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1

Introduction

1.1 History

Traditionally, cryptography has been the practice of “secret writing”. Al-
though the name is derived from the Greek rxpurroo (= hidden) and
Ypagew (= to write), Julius Caesar is often presented as an early inventor
and user of secret codes. To establish a means of private communication
(a private channel) with his generals in the field, Julius Caesar would first
encrypt his orders according to some fixed permutation of the alphabet,
known to his generals only. The encrypted message can now safely be com-
municated by a courier, for instance. Upon receiving the encrypted orders,
the plain text message was then recovered by applying the permutation in
the reverse direction. An enemy intercepting the encrypted message after
capturing the courier for instance, should have great difficulties recovering
the actual message from that piece of garbled information. It seems that
Julius Caesar had a preference for substituting each letter by its third suc-
cessor in the alphabet. For instance, he substitutes the letter “u” for “r”
and “a” for “x”. It is clear that a resurrected Julius Caesar, might he wish
to establish a private channel, would have to apply a different substitu-
tion. However, encryption methods employing a secret permutation of the
alphabet have since long been known to be susceptible to various kinds of
letter frequency analyses.

In 1926, G. S. Vernam proposed an unbreakable encryption method, com-
monly known as the one-time pad. A sender and receiver agree on a se-
quence of, say, t secret random bits, the secret key. Let s € {0,1}* denote
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this key. The sender computes the encryption ¢ € {0,1}* of a plain text
message m € {0,1} as ¢ =m @ s, where ‘@’ is bitwise addition modulo 2.
The receiver recovers the plain text m by computing ¢ @ s. The secret key
is to be used only once. This encryption method or “cipher” is unbreakable
in the sense that an eavesdropper intercepting the encrypted message gets
no information at all about the plain text, not even when having access
to unlimited computational power. Indeed, for each possible plain text m'
there is a unique s' such that m' @ s' is equal to the intercepted encryption
c. Since the secret key is chosen uniformly at random all s’ are equally likely
from the interceptors point of view. A drawback of this method, rendering
it impractical for most applications, is that the length of the secret key is
equal to the size of the plain text and that it can be used only once.

The Second World War marks the beginning of systematic, mathematical
design and analysis of practical ciphers; ciphers where a single secret key
can be used to encrypt a large number of plain text messages. Informally,
a cipher consists of two computational procedures; the encryption- and de-
cryption algorithms E and D, respectively. If two agents have access to a
shared secret key s, they can establish a private channel as follows. The
sender computes the encryption ¢ by executing the algorithm F on input of
the plain text message m and the secret key s. Upon receiving the encryp-
tion c, the receiver recovers the plain text m by executing the algorithm D
on input ¢ and the secret key s. The security of such ciphers is based on the
supposed computational difficulty of recovering the plain text from a given
cipher text without knowledge of the secret key. Cryptographic methods
were extensively used by all battling parties to secure their communication
from eavesdropping by the enemy. And every so often each of these par-
ties made great efforts to break or cryptanalyze the ciphers used by the
enemy. A major war-time event in this respect was the successful crypt-
analysis of the German cipher “Enigma” (which is also used to refer to the
machine that implemented the cipher) by the Allied Forces. The machine
could be used for both encryption and decryption. For obvious reasons of
security, the machine did not use one fixed secret key for all communi-
cation within the German forces. The machine could handle any suitable
choice of the secret key when it was given as input together with the text
it had to encrypt or decrypt. Analysis of captured Enigma-machines made
clear how the Enigma-cipher computes the cipher text from a given plain
text and a given secret key. Thus, the algorithm that the Enigma-machine
executes was unveiled. Thorough study of the mathematical properties of
this algorithm eventually enabled! to read (parts of) actual messages from
intercepted encryptions.

IRarlier Enigma versions were broken by the Polish cryptanalyst Marian Re-
jewski. Having the details at their disposal eventually, this contributed substan-
tially to the success of the cryptanalytic efforts of the Allied Forces.
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A popular misconception about cryptographic systems is that keeping their
workings secret strengthens these systems. The example above indicates
that it is unreasonable to assume that the enemy does not get hold of the
algorithm that the cipher prescribes. The Dutchman A. Kerkhoffs (1835-
1903) stated that the security of a cipher must reside exclusively in the
computational difficulty (or impossibility) of decrypting without knowledge
of the secret key. Kerkhoffs’ principle is that we must always assume that
the cryptanalyst knows the algorithm of the cipher.

Until shortly after the Second World War, the use and study of crypto-
graphic methods was restricted to national governments and the military.
With the paper “Communication Theory of Secrecy Systems” by C. Shan-
non [110], eryptology (cryptography and cryptanalysis) entered the public
domain and started to emerge as a science. Building on the Information
Theory he developed in [109], he showed for instance that a cipher that
achieves “perfect secrecy” (the security is independent of the enemies’ com-
putational resources) requires a one-time secret key that is at least as long
as the plain text. Thus the one-time pad, impractical for most applications,
Is an optimal perfect cipher. This motivates the interest in cryptographic
systems that can be used efficiently but that offer a relaxed level of secu-
rity. Informally speaking, a computationally or practically secure crypto-
graphic system is one where any conceivable cryptanalytic attempt requires
an amount of computation that the enemy cannot perform in reasonable
time.

The advent of the computer era inspired cryptologic research in at least two
ways. First, the availability of powerful computing devices allows for the
design of cryptographic methods employing more involved mathematical
techniques and a much larger diversity of secret keys. Secondly, applications
of cryptography now came within the scope of private sectors in society,
such as business and industry. Banks were among the early adopters of
cryptographic systems.

With their paper “New Directions in Cryptography” [56] in 1976, W. Diffie
and M. Hellman caused nothing less than a revolution in cryptology. They
set forth the notion of public key cryptography. Originally motivated by the
key distribution problem for secret key ciphers (note that the distribution
of the shared secret keys among participant using such a cipher, is a security
problem in its self, since the method by which this is done, might itself be
vulnerable to eavesdropping), they not only propose public key ciphers as
a solution but also extend the domain of cryptology beyond that of private
communication. They introduce digital signatures, the electronic equivalent
of traditional, handwritten signatures.

The basic idea behind public key encryption is as follows. Suppose we have
a network of users, connected by insecure channels, that may wish to com-
municate privately with each other. To set up a public key cipher each of
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them locally generates a pair of keys (pk, sk), the public- and private key.
The way to this is specified by the public key cipher. Next, the public keys
pk are posted in some reliable (or “trusted”) publicly accessible directory,
similar to a phone book. It is important that the information stored in
this directory is authentic: if one looks up the public key for some given
user, one must be sure that the public key one retrieves indeed belongs
to that user. And it is in this sense that we assume that the public direc-
tory can be trusted. The private keys sk are stored locally and kept secret
from each of the other users. An important difference with the secret key
ciphers discussed earlier, is that with public key encryption no secret infor-
mation needs to be shared between users. Thus, at the lesser cost of setting
up a public directory, the key distribution problem is circumvented. The
public key cipher can be thought of as consisting of three computational
procedures or algorithms: G, E and D, the key generation-, encryption-
and decryption-algorithms. The description of these algorithms is public
knowledge. Each user runs the key generation algorithm to get a key pair
(pk, sk). Since G selects these pairs at random from a very large (ezponen-
tial size) set of possible pairs, different users obtain different key pairs. If
any user B wishes to privately communicate a plain text message m to user
A, user B first looks up the public key pk4 corresponding to user A. The
encryption ¢ of m is computed by executing the algorithm E on input m
and the public key pks. Upon receiving c over the insecure channel that
connects A and B, user A recovers the plain text m from the cipher text c
by executing the algorithm D on input of ¢ and A’s private key ska.

Diffie and Hellman proposed a class of functions, trapdoor one-way func-
tions, that support the implementation of public key ciphers. Informally
speaking, a trapdoor one-way function f is a function which is easy (effi-
ciently) to compute on each input taken from the domain of the function,
but that is virtually impossible (infeasible) to invert on an arbitrary el-
ement from its range (one-wayness), unless one is given a short piece of
advice s; the trapdoor. Thus, when given s, the inverse function f~! of f
can also be computed efficiently. Functions that do not necessarily have the
trapdoor property but do satisfy the one-way property, are simply called
one-way functions.

It is now easy to define a public key encryption scheme based on such
functions. If we assume that we are given a large collection of trapdoor
one-way permutations (functions with a unique correspondence between the
clements of the domain and range) and that we can efficiently select random
elements f from this collection together with a corresponding trapdoor s,
each user just chooses an arbitrary element f with corresponding trapdoor
s and publishes a description of f as the public key pk. The private key
sk is equal to s. Note that user A knows how to compute the inverse _f;l
of fa, since A knows the trapdoor s. Any other user, by our assumptions
on the properties of these functions, can only compute f4 efficiently but
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not f;'. To encrypt m, c is computed as ¢ = fa(m). A recovers m by
computing f;'(c) = f1'(fa(m)) = m. Note that we used here that f4 is
injective.

Instead of providing secrecy, public key digital signatures establish the au-
thenticity of a digital document. Suppose sender A communicates a message
m to receiver B. How does B acquire certainty as to the originator of the
message? To this end A provides B with an additional piece of information,
depending on the message m and A’s public key: a digital signature o on
the message m. Upon receiving the message and the signature, B performs
a verification procedure to check whether the given signature is consistent
with the message and A’s public key. Only if so, B concludes that the mes-
sage was indeed originated by A. More formally, a digital signature scheme
consists of three publicly known algorithms G, S and V. Any user in the
network can invoke the key-generation algorithm G to generate a key pair
(pk, sk) consisting of a public key and a private key. As with public key
encryption, the public keys pk of the users are stored in a trusted public
directory. To compute a signature ¢ on a message m, sender A executes
the signing-algorithm algorithm S on input m and A’s private key sk4. Re-
ceiver B checks the validity of the signature by verifying whether algorithm
V return ‘OK’ on input of the signature o, the message m and A’s public
key pka. If B wants to prove to a third party C that A signed the message
m, B merely has to supply C with the signature o, as C' can as well as
B check the validity on its own by invoking the algorithm V. Thus, as a
certificate for authenticity, a digital signature is transferable. Just as with
public key encryption, Diffie and Hellman showed how to utilize trapdoor
one-way functions for the purpose of digital signatures. Today, digital sig-
natures play a vital role in such areas as electronic commerce and banking.

Apart from their key-exchange protocol based on exponentiation in finite
fields, which is a procedure by means of which two users can compute a
common private key (which can henceforth be used to initiate a secret key
cipher for instance) from their respective public keys, Difie and Hellman
suggested no explicit implementations of their public key systems. In 1978,
Rivest, Shamir and Adleman [100] proposed a family of functions, com-
monly known as the RSA-functions, that they conjectured to be trapdoor
one-way functions. Based on the widely recognized difficulty of factoring
large composite integer numbers into their prime factors, they suggested ex-
ponentiation modulo such composites (RSA-moduli) as a suitable trapdoor
one-way function. A public key consists of an RSA-modulus and an expo-
nent. The trapdoor information consists of the factorization of the large
integer modulus. This may seem contradictory, since how should one com-
pute the trapdoor if factorization is such a difficult problem? The answer
may be obtained by making a comparison with the work of a locksmith. Tt
seems unreasonable for a locksmith to first construct a very strong and com-
plicated lock and then figure out which key will open it. One may assume
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that in practice the locksmith applies a bit of “reverse-engineering”. The
trick with generating arbitrary RSA-functions is to pick two large prime
factors first, each consisting of say 100 decimal digits, and then defining
the RSA-modulus as the product of these primes. This method is based
on the observations that it is relatively easy to select random large primes
and to multiply them together. Since exponentiation modulo large integers
is a computationally easy task as well, an RSA-function can be computed
efficiently on all inputs. It is also easy to show that knowledge of the fac-
torization enables efficient inversion of an RSA-function. It is still an open
problem to prove that being able to invert an RSA-function is equivalent to
knowing the factorization of the corresponding RSA-modulus, although this
is widely believed to be true. Computing discrete logarithms (logarithms in
finite, cyclic groups) is another important computationally difficult prob-
lem which enables cryptologic researchers to design secure cryptographic
schemes. Especially discrete logarithms in the multiplicative group of a
large and randomly chosen finite field are considered infeasible to com-
pute. During recent years smartcards (small microprocessors placed on a
credit-card-sized piece of plastic) dedicated to large integer arithmetic have
become available that allow for the efficient implementation of public key
methods.

