂluﬂl + DEAAD.%(IV(CD)l -1)

D even D odd

= 3 oy o+ 1 #(lvE)] - 1)z |
e€E(G) CET(G)

Proof of Theorem 3.6.8:
Let G be a graph with no odd—Ku. Assume that all graphs G' with
|E(G')| < |E(G)| satisfy Theorem 3.6.8. We shall prove that G then satis-

fies Theorem 3.6.8. Obviously, we may assume G to be connected. Let
wEZU(G). By the weighted version of Theorem 3.6.5 we only need to prove
that aw(G) = EW{G). Obvicusly we may assume that Wy 2 0 for each uEv(G).
According to Theorems 3.6.10 and 3.2.5 we may assume that G has a one-
node cutset or a strong 2-split. So we have subsets Vl‘ V2 of V(G) such

that [V,nV,| ¢ 2, V;uV, = V(G), and both V \V, and V,\V, are nonempty sets

1
not joined by an edge in E(G). Moreover, in case iVan2| = 2, the sub-

graphs G1 and G2 in G induced by Vl‘ V2 respectively are not bipartite. In
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the sequel we shall use the following notation: For each stable set
UCVan2 the number s{U) (sl(U). 52(U} respectively) denotes the maximum

weight 3 v, of a stable set S in G (Gl‘ G2 respectively) satisfying

ukEsS
SnVan2 = U. Note that: s(U) = sl(U) + 52(U) - 2 W, for each stable set U
u€l

in vlnvz.

We consider two cases.
Case I: Vlnvz induces a complete subgraph in G.

Define the following weight functions:

wl .= Yy if uEVl\Vz,

U e+ sMey - stiqu)) if wev.ov.s

u 120

2 Wy if uEVZ\Vl;
LV 1 :

s ({u}) - s (@) if u€v. nv,.

12

Obviously, neither GI‘ nor 62 contains an odd-Kq. Moreover |E(G1}I <

|E(G) ], |E(02)f < |E{G)|. Hence there exist a wi- and a wo-cover by edges
and odd circuits in Gl‘ 02 respectively, with cost 31(@). uw{G) - sl(@)
respectively. The union of these two covers is a w-cover with edges and

odd circuits in G with cost « (G). Hence @ (G) = Ew{G).
Case II1: |V1nV2| = 2, Vlnv2 = {ul. 2} say, and uluziE{G).

Define for i=1,2; k=2,3 the graph G? by adding to Gi a path from u, to

1
u, with k edges. (See Figures 3.14 and 3.15.)

Claim 1: We may assume that G? does not contain an odd—Ku (i=1,2; k=2,3).
Moreover, |E(G§}[ < |E(e)].

Proof of Claim 1: To prove the first assertion (for i=1), it is sufficient

to prove that in Gz there exists an odd as well as an even path from uy to

u,. Suppose this is not the case. Since 62 is not bipartite this implies

the existence of a cutnode in 62 separating {ul.uz} from an odd cycle in
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Gz. But such a cutnode is also a cutnode of G. In that case we can apply
Case I to prove o (G) = EW{G). So we may assume that GE has no odd-K,.
ir |E{G§)l 2 |E{G)|, then |E(G2)| ¢ 3. Hence, since G2 is not bipar-
tite, 62 is a triangle. So ulquE(G), contradicting our assumption that
uluziE{G).
end of proof of claim 1

Define & := 52({ul}} + 32({u2}} - 52{{u1.u2}) - 52(0). Again we consi-

der two cases.
Case ITa: A > 0.
- - .
Let bl'b2 be the new nodes in Gl' b the new node in 02. (See Figure

3.14 below.) Moreover, let e €y e, fl‘ and f2 be the edges indicated in
Figure 3.14.

Figure 3.14

We define the following weight functions:

-

W if w€V_\{u, ,u,};
1 V(Gg) 1 2 2 e
w €L by wooi= |8 {{u}) - s7(B) if uE{ul.uz};
L& if uE{bl,bz};
t if u€V. \{u,,u,};
2 v(65) 2 Yo 2 ki
w EZ by w, i= |w, *+ S (@) - s“({u}) + & if uE{ul.uz};
Lﬁ if u€{b}.

+

Claim 2: o 1{63) = mw{G)

A - s2(@) and « 2(02) = 2@ + 4.
w W
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Moreover, for i=1,2 there exists a stable set S in Gg with 2 wﬁ =

> u€s
awz{Gzl, uiES, and bgs.

Proof of Claim 2: Straightforward casechecking.

end of proof of claim 2

By Claim 1 there exists a wl-cover El. Fl by edges and odd circuits in

Gi with cost « 1(02} = mw{G] + A - 52{@}. Let Y0¥, and ¥ denote the mul-
w

tiplicity of e, e respectively in El. Let B denote the sum of the

e
1 2°
nultiplicities of the odd cycles in Fl containing b1 {and b2). Assume El

abid T Hre such that y, + ¥, + 2y + P is minimal.

Claim 3: y, + ¥ + B =4 for i=1,2. Consequently, ¥y =¥
Proof of Claim 3: Xi + ? + B 2 A, since El. Fl is a w -cover. Suppose 31 +

¥ + B> A. Then ¥ = 0. Indeed, if not, then increasing y., by 1 and de-
2

creasing ¥ by 1 would yield a wl—cover with cost o 1(G§). and smaller

¥t ¥, ¢ 2¥ + B. Moreover, ¥, = 0. Otherwise, take some ulVEE(Gl). Adding
uv to El {or increasing its multiplicity in El} and decreasing ¥y by 1,
again yields a wl-cover with cost « 1(G?}. and smaller Xl + xz + 25 + B.

w

Finally, B = O, contradicting the fact that A 2 0. Indeed, if B > O remove

an odd circuit € with blEV(C} from Fl, and add the edges in the unique

1 to El. Since M =

i{|V{C)f - 1) this again yields a wl—cover with cost o l(G%), and smaller
W

maximum cardinality matching MCE(C) not covering b

it ¥, * 25 + B. end of proof of claim 3

By Claim 1, there also exists a wz-cover E2. F2 by edges and odd cir-
cuits in Gg with cost « 2(62} = 32{9) + A, Let Ez and F2 be such that the
W

sum, & say, of the multiplicities of the odd cycles in F2 containing b is

minimal.

Claim 4: f, and f, do not occur (i.e. have multiplicity 0) in B2, More-

over, & = A,

Proof of Claim 4: Since the cost of Ez, F2 is @ 2(03} and there exists a

w
stable set S in Gg with ¥ w2 = 2{G§) and ul.bES (Claim 2), the edge F
ues ¥ W 1
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does not occur in E2 ("complementary slackness"). Equivalently F2 does not
occur in EZ. The proof that & = & is similar to the proof of Claim 3.

end of proof of claim 4

Using El. Fl and E2, F2 we are now able to construct a w-cover E, T in

G by edges and odd circuits, and with cost aw{G). thus proving aw(G) =

EW{G). The construction goes as follows:

Step 1: The edges in e} and E2. except e, e, and e, are added to B (with
the same multiplicity). The odd circuits in Fl and F2 not containing b1
(b,), or b are added to T.

Step 2: Let Ci.....ci be the odd circuits in F2 containing b. (Remember

that some of them may be equal.)

(i) Let Ci,...,Cé be the odd circuits in Fl containing bl‘ Define for
each i=1,...,B the odd circuit CiEF{G) by E(Ci) =
B(CHUE(C?) \le, .e,.8,F;,F,}. Add all the odd circuits Cy.....Cq to
| 5
Note that, for each i=1,...,B: %(IV(Ci}I -1) = %(Iv(ci)l - 1) +

slvied] -1 -2

(ii) Define for each i= B+1,...,B+xl the collectlon of edges M as the
unique maximum cardinality matching in E{C ) not covering b. Each
edge occuring in Mi (1—ﬁ+1.....p+xl) is added to E (as often as it
occurs in any Mi).
Note that, for each i=p+l,....Awr;: [M| = %(lV(C§)| sofifi

(iii) Define for each i=B+xl+1,...,B+xl+§ {= A) the col;ection of edges Ni
as the unique maximum cardinality matching in E(Cl} not covering uy
and not covering u2. All the edges occuring in any Ni are added to E
(as often as they occur in any N_).
Note that, for each i=ﬁ+rl+l.....ﬁ, |Ni| = %(]V(C§)| -1) - 1.

Claim 5: The collections E, T form a w-cover by edges and odd circuits in
G.

Proof of Claim 5: It is not hard to see that each uE(Vl\Vz)U{Vz\Vl) is
covered W, times by B, I'. (The matchings in step 2(ii) and in step 2(iii)

of the construction do not decrease the number of times that a node in
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Uz\Ul is covered.) The node uy is covered as least 52({u}) - 52(9) times

by E2, F2. and at least w,o* 32(0) - 52({u}} + A times by El. Fl. So u, is

covered at least wu + A times by El. Fl and E2. F2 together. During thé
construction this amount is decreased with B by step 2{i), with Xl by step
2(ii), and with ¥ by step 2(iii). Since B + ry o+ ¥ =4, Eand T cover u
at least W times. Similarly one deals with u,, as ¥, = X2'

end of proof of claim 5

Claim 6: The cost of E, T* is a (G).

Proof of Claim 6: The cost of El. Fl plus the cost of E2, F2 is equal to
3 2, _ _ .2 _ ; _

uwl(Gl) + awz(Gz} = aw(G) + A - s7(@) + A= aw{G) + 2A. During the con

struction we lost exactly: 2B in step 2(i), ¥ in step 2(didii), and 2x1 + ¥
by ignoring the edges e, e,, €. so the cost of E, T is « (G) + 24 - 2 -
¥ - (2x1+§) = uw{G). end of proof of claim 6

Claims 5 and 6 together yield that « (G) = EW(G).
Case IIb: A § 0.

The proof of this case is similar to the proof of Case Ila. Therefore
we shall only give the beginning of it.

Let b the new node in Gf and let b1 and b2 be the new nodes in Gg (see
Figure 3.15).