The security of known public key methods predominantly relies on such
mathematical problems as integer factorization and discrete logarithms.
These problems can in theory be solved, if one is given enough time and
computing power. Computational number theorists have been inspired since
the introduction of RSA to devise fast methods for factorization. It must
be noted that they have made progress unforeseen by the inventors of RSA.
Although no efficient factorization method is known to date (nor a proof
that no such efficient method exists), Lenstra et al. [41] have recently been
able to factor an RSA-modulus consisting of 130 decimal digits. This modu-
lus was posted as a factorization challenge by Rivest, Shamir and Adleman
as part of their “RSA-challenge list”, a sequence of RSA-moduli with in-
creasing size, and back in 1978 they assumed the factorization RSA-130 (as
it is called) would never see the light of day, unless a major breakthrough
in the art of factoring was achieved.

The work of Lenstra et a’ has elevated the notion “using all available com-
puting power in the world” beyond mere imagination. Using the idle time
of a host of computers spread across the Internet, whose use has become
widespread over recent years, they implemented the most successful fac-
torization method to date, the Number Field Sieve (NFS)[86]. Their result
shows that the use of RSA-moduli with at least, say, 200 decimal dig-
its, is necessary to ensure strong security of cryptographic systems based
on the difficulty of factoring integers. Thus, the combination of massive
parallelism and powerful mathematical techniques such as the NF'S, inval-
idated the early claims about the difficulty of factoring integers of say, up
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to 150 decimal digits. We now briefly explain the asymptotic characteris-
tics of methods like NFS and indicate how cryptography responds to such
advances in the art of factoring.

The efficiency or running time of an algorithm is measured in terms of
the amount of computation it requires. The asymptotic efficiency of an al-
gorithm is obtained by viewing the amount of computation required as a
function of the length of the input to the algorithm. An algorithm is called
efficient or polynomial time if the running time increases at most moder-
ately when the length of the input is increased, that is, if the running time
is bounded above by some polynomial in the length of the input. Especially
computations whose running time functions show an explosive growth, such
as (sub)exponential functions, are considered to be infeasible to perform.
For factorization algorithms such as NFS, the running-time function is
sub-exponential and and it seems that with current methods and their im-
plementations, factoring integers of much more than 200 decimal digits is
virtually infeasible. It is hard, though, to predict future developments in
computational number theory. Supported by progress in hardware devel-
opments, present implementations of cryptographic schemes relying on the
difficulty of factoring take these developments into account by increasing
the length of the moduli they work with correspondingly.

At least in theory, the model of quantum computation, has been shown
to be powerful enough to accommodate factoring or computing discrete
logarithms in polynomial time [111]. At this point it is unclear whether
a guantum computer, whose workings should be based on principles taken
from quantum physics, will ever exist. Currently, it is said that profound
technological problems have to be overcome first, before such a machine
would see the light of day. Skeptics state that external influences will nec-
essarily cause such machines to be instable, slowing down considerably its
computational power predicted by the theory.

In the Eighties, research into public key cryptology led to a host of new
and exciting notions, such as zero knowledge proofs, pseudo-randomness,
multi-party-computations and anonymous transactions. Today, these con-
cepts, as well as public key encryption and digital signatures, fulfill vital
roles in most real-life applications of cryptography, and research into the
practical and theoretical aspects of these concepts continues. We briefly
outline their nature. Suppose one has found a proof to some interesting
theorem. How does one convince a sceptical opponent of the veracity of the
theorem without giving away the proof? Solving such questions is what zero
knowledge proofs [68] are concerned with. A cryptographic protocol is an in-
teractive “game” between its players. The protocol consists of a sequence of
computations to be performed by the players and corresponding exchanges
of messages. It turns out to be possible to design cryptographic protocols
that enable a prover to demonstrate a theorem such that, no matter how
the verifier deviates from the actions dictated by the protocol, the verifier
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gets no information beyond the fact that the theorem is true. In particular
this means that the verifier cannot misuse the game with the prover to
extract the proof of the theorem and prove the theorem to a third party
later. If the theorem is false, the prover will not succeed in convincing the
verifier. Zero knowledge proofs and the related witness hiding proofs have
been successfully applied to secure log-in procedures, or more generally, to
identification schemes. As an example, there exist zero knowledge proto-
cols that allow a prover to demonstrate knowledge of the factorization of
an RSA-modulus. Suppose that each of the users in some network privately
generates a random RSA-modulus, as described before. Keeping the fac-
tors private, they each publish the modulus as a public key. Let n4 be user
A’s public key, and let’s consider the case where A wishes to identify itself
to B. To this end, they just execute the claimed zero knowledge protocol.
From the point of view of B this clearly shows that the prover knows the
factorization of n 4. But how can B conclude that A is the prover? Couldn’t
it be the case that some other user managed to factor n 4, possibly through
extracting helpful information from A in a past execution of the proof? The
answer is given by observing that, if the modulus is large enough, factoring
na from scratch is infeasible. But, by the zero knowledge property of the
proof, A gives away no knowledge about the factorization of n 4. Sophisti-
cated zero knowledge techniques allow a prover to demonstrate knowledge
of witnesses for membership of any NP-language (an NP-language is a set
whose members have a short proof of membership, called a witness, and
the zero knowledge proof concerns a theorem of the form = € L,zisa
given element and L is an NP-language). This implies that there exist zero
knowledge techniques for such general problems as showing possession of
a pre-image under some one-way function. It should now be clear, at least
intuitively, that zero knowledge protocols are a powerful primitive. As such,
they play an important role in more complex cryptographic schemes.

Another intriguing notion is that of pseudo-randomness (see for instance
[108]). There, the idea is to stretch a short random string of bits into a much
longer pseudo-random bitstring with the property that any computation-
ally bounded observer (a party whose computational powers are restricted to
polynomial time operations) witnessing the pseudo-random string cannot
distinguish it from a truly random string. It has been shown that pseudo-
random generators can be constructed from one-way functions. Yet another
area is that of secret sharing [107]. Suppose one wishes to “distribute” a
piece of information among a group of people in such a way that only certain
subsets (“qualified subsets”) are able to read it by pooling their informa-
tion. There exist various methods, depending on the constraints placed by,
for instance, the qualified subsets, for splitting up the information in pieces
(“shares”) which are subsequently given to the “share-holders”. Using the
method given in [107], it is possible to ensure that, for instance, only the
shares of at least half of the share-holders are necessary and sufficient to re-
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construct the original information. Multiparty-computations [73] deal with
the general setting where a number of mutually mistrusting parties wish to
jointly compute a given function, while their respective inputs should re-
main private. A practical example is that of secret ballot election schemes.
There the players are individual voters and government agents. Each of the
voters submits a vote, say “yes” or “no”, and they wish to jointly compute
the number of “yes”-votes, without revealing individual votes. An impor-
tant example of anonymous transactions [28, 35| are electronic transaction
systems, such as digital payments, where the identity of individual par-
ticipants is protected by cryptographic means. The cryptographic notions
presented above might seem diverse, and indeed they are. But they obey
one principle, which may also be used to define modern cryptography in
general (Goldreich [75]): cryptography is the science that is concerned with
any problem in which one wishes to limit the effects of dishonest users.

1.2 Research Goals

Since 1976, theoretical efforts in the area of public key cryptographic re-
search have resulted in a tremendous progress by developing such concepts
as public key encryption, digital signatures, zero knowledge, multi-party
computations, pseudo-randomness, and so on. Enhancements and varia-
tions of these concepts and weakening complexity assumptions under which
these concepts can be realized, as well as achieving efficiency improvements
(storage-, communication-, round-complexity, for instance) are key driving
forces of the theoretical research in these areas.

For example, after the notion of digital signatures was introduced by Diffie
and Hellman (1976) and an implementation (RSA) based on the difficulty
of factoring integers was suggested by Rivest, Shamir and Adleman (1978),
Goldwasser, Micali and Rivest (1984) were first to present a rigorous treat-
ment of digital signatures and formalized the notion of security for signature
schemes. The signature scheme they presented was the first to satisfy their
natural security requirements, under reasonable assumptions.

Taking the developments in the theory of signature schemes as an example,
we now clarify some important aspects of theoretical public key crypto-
graphy. Before doing so, we introduce some useful terminology. To facili-
tate exact descriptions and analyses of cryptographic schemes, the players
or parties in such schemes, as well as their enemies, are usually defined
as Turing Machines. A Turing machine can be seen as an abstraction of
computers as they are known today. Briefly, a Turing machine is said to be
polynomial time or efficient, if the total number of operations it performs
is bounded by some polynomial in the length of the input. Computational
tasks which cannot be performed by a polynomial time Turing machine are
called infeasible or intractable. A Turing machine is called interactive if it
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is furnished with a communication link enabling the exchange of messages
with other such machines. Turing machines having access to random bits
are called probabilistic. An interactive Turing machine is allowed to use
these random bits in any of its computations.

Giving an exact definition of security is an important step when designing
or analyzing any cryptographic scheme. Such definitions usually take into
account some enemy or attacker furnished with a well-defined amount of
computational resources. Under some given flezibility in carrying out the
attack, the enemies’ goal is to break the cryptographic scheme under con-
sideration. In the case of digital signatures, the computational resources
of the enemy are that of a polynomial time probabilistic Turing machine.
The enemies’ flexibility is captured by providing a real signer as a black-
boz and allowing the enemy to query the black-box on any (polynomially
bounded) sequence of input messages of the enemies’ choice. The black-box
signer, whose computations, memory and internal coin tosses are “invisi-
ble” from the point of view of the enemy, returns a valid signature for any
of the messages. The enemies’ goal is to compute, in polynomial time, a
valid signature on some message, whose signature was not requested from
the black-box. This is called an “existential forgery”. Schemes resisting
an attacker of this kind, are called “not even existentially forgeable under
adaptive chosen message attacks”.

Goldwasser et al. also proposed a realization of a digital signature scheme
achieving this level of security, based on collections of so-called claw-free
pairs of trapdoor permutations. Informally, these are pairs (fo, f1) of trap-
door one-way permutations with the extra property that for each pair it is
infeasible to find two elements  and y such that fo(z) = f1(y) (a “claw”),
although each such pair is known to permute the same set. In theoretical
cryptography, it is a common practice to design schemes from, for instance,
collections of abstract functions: functions whose description is given only
in terms of their (cryptographic) properties. Assuming their existence, the
design then consists of suitably “composing” new functions and protocols
from these abstract functions. Such a cryptographic scheme becomes con-
crete once the functions on which it is based, are given in such a way
that they can actually be computed. Usually, the required cryptographic
properties are shown to hold under some specific and seemingly plausible
intractability assumption.

Once an appropriate security definition of the scheme at hand has been
formulated, the mathematical proof of security then consist of showing
that security as dictated by the definition is implied by the cryptographic
properties of the underlying functions. These cryptographic properties are
usually stated by assuming the inability to perform some particular com-
putational task in polynomial time, such as computing claws as above or
inverting a one-way function. Mathematically speaking, the proof of se-
curity is carried out by means of a reduction: assuming that a successful
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attacker exists, one then shows how such an attacker can be “abused”,
after some modifications, to successfully attack the cryptographic proper-
ties of the underlying functions. Since the enemy is given only polynomial
time computational resources, this contradicts the assumptions and the
security claims follow. Please note that these steps may be viewed as a
formalization of cryptanalysis. For instance, Goldwasser, Micali and Rivest
construct their signatures scheme from claw-free trapdoor permutations
and show that if a successful attacker against their scheme exists, it can be
turned efficiently into an efficient method for computing claws. Concretely,
if one implements the Goldwasser-Micali-Rivest signature scheme using the
factoring assumption and if one uses moduli with, say, 200 decimal digits,
a theorem concerning the security of the scheme asserts that any algorithm
that breaks the signature scheme in some given amount of time can be con-
verted into another algorithm that factors integers also consisting of 200
decimal digits in roughly the same amount of time and using similar com-
putational resources (since the security of this scheme is directly related
to the length of such moduli, the chosen length is called a security param-
eter). Thus, if factoring such integers is “undoable”, so must be breaking
the signature scheme!

Finally, theoretical results in public key cryptology usually consider an im-
plementation of the given scheme, under one or more concrete intractability
assumptions (IA’s), such as the assumptions that factoring integers or com-
puting discrete logarithms are intractable. This means that the abstract
functions and hence the cryptographic scheme constructed from them, now
take a concrete form: they can be implemented on real-life computers. The
claimed cryptographic properties of the functions are shown to hold if, for
example, factoring integers is indeed an intractable problem, as Goldwasser,
Micali and Rivest did with their claw-free pairs of trapdoor permutations,
for instance.

One typical way to extend results in theoretical cryptography is to show
that a given cryptographic scheme is available under weaker cryptographic
complexity assumptions than was known before. For instance, it was later
shown that signature schemes can be constructed under the (abstract) as-
sumption that one-way functions exist. Indeed, it is easy to prove that the
existence of claw-free pairs of trapdoor permutations implies the existence
of one-way functions, while the reverse is unlikely to hold. Existence of one-
way functions is the weakest complexity assumption in public-key crypto-
graphy. Other examples of commonly used abstract functions are given
by one-way permutations, collision-intractable hash-functions (functions A
mapping elements from a large set V onto elements of a small set W, such
that it is hard to find two elements z and y in V such that h(z) = h(y))
or one-way group homomorphisms. All of these functions can be realized
under the factoring and discrete logarithm assumptions. Yet other primi-
tives from which cryptographic schemes are constructed, are given by the
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existence of Oblivious Transfer (an interactive protocol by means of which
one party sends a message to a second party, such that it is received with
probability 1/2, leaving the sender ignorant about whether it was received
or not) or just the existence of secure public key encryption.

Reducing communication- or round-complexity is another important as-
pect of cryptographic research. For instance, secure signatures were shown
to exist if one-way functions exist, but the price to be paid is signatures
of much larger size. It is then a natural question to ask whether a given
cryptographic service, such as digital signatures, is available with improved
communication complexity, possibly under a slightly stronger complexity
assumption. The theory of zero-knowledge proofs for NP-languages has
been developed in a number of directions, including weakening crypto-
graphic complexity assumptions and communication complexity. Concern-
ing zero-knowledge proofs or in fact concerning any interactive crypto-
graphic protocol, reducing the number of rounds (the number of times
that messages are sent back and forth) may constitute an efficiency im-
provement. The achieved efficiency Jevel (communication, computation and
number of rounds, for instance) is usually related to the security parameter
of a scheme, the number of participants, etc. and summarized in “cost-
functions” describing just the global (asymptotic) behaviour.

Usually, designers of practical cryptographic protocols are less concerned
with asymptotical security and efficiency properties of their schemes than
theoreticians are. The constraints placed by, for instance, the computa-
tional power and (secure) storage capacities of existing hardware, and by
available bandwidth, call for the design of cryptographic schemes that are
cost-effective and can operate in real-time. Although motivated by theo-
retical notions which form the basis of the cryptographic applications, one
often has to depart from the actual designs proposed in the theory and
come up with a compromise between practicality and theoretical clarity,
since many theoretical methods seem impractical given the available tech-
nology of today and maybe even tomorrow. As a small example, consider
the practical use of the RSA-scheme. It is well-known that “plain RSA”, as
defined in 1977, cannot directly be applied in case of digital signatures. The
arithmetical properties of the RSA-functions allow one to multiply any two
signatures (in case of plain RSA) and obtain a signature on the product of
the two corresponding messages, even without knowing the (secret) factor-
ization of the modulus. This may be a real security threat to the signer.
To prevent this possibility, many so-called redundancy methods have been
proposed. A recent example is the 1S09796-standard [81]. Before signing a
message, it is very efficiently modified through some publicly known pro-
cess so as to disable this “homomorphic” attack. However, this composition
of the RSA-functions together with, say, ISO9796 does not seem to lead to
a signature scheme that can be proven secure if inverting RSA-functions
(without knowledge of the modulus’ factorization) is infeasible. Moreover,
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1t is not clear which cryptographic properties of a redundancy scheme would
render the signature scheme (provably) secure. Thus it may still be pos-
sible to attack the scheme, without even “breaking” the RSA-functions.
We do not mean to suggest here that these methods are insecure, but it
is clear that a practical signature scheme not suffering from this potential
defect would have to be preferred. In general, it seems that many practical
methods of design simply seem to prevent a careful and satisfying secu-
rity analysis. On the other hand, if the theoretical result from [101] were
implemented, a signature’s length would be quadratic in the length of the
modulus, which is undesirable in many practical circumstances.

For practicality, we would like to have modular design methods for con-
structing a variety of useful and secure cryptographic applications. The
basis of such a method would be an abstract cryptographic module, This is
a type of function or protocol, defined in terms of its cryptographic proper-
ties. A cryptographic application constructed from such modules should be
provably secure, given the properties of the module and a suitable definition
of security, of course. Furthermore, concrete modules should be efficiently
and widely available. Indeed, for any composite scheme to be of practical
value, its constituents must at least have this property as well. By “widely
available”, we mean that preferably the modules can be implemented un-
der a host of previously known cryptographic complexity assumptions, in-
cluding abstract and concrete ones. No such module seems to have been
proposed to date.

Our present work indicates that a certain class of interactive two-party
protocols is particularly suitable as a basis for the design of a variety of
efficient and secure cryptographic services. Our abstract modules, called
Y-protocols, are realized when instantiated for almost any of the most com-
monly used cryptographic complexity assumptions, both concrete, such as
difficulty of factoring or computing discrete logarithms, and otherwise, such
as existence of certain cryptographic function families. Practical applica-
tions include efficient digital signatures, identification schemes, secret bal-
lot election schemes, and communication efficient zero knowledge proofs for
NP-languages.

We consider modules that constitute an interactive protocol between a
“prover” and a “verifier”., The protocol consists of three moves only. The
prover and verifier share some common input z. The prover has access
to some private input w, which is related to z via some efficiently testable
binary relation. Typically, we choose such relations such that it is hard (“in-
feasible”) to compute w having access to x only. Furthermore, the prover
has access to public algorithms by means of which the messages corre-
sponding to the first and third moves are computed. In the second move,
the verifier is required to send a “challenge” to the prover, which consists
of a sequence of randomly chosen bits . After the exchange of messages, the
verifier checks whether the “conversation” consisting of the three messages
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exchanged, is “valid” with respect to the shared string z. If the conversation
is valid, the prover is said to have passed the protocol.

The cryptographic properties we require from these modules are as follows.
First, we require the protocol to be honest verifier zero knowledge. This
means that, if the verifier follows the protocol (that is, indeed sends ran-
domly chosen bits as required), then the verifier could have generated the
corresponding probability distribution on the conversations without even
talking to the prover. In other words, a verifier following the protocol will
learn nothing (beyond the fact that the prover is able to pass the protocol)
that could not have been computed before the start of the protocol. In
our definition of honest verifier zero knowledge, we require nothing about
what happens if the verifier does not follow the protocol. Second, collision-
intractability expresses the idea that without having access to the private
string w, the prover should not be able to pass the protocol. More precisely,
we require that it is infeasible to compute two valid conversations having
different challenges but the same first messages, if one observes the com-
mon string = only. In the cryptographic literature, there are numerous ex-
amples of three-move interactive protocols satisfying similar properties, see
for instance the classical identification protocols of Feige-Fiat-Shamir [66]
or Schnorr [106]. However, the primitive we consider has not been suggested
earlier as a basis for modular design of practical and secure cryptographic
applications.

Collision-intractability and honest verifier zero-knowledge in particular,
may seem to give a relatively low level of security in any realistic setting.
However, using various methods that are developed in our basic theory,
compositions based on our modules can lead to practical cryptographic
schemes that are secure against the most general (but computationally
bounded) adversaries; suitable compositions will maintain security in the
presence of enemies deviating arbitrarily (“adaptive attackers”) from ex-
pected behaviour. An advantage of our approach is that it seems easier to
first design an efficient scheme with security properties such as the ones we
require, and complete it with an efficient transformation that achieves the
desired security level. This is exemplified by our results on the existence of
our module and the variety of cryptographic schemes that can be efficiently
and securely constructed from it.

1.3 Overview

The research presented in this work is based on [43, 44, 45, 46, 47, 48,
49, 50, 51]. In Chapter 2 we start by defining Y-protocols which support
the modular design of the practical and secure cryptographic applications
described in the remaining chapters. Next we develop a basic theory of
T-protocols. We introduce methods of composing with L-protocols, most
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importantly some parallel composition techniques, and study the crypto-
graphic properties of the compositions. We conclude Chapter 2 with re-
sults concerning the existence of X-protocols and present constructions of
Z-protocols based on, for example, the difficulty of factoring integers, com-
puting discrete logarithms, one-way group homomorphisms and claw-free
pairs of trapdoor permutations. Necessary cryptographic background is in-
troduced when needed. For an interesting overview of the history and basic
methods of modern cryptology, the reader is referred to [113].

In Chapter 3, we introduce partial proofs. These are a special type of X-
protocols and constitute a fundamental primitive. The construction is based
on the theory of Chapter 2. Briefly, these proofs concern a number of state-
ments or theorems about which a prover may claim that, for instance, half
of them are true. However, a verifier engaging with the prover in the cor-
responding protocol, obtains no information about which half. In fact, we
will consider more general conditions than this threshold condition. Our
protocols based on the primitive of Chapter 2 can handle any monotone
condition, that is, one that consists of logical AND- and OR-operators.
More precisely, we show that Y-protocols satisfying honest verifier zero
knowledge and collision intractability (or special soundness) lead to a -
protocol with the same security properties for any set of corresponding
statements under any monotone condition. It follows that these protocols
are also witness indistinguishable. In its most subtle version, this result
makes extensive use of secret sharing in combination with simulation tech-
niques. It turns out that our partial proofs even apply to the case of general
honest verifier zero knowledge interactive proofs of the X-type, and we show
that our approach extends the collection of languages for which zero knowl-
edge proofs are known considerably. In addition, this result uses interactive
hashing.