Figure 3.15
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Define the following weight functions:

-

. G2 vy if uEVl\V2
1 V(Gy) 1 2 2 .
w €L by w_ := {s ({u}) - s7(@}) - & if u€{u1.u2};
u
L—ﬁ if u = b;
V{GB] wu if uEVZ\Vl,
2c7 2 py w2 i= fw o+ s2(0) - s2({u}) if u€{u,.u)};
Y u u 12
-a if u€{b,b,}.

The first thing to be proved now is

Claim 7: {G ) = o (G) -A-35s (ﬁ) and o 2{63) = A+ sztﬂ). Moreover,

for each UE{{u ,b }. {b1 b2}. {uz,b 1} there exists a stable set S in G3

with Y u_=a 2(62). and SAU = @.
ukEsS

From this point it is not hard to see how arguments similar to those

used in Case Ila prove that « (G) = Ew(G)' [

Remarks on the proof of Theorem 3.6.8:

The proof of Case I of the proof above is identical with the proof of
Theorem 4.1 in Chvatal [1975]. The techniques used in case IIa and Case
IIb of the proof are similar to the techniques used by Boulala and Uhry
[1979]. However, they restrict 62 to paths and odd cycles. Sbihi and Uhry
[1984] also use the decompositions of Case II. However, they used these
decompositions in case 62 bipartite. Recently, Barahona and Mahjoub [1986]
derived a construction to derive all facets of the stable set polytope of
G, in case G has a two node cutset {ul,uz}, from the facets of the stable
and G, are as in the proof above, G

1 2
is derived from Gi by adding a five cycle {ul’b'uz'bl' 2}).

set polytopes of Gl' and Gz. (Here G

Next we give some remarks on the min-max relations in Theorem 3.6.3

and 3.6.8.
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Remarks:

(1)

(i1)

(iid)

Theorem (3.6.8) implies that if G contains no odd—Ku. then EW[G) =

5;(0] for each wEZE(G)

lities in the primal problem of (3.6.9) is totally dual integral.

. In other words, the system of linear inequa-

Consequently, if G contains no odd«Kq, then aw{G) = E;(G) for each
wEZY(G}. This means that the system of linear inequalities in the
primal problem of (3.6.9) describes the stable set polytope of G.

V(G),

Obviously, also the statement "TW(G) = ;w‘G) for each wEZ+ an

be formulated in a way similar to (3.6.9).

Theorem 3.6.8 {and Theorem 3.6.3) can be refined by allowing w-co-
vers {w-packings) by edges and odd circuits only to use edges not
contained in a triangle, and odd circuits not having a chord. In

other words, if G has no odd-Kq. then the system:

(uvEE(G), uv is not contained

"
+
b
[ FaN
[

in a triangle);
*) 2 x < 3(|v(e)] - 1) (CEr(G), C has no chord);

0 (uev(a)),

”
s

is a totally dual integral system defining the stable set polytope
of G. In fact the inequalitities in (*) are all facets of the poly-
hedron defined by (*)} (for any graph G). So (*) is the unique mini-
mal totally dual integral system (cf. Schrijver [1981] (,see Theorem
1.2.21 (ii) of this monograph)) for the stable set polytope of G, in

case G has no odd-Kq.

Earlier results on this topic are:

- Chvatal [1975]: If G is series-parallel {i.e. G contains no homeo-
morph of Kq), then «(G) = p{G).

- Boulala and Uhry [1979]: If G is series-parallel, then aw{G} =
EW(G) for each wEZv{G). (In fact they only emphasize aw(G) = E;(G)
(which was conjectured by Chvatal [1975]), but their proof impli-
citly yields the stronger result. Recently, Mahjoub [1988] gave a
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)

very short proof of aw{G) = 5:(0) for each WEZV(G for series-
parallel graphs G.)

- Fonlupt and Uhry [1982]: G is almost bipartite, then « (G) = p*(G)
for each WEZV(G]. Sbihi and Uhry [1984] give a new prozf of Y
Fonlupt and Uhry's result. This proof implicitly yields aw(G) =
EW(G) for each wEZV(G).

Obviously, the graphs considered by Chvatal, Boulala, Fonlupt,

Sbihi, and Uhry do not contain an odd-Kq.

- Gerards and Schrijver [1985]: If G has no odd—Ku then aw{G) =

E;{G) for each wEZV{G) (cf. Theorem 2.3.3).

The last remark states that Theorem 3.6.8 implies that the polyhe-
dron defined by

0 u€v(G);
1 uvEE(G),

———
I
e e
+
]
<
[P "

has Chvatal rank 1 in case G has no odd—Ku. In fact, Theorem 3.6.8
yields a new proof of Theorem 2.3.3.

Let A is a bidirected graph with no odd—Kq and let

P:= {x|a < x

"

b, ¢ ¢ Ax ¢ d}

with a,b,c and d integral vectors. Then it is easy to see that P' is

the projection of a face of Q' where

Q= {xlxu ) 8, uEV(G), x, * x, ¢ B, wEE(G)},
and G a suitable graph.
[Indeed, by replacing the inequalities in a £ x ¢ b, ¢ £ Ax < d, by
new inequalities, hereby introducing new variables (if necessary).

This replacement is as follows:
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xi + xj Ly — x, + xj § . 214
- X, +x,. {y — + x..=0, x,, +x,. £ y¥;
e Sl g i3 #7792 E i
X, xSy x, + X, =0, X, +x,,. <y, X}, +x. = 0;
i j = ij ij ij = ij J
xi g o — % g o
B vy =0,y - B !

It is obvious, from the indicated construction that P' is an inte-
gral polyhedron if Q' is, and that the constructed undirected graph
G contains no odd-Ku. To prove that Q' is integral, let z be a ver-
tex of Q'. Obviously we may assume that 0 < z, <1 (ueEV(G)) (by

translating Q). Moreover, Q' is constrained by the inequalities:

xu z gu (uev(a));
Xyt x, < bmr (e€E(G));

X o ox 32 b - 1] (cer(a)).
uev(c) a€E(C)

We may assume that Eu = 0 for u€V(G), and (like in the proof of
Theorem 2.3.3) that be€{0,1} for e€E(G). Hence, by Theorem 3.6.8, Q'
is the stable set polytope of G. So z is an integral vector, which
completes the proof of Theorem 2.3.3.

COMPUTATIONAL ASPECTS

We conclude this section by paying some attention to the computational
complexity of the problems: Given G and wEZV{G). determine aw(G}, EW(G).
pw(G], Tw(G}, §W(G). and uw(G). Well-known results are:

- It is XP-hard to determine uw(G}, Tw{G)' even if w = 1 (Karp [1972]).

- There exists a polynomial-time algorithm to determine a maximum cardina-
lity w-matching, or a minimum cardinality w-edge-cover (Edmonds [1965a]
for w = 1, Cunningham and Marsh [1978] for general w).

Pulleyblank [personal communication] observed that determining EW(G). or

EW(G) is NP-hard, even if w = 1. There is a reduction from PARTITION INTO

TRIANGLES (cf. Garey and Johnson [1979]). Indeed, given a graph G there is

partition of V(G) into triangles in G if and only if g(G) < %|V(G}|. Since

PARTITION INTO TRIANGLES remains AP-complete for planar graphs (Dyer and
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Frieze [1986]), determining ¢(G), or »(G), remains NP-hard even if G is
planar.

If G contains no odd—Kh. then EW(G) and ;w(G) can be found in polyno-
mial-time. Indeed, an algorithm can be obtained from the proofs given
above (proofs of Theorem 3.6.10 and 3.6.8). However there are some diffi-

culties to be settled.

SOLVING (3.6.11) AND (3.6.12)

If G has an orientation of discrepancy 1, such orientation can be
found in polynomial-time (see the final remarks in Section 3.3). Having
this orientation K one can solve (3.6.11) and (3.6.12) as follows: Define
the directed graph D = (V(D), A(D)) by: V(D) := {ui|uEV{G): i=1,2}, and

—_
A(D) := A (D)UA,(D), with A (D) := {uluzluev(c}} and A,(D) :=
=k —%EK : . .
{u2v11u,v€V(G).uv }. Then (3.6.11) is equivalent to the min-cost-circula-

tion problem:

(3.6.13) min X g,
aEAz(D}

s.t. g is a nonnegative circulation in D,
and g s 2 W, {(u€V(D}).
Lo

(3.6.13) can be efficiently solved by the out-of-kilter method of Ford and
Fulkerson [1962]. (Note that since the costfunction is {0,1}-valued, there
is no need to appeal to more sophisticated techniques as used by Edmonds
and Karp [1972], Réck [1980] or Tardos [1985].)

DECOMPOSITION

If G has no orientation of discrepancy 1, then it has a one or two
node cutset (with, in the latter case, both sides not bipartite). We can
now go along the lines of Cases I and II in the proof of Theorem 3.6.8. In
this way we get a recursive algorithm. However, in one side of the decom-
position we have to solve two or three stable set problems to determine
the numbers s'(U). (See the proof of Theorem 3.6.8.) Next we have to solve
a stable set problem on both parts of the decomposition. If solving all of
these four or five problems again needs a decomposition this might lead to

an exponential number of steps. However there is a way to avoid this. Any
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time we have to decompose the graph we search a decomposition in which the

3
1

have an orientation of discrepancy 1. So the two or three stable set pro-

smallest side, G1 say, is as small as possible. In that case Gf and G

blems to determine the numbers s'(U) as well as the derived problems on Gf

3

or Gl can be solved without further recursion. If we organize our algo-

rithm in this way there is no risk for exponential explosion.
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CHAPTER 4. T-JOINS

In this chapter we consider T-joins. Beside an introductory chapter,
giving definitions and a short survey of the literature, this chapter
consists of two parts. In Section 4.2 we give a common generalization of
two theorems of Seymour on T-joins. Here, again, the odd—Kq's play a role.
In Sections 4.3 until 4.5 we study the properties of a binary matroid
associated with T-joins in a graph. In parallel with Sections 3.1 until
3.3 we give decomposition results and orientation results for specially
structured T-join problems. The results in Section 4.5 are applied in
Section 4.6 to give new proofs of certain min-max relations for specially

structured T-join problems.
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4.1. INTRODUCTION TO T-JOINS IN GRAPHS

Let G be an undirected graph, and let T be a subset of V(G). A T-join
is a subset F of E(G), such that {vEV(G)]|8(v)nF| is odd} = T. Obviocusly,
if G is connected then there exists a T-join if and only if |T| is even.
More generally there exists a T-join if and only if lTnV(Gl)I is even for
each component G, of G. If UCV, such that |UnT| is odd, then 6{U) is cal-

led a T-cut. We define:

maximum cardinality of a collection of disjoint T-cuts;

vT(G)

minimum cardinality of a T-join.