The applications of partial proofs we have considered include the design of
efficient (general) zero knowledge proofs, witness hiding proofs and iden-
tification methods. Most of these services are essential components in any
real-life application where information integrity is vitally important. We
are particularly interested in minimizing communication and storage while
at the same time the service should be realizable under weak cryptographic
assumptions.

In practice, witness hiding protocols provide an efficient alternative to zero
knowledge protocols. The goal of a zero knowledge protocol is to convince
a skeptical verifier of some assertion without giving away the proof, In fact,
zero knowledge assures that no information is released (beyond the truth
of the assertion) that the verifier could not have computed by itself before-
hand. As such, these techniques can be employed in digital identification
schemes or as tools in more complex cryptographic schemes. As an exam-
ple, these techniques can be used to demonstrate that some given value y
was computed as f(z), for some given cryptographic function f, while the
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input = remains hidden. It turns out that in many situations it is suffi-
cient to rely on witness hiding: under suitable computational assumptions,
one can relax the zero knowledge concept by saying instead that the veri-
fier learns nothing useful. This means that the verifier learns nothing that
would enable cheating in the given system. Witness hiding protocols are
usually more efficient, since they do not require repetitions of some atomic
protocol as is the case with many practical zero knowledge protocols. This
partly motivates our research into witness hiding protocols, and these are
shown to arise naturally from our partial proofs.

Witness hiding protocols per se are natural candidates for secure digital
identification schemes. The security of such service demands that a verifier
checking a party’s identity should not be able to extract enough infor-
mation from that party to enable successful impersonation attempts at
a later stage. A number of secure and efficient identification schemes are
known from the literature. Additionally, however, we consider a so-called
man-in-the-middle attacker and identify scenarios where our witness hiding
schemes provide particular efficient and secure identification mechanisms
that withstand even this kind of attacker. A man-in-the-middle is best
described as the person who plays chess against two grand-masters simul-
taneously, and get at least a draw out of it. To this end the attacker plays
white against one of the players and black against the others in a way that
the grand-masters are actually playing each other. This may involve some
moving back and forth between separate rooms in the best traditions of
situation comedies. However, in cryptographic systems that use protocols
of the basic challenge-reply type, such attackers may be a real danger to
the security of the system. Our solution to this identification problem is
conceptually simple and can efficiently be implemented under most of the
common cryptographic assumptions.

To prove a statement or theorem in zero knowledge is most efficiently done
when the structure of the assertion (or the set from which it is chosen) is
exploited. For instance, the earliest examples deal with assertions about
quadratic residues. The corresponding zero knowledge proofs explicitly use
the fact that these residues are members of a ring. A good deal of the
research in this area is concerned with finding classes of languages or as-
sertions that admit efficient zero knowledge proofs. Another direction into
which this topic was investigated is general zero knowledge proofs. Here,
one is only given that the statements to be proved in zero knowledge are se-
lected from some general NP-language. The task is to design protocols that
can handle this situation. Based on our partial proofs, we develop a com-
munication efficient solution to this classical problem. Our result compares
favorably to previous solutions. More precisely, given a family of Boolean
circuits that verify witnesses for the language L in question, we present a
zero knowledge proof that a given z is in L, using only a linear number of
so-called bit commitments in the size of a circuit that verifies z’s witnesses.
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An area that recently received attention is that of public key cryptography
in a distributed setting. There, sensitive information such as cryptographic
keys or database information is shared among a number of servers to en-
hance the reliability of the system. Well-known examples are distributed
signatures and encryption/decryption, or more generally, secure function
sharing. Cryptography provides elegant mechanisms that are resilient to
even malicious faults. Roughly speaking, these mechanisms ensure that
parties deviating from their expected behaviour cannot prevent the honest
parties to achieve the goal of the system or learn their secret inputs. General
solutions are provided in the area of multi-party computations, and most
problems in distributed cryptography can be viewed as instances thereof.
It turns out in practice that tailor-made designs for a given problem are
usually more practical.

We apply some of our theory to the problem of designing electronic election
schemes and present a particularly efficient solution. Our system is robust
against some quorum number of maliciously faulty “government agents”,
Even when such parties conspire, they cannot learn individual votes or dis-
rupt the election. Forgery of votes is proved infeasible under suitable and
plausible cryptographic assumptions. Recall that we gave an example how
zero knowledge may be used in a larger protocol to prove that a compu-
tation was carried out correctly. However, in some cases, zero knowledge
can be shown to be unnecessarily strong, leading to impractical solutions.
If one gives a zero knowledge proof that y is computed as f(z) for some
z, the verifier learns nothing at all, beyond that fact. A witness indistin-
guishable proof may provide the same level of conviction. However, it may
only ensure that the verifier learns nothing about z. This may very well be
sufficient in some cases. Qur result for electronic election schemes provides
such an example. To prove that an encrypted vote was computed correctly
(the encryption contains a valid vote) without revealing the actual vote, we
use a witness indistinguishable proof. In this way, we achieve a considerable
improvement of the communication com plexity compared to previous solu-
tions, which used zero knowledge proofs instead. This is practical evidence
that it is worthwhile to consider witness indistinguishable protocols instead
of zero knowledge protocols whenever appropriate. Whether our methods
also lead to efficient and secure solutions to other problems in distributed
cryptography, would be interesting to investigate.

Chapter 4 deals exclusively with digital signatures. We only consider signa-
tures whose security can be proved under common cryptographic assump-
tions, such as the difficulty of factoring, RSA-inversion, discrete logarithms,
one-way group homomorphisms or claw-free pairs of trapdoor permuta-
tions. We show that the interactive protocols studied in Chapter 2 lead to
secure signature schemes. We show that a certain class of X-protocols is
sufficient for the existence of secure signatures whose complexity is similar
to the most efficient theoretical result in this area, the Goldwasser-Micali-
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Rivest scheme. As we show that our cryptographic complexity assumptions
are weaker, we may view our result as an extension of theirs. We also show
how to modify their method based on claw-free trapdoor permutations so as
to facilitate signatures with smaller communication complexity. Another re-
sult we present concerns an efficient transformation that basically removes
the need for considering so-called adaptively chosen message attacks. We
show that for efficient and secure signatures to exist, it is sufficient that
a signature scheme exists that is secure when an attacker only sees signa-
tures on randomly chosen messages. We conclude this work by presenting
the most efficient signature scheme known to date, that is provably se-
cure under a common cryptographic assumption, namely the difficulty of
RSA-inversion.

To be able to judge merits of our specific results, such as those concerning
the design of zero knowledge protocols, digital signatures or secret ballot
election schemes, discussions are provided where their significance is de-
tailed. This provides one way of looking at our results. Our main point,
however, is that Z-protocols provide a sound basis for modular design of
practical and secure cryptographic applications. We encourage the inter-
ested reader to test the applicability and usefulness of our methods in other
cryptographic areas.
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>-Protocols

2.1 Model and Definitions

We consider three-move interactive protocols between two parties, called
“prover” A and “verifier” B, where the prover acts first. The prover and
verifier are modelled as probabilistic, interactive Turing machines. We fur-
thermore require these games to be of the Merlin-Arthur type [3]. This
means that the verifier is expected to send only uniformly chosen bits. We
refer to these protocols as £-protocols!.

Turing machines can be seen as an abstraction of computers as they are
known today. We give an informal description. To perform some compu-
tational task, the machine is provided with an adequate list of elementary
instructions (an algorithm). Each of these instructions must be chosen from
a finite set of eligible instructions, similar to a programming language as
Pascal, for example. Any (private) input to such a machine is placed in a
part of the memory called knowledge tape. The auziliery tape can be used by
the machine to write and read intermediate results from its computations.
When the computations dictated by the algorithm have been completed,
the machine halts and outputs the outcome on the output tape. A Turing
machine is called probabilistic, if it is also furnished with a random tape,
which is a part of the memory allocated for the storage of random bits. In
this case the machine is allowed to read random bits and use them in any

_—

!Spelled out, the first part of Sigma refers to “zig-zag” symbolizing the three-
moves, while the last part is an abbreviation of “Merlin-Arthur”.
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of its computations. To enable communication between Turing machines,
they can be given a communication tape. Interactive Turing machines are
“connected” by such a tape, and can communicate by writing to and read-
ing from this tape. A Turing machine is said to be polynomial time, or
sometimes efficient, if the total number of read- and write-operations to
and from its tapes, is bounded by some polynomial in the length of the
input. Computational tasks which cannot be performed by a polynomial
time Turing machine are called infeasible or intractable.

If Alg is an algorithm, then the notation “g « Alg(b)” refers to the compu-
tation of the output “a”, on input bit string “p IfV is aset, v «— V denotes
uniform and random selection of an element v from V. For z,y € {0,1}%,
we use “z|y” to denote the usual concatenation of z and y.

The common input to both playersin a $-protocol is some string z. Thus, =
is placed on the knowledge tapes of both players. The prover has a string w
as private input. The pair (z,w) is an element of some given binary relation
R c {0,1}* x {0,1}*, which is typically (but not necessarily) polynomial
time verifiable. For any string z the set RW (z) is defined as the set of
strings w such that (z,w) € R. Such a string w is called a witness for .
We assume that for some given polynomial p(-) it holds that lw| < p(|zl),
where |- | denotes binary length. The set RX is defined as the set of strings
¢ such that RW (z) is non-empty. Prover A and verifier B are modelled by
a probabilistic polynomial time (PPT) interactive Turing machines, unless
stated otherwise.

In the following, R4 resp. Rp denotes the random tape of the prover A
resp. the verifier B. The protocol that A and B will execute is denoted
(A, B) and consists of the polynomial time algorithms a(-), (), z(-) and
#(), to be explained hereafter. The protocol (A, B) and the relation R
are public; their descriptions are available to all players. By running the
algorithm a(-) on the common string , the private input w and possibly
random bits taken from R4, the prover computes the initial message a. The
length of this initial message a is denoted t4, the authentication length.

After having received a, the verifier B chooses a challenge ¢, by running
the algorithm ¢(-) on input of its random tape Rp. The algorithm c(:) just
picks an appropriate number, say ¢p, of bits from the random tape. This
move is completed when B sends the challenge ¢ to A. In the following, we
will drop the explicit use of the algorithm ¢(+) and will write the selection
of ¢ as “c « {0,1}*5”.

To compute the reply z, the prover A runs the algorithm 2(-) on z, w, @, c
and Ra. The computation of z may require that a and possibly auxiliary
information are regenerated from the relevant random bits of R4. The reply
2 is allowed to be probabilistic too, by using new random bits from R 4. The
resulting output z is sent to the verifier B. Finally, the verifier invokes a
polynomial time computable predicate ¢ to check whether the conversation
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T,a,c, z is accepting. Whenever we speak of the length of a conversation,
we mean the binary length of that conversation.

The algorithms a(-), (), 2(-), ¢(-) will typically depend on the relation
R and the purpose of the protocol, of course. We will say that (4,B) is a
X-protocol for relation R.

Let A be an honest prover, that is, a prover that is given some (z,w) € R
and that behaves as dictated by the protocol for A. An honest verifier B
is a verifier that indeed chooses the challenge uniformly at random from
{0,1}*5. For an arbitrary probabilistic (polynomial time) verifier B* that
outputs a bit string of length tg, (4, B*) denotes the interaction on some
common input z € RX between the honest prover A, and the verifier
B*. Note that in this case we require nothing about B*’s output distribu-
tion. Let A* be an arbitrary probabilistic (polynomial time) prover. Then
(A*, B) denotes the interaction on some common input  between A* and
the honest verifier B. A* acts as an honest prover A in the sense that A*
sends an initial message a, and a reply z (after having received a challenge
¢ from B). However, A* is not required to follow the computations as pre-
scribed for A, whereas B is. We say that (A*, B) succeeds with some given
probability if the interaction results in an accepting conversation with that
probability. Finally, T4(z), Tp(z), Ta-(z) and Tp. (z) denote the running
times of the respective algorithms.

A B
a — a(z,w,R,)
S S
c—c(Rp)
(——.i__
z «— z(z,w,Rq,c)
z

?
é(z,a,c,z) = accept

We will sometimes say that a given interactive Turing machine is available
to us as a black-boz. By this we mean that we can run the machine as many
times as we desire (but at most a polynomial number of times). Moreover,
we are allowed to put any strings of our choice on its communication tape.
Whenever we draw conclusions about a black-box, these will rely on its
output behaviour, not on inspection of its memory or the particular pro-
gram it runs. As an example of a black-box, we say that some arbitrary
PPT prover A* is given as a black-box, if we are allowed to run an arbi-
trary PPT verifier B* against A*. Then B* can pose as the verifier any
polynomial number of times and interrogate A* accordingly.

We say that an interactive Turing machine is given as a rewindable black-
box, if additionally, we are allowed to supply the random bits for the ran-
dom tape of the machine. Without loss of generality, we may assume that
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such a rewindable black-box is memory-less, that is, its computations are
always uniquely determined by its initial state and the contents of its ran-
dom tape.

2.2 Requirements

We now formulate various cryptographic properties that we can require
from E-protocols. Let (A, B) be a »-protocol for relation R.

2.2.1 Completeness

Let (A, B)z,» denote the conversation between the honest prover and the
honest verifier on common input z, and private input w to the prover A.
If (z,w) € R, then (4,B)zu leads to acceptance by the verifier B with
probability 1. Any ¥-protocol we consider will satisfy completeness.

2.2.2 Special Soundness and Collision Intractability

Let = € {0,1}* be given. A pair of accepting conversations (z, @, ¢, z) and
(z,a,c,2") with ¢ # ¢’ (“accepting conversations for z, with the same first
message but different challenges”) is called a collision. Note that we did not
require that these conversations are the possible result of running (A, B)
on some input. The E-protocol (4, B) for relation R is said to have the
collision-property if and only if the following holds. Given a collision for
z € RX, we can efficiently compute some w such that (z,w) € R, that is,
there exists a PPT machine (depending on (4, B) and R) that on input of
a collision for z, outputs w such that (z,w) € R. It is important to note
that in case ¢ ¢ RX, nothing is required.

Now, the Z-protocol (A, B) for relation R is said to satisfy special sound-
ness, if and only if it has the collision-property and there exist no collisions
forz ¢ RX.In casez ¢ RX, we claim that an arbitrary prover A™’s success
probability €4- of leading the honest verifier B to acceptance is at most
1/25. This is shown as follows. Consider the 0/1-matrix whose row-indices
run over all possible values p of A*’s random tape R4+ and whose column-
indices run over by all possible values c of the challenge. The entry (p,c)
in this matrix is defined as 1 if B accepts when A” would use the random
string p and B would choose ¢ as the challenge, and (p,c) is defined as
0 otherwise. Clearly, A*’s success probability is equal to the fraction of
l-entries in the matrix. But if this success probability were greater than
1/2!8, than there exists at least one row with two l-entries, which is the
same as saying that there exists a collision. This contradicts the fact that
for z €¢ RX, no collisions exist. Please note that the analysis above holds
regardless whether or not A follows the instructions for an honest prover
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A or not.

Another observation about special soundness is the following, When, for
instance, membership of RX can be tested efficiently, this could be included
in the verification of conversations, that is, in the description of ¢. In this
case, the collision-property implies special soundness.

In many examples where special soundness is in the play, R will actually be
a polynomial time verifiable relation. For completeness however, we note
the following. Since we didn’t assume a priori that R is polynomial time
verifiable, how can a prover check whether a given pair (z,w) will help to
make a verifier accept = with probability 1? For (z,w) € {0,1}* x {0,1}*
such that |w| < p(|z|), define (4, B(0,1)) ., as (A, B)z,w while having
A reply to the all-0 string 0 and to the all-1 string 1, and keeping the
first message fixed. This results in two conversations with the same first
message yet different challenges. Now the prover runs (A,B(0,1)); 4. If the
resulting conversations are not accepting, then (z, w) € R. If they are, then
by the collision-property, this allows the prover to compute w' such that
(z,w") € R. The prover proceeds in this case with (z,w'). Note that special
soundness implies that RX must be an NP-language.

Many times we will assume that we are given a (publicly known) PPT
instance generator G for relation R to generate solved instances: (z,w) «
G(1*), where (z,w) € R and where k is a security parameter. Let [G(1¥)]
denote the probability distribution induced on R by G, on input 1%, and
let [G(1%)]. be the restriction of [G(1%)] to the public strings z, that is,
[G(1*)], is the probability distribution obtained by running G(1*), getting
(z,w) € R and deleting w. We say that z is generated according to G, when
x is drawn from [G(lk)]z. The instance generator G is called an invulnerable
generator if it is infeasible, given just a string 2 generated according to G,
to compute a witness w. In other words, if we select z from [G(1%))., then
no PPT algorithm will, on input z, output w such that (z,w) € R except
with negligible probability in k& (that is, negligible as a function of the
security parameter k).

(A, B) is called collision-intractable over R and G, if there is no PPT algo-
rithm that, on input z as generated by G, computes a collision, except with
negligible probability. Note that this PPT algorithm is not given access to
an honest prover for = (we deal with that scenario in Section 2.2.4).

In this case, we will refer to (A4, B) as a collision intractable E-protocol for
relation R with generator G. It follows that if (A, B) is collision intractable
over R and G, then G must be invulnerable. Also, if G is an invulnerable
generator and (A, B) has the collision-property, then the protocol (A4, B)
is collision intractable over R and G.
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2.2.8 Zero-Knowledge

Zero knowledge is a vast and rich research area in cryptography and its
seeds have been sown by Goldwasser, Micali and Rackoff [68], who formally
defined the concept. The basic intuition is as follows. Suppose that A and
B engage in an execution of their protocol on common input . Here 2 may
be a theorem that A knows how to prove (a witness w may be viewed as
a proof for the statement x), or w may be a secret piece of information (a
“secret key”) related to z that allows A to enjoy privileges such as gaining
access to some computer network.

In general B’s interest is to verify that A holds a witness w (a proof or a
secret key). On the other hand, it may very well be in A’s interest to not
give away w. Zero-knowledge is the idea that no matter how B behaves
as a verifier, it will not learn any information that it could not have com-
puted itself, even before the start of the protocol. Technically, there is an
expected polynomial time machine M (called the stmulator) that, on input
xz, produces accepting conversations with exactly the same distribution as
conversations between a prover who is given (z,w) € R and the given ver-
ifier B. The machine M is expected polynomial time, in the sense that, on
input of a fixed =, it generates the desired output in polynomial time for
“almost all” possible random tapes of M.

We now define a particular and weaker variant of zero knowledge. (A, B)
is said to be honest verifier (perfect) zero-knowledge if it is easy to (per-
fectly) simulate conversations with an honest verifier. If, additionally, the
simulator works by taking any uniformly chosen challenge c as input and
outputs an accepting conversation where c is the challenge (an accepting
conversation (z,a,¢,7)), then (A, B) is said to be special homest verifier
(perfect) zero-knowledge. In this case as well as in that of ordinary hon-
est verifier zero knowledge, we need to define the behaviour of M when
it is given = ¢ RX. This is only for reasons of completeness of some of
the protocols to follow. If z ¢ RX, then we just assume that M(z) (or
M (z,c) respectively) either outputs an accepting conversation (where c is
the challenge), or outputs ‘?’. No conditions on the output distribution are
required in this case.

In the definition of ordinary zero knowledge, one has to take into account
the potentially malicious behaviour of the verifier. This is done by addi-
tionally giving the verifier as a rewindable black-box to the simulator. This
then captures the idea that the verifier can generate the same distributiomn,
as when talking to the prover, on its own by just running the simulator.
The simulator is required to run in expected polynomial time. Above, we
considered perfect zero knowledge. If one relaxes the notion of indistin-
guishability of the simulation and the real conversations, one can define
computational and statistical zero knowledge.
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Why should we look at cryptographic protocols that are only zero knowl-
edge against the honest verifier? Indeed malicious behaviour may never
be excluded, at least in cryptographic theories. One reason is that such
protocols are usually quite efficient compared to “general” zero knowledge
protocols and relatively easy to design. A good reason is that there exist
transformation methods [95, 53, 54] for turning certain classes of honest
verifier zero knowledge protocols into zero knowledge ones! Thus, in the-
ory, it is sufficient to design protocols that are zero knowledge against the
honest verifier and apply a transformation afterwards.

Another reason is that, as follows from this work, honest verifier zero knowl-
edge X-protocols (satisfying collision intractability), turn out to be fine
primitives for constructing a range of efficient cryptographic services, se-
cure against arbitrary polynomially bounded enemies.

2.2.4 Witness Hiding and Witness Indistinguishability

The concepts outlined here are due to Feige and Shamir [64], building on
[66]. Witness hiding offers an attractive alternative to zero knowledge in
many cases. Generally, it turns out in practice that witness hiding protocols
are more efficient than zero knowledge protocols. Moreover, the security
offered by witness hiding protocols is sufficient in many cases of protocol
design.

Let a X-protocol (4, B) for relation R with generator G be given. We now
consider the situation where a prover 4 is given an instance (o, wp) € R
as generated by G(1*) and where 4 is facing an arbitrary PPT enemy B*.
We assume that the protocol (4, B*) can be executed on common input xg
as many times as B* desires. This means that A is given to B* as a black-
box. However, B* is not allowed to rewind A (that is, A’s random tape is
not under control of B*). Witness hiding captures the idea that no matter
how maliciously the enemy interrogates an honest prover, it gets at most a
negligible advantage when trying to compute wy in RW (zy), compared to
the situation before the start of the protocol. We put here “w}” instead of
“wg”, since the witness output by B* may be different from wy (see also
the example at the end of this section).

More formally, let eg. denote the probability that B* is able to produce
wy € RW (zo) after the interrogation of A* on common input zp, where the
probability is taken over the coinflips of G and B*. A witness extractor X is
a PPT algorithm that receives as input a bit string x generated according
to G. Furthermore, it has access to B* as a rewindable black-box and to the
protocol (A, B) and its generator G. In particular, X can generate many
pairs (zg,wg) € R according to G, provide honest provers A with those
pairs (29,wg) and can have B* launch its attack against those provers A
(but for z no honest prover is given). The witness extractor succeeds when
it outputs w' in RW (), given z distributed according to G. Let ex denote
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its success probability, taken over the coinflips of B*, G and X. We say that
the protocol (A, B) is witness hiding over G, if we can exhibit a witness
extractor that succeeds with essentially the same probability as B*, that
is, ex < eg- + v(k), where v(k) is negligible.

Note that the definition of zero knowledge guarantees that no information
is revealed in case of any fixed common input zg, whereas witness hiding
only guarantees that no useful information is given away on the average:
suppose that the generator G is invulnerable and that the protocol (4, B) is
witness hiding over G. If a PPT enemy B* could efficiently extract a witness
w} from his interaction with the honest prover A on common input Zo, this
would then imply the existence of an efficient algorithm that receives z
as generated by G and outputs a witness w for z. Thus, talking to an
arbitrary PPT enemy B* is secure from the point of view of A, since the
latter contradicts the assumption that G is invulnerable.