TT(G)

Obviously vT{G)
have |Fh6(U}| 2

TT(G), since for each T-join F and each T-cut §(U), we

= A

Theorem 4.1.1 (Seymour [1981])
Let G be a connected bipartite graph. Then for each even TCV(G) : yT(G} =

5(G) - ]

We omit the proof of Theorem 4.1.1. Proofs can be found in Seymour
[1981], Frank, Sebt, and Tardos [1984], and Sebt [1985b]. Theorem ho1.1

yields the following min-max relation for T-joins in general graphs.

Theorem 14.1.2 (Edmonds and Johnson [1970, 1973], Lovész [19751)
Let G be an undirected connected graph. If T is an even subset of V(G),
then 2TT(G} is equal to the maximum number of T-cuts such that each edge

occurs in at most two of them.

Proof: Apply Theorem 4.1.1 to the bipartite graph G' and T'CV{G') defined

as follows

v{G") V{G)VE(G);
E(G') {ue|u€EV(G),e€E(G), u endpoint of e};

sl ]

1]

"
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There are two, at first sight unrelated, special cases of T-joins.
THE CHINESE POSTMAN PROBLEM

Given a graph G, a chinese postman tour is a sequence of nodes
VorVirer oYy = Vg such that vi_lviEE(G} (i=1,...,k}, and for each e€E(G)
there exists an i=1,...,k such that e=v, ,v;. It is not hard to see that
the minimum length of a chinese postman tour with respect to some given

length function w€ZE(G} is equal to Y W, + min { % we|F is T-join},
e€E(G) eEF
where T : = {uEV(G)’[&G(u)| is odd}. Edmonds and Johnson [1973] derived

Theorem 4,1.2 in the context of the chinese postman problem. (It is easy
to see that this is not really a restriction.)

MULTICOMMODITY FLOWS IN PLANAR GRAPHS

Lemma 4.1.3 (Guan [1962])
Let G be graph and TCV(G) with |T| even. Then a T-join F in G is a minimum

cardinality T-foin, if and only if |E(C)nF| ¢ |E(C)\F| for each circuit C

in Q.

Proof: This lemma is an easy consequence of the following observation: if
Fl and F2 are T-joins in G then Fl A F2 is a cycle in G. []

The following observation is easy to prove too.

Lemma 4.1.4

Let G be a graph, and TCV(G) with |T| even. Let F be a minimum cardinali-
ty T-join. Then TT(G) = vT(G) if and only if there exists a collection
edge disjoint coboundaries S(Uf) (fEF) such that FES(Uf) for each fEF.

O

These two simple observations will turn out to be useful. First for
understanding the relation between T-joins and multicommodity flows in
planar graphs, and later in the proof of Theorem 4.2.2, which is an exten-

sion of Theorem 4.1.1.
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Let G be a graph, and DCE(G). The multicommodity flow problem in G
with respect to D is: does there exist a collection of edge disjoint cir-
cuits Cd (d€D} in G such that dECd (dED)? A necessary condition obviously
is the cut-condition: |S(U}nD| < |8[U)\D] for each UCV(G). However the
condition need not be sufficient, as is shown in Figure 4.1 (with

D = {d1'd2})'

d

Figure 4.1

Let us suppose now that G is planar. Let G* be a planar dual of G
{with respect to some embedding of G in the plane). We may identify E(G)
and E(G*), and consider DCE(G*). Now Lemma 4.1.3 shows that D satisfies
the cut-condition in G if and only if D is a minimal T(D)-join in G*
(where T{D) is the collection of those nodes in G* that are endpoints of
an odd number of edges in D). Moreover, the existence of the desired cir-
cuits in the multicommodity flow problem in G with respect to D is equiva-
lent to vT(D}(G') = |D|. So we get: If D satisfies the cut-condition in G
then there exists a collection of edge disjoint circuits Cd(dED} with dECd
for each d€ED, if and only if pT(D){G*) = TT(D)(G*}. In particular, with

Theorem 4.1.1, this implies: (Eulerian graph = connected cycle.)

Theorem 4.1.5 (Seymour [1981])

Let G be an eulerian planar graph, and let DCE(G). Then there exists a
collection of edge disjoint circuits Cd(dED) such that dECd for each dED

if and only if D satisfies the cut-condition in G.

Proof: If G is eulerian, G* is bipartite. So the theorem follows from

Theorem 4.1.1 and the discussion above. O
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This relation between T-cuts and multicommodity flows forms a motiva-
tion for the study of those graphs G for which vT(G} = TT(G} for all even
TCV(G). This is the subject of Section 4.2.

We close this section with a description of Edmonds' algorithm to find
a minimum weight T-join.

Let G be an undirected graph, TCV(G) with |T| even, and IEZ+E{G)

. The

following algorithm finds a T-join F which minimizes J Ze'
eEF

EDMONDS SHORTEST T-JOIN ALGORITHM (Edmonds [1965d], cf. Edmonds and
Johnson [1973]).

Let H be the simple complete graph with V(H) = T. For each s,tfT find a
shortest st-path, P_ , in G with respect to 4. Let w__ := &e for each

st
eEPSt
s,tET. Find a minimum weight perfect matching s1tys 92t2""'3ktk in H
(with respect to w, where k = #|T|). Let F := E(P A, . .AE(P ). Then
8% Sk

F is a shortest T-join.

If one uses polynomial-time algorithms to find the shortest path PSt
and the minimum weight perfect matching Sltl""‘sktk' then the shortest
T-join algorithm above is polynomial-time. (Polynomial-time shortest path
algorithms are Dijkstra's algorithm (Dijkstra [1959]) and the Floyd-

Warshall algorithm (Floyd [1962] and Warshall [1962]). Edmonds algorithm

for minimum weight perfect matching is polynomial-time (Edmonds [1965c]).)

Remarks:

Sebd [1985a, 1986] describes a good characterization for shortest
paths in a weighted undirected graph with no negatively weighted circuits
(edges may have negative weight). Using this, Sebd proves a structure
theorem for T-joins, generalizing the Edmonds-Gallai structure of match-
ings (Edmonds [1965a], Gallai [1963, 1964]).
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4.2. A COMMON GENERALISATION OF TWO THEOREMS OF SEYMOUR ON T-JOINS

In this section we study graphs G for which uT{G) = TT(G) for each
even TCV(G). From Theorem 4.1.1 and Theorem 4.6.1 we have

Theorem 4.2.1 {Seymour [1981, 1977])
Let G be a comnected graph. If G is bipartite or series-parallel, then
v3(G) = 7 (G) for each even subset T of V(G). O

[If G is series-parallel, then for each TCV{G) the graft [G,T] (cf. Sec-
tion 4.3) has no Kq-partition (cf. Section 4.3). So, by Theorem 4.6.1,
vT(G) = TT(G) for each even subset TCV(G).]

Theorem U4.2.1 provides two sufficient conditions for »T(G) = TT(G).
These two conditions are of a quite different nature: bipartiteness is a
parity condition (all circuits are even), whereas being series-parallel is
a topological condition (no homeomorph of KH as a subgraph). The following

theorem replaces these two sufficient conditions by one weaker condition:

Theorem 4.2.2
Let G be an undireected, connected graph. If (G,E(G)) contains neither an
odd—Kq nor an odd-prism, then for each even TCV(G) we have vT{G) = TT(G).

O

(We prove this result later in this section.)

Here an odd-prism is a (signed) graph as depicted in Figure 4,2, Wrig-
gled lines stand for pairwise openly disjoint paths, while odd, even
respectively indicates that the corresponding faces are odd circuits, even

circuits respectively.
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Figure 4.2

It is straightforward to see that neither bipartite graphs, nor se-
ries-parallel graphs contain an odd—Kq or an odd-prism. So Theorem 4.2.2
implies Theorem 4.2.1. The two forbidden configurations odd—l{q and odd-
prism are motivated by the fact that DV(G)(G} # TV{G}(G) in case G = Ku or
G is the triangular prism (Figure 4.3).

Figure 4.3

Remark:
The condition in Theorem 4.2.2 is not a necessary condition since
BT(G] = Tp{G) for all TCV(G) for the odd-Kq in Figure 4.4,
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Figure 4.4

However from Theorem 4.2.2 one can derive:

Let (G,I) be a signed graph. Then the following are equivalent:

(i} (G,L) contains no odd—Ku and no odd-prism;

E(G) ,1th the property that Y w_ is

e
e€E(G)
even if and only if C is an even eireuit in (G,L), we have:

(ii) For each weight function w&Z

for each even TCV(G) the minimum weight of a T-join with respect to

w is equal to the mazimum cardinality of a w-packing of T-cuts.

To prove Theorem 4.2.2 we use the following theorem.

Theorem 4.2.3
Let (G,E) be a signed graph with no odd-Kk and no odd-prism. If G is

simple then one of the following holds:
(i) (G,E) has a 1-split;

(ii) (G,E) has a strong 2-split;

(iit) (G,L) is almost bipartite.

Proof: Let (G,I) satisfy the conditions of the theorem, without satisfying

(i) or (ii). We prove that G is almost bipartite.

Claim 1: There are no two node disjoint odd ecircuits.

Proof of Claim 1: Suppose to the contrary that Cl and 02 are odd circuits
with V(C,)nV(C,) = . Obviously iV(Ci}l >3 for i = 1,2 (as G is simple).

Since (i) and (ii) are not satisfied, Menger's Theorem (Menger [1927], cf.
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Theorem 1.3.1) yields the existence of three paths Pl,P2 and P3 from C1 to
02 such that V(Pi)nV(Pj} =2 (i,j = 1,2,3, i # j). It is easy to see that
01,02,P1,P2 and P3 together form an odd-prism or contain an odd-Kq. This

is a contradiction. end of proof of claim 1

For each odd circuit C in (G,E) and each bridge BCE(G) of C there
exists a unique path IC(B) on C with the following properties:
- there exists an odd circuit C' such that E(C')CE(C)uB; V(C)nV(C') =
V(I,(B}) and E(C)nE(C') = E(I,(B));
- each odd circuit C' with E(C')CE{C)UB satisfies: V{C)nV(C'}DV{IC{B)) and
E{C)HE(C'}JE{IC(B)).
Indeed if C contains at least three nodes with degree at least three, this
follows from Claim 1 and Lemma 1.3.5. If C contains at most two nodes of
degree at least three, this follows from the fact that (G,I) has no 1-
split and no strong 2-split. Note that it might be the case that
JV(IC(B))I = 1 and E(I,(B)) = .
Now choose an odd circuit € and a bridge B of ¢, such that Ia{ﬁ) has a
minimal number of edges, among all IC(B) (over all odd circuits C, and

bridges B of C). Let u be an endpoint of Ia(ﬁ}.

Claim 2: GGV(IE{B)) for each bridge B of C.

Proof of Claim 2: Suppose to the contrary that GiV{IE(B)) for some bridge
B of €. Since IE(E) is minimal, V(IE{B))\V(IE(E)) # @. Let
UEV(Ix(B))\V(I5(B)).

Let C be an odd circuit, with E(G)CE(E)uB, V(C)nv(E) = V(Iz(8)), and
E(C)nE(C) = E(Ix(B)). Similarly, let C be an odd circuit, with
E(C)CE(T)uB, V{(C)nV(C) = V(Ix(B)), and E(C)nE(C) = E(Ix(B)).

Obviously u€V(C). Let B be the bridge of & containing u. Then E(C) is
contained in BUE(C). So v(xa(ﬁ}}cv(é‘)nvw)cwze(ﬁn\{a}. contradicting the
minimality of Ia(ﬁ). end of proof of claim 2

It is an easy exercise to derive from Claim 2 that each odd circuit in
(G,I) contains U. So (G,I) is almost bipartite. O

Using the result just shown we can prove the main result of this sec-

tion.
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Proof of Theorem 4.2.2
Let G be a connected graph. Then we have: HT{G) = TT(G} for every even
subset T of V{G) if and only if

E(@) sueh that Y w_> 0 for each circuit C in G

e:
e€E(C)
there exists a collection of edge disjoint coboundaries S(UE),

EE{eEE(G}|we = -1}(=: F,), such that EES(UE} for each EEFw.

(*) for each w€{-1,1}

(This equivalence follows from Lemmas 4.1.3 and 4.1.4.) Let G be a graph
such that (G,E{G)) contains no odd—Ku and no odd-prism, and such that
Theorem 4.2.2 is correct for all graphs with fewer edges than G. We prove
that (*) holds for G. So let w€{-1.1}E{G} such that:

(**) 2 w, 2 0 for each circuit C in G.
e€E(C) -

We consider the three cases of Theorem 4.2.3.
Case I: G has a one node cutset, {u} say.

It is not hard to see that now a packing with coboundaries, as meant
in {*), is obtained by taking the union of such packings in each of the

sides of the cutset {u}.
Case I1I: G is two-connected, and has a strong 2-split.

So G has two non-bipartite subgraphs Gl and G2 such that V(Gl)UV{Gz) =
V(6), V(G)AV(Gy) | = 2 (V(G)V(G,) = {u,v} say), E(G)UE(G,) = E(G), and
E(Gl)nE(Gzl =g, For i = 1,2, let oy be the length, with respect to w, of
the shortest uv-path in Gi' By (**), o+, 2 0. Hence we may assume o, 2
)

Construct ﬁl from Gl by adding to Gl a uv-path, P say, such that
|E(P)] = o, (If , = 0, identify u and v and call the new node u again.)

1 E(61] 1 1
Define w €{-1,1} by W, = 1 if e€EE(P) and W, = W, if e€E(G1}. Now

{ﬁl,E(ﬁ)} contains neither an odd-K,, nor an odd-prism. {Indeed, there
exist a uv-path Q in 02 with |E(Q)]| = oy = |E(P)| (modulo 2}.) Moreover 61
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contains no negatively weighted circuits with respect to wl. So there
exists a collection {S(Ue}leEFw,} of coboundaries in 61, satisfying (*)

with respect to wl. We may assume uiUe for each e€&F 1° Define Z :=

w
{e€F | |6(U_)nE(P) # &}, and p := |2z].
W

Next we construct 62 from 02 by adding a uv-path Q to G2 with

|E(Q)f = p. (If p = 0, identify u and v, and call the new node u again.)

Claim 1: {ﬁz,E(ﬁz)) contains neither an odd-K, nor an odd-prism.

Proof of Claim 1: As Gl is non-bipartite, and G is two-connected there
exists in Gl an even uv-path, as well as an odd uv-path.

end of proof of claim 1

E(&z}

Define w2€{-1,1} by wﬁ = -1 if e€E(Q), and wg = W, if e€E(G,).

There are no negatively weighted circuits with respect to w in 52. (Note

that p é o,, and hence -p + az g 0.) So as §2 has fewer edges than G,

there exists a collection {S(Ve)|eEF 2} of coboundaries in 52 in the sense
W

of (*) with respect to wz. We may assume ui&(ve) for each e€F 5-

W
In case p # 0 let m be some bijection from Z to E(Q). Now it is easy

to see that

{S(Ue)]eEle\z}u{S(Ue)|eEFw2\E{Q)}U{6(UeUVn(e})|e€Z}

(or in case p = O: {S(Ue)]eEF 1}U{8(Ve)|e€F 2}) is a collection of co-
W W

boundaries in G, satisfying (*) with respect to w.
Case III: G is almost bipartite.

Let u€V(G) such that G|(V(G)\u) is bipartite, with bipartition U, U,
say. Define G as follows:
V(G) (VG {u})v{u ,u,};

E(@) (E(G)\&(u) )u{vu, |veu

4+ VUEE(G), i=1,2}ufu u

2}'
and GeE{-1,1}E{G) by
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W if  e€E(G)\é6(u);

W = Yoy if e = vug; vEV(GI\{u}; 1 = 1,2;

-1 if e = uu,.

Claim 2: Y w_ > 0 for all circuits C in .

e =

e€E(C)
Proof of Claim 2: Suppose to the contrary that 2 W < 0 for a circuit

eEE(C)
C in G. Obviously the edges in E(C)\{uluz} give a circuit C in G, hence
u.u.EC. But this means that C is odd in G, and so I w o= -1+
172 e
eEE(C)
w_ 2 -1+1 = 0. Contradiction. end of proof of claim 2
e =

e€E(C)

Since G is bipartite, Theorem 4.1.1 yields the existence of a collec-

tion {5{Ue)IEEF~} of coboundaries as meant in (*) with respect to w in G.
w
We may assume ulifUe (e€F ). But now {&(Ue}|eEFw\{u1u2}} is a desired col-
w

lection of coboundaries with respect to w in G. E]

Remark:

Case III in the proof above was derived independently by D. Wagner.
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4.3. T-JOINS AND BINARY MATROIDS

A graft is a pair [G,T], where G is an undirected graph, and TCV(G).
Associated with a graft [G,T] we define the binary matroid gIG.T] as fol-
lows:

Let xTERV(G} be the characteristic vector of T as a subset of V(G), and
let MG be the node-edge incidence matrix of G. Then 9IG,T} is the binary

matroid represented over GF(2) by

[ Y IXT}'

The element of J[G,T], not in E(G), so corresponding with the last column
of the above matrix will be denoted by t. So E(J[G,T]) = E(G)u{t}.

CIRCUITS OF J[G,T]
The circuits of gIG.T] are all sets of the forms:
- E(C), if C is a circuit in G;

- E(F)u{t}, if F is a minimal T-join in G.

RANK FUNCTION OF J[G,T]
If E'CE(G), then

Ir6,71¢E") = Tyye) (E').

(4.3.1) rth'T]{E'U{t}] = rlﬁG}(E'} if E' contains a T-join,

rth’T](E'U{t}) rﬁﬂG)(El)+l if E' contains no T-join.
We define the following reductions of a graft [G,T]:
deletion [G,T]\e := [G\e,T];
contraction [G,T]/e := [G/e,T/e], where T/eCV(G/e) is defined by:
T/e := (T\{u,v})uv* 4if |{u,v}nT| is odd, and
T/e := T\{u,v} if |[{u,v}nT| is even.

Here v* is the node of G/e in which e = uv is contracted.
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Finally we also consider the deletion of isolated nodes not in T from
G as a reduction of [G,T]. If [G,T] can be constructed from [G,T] by a
series of reductions, we say that [G,T] reduces to [G,T]. Obviously graft-

reductions correspond to deletions and contractions in th.T].

MINORS OF 7[G,T]

9ra,Tl/e = J([G,T1/e), and

7(6,T1\e = J([G,T]\e) for e€E(G).

Moreover J[G,TI\t = MG) and 9[G,T]/t is the binary matroid with circuits:

all minimal T-joins, and all circuits in G containing no T-join.

Remark:

There is a similarity between grafts and signed graphs. Take an arbi-
trary T-join T in G. Then C is a circuit of g*[G,T] if C is an minimal
even coboundary or t€C and C\{t} is a minimal odd coboundary. Here odd
(even) means containing an odd (even) number of edges from I. So I*[G,T]
is obtained from M *(G) by signing similarly as J(G,I) is obtained from
MG). In particular if G is planar, with planar dual G*, and T-join L,
then T*[G,T] = JiG*, ).