In practice, many proofs that a given protocol is witness hiding use the
notion of witness indistinguishability. Assume that for each z € RX, the
set RW(z) contains at least two elements. Let an arbitrary £ € RX be
given and let w; and wy be two distinct elements from RW (z). Consider
the honest prover A; who gets (x,w;) as input while the honest prover A
gets (z,wg) as input. Let B* be an arbitrary (unbounded) verifier. We say
that the protocol (4, B) is witness indistinguishable over R if B* playing
the role of B cannot distinguish between conversations with A, and As:
the distributions of the conversations generated by (41, B*) and (A2, B*)
are (perfectly) indistinguishable. It follows trivially that if (A4, B) is zero
knowledge, then it is also witness indistinguishable.

The following way of reasoning is often encountered in a proof that a given
protocol is witness hiding. Suppose that each z € RX has, say, exactly
two distinct witnesses w and w', that the protocol (A, B) is witness in-
distinguishable and that an invulnerable generator G is given. Suppose
furthermore that the invulnerability of G additionally implies that, given
(z,w) € R as generated by G, it is infeasible to compute w' # w such that
(z,w') is in R as well. The proof is by contradiction. Suppose that we are
given an efficient enemy B* as above. We “abuse” B* to break the invulner-
ability of G as follows. Generate (z,w) «— G and give (z,w) to an honest
prover A. Next, let B* run its attack against A. With good probability, B*
outputs w' such that (z,w') € R, by assumption on B*. However, by the
witness indistinguishability of the protocol (4, B), B* cannot be biased as
to which of the two possible witnesses are output. Thus, with probability
1/2, we have w # w', and we have contradicted the invulnerability of G.

2.2.5 Proofs of Knowledge

A proof of knowledge is a protocol between a prover and a verifier that
allow a prover A to convince a sceptical verifier B that A “knows” some
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piece of information that is somehow related to their common input z. As
an example, £ may be a large composite integer of which 4 knows a non-
trivial factor. The concept of proofs of knowledge was formalized by Feige,
Fiat and Shamir [66].

Let (A, B) be a X-protocol for relation R. Let A* denote a PPT prover that
makes the honest verifier B accept the common string x with probability
€4-. Using the approach of [66], we say that a S-protocol (A, B) is a proof
of knowledge for relation R if there exists a knowledge exztractor: this is a
PPT machine that, on input of the prover A* as a rewindable black-box,
outputs a witness w for =, with essentially the same success probability
as that of (A*, B). The probability is taken of the coinflips of A* and the
knowledge extractor (not over the distribution of z). If A* is successful
with non-negligible probability, A* is said to “know” a witness w for z. For
a thorough treatment of proofs of knowledge, please consult Bellare and
Goldreich [9].

As an example, consider the following situation. If (A, B) satisfies special
soundness and if the challenge length ¢5 is, say, linear in the length of the
common input z, it can be shown to be a proof of knowledge as follows.
Suppose that €4. > 1/2!5. Select a random tape for A* and execute the
protocol (A*, B) on common input z. If B accepts z (say, the resulting
accepting conversation is (z,a,c,z)), then re-use the same random tape
(causing A* to send the same first message) and have B challenge A* with
a random challenge ¢' different from c. If A* outputs an accepting con-
versation once again, say (z,a,c’, '), then we can immediately invoke the
algorithm that efficiently computes a witness for z and that is guaranteed
by the definition of special soundness. This particular knowledge extractor
can be shown to run in expected time polynomial in 1/(ea» — 27%2) and
the running time of A* itself. Thus, if we assume that ¢ A+ 1s non-negligible
(as a function of |z|) and if we assume that say, tg = |x|, the expected
running time of the extractor is polynomial in |z| (by running it poly(|z|)
times). The knowledge extractor and the technical details are given in the
proofs of Proposition 2.1 and Corollary 2.1. If ¢ is too small, we can turn
a X-protocol (A, B) satisfying special soundness into a proof of knowledge
by doing an appropriate number of parallel executions of (4, B).

Collision intractability may be viewed as capturing a weak version of knowl-
edge soundness [66]. Even though a prover may have success probability 1,
it is unclear, in theory, whether the prover knows a witness in the sense of
[64]. But there exists an efficient algorithm that extracts a collision from
such a successful prover, by running the prover as a rewindable black-box.

2.2.6 Interactive Proofs

Let L be a language (that is L is a subset of {0,1}*). Let z € L. An
interactive proof [68] for L is a game between a prover (which may have



28 2. T-Protocols

unlimited power) and a polynomially bounded verifier, by means of which
the prover convinces the sceptical verifier that a given input word z is
in the language L. If it is, the verifier will always accept (completeness).
If not, then the verifier will accept only with exponentially small error
probability (soundness) 1/2%, where k denotes the size of z. Usually an
interactive proof consists of an “atomic” protocol that has some constant
error probability, say 1/2, and the required confidence level is then achieved
by an appropriate number of repetitions. To such atomic protocols we will
also refer as interactive proofs, the required repetitions to be understood.

A PZKIP for a language L is a perfect zero knowledge interactive proof
for L, see [68]. In a perfect zero knowledge argument for L, the prover is
polynomially bounded, and the soundness condition holds provided that
the prover is unable to break some given computationally hard problem of
size k.

2.2.7 Signature Protocols
Let (A, B) be a S-protocol for relation R and generator G. If (A, B) satisfies

1. collision-intractability over R and G
2. special honest verifier zero-knowledge

3. t4 < tp (the length of the initial message is smaller than the length
of the challenge),

then we call (4, B) a signature protocol. If (A, B) is collision-intractable over
R and G and is honest verifier zero-knowledge (so it does not necessarily
have a special simulator and does not necessarily satisfy ta < tg), we call
(A, B) is a quasi-signature protocol.

These protocols are not to be confused with digital signature schemes.
Nevertheless, we will show in Chapter 4 that they imply signature schemes,
hence the name and significance of signature protocols. It turns out (Propo-
sition 2.4) that signature protocols can be manipulated to satisfy any de-
sired ratio between the length of the first message and the length of the
challenge. This fact is exploited in Chapter 4. Thus, the condition on the
length of the challenge allows us to use these protocols in a tree authenti-
cation structure since challenges in the manipulated protocol can be made
large enough to “capture” some number of first messages: in some con-
structions to follow, we will let the challenge ¢ of the verifier B consist of
the concatenation of a number of first messages a', which are in subsequent
executions used in the same mode as the current first message a. In order
to build, say, a binary tree structure, the length tg of a challenge ¢ should
be at least twice as large as the length t4 of a single first message. Such
manipulations are particularly efficient in case tg — ta is, say, linear in
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the security parameter, or in case the protocol given is based on (special)
one-way group homomorphisms (Sections 2.5.1 and 2.5.2).

2.3 Examples

2.8.1 Initroduction

An early example of three-move protocols, now systematically studied in
this work, is the “Passport Protocol” of Fiat and Shamir. Based on the
difficulty of factoring integers, they proposed practical identification pro-
tocols. Their results where later extended by Feige, Fiat and Shamir [66]
and finally Feige and Shamir [64], culminating in the powerful notion of
witness hiding. Since then many identification schemes of this format have
been proposed, for instance by Schnorr [106], Guillou-Quisquater [76], Ong-
Schnorr [94], Brickell-McCurley [26] and Okamoto [93]. The schemes from
[94, 26, 93] have been proved to be witness hiding under plausible assump-
tions, while for the other schemes this is conjectured. All schemes can be
shown to be X-protocols satisfying special honest verifier zero knowledge
and collision intractability, and in some cases even special soundness. Most
of these protocols are also proofs of knowledge. By sequential composi-
tion and choosing small challenges, these protocols can be turned into zero
knowledge protocols. This, however, is usually undesirable for reasons of
loss of efficiency. A witness hiding proof of knowledge can be used as a
secure identification scheme (see [64]). A nice example of a secure iden-
tification scheme that is witness hiding but not a proof of knowledge, is
provided by [94]. The proof was recently given in [112]. In our terminology,
this scheme satisfies collision intractability, but not special soundness.

For any integer N' > 1, let Z y denote the ring of integers modulo NN, and let
Z}, denote its group of units (that is, the elements having an inverse under
multiplication). It is well known that the order of Z} is ¢(N). Here ¢(N)
denotes the Euler totient-function of N, that is, the number of integers
greater than 0 and smaller than N being relatively prime to N. We now
give two of the most accessible examples.

2.3.2 Based on Discrete Logarithms

Let Gy be a group of prime order g, and let g € Gg, 9 # 1. Now note, by
elementary group theory, that for each h € Gy, there is a unique w € Z,
such that g = k. This w is called the discrete logarithm of % with respect
to g, also denoted log, . Now let % be a random element of Gg4. The dis-
crete logarithm problem for G, is to find w given g and h. This problem
has been first considered for cryptographic use by Diffie and Hellman [56],
and underlies many of today’s cryptographic schemes. More precisely, the
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problem for groups of prime order can be defined as follows. Let G be a
family of groups of prime order such that the group operations can be per-
formed efficiently, group elements can be efficiently sampled with uniform
distribution and group membership as well as equality of group elements
can be efficiently tested. Let Gen be a probabilistic polynomial time gen-
erator that on input 1* outputs a description of a group G, € G (including
the group order g, for some prime q), and two random elements g, h from
G. Furthermore, elements from G, can be represented with k bits. We say
that the discrete logarithm problem for G is intractable (over Gen) if there
is no probabilistic polynomial time algorithm that on input of (a short de-
scription of) G,, g and h as output by Gen(1*) can compute log, h with
non-negligible probability in k.

In order for discrete logarithms to make sense, we must find such a group Gy
where computing discrete logarithms is hard. Most commonly, G, is taken
as a subgroup of the multiplicative group of a finite field, or as a subgroup
of the group of points on an elliptic curve. The discrete logarithm problem
in these groups is generally perceived as very hard. For detailed information
see for instance [87].

We have the following X-protocol (A, B) satisfying special soundness and
special honest verifier zero knowledge: Schnorr’s identification scheme [106].
It is also a proof of knowledge. Let G be a family of groups as above. A
relation R is defined as follows. Let the group G, of prime order, say g, be
an arbitrary member of G. Let g # 1 and h be arbitrary members of G.
Now put z = (Gy, g, k). The corresponding (and unique) witness is w € Z,
such that g* = h. The relation R consists of all such pairs (z,w).

The inclusion of “G,” in the definition of = should be read as a short de-
scription of the group G, (including the group order). For instance, groups
Gy in G could be taken to be subgroups of order g in Zj, for some primes p
and ¢. The short reference to G4 could then consist of the primes p and g.
Note that primality of integers can be decided efficiently [2]. Furthermore,
the prime number theorem (see for instance [78]) says, roughly speaking,
that the fraction of primes among all integers having length & bits is 1/k.
Hence, large primes can be generated efficiently. Usually, p will have more
than 500 bits, and ¢ at least 160 bits.

An invulnerable generator G runs Gen first to obtain (a description of)
G4 € G. Next, G selects g € G,/{1} and w € Z, at random. Then, h is
defined as h — g*. G outputs = = (G, 9, h) and w.

Key-generation: A runs G and gets z = (Gq,9,h) and w. Common input
to A and B: z. Private input to A: w.

Move 1: A selects u «— Z, and computes a + g*. A sends a to B.

Move 2: B selects ¢ «— Z, and sends c to A.
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Move 3: A computes z «— cw + u mod g and sends z to B, who accepts if
and only if g% = ah®.