We define two special types of grafts: a Ku—partition and a Ks'z-par-
tition. They are indicated in Figure 4.5. Circles stand for connected
subgraphs, odd (even) indicates that the corresponding connected subgraph
contains an odd {even) number of members in T, and lines stand for edges.
In case each circle in Figure 4.5 contains exactly one point we speak of
1'{4, K
[K

3,2 respectively. I.e., RH = [KH’ V(Kq)] and ﬁ3‘2 =

3,2’ V(K3 2)\{u}], where u is one of the two nodes of degree three of

the complete bipartite graph K3 2 We say that a graft [G,T] contains (or
has) a Kq»partition {K3 z—partition} if each component of G contains an
even number of points in T, and at least one component G1 of G contains a

subgraph 51, with V(G) = V(ﬁl}, that is a Ky-partition (K3 ,-partition

respectively).
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), coF

K4 -partition K3_2-parﬁﬁnn

Figure 4.5

The following lemma is easy to prove:

Lemma 4.3.2

Let [G,T] be a graft. Then the following are equivalent:
(t) 906, T] has an FT-minor using t;

(ii) [G,T] reduces to Kq;

(iit) [G,T] contains a Kq~partition.

Similarly, the following are equivalent:

(t) 906G, T] has an F;—minor using t;

(ii) [G,T] reduces to K3'2;

(iii) [G,T] contains a K3 sTpartition.

Together with Tutte's characterization of regular matroids (cf.

1.4.4), this lemma yields

Lemma 4.3.3

O

Theorem

Let [G,T] be a graft. Then 9[G,T] is regular if and only if [G,T] contains

no Kq—partition and no KS z-partition.

]
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4.4  DECOMPOSITIONS

Grafts, and their associated binary matroids, where first introduced
by Seymour [1980]. They play an important role in the proof of Seymour's
decomposition theorem for regular matroids {cf. Theorem 3.2.1). In this
section we shall interprete Seymour's result as well as the decomposition
theorem of Truemper and Tseng [1986] (for binary matroids with no F;—minor
using a specific element), in terms of grafts. To this end we introduce
the notion of splits for grafts.

Let [G,T] be a graft, with |T| even.

1-SPLIT:

If G is disconnected, with component V,, then [G|V1,Tnvl];
[Gl (V(G)\V,). T\V,] is a 1-split of [G,T].

If G is connected, and has a one-node cutset {u}, then [Gl.Tl],
[Gz.Tz] is a 1-split of G, where G, and G2 are the two sides of the cutset
{u}, and T, is defined as T\V(G,) in case IThU(G2)| is even, and as
(T\V(G,))u{u} in case |Tnv(02)1 is odd. T, is defined similarly. [G;,T,]

2
and [Gz,Tz] are the parts of the 1l-split.

2-SPLIT:

If G has a two-node cutset, {u,v}, say with sides Gl and 02, such that
neither Gl nor 02 is equal to the graph in Figure 4.6{a) below, with wET,
then [61'T1]' [52.T2] is a 2-split, where al,Tl is defined as follows:
({EZ.Tz] is defined similarly.)

If TCV(G,), then V(G,) := V(G,), E(G)) = E(G))u{uv}; T, := T. (Figure
4.6(b)). If T\V(G,) # &, then [El.Tl] is defined by v(ﬁl) 1= V(G )u{v*},
(where v* is a new node) and E(@l) = E[Gl)u{uv*,v*v} (Figure 4.6(c)).
Moreover T  : = (TnV(G ))u{v*} if |T\V(Gll is odd and T, :=
[TnV(Gl))a{u.v*} if |T\V{Gl)| is even. [al,le and {52,?2] are the parts
of the 2-split. In case T\V(Gl} and T\V(Gz} both are nonempty we call the
2-split strong.
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w u u
g/////ﬂ\\\\\b & " 6y 5
u v
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(a) (b) (e}
3-SPLIT:
If G has a three-node cutset, {ul,uz.u3} say, with two sides Gl and G2

such that: TCV(G, ), |E(02}| > b4, then [El,T} is called a 3-split, where 61
is defined by V{ﬁl) = V(Gl)u{v*} (where v* is a new node); E(El) =
E(Gl)u{ulv*,uzv*.u3v*}. [ﬁl.T] is the part of the 3-split. (So a 3-split
has one part only.)

The following lemma is easy to prove.

Lemma 4.4.1

Let [G,T] be a graft with a k-split (k < 3) and no A-split for any A <
k. Then [G,T] has no Kq—partition and no Kslz-partition if and only if
each part of the k-split has no Kq~partition and no K3‘2—partiti0n.

Proof: Under the conditions given, each part of a split is a reduction of
the original graft. This settles one side of the equivalence. The other
side can be proved by case-checking. []

Now we state and prove a decomposition result for grafts with no Kq—

partition and no K3 2—partition.

Theorem 4.4.2
Let [G,T] be a graft containing no Kq~partit£on and no K3 2—partition.
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Then one of the following holds:

(i) G has a loop, or parallel edges;

(ii} [G,T] has a 1-, 2-, or 3-split;

(iit) |T| is odd, or |T| & 2;

(iv) G is planar, with all members of T on one common face;

(v) G= K3'3, and T = V(K3.3)°

Proof: Let [G,T] be a graft with no Kq—partition and no K3’2—partition.
So, by Lemma 4.2.3, 9(G,T] is regular. Hence we can apply Seymour's decom-
position theorem (Theorem 3.2.1). We assume that [G,T] has neither a 1-,
2-, or 3-split, nor loops, nor parallel edges. Moreover we assume that |TI

is even. We consider four cases.
Case I: 9[G,T] is graphic.

We prove that |T| = 0 or 2. Let 96,T] ~ MT) for some graph G. Let
e€E(G) correspond to t. If e is a loop, then t is a loop in 9[G,T]; so T =
#. So suppose that e = uv (u#v, u,vEV(G)). Observe that MG) = IG6, T\t ~
M@\e). As G has no 1- or 2-split, each two-node cutset of G has one side
equal to the graph of Figure 4.6(a). From Whitney's Theorem (if G1 is
3-connected and lﬂGl) - iﬂGz). then G, ~ G, (Whitney [1932])) it now fol-
lows that G ~ G\e. So we may assume that G = G\e. Take any uv-path P in
G\e (= G). Then P together with e is a circuit in MG). So P together with
t is a circuit in 9[G,T]. This implies T = {u,v}.

Case 1I: J(G,T] is co-graphic.

We prove that [G,T] satisfies (iv). Let G be a graph such that
90G,T] ~ M *(T). Let e€E(T) be the edge corresponding to t. Then Mgy =
6, T\t ~ L *(@)\e = M *(G/e). So M(G) is graphic and co-graphic, and
hence G is planar. If e is a loop in ﬁ, then t is a loop in ﬂIG,T]. and
hence T = & and (iv) holds. So suppose e = uv with u # v, u,vEV(G). As in
Case I we may assume that the planar dual G* of G satisfies G* = G/e. Let
u*€EV(G*) be the node in which {u,v} is contracted by the contraction G/e.

Let F be the collection of edges in G, corresponding to §(u)\{e}. As §(u)
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is a circuit in ML *(G), F is a T-join. But after the contraction of e, the
edges in §(u)\{e} are in §{u*)CE(G/e). This means that the boundary C of
the face in G corresponding to u* in G* = G/e contains a T-join, namely F.
That is, TCV(C); so {(iv) holds.

Case III: 9[G,T] ~ 5%0.

It is straightforward to verify that in this case G = K 3
T.= V{K3.3). (Note that 3go\x ~ ﬁﬂK3'3) for each xEE(ﬁQO}.}

Case IV: J[G,T] satisfies (1) of Theorem 3.2.1.

We prove that (iii) or (iv) hold. So, let El, E2 form a partition of
E(G) such that

with k=1,2 and |Ell. szl +1 ) k, or k=3 and Izll. |E2[ +13>6.
From (*) and (4.3.1) we get:

() ey (By) Ty (Bp) = Ty (BIG)) + (e-e)-1,

where € := 0 if E2 contains a T-join, and € := 1 else.

1 ES E1 Et

10+ 0By Esull o B, and the auxilary graph H, as in the proof
of Theorem 3.2.3. {Note that if E2 =@, then k =1 ande =0. So T = g,

and hence (iii) holds.)

Define E

Claim 1: H is a bipartite connected graph with no isthmuses. Moreover
[EH)| =s +t +k-¢-2=|VH)| + k-¢e - 2.

Proof of Claim 1: The proof is similar to the proofs of Claims 1 and 2 in

the proof of Theorem 3.2.3. end of proof of claim 1

Claim 2: k = 3, ande = 0. H is homeomorph is to the graph in Figure
4.72(b).

Proof of Claim 2: If H is a circuit, then [G,T] would have a 2-split.
Claim 1 now yields k - ¢ - 221, So ¢ < k - 3, i.e. k=3, £ = 0. So
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|E(H)| = |v(H)| + 1. Since H has no isthmuses, H is homeomorph to one of
the graphs in Figure 4.7. If H is homeomorphic to the graph in Figure

I 7(a), then [G,T] must have a 2-gplit, a contradiction. So H is homeomor-

phic to the graph in Figure 4 7(b). end of proof of claim 2
(a) (b)
Figure 4.7

Hence G is of the form as in Figure 4.8 where

1 1 t 2
A, BE{El,.. El. E2""'E2}' and Cl. 02 and C3 are unions of elements of
{E‘.}_.....Ei. EL,....ES}\(A,B}. Note that for i = 1, 2, 3 it is possible

o= v, i i c, = &.
that u, Vi implying i a

Figure 4.8

Claim 3: Ci =g, Ci = {uivi}. or Ci = {uiwi.wivi] for some wiET, for i =
1, 2, 3. Moreover |Cl| + |02[ + {C3| < 5.
Proof of Claim 3: The first part of the claim follows from the fact that

[G,T] has no 2-split. If the second part would not be true, then C. =
{u W, WV } for some w, €T for each i = 1, 2, 3. But then [G,T] has a K3 >~

partltlon (T is even), a contradiction. end of proof of claim 3

Claim 4: AUB = El' and C uC UC3 E2

Proof of Claim Y4: Since |E | = 6, E1 cannot be contained in Cluczuc3 So

we may assume A = Ei. Moreover, |E I ¢ 3, as [G,T] has no 3-split. The
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edges in Cluczuc3 which are adjacent to u;. u,, or u3 cannot be in El'

{Since A is a component of E2.) Now from Claim 3 and the fact that lEll z
6 if follows that B = Ef. Since |E2| z 5, and |Cll + |sz + |C3| <5 we

have Cluczuc3 = E2. end of proof of claim 4

Claim 5: G is the graph in Figure 4.9. Moreover Wi w3ET.
Proof of Claim 5: From the previous it follows that we only need to prove
that A = Ei and B = Ef (cf. Figure 4.8) are triangles. If |Ei[ or IEfI is

at least 4, then [G,T] has a 3-split. Since [E1| z 6, this yields IE1| =

|Ef| = 3. If Ei or Ei is not a triangle then one easily finds a 1- or 2-
split. end of proof of claim 5

Figure 4.9

So LI w3ET. If u2€T, or v2€T. then we would have a K3 2—partition {as
|T| is even). Hence T lies on the outer face of the planar graph G, i.e.
(iv) holds. This finishes the proof of Theorem 4.4.2. []

Also for graphs with no Ku—partition a decomposition result holds. It
follows from Theorem 4.4.2 and the following result. (It also follows from

Truemper [1987a: Theorem 2.1]. We give an elementary proof.)

Theorem 4.4.3

Let [G,T] be a graft with no Kq-partition.
Then one of the following holds:

(i) G has parallel edges;

(i1) [G,T] has a 1-split or a strong 2-split;
(iii) [G,T] has no K3'2-partition;

(iv) [G,T] ~ 23'2.
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Proof: Let [G,T] be a graft with no Ku—partition, and not satisfying (i),

(ii), or (iii). We shall prove that [G,T] ~ R3 5 First we define an ex-

L
tended K 2-partition, by Figure 4.10. The sets Ul. U2, Vi, Vé, V;. Vl'

Vg, Vg partition V(G). The graphs induced by these sets are connected. For
each 1 = 1,2 and j = 1,2,3: iV?nT| is odd, or v§ = @, and for each

j = 1,2,3 we have that V;UVE £ &.

Figure 4.10

Since [G,T] contains a K3 2-partition. it contains an extended KS 2—parti~

tion. Let UY, U, etc. be an extended Ky ,-partition with |Ull + |U2|

minimal.

Claim 1: Let i = 1,2. Then there exists a uiEU1 and edges ulvi, ulv; and
ulvi. such that for each j = 1,2,3: v?EV?uV?, and v?EV? if V§ # 3.

Proof of Claim 1: Obviously we may assume that i = 1, and that VE £ & for

j = 1,2,3. There exist a riode uEU1 and three mutually openly disjoint

1 1 1 :
paths Pl‘ Pz. and P3 from u to levl. v2€V2. and VEEV3 respectively, such

that V{Pj]\{vj}cul for j = 1,2,3. To prove the claim it suffices to prove
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that each Pj{j=1,2.3) is a single edge. By symmetry we may restrict our-

selves to prove that Pl is a single edge. Suppose this is not the case.
Then the set, X say, of nodes vEUl\{V(PZ)UV(P3}} for which there exists a

vw-path P, with wEVi and V(P}\{w}CUl\{V{Pz)UV(P3}) is not empty. Define

s s 1

the sets Vi and Vf as follows (note that Vl # &)

- if [XnT| is odd, and vf # &, then ﬁi s XUviuvf, and vf = g,

- if [XnT| is odd, and vf = &, then ﬁi := X, and ?f := vi.

- if |XnT| is even, then ?i = Xuvi and ?f 1= Vf.
The two sets ﬁi and ﬁf form, together with U := Ul\X. =1 V} = V;
(i=1,2; j=2,3), an extended K o-partition. The fact that !ﬁll + }ﬁzl =
lUll + EU2| - x| < |U1| + |U2I contradicts our assumption that |U1I +
IU2| is as small as possible. end of proof of claim 1
Claim 2: Let i,j€{1,2,3} with i # j. Then there erists no edge from Viuvi
to V%UV%

J ]

Proof of Claim 2: If there was such an edge, one could easily find a Kﬂh

partition in [G,T]. end of proof of claim 2

Define U := UM\{u'} for i = 1,2, with u' and u® as in Claim 1. It is

easy to derive from Claim 3 below that [G,T] ~ R3 5°

Claim 3: 0! = §° = g, |v§uv§I = 1 (§=1,2,3) and u'u?¢E(G).
Proof of Claim 3: First note that there exists no edge from ﬁluﬁz to

3 2 ;

u u Vv, Indeed, such edge would imply the existence of an extended
j=1 i=1 i s
K3 2—partition with smaller lUll + [Uzl. So {u, u”} is a two-node cutset.

From the fact that [G,T] has no strong 2-split Claim 3 easily follows.

end of proof of claim 3

L

Lemma 4.4.4
Let [G,T] be a graft with no K3 2—partition. If [G,T] has no 1- or 2-
split, then [G,T] has no Ku-partition or [G,T] = Eq. [j
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Remark:
Obviously Lemma 4.4.1, Theorem 4.4.2, Theorem 4.4.3 and Lemma 4.4.4
yield polynomial-time algorithms for recognizing:
- grafts with no Kh-partition and no K3'2-partition.
- grafts with no Kq—partition,
- grafts with no K3‘2-partition.
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4 5. ORIENTATIONS

In Section 3.3 we characterized those graphs which have an orientation
such that on each circuit the number of forwardly directed edges differs
at most one from the number of backwardly directed edges. In this section
we consider the question (posed by A. Frank): does there exist a "cut-
version" of this result? To be precise: for which graphs G does there
exist an orientation K of the edges such that for each inclusionwise mini-
mal coboundary §(U) the difference between the number of arcs in K enter-
ing U and the number of arcs in A leaving U, is at most one? An answer to

this question is:

Theorem 4.5.1

Let G be an undirected graph. Then the following two are equivalent:
(i) [G,{vEV(G)||&(v)|is odd}] contatns neither a Ku—partftion nor a
K3.2—partition;

(it) there exists an orientation A& of the edges in G, such that:

— — >
| {uveR|ueu, veu}| - |{wvek|utu, veuy| < 1 for each UCV(G) with the
property that both G|U and G| (V(G)\U) are connected. []

This result is an immediate consequence of the following theorem.

Theorem 4.5.2

Let [G,T] be a graft with G connected and |T| even. Then the following are
equivalent:

(1) [G,T] has no Kq—partition and no K3 sTpartition;

(ii) there exists a partition Tl' T, of T such that ]Tll = |T2[ and each
T-join is an edgedisjoint union of eircuits and |TlJ paths from Tl
to T2;

(111) there exists a partition Tl' T2 of T such that for each UCV(G), with
G|U and G| (V(G)\U) connected, we have ||UnT1| - [UnT2|| < 1;

(iv) for each T-join FCE(G), there exists an orientation A of the edges
in F such that for each UCV(G), with G|U and G| (V(G)\U) connected,
we have

||{G?€K[ueu, veU}| - | {avek|ugu, vEU}|‘ & i
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Moreover, if a partition Tl' T2 of T satisfies (ii), then it satisfies

(iii), and conversely.

Proof:

(i) » (ii): If [G,T] has no Kq—partition and no K3 2-partition then by
Lemma 4.3.3 and Theorem 1.4.7 there exists a {0, * 1}-matrix [N,y] =
(Mg %p
colunn of N contains exactly one 1 and one -1 (ef. the Claim in the proof

] (modulo 2) which represents 971G, T] over R. We may assume that each

of Theorem 3.3.1). As the columns of MG span x, over GF(2), the columns of
N span y. Hence y has as many 1's as -1's. Let T1 4= {uEV{G)|yu = 1} and

T, 1= {u€V{G)|yu = -1}. Then T, and T,
Then there exists a {0, * 1} vector x = Xp (module 2) such that Nx = y.

partition T. Now let F be a T-join.

(By Theorem 1.4.7, as M¥p = xT.) It is easy to see that this means that F
contains |T1| edgedisjoint paths from T1 to T2 with different endpoints.
Now the fact that deleting these paths from F yields a cycle in G, proves
(ii).

(i1) » (iii) and (iv): Let T, and T, be as in (ii). Take UCV(G) with Glu
and G| (V(G)\U) connected. Then there exists a T-join FCE(G) such that
|§(u)nF| < 1. Since T, and T, satisfy (ii) this means that 11UnT1| -
|UnT2} < 1. So (iii) follows.

To prove (iv), let F be a T-join in G. Let P,,...,P. (k = lTl|} be
paths from Tl to T2 and Cl"“‘cl be circuits in G such that
E(Pl),....E(Pk}, E(Cl),....E{CJ) partition F. Orient the edges on each
path Pi (i=1,...,k) such that each Pi becomes a directed path from 'I‘1 to
T2. Orient the edges on each circuit Ci (i =1,...,4) such that Ci becomes
a directed circuit. Let K be the orientation of F obtained in this way.

Take UCV(G) with G|U and G| (V(G)\U) connected. From ||UnT11 - |UnT2||
<1, it easily follows that K satisfies the condition in {(iv) with respect
to U.

(iv) = (iii): Let F be a T-join and K be an orientation of F as meant in
(iv). If u€V(G) is not a cutnode of G then ||{G¢€KiV€V{G)}l -

| (vaek|vev(a) } | < 1. If u is a cutnode of G, the same inequality can be
achieved by reversing, if necessary, all arcs of Z at one side of the
cutnode (by choosing the two sides appropriately). Now define

T, i= {uevm)‘ua’emvewc)n - |{wue€k|vev(G)}| = 1}. Then T,CT. Let
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T2 1= T\Tl' Now it is easy to see that T1 and Tz satisfy the condition in
(iii).
(iii) » (i): A partition of T as meant in (iii) is impossible for grafts

with a Kq—partition or a K3 2—partition, as is easily checked. []

In the following section we illustrate how Theorem 4.5.2 can be used

to prove certain min-max relations for T-joins.