As for special soundness, we note the following. Given two accepting con-
versations z,a,c,z and z,a,c',2" with ¢ # ¢, w is computed as w «
(2 =2")/(c— ¢'). Also note that our example of G4 based on Z} enjoys the
property that the verifier can efficiently decide whether a given z € RX. In
that case the protocol indeed satisfies special soundness and with g large
enough, it is a proof of knowledge for the relation R. Since G is invulner-
able if the discrete logarithm problem is intractable for G (over Gen), we
conclude that the protocol is collision-intractable as well.

Finally, we argue that the protocol is special honest verifier zero-knowledge.
Select ¢,z «— Z, and compute a — g*h—°. Then z,a,c,z is an accepting
conversation with the right distribution. This protocol is not known to
be witness hiding or zero knowledge, but it is conjectured to be secure
against an arbitrary polynomially bounded verifier, if computing discrete
logarithms is intractable.

2.3.3 Based on RSA

The following protocol (A4, B) is Guillou-Quisquater’s identification scheme
[76], and it is based on the RSA functions [100], which were proposed by
Rivest, Shamir and Adleman.

We first describe the RSA functions. Suppose n is an odd integer that is
the product of two distinct primes p and ¢. Such integers n are called RSA-
moduli. Let v be an integer, of size polynomial in |n|, relatively prime to
¢(n). Now let T denote the inverse of v in Z}(yy, that is, v = 1 mod ¢(n).
By elementary number theory, we have that (')’ = (2")” = 2 mod n for
eachz € Z.

It is conjectured that finding z¥ for random z, given just n, v and z is hard,
if factoring integers is hard. If one is additionally given the factorization
of n, this task can be performed efficiently. When given p and ¢, ¢(n) is
easily computed and hence ¥ can easily be computed from v. All other
operations, exponentiation modn, computing multiplicative inverses mod
#(n) are well-known polynomial time computations. Although factoring
random RSA-moduli is hard, generating factored and random RSA-moduli
can be done efficiently, since selection of two random large primes and
multiplying them can be performed efficiently. The exponent v is chosen at
random from Z;(n). In practice, the primes p and g are randomly chosen
such they have (approximately) the same binary length and such that that
the binary length of the resulting RSA-modulus 7 is at least 750 bits.

The RSA functions are as follows. Let p, ¢, 7, v and ¥ be as before.

RSA,,:Z, — Z7,
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y—y' modn

Note that RSA7Y, (the inverse of RS An ) is identical to RSA, 5. Based on
our assumptions about RSA and the observations made above, RSAn (y)
can be computed efficiently on any input y € Z: given just n, v and y. On
the other hand, the inverse RSA ", can be computed on a random input
y € Z7, only if p and q are given as side-information (a trapdoor).

Now define the relation R as follows. Let » be an RSA-modulus, and let
v be a prime smaller than n with v relatively prime to ¢(n). Let h and
w be members of Z7 such that w’ = h mod n. Defining z = (n,v, k),
the relation R consists of all pairs (z, w). An invulnerable generator G(1%)
for this relation first generates a random factored RSA-modulus n of the
desired length k bits (its prime factors p and ¢ having length approximately
k/2 bits). Then the prime v is selected at random such that it is smaller than
n and relatively prime to ¢(n). Finally, w is chosen at random from Z;,, and
L is defined as h «— w® mod n. The following scheme is the identification
scheme of Guillou and Quisquater [76].

Key-generation: A runs the generator G and gets ¢ = (n,v,h) and w, as
detailed above. Common input to A and B: z. Private input to A: w.

Move 1: A selects u € Z!, and computes a « u” mod n. A sends a to B.
Move 2: B selects ¢ «— Z, and sends c to A.

Move 3: A computes z «— w°u mod » and sends z to B, who accepts if
and only if z¥ = ah® mod n.

Note that the factorization of the modulus n is not required for the prover
in this particular protocol. This protocol satisfies the following properties.
As to collision intractability, note that from two accepting conversations
= " 1
z,a,¢,z and z,a,c,2' with ¢ # ¢, w is computed as w « (z/z')=,
where — is computed in Z; (implicitly we have assumed that the verifier
B has checked the primality of v). In other words, the protocol satisfies the
collision-property. Thus, any efficient attacker that could compute these
collisions given just n, v and h, could immediately be used to invert the
RSA functions! To appreciate this, note that we could just as well generate
h as a random element of Z* where n is an RSA-modulus generated by G
but whose factorization is not given to us. Then, we present z = (n,v,h)
to the attacker (who cannot distinguish between this & and one generated
by G). From the returned collision, we then compute h* mod n, and we
have a contradiction with our assumptions on the RSA functions. We may
interpret collision intractability as follows. Suppose that v is quite large,
say, having a number of bits corresponding to a constant fraction of the
length of the modulus n. A prover A who knows the corresponding witness
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w to a given common string = as generated by G, can reply to all v possible
challenges. On the other hand, a malicious A* who is only given =z, could at
most reply to a ‘small’ subset of the possible challenges, since otherwise, A*
would be able to compute collisions efficiently. An attack that only takes z
into consideration, is called a passive attack.

Please observe the following subtlety regarding special soundness and colli-
ston iniractability. In proving collision intractability, we used an approach
that may resemble that of special soundness. However, the latter requires
that collisions cannot occur for z ¢ RX. A quick inspection shows that in
this example this is not the case. For instance, if n is not an RSA-integer,
say a prime or a composite with more than two factors, collisions are pos-
sible as well. So what the protocol (A, B) does, is showing that A can
express h as the v-th power of some element of Z},, but not that n is an
RSA-modulus. By removing the restriction that n is an RSA-modulus and
that v is relatively prime to ¢(n) from the definition of R, (A, B) would
satisfy special soundness. For collision intractability, the definition of the
instance generator should remain unchanged.

As for special honest verifier zero-knowledge, a simulator is defined as fol-
lows. Select ¢ < Z, and z « Z}, and compute a «— 2*h~°. Then z,a,c, z
is an accepting conversation with the right distribution. As is the case
with the previous example, this protocol is not proved to be secure against
adaptive attacks (although it has been conjectured to be), that is, it is
not known to be witness hiding or zero knowledge. In an adaptive attack,
malicious A* may first try to extract information about w from A, by
choosing the challenges ¢ ‘cleverly’. The examples given here are at least
secure against honest verifiers. This follows from the fact that the protocols
are honest verifier zero knowledge and collision intractable. In [93], witness
hiding variants of [106] and [76] are given.

2.4 Basic Theory of ¥-protocols

We develop a basic theory for Z-protocols needed to support the results in
Chapters 3 and 4. The existence of various kinds of collision-intractable,
honest verifier zero knowledge Z-protocols is studied in Section 2.5.

First, we take a closer look at collision-intractability and special sound-
ness. Machines are defined that extract collisions efficiently from successful
provers, when given as rewindable black-boxes. As to special soundness,
we show how an interactive proof for a given language can be transformed
into a new interactive proof, for the same language, that “almost” satisfies
special soundness.

Next, we will study honest verifier zero knowledge simulators and de-
rive some important, but elementary, properties. For technical reasons
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to become apparent in the later chapters, we are interested in increas-
ing or decreasing the challenge length of a given Z-protocol, while such
properties as collision-intractability and honest verifier zero knowledge re-
main intact. In particular the latter properties are invariant under par-
allel composition of X-protocols. Using a “chaining”-technique, we show
that the challenge length can be increased while keeping the length of
the first message constant. We conclude this chapter by showing that a
¥-protocol satisfying special honest verifier zero knowledge can be ob-
tained from one having just a normal honest verifier zero knowledge simu-
lator, at the expense of increased communication. Then assuming collision-
intractable hash-functions, we show that quasi-signature protocols imply
signatures protocols.

2.4.1 Collision Intractability

Let a E-protocol (A, B) for relation R be given. Now assume that A* is
an arbitrary polynomially bounded prover that makes the honest verifier
B accept the common string  with probability €. What can the verifier
conclude about A*’s knowledge? In the analysis, the prover A* is given as
a rewindable black-box. Our only assumptions on A* concern its success
probability in the protocol (A%, B) and its running time. For instance, we
did not require that A* is a prover that follows the rules for a prover A
in the protocol (A4, B). If it were promised that A* follows the rules, we
would simply inspect its knowledge tape. But looking from the verifier’s
perspective, our conclusions must be based on A*’s output behaviour, so
we may not assume that A* follows the protaocol.

Our analysis will result in constructive methods for “extracting” a colli-
sion for the common input z whose expected running time is given as an
polynomial function of (the inverse of) A™’s success probability and A™’s
running time. These methods only work by analyzing A* as a rewindable
black-box, and serve as an apparatus to capture an appropriate notion of
“knowledge” of the machine A*. In real-life, a verifier will, generally speak-
ing, not have such access to a prover. But if the verifier establishes (from
executing the protocol) that a given prover has some good probability of
success, then the verifier may conclude that the party operating this prover,
may by itself deduce a collision with essentially the same probability. This
notion was first used by Feige, Fiat and Shamir [66] in their study of proofs
of knowledge. We extend their approach to our context of ¥-protocols.

Let H be a 0/1-matrix with n rows and m columns, and let € denote
the fraction of l-entries in H. Suppose € > 1/m. Consider the following
“collision-game”.

Step I: Select a random entry in H.

Step 2: If it is a 1-entry, select a different and random entry from the same
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row.
Step 3: If this is a 1-entry as well, output “success”.

We analyze the success-probability of one iteration of this game. Note that
we may not assume, for example, that each row has the same fraction of
1's as H, since we do not know how the 1’s are distributed in H. For the
analysis we use Jensen’s inequality (see for instance [114]). A real-valued
function f is called strictly concave on interval I, when for each distinct
pair of elements in I, the function value of their average is strictly larger
than the average of their function values. If additionally f is continuous on
I, then Jensen’s inequality asserts that

Daif(z:) < FQ asms),
=1 =1

where 37, a; = 1, all a; are positive, and all z; € 1. Equality holds exactly
when the ;s are all the same. We now apply this to the collision-game.

LEMMA 2.1 Let H be a 0/1-matriz with n rows and m columns, and let €
denote the fraction of 1-entries in H. Suppose € > 1/m. Then the proba-
bility of success in one iteration of the “collision-game” is greater than or
equal to e(e — 1/m).

PROOF. Let e; denote the number of 1-entries in the i-th row,2=1...n,
and let ¢; denote the fraction of 1-entries in the i-th row, that is, ¢; = e;/m.
Clearly, the success-probability is equal to

n

> S ).

=1

Now put a; = 1/n, ©; = ¢; and f(z) = —z(z — 1/m) on the interval [0, 1],
and apply Jensen’s equality. (m}

The following proposition asserts that from a given prover we can extract
a collision with essentially the same success probability that the prover has
in the protocol.