Remark:
Note that the decomposition result in Theorem 4.4.2 can be used not
only to recognize grafts with no Kq—partition and no K3 2—partition in

polynomial-time, but also to find the partition Tl' 'I‘2 of T as in Theorem

4.5.2 in polynomial-time. Indeed, if |T| = 2 the partition is obviocus.
In case G is planar with TCV({C) for some face C of G then Tl and T2 are
found as follows: Go along C, and put the nodes in T alternating in T, and

1
in T2. In case [G,T] = [K3 3,V(K3 3}] then T1 and T2 are the two colour
classes of G. Finally if [G,T] has a 1-, 2-, or 3-split one finds Tl and

T2 easily from the partition of T into Tl and Tz in the parts of the

split.
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I .6. SHORTEST T-JOINS AND PACKING WITH T-JOINS
From Theorem 3.4.1 and Lemma 4.3.2 the following result follows.

Theorem 4.6.1
Let [G,T] be a graft. Then the following are equivalent:

(i) [G,T] contains no Ku-partition;
E(G)

5 . the minimum weight of a

(ii) for each weight function w
T-join is equal to the maximum cardinality of a w-packing with
T-cuts.

Similarly, the following are equivalent:

(i)' [G,T] contains no K, ,-partition;

(ii)' for each weight function wEZE . the minimum weight of a

T-cut is equal to the marimum cardinality of a w-packing with T-

Jjoins. [j

So in case [G,T] contains no Ku—partition and no K3'2—partition, then both
min-max relations in Theorem 4.6.1 hold. Below we shall see how this easi-
ly follows from the orientation Theorem 4. 5.2. (See the remarks after
Corollary 3.4.3.)

SHORTEST T-JOIN

E(G)

+

Let w&Z . The shortest T-join problem is:

(4.6.2) Find a T-join FCE(G), which minimizes X W,
eEF
The T-cut packing problem is

(4.6.3) Find a mazimum cardinality w-packing with T-cuts.

Assume Tl and T2 forms a partition of T as is meant in Theorem 4.5.2.
— —
Replace all edges uv in G by two directed edges uv and vu. Call the set of
arcs obtained in this way A. Consider the following primal-dual pair of

- 3 q - - - o=
linear programming problems. (If uvE€A then oy w;g = {uvEE(G)).)
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{(4.6.4) min Y w fa

atA
St
1 if uETl;
b3 £, % 3 Fa= -1 if ety
a enters u a leaves u
if  uEV(G)\T;:
fa 2 0 if a€A.
(4.6.5) max ¥ w - ¥ «n
ueT, Y wer. Y
1 2 5
s.t. m - < w—=> if uvEA;
v u = uv

m€R if VEV(G).

Proposition 4.6.6: (4.6.2) and (4.6.4) are equivalent.

Proof: Let F be a T-join. Since F is the disjoint union of |T | paths from

Tl to T2 and, possibly, some circuits, there exists a feaslble solution f
of (4.6.4) with ¥ w £, = 2 -
a€A eEFR

Conversely, let f€Q, be an optimal solution of (4.6. 3). As the con-

straint matrix of (4.6. 4} is totally unimodular, we may assume that f EZ

for each a€A. The set of arcs F := {quE{G)if—+ + f—+ is odd} is a
T-join, with ¥ v, % 2 wf .
eEF © 7 aep B
Hence (4.6.2) is equivalent with (4.6.4), ]

So we get the following (in)equalities between the optimal values of

the above optimization problems:
max (4.6.3) < min (4.6.2) = min (4.6.4) = max (4.6.5).

So, in order to prove min (4.6.2) = max (4.6.3), it suffices to prove
max (4.6.5) $ max (4.6.3). Therefore, let nEQV{G) be an optimal solution
of (4.6.5). As the constraint matrix of (4.6.5) is totally unimodular we
may assume that m €Z (u€V(G}). Define for each AER with A es

min {m luev(a)} ¢ x ¢ max {m |uev(a)} = A, the set V, := {uEV(G)|nu > A},
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These sets V% satisfy the following two properties:

i
T Y ||vr, | - |v,nT ii > T om - I m.
x| 2720 = yer, M wer, ®
- 1 2
A A
+ +
[Indeed, X ]anTll - |van2|| g X (ivanll - lvknT2|) =
A=A A=A _
X+
(2 1{u}ﬁVA}| - I v, ) =
A=A u€T u€T
& : 2
A by
+ +
T3 Huavyl - T T Huavy| -
UET; A=h_ UET, A=\

v (m = A+ 1) - X (m, = A+ 1)y = Y n_- 2% LA

- u
uET1 u€T2 u€T1 u€T2

11: The collection S{Vk)(k_ <a g A+) is a w-packing with cobounda-
ries.

[Straightforwardly.]

By applying the following proposition to each of the sets VA we find a
w-packing with T-cuts with cardinality et least ¥y m - 2 m_. This
wET, ¥ ueT
1 2
proves max (4.6.3) > max (4.6.5).

Proposition 4.6.7: Let UCV(G). Then §(U) contains at least

||UnTll - |UnT2l| disjoint T-cuts.

Proof: First assume G|U to be connected. Let Vl""’vk be the node sets of
the components of G| (V{G)\U), with IVinT| odd for i=1,...,4, and even for

i=d+1,...,k. As S(Vl

,...,S(Vk} partition §(U), we only need to prove that
i ||UnTll - |UnT2]

|1vor, | - oty || = |Iv@\oer| - Jv©@0IeTI| ¢

k
i§1|lvinT1| - |VinT2|\ =4,
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where the last equality follows since the pair Tl' T2 satisfies Theorem
4.5.2(ii) and G!Vi and G](U(G}\Vi} are connected for i=1,..., k.

l""'Uk be the
node sets of the components of GFU. Above we proved the proposition for

Next consider the case that G|U is disconnected. Let U

connected induced subgraphs of G. Applying this to Ui for i=1,...,k we get
that S(Ui} contains IUinT1| - [UinTzf disjoint T-cuts for i=1,...,k. Now
the proposition follows since S(Ul).....S{Uk) partition &(U), and
k
lun, | - 4w2|| -3 l]UinTlf : |UinT2||. ]
i=1
Conclusion:

We showed that the minimum in (4.6.2) equals the maximum in (4.6.3)
for grafts with no Kq~partition and no K3‘2-partition. Implicitly we
showed that (4.6.2) and (4.6.3) can be solved by solving a circulation
problem ((4.6.4)) and its dual ((4.6.5)), as soon as T1 and T2 are known.
It is interesting to note that in case T1 and T2 are known, Edmonds' algo-
rithm in Section 4.1 can be simplified in the sense that only a minimum
weight perfect matching in the complete bipartite graph with colour clas-
ses Tl and T2 has to be found.

As mentioned the min-max relation min (4.6.2) = max (4.6.3) holds in
grafts with no Ku—partition. This follows from the just proved case (no
Kuvpartition and no K3.2—partition) by using Theorem 4.4.3. (Compare with
Cases I and II in the proof of Theorem 4.2.2.) See also Truemper [1987a]
for deriving min-max relations for matroids with no F;—mincr using a spe-
cific element from such min-max relations for regular matroids, using

decomposition.
PACKING T-JOINS
Let wEZ?(G). The T-join packing problem is:
(4.6.8) Find a maximum cardinality w-packing with T-joins.
The shortest T-cut problem is:

(4.6.9) Find a T-cut §(U)CE(G), which minimizes 3 W .
e€s(u) ©
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Assume T1 and T2 from a partition of T as is meant in Theorem 4.5.2.
— —
Replace all edges uv in G by two directed edges uv and vu. Denote the set
of arcs obtained in this way by A. Consider the following primal-dual pair
—3
of linear programming problems (If uv€A then wag g w;ﬁ =W {(uvEE(G)) .
{(4.6.10) max k
S. L.
k if uETl:

b3 £ = )3 f -k if u€T2;

a a
a enters u a leaves u

if  u€V(G)\T;

f— + f— < w if uve€E({G);
uv vu = uv
0 if  a€A.
a =
(4.6.11) min X wexe
cE€E(G) .
<0 if uveA;

s.t.m_ -+ 4
v u uv

2

e

[[h¥

0 if e€E(G);

-

nuER if u€v(G)

Yy onmo- 2 "

u
uET1 u€T2

n
fe

In order to prove that (4.6.10) is equivalent with (4.6.8) we derive

the following propositions.

Proposition 4.6.12: Problem (4.6.10) has an integral optimal solution.

Proof: Let k*eq, f*EDA be an optimal solution, that is not a convex combi-
nation of other optimal solutions. Obviously, it suffices to show that
k*€Z. (Observe the construction in Figure 3,11:)

Let E': = {uv€E(G)|0 < =3+ Fo3< w ). and let Vi ...V, be the
components of the subgraph G' of G with v(G'): = V(G), E{G') = E'. If E'
contains a T-join, then one easily shows that k*, f* is not an optimal
solution for (4.6.10). (See the first part of the proof of Proposition
4.6.6 to find a kK > O and an T such that k* + K, f* + T is feasible for

(4.6.10).) Hence 1VinTi is odd for some i=1,...,4. Therefore G][V(G}\Vi)
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has at least one component with node set W (say) such that IWnTl is odd.

This set W satisfies the following properties:
- f;EZ if  a€s(wW) (as §(W) C S(Vi)}:
- [WﬁTl| - |WnT2I = ¢ 1 (as G|W and G| (V(G)\W) are connected) .

Combining these two properties with the feasibility of k*, f* for (4.6.10)

we get: & k* = [WnT, [k* - |WnT, |k* = ¥ £* - ¥ f* € Z. This
1 2 a
a leaves W a enters W
contradicts our assumption that k*#Z. ]

Proposition 4.6.13: Let kEZ+. fEZf be a feasible solution, with k > 1.
Then there exists a solution E€Z+. ?EZf with k=1, such that for each a€A:
f o<r.

a

Proof: Define the following capacitated digraph D:
V(D) := V(G)u{s,t}. (s and t are two new nodes);
A(D') := Au{EﬁquTl}u{G?luETz};
c, i= fa(a€A); c;ﬁ = 1 (uETl); cag e | (uETz).
The statement in the proposition is equivalent with the existence of a
flow from s to t in D with value ITlf and satisfying the capacities. So
suppose such flow does not exist. Then from the max-flow min-cut Theorem

of Ford and Fulkerson ([1956]) there exists a set UCV(G) such that

2 c. < |T
aEA(D'")
a leaves Uu{s}

Hence agg B ¥ |T2\U| + [Tanf < |T2|.
a leaves U

As k and f form a feasible solution to (4.6.10), we have

agA £, 2 max{0, lezﬂﬂl - kJTanI}.
a leaves U
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Combining the last two inequalities we get

max{0, leanI - lelnul} < |T2UU| - 1T1uU|,
which contradiets k 2 1. O
Corollary U.6.14: (4.6.8) and (4.6.10) are equivalent.

Proof: The fact that each w-packing with k T-joins yields a feasible solu-
tion of (4.6.10) of value k& is obvious. Conversely, let f*EDf, k*€Q+ be an

optimal solution of (4.6.10).
From Proposition 4.6.12 it follows that we may assume that f* and k*

are integer valued. Now Proposition 4.6.13 yields the existence of flEZi
k . :
(i=1,...,k*) such that J £ ¢ f* and such that £ together with k=1
i=1
forms a feasible solution to (4.6.10) for each i=1,...,k*. Hence the col-
lection F; : = {quE(G)lfﬁg + f%a is odd} (i=1,...,k*) forms a w-packing

of T-cuts in G. []

To prove that max {4.6.8) = min (4.6.9) we now only need to prove now

the following proposition.

Proposition 4.6.15: (4.6.9) is equivalent with (4.6.11).

Proof: First, let &§{U) be a minimum weight T-cut. By Proposition 4.6.7 we

may assume that |UnT1[ - |UnT2| = 1. Define: m := 1 if u€U; m := 0 if
u€v{G)\U; Le := 1 if e€6(U) and Le = 0 if e€E(G)\(4(U)). Then m and 4 form
a feasible solution of 4.6.11. Moreover Y w_= X wdi .

v(Q) E(G) e€s(U) © e€E(G) © €
Conversely, let meEQ , Aeq be an optimal solution of 4.6.11. By
Proposition 4.6.13 and Corollary 1.2.19 we may assume A to be integer
valued. Since Y w - 2 m_ =1, there exists a AEQ such that V.=
u u
uET:L uET2
{u|nu = A} satisfies |ﬁnTl] # |vnT2|. Obviously Le > 1 for each e€s (V). By
Proposition 4.6.7, there exists a T-cut §(U)C&(V). This T-cut §(U) satis-

fies: T ow < z ow £ 2 owih . []
e€i(u) © = e€s(™) © T eer(q) © ©
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Conclusion:

From Corollary 4.6.14, Proposition 4.6.15 and linear programming
duality (for (4.6.10) and (4.6.11)) we see that for grafts with no Ku—
partition and no K3'2-partition the maximum in (4.6.8) is equal to the
minimum in {4.6.9).

To extend this result to grafts with no K3'2-partiti0n {see Theorem
4.6.1) one can use Lemma 4.4.4, (Cf. Truemper [1987a] for the general way
to use decomposition to derive min-max relations For binary matroids with
no F7—mincr containing some fixed element from the fact that these min-max

relations hold for regular matroids.)
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SAMENVATTING

GRAFEN EN POLYEDERS

Binaire Ruimten en Sneden

Beschouw het volgende combinatorische optimaliseringprobleen. Zij G
een graaf met puntenverzameling V en kantenverzameling E. Een stabiele
verzameling in G is een collectie SCV zo dat u,vES = uvfE. Het gewogen

stabiele verzameling probleem in G is:

(1) Gegeven wEZV. Vind een stabiele verzameling S met 3 v, maximaal.
ues

Een veel gebruikte aanpak voor een probleem als (1), is het probleen

te formuleren als een geheeltallig lineair programmeringsprobleem:
T v

(2) max{w x|X€EP(G)nZ"}

waarbij P(G) de collectie vectoren xERV is die voldoen aan

(3) x

1%

0 {uev);
x +x_ <1 (uvEE).

Daar lineaire programmering in het algemeen makkelijker is dan geheel -

tallige programmering, schrijven we (2) als
() max{waixep(c)I}

met P(G) 1= convex omhulsel {P{G) nZ ). Aangezien P(G) een polyeder is,
d.w.z. P(G) {xER | Mx < d} voor een zeker stelsel llnealre ongeli jkheden
Mx < d, is (4) een lineair programmeringsprobleem. Om hierop lineaire
programmerings technieken toe te kunnen passen is de existentie van Mx £d
echter niet voldoende, we moeten zo'n stelsel (min of meer) expliciet
kennen. Een van de manieren om dit te bereiken is door het toevoegen van

sneden. Een snede voor P(G) is een ongelijkheid
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(5) c'x ¢ 6]
met cEZV
en § > max{chixEP{G)}.

Een voorbeeld voor zo'n snede voor P(G) is

2k+1
(6) _Z X, ¢ k waarbij uu,, Upligseees Vg qly €E.
i=1 i
2k+1 1 1
[Want 2 x_ = 3(x_+x_ ) + 5(x +x ) + ... + 5(x +x_ ) <
i=1 Y 2 u; Tu, 2 u, u3 2 Uspel Y1 °

voor xEP(G). (6) heet een oneven circuit ongelijkheid.]

M=

%(2k+1) =k +
We definiéren P(G)' := {xERV1x voldoet aan alle sneden (5) voor P(G)}.
Vanzelfsprekend geldt P(G)DP(G}'DP(G)I, dus is (2) equivalent met

(7) el Tclxerlaiinzly,

Alhoewel er oneindig veel sneden voor P(G) zijn, volstaat een eindige
selectie sneden om P(G)' te beschrijven. Met name geldt dat P(G)' bestaat
uit alle x die voldoen aan (3) en aan alle oneven circuit ongelijkheden
{6).

Als P(G)' # P(G}I dan volgt een nieuwe ronde sneden, nu voor P{G)'.
Dit levert P(G)(2} := P(G)". Een derde ronde levert P(G)(3)
procedure wordt voortgezet tot na, zeg k, ronden P(G)(k) = P{G)I. Chvatal
[1973] and Schrijver [1980] bewezen dat, voor elk polyeder P geldt dat

, etc. Deze

deze procedure na een eindig aantal ronden succesvol is. Het benodigde
aantal ronden heet de Chvatal-rang van het polyeder. Er zijn aanwijzi-
gingen dat de moeilijkheid van een geheeltallig programmerings probleem
als (2) toeneemt naarmate de ChvAtal-rang van het polyeder (P(G) in (2))
toeneemt. Het eenvoudigste geval is dat de Chvétal-rang O is, dat wil
zeggen P(G) = P(G)I: er is geen ronde sneden nodig. (In ons concrete geval
geldt dit dan en slechts dan als G bipartiet is.) In paragraaf 2.3 van
Hoofdstuk 2, dat geheel aan deze snedenmethode gewijd is, beschouwen we
polyeders met Chvatal-rang 1. In deze paragraaf bewijzen we de centrale
stelling in dit proefschrift (Stelling 2.3.3). Hierin wordt voor een zeke-
re klasse matrices A bewezen dat {x|Ax < b}' = {x|Ax < b}I voor elke ge-

heeltallige vector b.
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Voor P(G) levert deze stelling:
(8) Zij G een graaf zonder oneven-Kq. Dan is P(G)' = P(G)I.
Een oneven-Kk is een graaf als in onderstaande figuur. De kronkellijntjes

zijn paden, en het woord odd in een gebied geeft aan dat de rand van het

betreffende gebied een oneven circuit is.

In feite is (8) niet alleen een gevolg van Stelling 2.3.3, maar vormt
min of meer ook het generieke geval daarin. Vandaar dat de klasse grafen
zonder oneven-Kq nader bestudeerd wordt in Hoofdstuk 3. Dit ondermeer ten-
einde een polynomiale algoritme te verkrijgen om na te gaan of een gegeven
matrix A tot de klasse beschreven in Stelling 2.3.3 behoort. Hiervoor
wordt gebruik gemaakt van de theorie van binaire matroiden (= lineaire
ruimten over GF(2)), in het bijzonder van stellingen van Seymour [1980] en
van Truemper en Tseng [1986]. Een andere stelling over binaire matroiden,
Tutte's karakterisering van reguliere matroiden (= binaire ruimten repre-
senteerbaar in een euclidische ruimte, Tutte [1958]), wordt gebruikt om de

klasse van grafen G te karakteriseren met de volgende eigenschap:

(9) Het is mogelijk de kanten van G zodanig te vervangen door gerichte
kanten dat voor ieder circuit het aantal kanten gericht in de ene
richting hooguit 1 verschilt van het aantal kanten gericht in de

tegenovergestelde richting.
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Dit resultaat leidt onder andere tot een generalisatie van (8).

De resultaten in Hoofdstuk 3 worden gegeven in de context van ge-
signeerde grafen, waarbij onderscheid gemaakt wordt tussen even en oneven
kanten. De theorie van binaire matroiden toegepast in Hoofdstuk 3 op ge-
signeerde grafen, wordt in Hoofdstuk 4} toegepast op "grafts", dat wil
zeggen grafen met een onderscheid tussen even en oneven punten. De resul-
taten in Hoofdstuk 4 (met uitzondering van stelling §.2.2) zijn in zekere

zin duaal aan die in Hoofdstuk 3.