PROPOSITION 2.1 Let a S-protocol (A, B) for relation R be given, and let
z € {0,1}*. Suppose that A* is an arbitrary PPT prover such that (A*, B)
succeeds with probability €, on common input z. Let Tq-(z) be A ’s TUnnIng
time and suppose that € > 1/2'2. Then there exists a probabilistic algo-
rithm Ext that outputs two accepting conversations z,a, ¢,z and z,a,c, 2
with ¢ # ¢’ (that is, a collision), with ezpected running time polynomial
in Ta-(z) and 1/(e — 1/2'2). Ext is allowed to run A* as a rewindable
black-box. The probability is taken over the coin tosses of Ext and A*.
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PROOF. Define the 0/1-matrix H from Lemma 2.1 as follows. The rows
correspond to the possible choices of A™’s coin flips Ra- and the columns
correspond to all possible challenges ¢ € {0,1}*#. Position (Ra- ,e) in H
is assigned 1 if the conversation produced by (A*, B) is accepting, pro-
vided that A*’s coin flips are given by R4- and B’s challenge is equal to
c. Otherwise, the entry is assigned 0. Note that a pair of distinct 1-entries
in H defines a collision and that by our assumption that A* is given as
a rewindable black-box, we can play the collision-game for H. By our as-
sumption on the success probability of (4*, B), the fraction of 1-entries in
H is equal to e. Furthermore, since Ext is allowed to run A* as a rewind-
able black-box, and since the pairs (R4-,c) are distributed uniformly, Fxzt
can repeatedly play the collision-game from Lemma 2.1. This leads to the
desired output after 1/(e? — €/2'#) iterations, with high probability. Thus
Ext needs expected time polynomial in T4-(z) and 1/(e — 1/2's). O

Please note that if the protocol satisfies special soundness and = ¢ RX,
then we must have that e < 1/2!#, On the other hand, we have asa corollary
that we can extract a witness for the common string  if the protocol has
the collision-property and = € RX:

COROLLARY 2.1 Let a E-protocol (A, B) for relation R be given, having
the collision-property, and let ¢ € RX. Suppose A* is an arbitrary PPT
prover such that (A*, B) succeeds with probebility € on common input T.
Suppose that € > 1/2'2. Then there ezists a probabilistic algorithm Ext
that outputs some w € RW(z) in ezpected running time polynomial in
Tu-(z) and 1/(e — 1/2'2). The probability is taken over the coin tosses of
Ext and A* and Ext is allowed to run A* as a rewindable black-boz.

If the protocol is collision-intractable, then an arbitrary PPT prover A*
that is only given the common string = as generated by G, has negligible
probability of succeeding in (A*, B). This is the same as saying that (A, B)
is secure against passive atlocks.

COROLLARY 2.2 Let a E-protocol (A, B) for relation R with generator G
be given. Suppose that (A, B) is collision-intractable over R and G. Then,
for an arbitrary PPT prover A* that is given T as generated by G(1%),
(A*, B) does not succeed, except with negligible probability. The probability
is taken over the coin tosses of G, A* and B.

The results above imply that if (4, B) is collision intractable and honest
verifier zero knowledge, then an arbitrary PPT prover A* given just x as
generated by the generator G, can effectively only answer one challenge.
This can be done by preparing a conversation with the simulator.
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2.4.2 Approzimating Special Soundness

Let a 3-protocol (Py, Vp) be given that constitutes an interactive proof for
a given language L C {0,1}*. Suppose now that we are given an input
word z ¢ L. The soundness condition for such proofs requires that in
this case a prover should only be able to answer a relatively small subset
of the possible challenges that the verifier can choose. But it does not
follow that only one challenge can be answered in this case. When designing
cryptographic protocols it is often convenient if we may assume that if = ¢
L, the prover can effectively only answer one challenge. Can we transform
an interactive proof into a new interactive proof that has this property,
thus “approximating” special soundness?

As shown by Damgard [53], we can. The basic idea is to have the prover
and verifier agree on two possible challenges, which are isolated by a cut-
and-choose game. The purpose of such games is to have two mutually mis-
trusting players agree on a random element from some (large) set. A cut-
and-choose game works as follows. The idea is that in each step one party
cuts the set of the remaining possibilities (at random) in two halves, while
the other party chooses (at random) which half they will continue with.
Beforehand they agree on which party will take which role. The distin-
guishing feature of such games is that if at least one of the parties follows
the rules of the game, at least one of the two isolated elements will be ran-
dom. Furthermore, the choosing party can select an element of his choice
before the game starts, an original choice, and have it as one of the isolated
challenges in the end. If the initial choice is random, the other party cannot
distinguish it from the other isolated element.

Note that specifying truly random cuts of the set {0,1}' cannot be done
efficiently in general, since the total number N of possible cuts satisfies

i)

and by assumption, each possible cut is chosen with equal probability. To
specify such a cut, a number of bits exponential as a function of ¢ is needed.
In [90], an efficient method is given to specify cuts that are statistically close
to random. This technique is called interactive hashing (IH). Let the set
we start from be {0,1}* for some ¢. A cut is given by a random hyperplane
in {0,1}* (when viewed as a vectorspace over GF(2)). Then, half of the
elements lie in the hyperplane, while the other half lies outside.

We now apply interactive hashing to our purpose of approximating special
soundness for the protocol (Fp, V). To link the hashing game to our model
of X-protocols, we introduce the following notation: We assume that a
predicate ¢' is given that takes as input pairs (¢, z), where ¢ € {0,1}¢,
and z has length polynomially related to ¢. If ¢'(c, z) = 1, we say that z
is correct with respect to c. The interactive hashing takes place between
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parties P and V, and we assume that for any ¢, P is capable of computing
an z that is correct with respect to c.

1. P selects a random vector ¢ € GF(2)* which is kept secret from V.
This c is called P’s original choice.

9. V selects at random ¢ — 1 linearly independent vectors hy,..., hi—1
in GF(2)".

3. Repeat the following for j = 1,...,t — 1. V sends h; to P, and P
sends b; = h; - ¢ (the inner product) to V.

4. Both parties compute the two vectors cg,c1 with the property that
bj = hj-c; for all j = 1.t — 1. P decides in an arbitrary way which of
the two vectors is called ¢y and announces this to V. Of course, P’s
original choice c is equal to one of co, c1.

5. V chooses v = 0 or 1 at random and sends it to P.

6. P computes a z that is correct w.r.t. ¢, and sends it to V.

In [90], the following is proved about this procedure:

LEMMA 2.2 At the end of step 4 above, an arbitrary cheating V* has no
Shannon information about which of co,c1 is P’s original choice.

LEMMA 2.3 Let P* be any interactive Turing machine playing the role of
P in the interactive hashing. Assume that P* can return correct z-values
for both ¢y and ci with probability €, taken over the coin tosses of V and
P*. There is a probabilistic polynomial time machine M using any such P*
as an oracle that can, on input a random ¢ € GF(2)', compute an z correct
with respect to c in ezpected running time T(¢,1/€), where T is a funclion
that is polynomial in both t and 1/e. The probability is over the choice of c
and the coin tosses of M.

The following protocol (P{H, V{#) integrates interactive hashing with the
interactive proof (Py, Vy) for language L. The players are denoted P{¥ and
VJH, running the programs for Py and Vp as subroutines. Let © € L and

let k denote the binary length of .

1. PIH copies random bits into the random tape of Fy. It then starts

running Py on input z. This results in a first message a. This is sent

2. PIH and V@H go through the interactive hashing process described
above, playing the roles of P and V/, respectively. The purpose will be
to agree on the challenge to be answered. We define the predicate @'
by ¢'(c, 2z) = ¢(z,a,c,z). Thus, a correct z is a value that will make
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Vo accept. At the beginning of step 6 of the interactive hashing, two
values cg,¢; have already been isolated, and Vi # has sent a bit v.
P{H can now obtain a correct z-value by passing c, to Py and relaying
the z returned to Vj/#.

3. V&' uses V; to decide if the conversation (z,a,cy,2) would lead to
accept. If so, Vi’ outputs "accept”, otherwise it outputs "reject” .

(P VY up to and including step 4 of the interactive hashing is called
the preamble of (P{#,V/H). The following lemma shows that we have in-
deed obtained what we were after:

PROPOSITION 2.2 Suppose the input ©* € L and consider the probability,
taken over the coin flips of V{I¥ | that there exists correct answers to both
v =0 and v = 1 in step 2 above. Let (k) be this probability, mazimized
over all possible strategies for the prover. Then 6(k) is negligible in k.

ProoF. Consider a prover P* that plays an optimal strategy in order
to have VGIH accept z ¢ L. This in particular means that we may assume
that P* always sends a fixed first message a which maximizes the number
of c-values for which a correct answer exists. Thus the probability that this
P* succeeds is §(k). It now follows from Lemma 2.3 that if 6(k) is not
negligible in k, there are infinitely many k’s where the fraction of e-values
for which correct answers exist is larger than a polynomial fraction. This
would contradict the soundness of (Fy, Vp). )

Suppose (Py, Vp) is honest verifier zero knowledge, with simulator M. The
following protocol (Mg ¥, Vi#) describes a machine MJ# that a prover can
use to simulate the preamble of (P/",Vi!#) on input any word z and a
private bit b chosen in advance by the prover. This is done in such a way
that the prover can complete the protocol successfully in case the verifier’s
challenge v equals b.

1. M{H runs the honest verifier simulator My for (P, Vp) on input z
to obtain a conversation (z,a,c, z). If this conversation is not an
accepting conversation, M{¥ outputs ? and stops.

2. M{" executes the interactive hashing with V& using the ¢ from the
conversation just produced as the original choice. It names the two
values cg, ¢; isolated by the hashing such that ¢ = . Finally, M({H
outputs z and stops.

We conclude by stating the following property of the protocol (M{H# Vi H)
when executed on common input ¢ € L.

PROPOSITION 2.3 Assume that, on input € L and any bit b, we ezecute
(M V*) where V* is any machine playing the role of V/H . This always
results in M{¥# outputting a correct answer to v — b. If (Po, Vy) is perfect,
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resp. statistical honest verifier zero-knowledge, then the amount of Shannon
information that V* has about which v-value M{H can answer is 0 Tesp.
negligible in k.

PROOF. The proposition follows from Lemma 2.2, the fact that the c-
value used is uniform or statistically close to uniform, and the fact that
when = € L, first there exists a correct answer to any c-value and secondly
M, always produces an accepting conversation. 0O

Note that although z € L, we may not assume that Mg” can execute Py’s
program: Py may have additional auxiliary information which is clearly not
given to M{#, or P, may be unlimited powerful, while M{¥ must run in
expected polynomial time.

2.4.8 Simulation Properties

Let (A, B) be a E-protocol for relation R and suppose it is honest verifier
zero knowledge with simulator M. Let (z,w) € R. By definition M gener-
ates conversations with the same distribution as the conversations between
the honest prover and the honest verifier. If, additionally, M is a special
simulator, we can prove a somewhat stronger result.

Namely, M can perfectly simulate conversations with any verifier that
chooses the challenge independently of the prover’s first message, provided
that the verifier is given to M as a black-box. This is argued as follows. Let
B*(c) denote the verifier who always chooses c as the challenge, for some
fixed ¢ € {0,1}!2. It is immediately clear that M(z,c) perfectly simulates
(A, B*(c)), where w is private input to A and z is common input to A and
B*(c).

Now consider an arbitrary verifier B* that chooses the challenge indepen-
dently from A’s first message a, given as a black-box to M. The distribution
of (A, B") is perfectly simulated by M(z,c «— B*), since the latter is just
selecting a challenge ¢ according to the distribution of B*, and indepen-
dently and uniformly selecting (according to a(-) and subsequently z(-)) a
conversation where c is the challenge. But this is exactly what happens in
the protocol (A, B*). Thus we have the following lemma.

LEMMA 2.4 Let (A,B) be a X-protocol for relation R satisfying special
honest verifier zero knowledge, with simulator M. Let B* be an arbitrary
verifier who chooses the challenge independently of the prover’s first mes-
sage. If M is given B* as a black-boz, it can perfectly simulate the protocol
(A, B*).

The following lemma is straightforward, however, it is interesting to note
that although a X-protocol can be just honest verifier zero knowledge, it
must be witness indistinguishable (against an arbitrary verifier).
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LEMMA 2.5 Let (A, B) be a X-protocol for relation R satisfying honest
verifier zero knowledge. Then the protocol is also witness indistinguishable.

ProOF. The assertion follows from the following general observation. Let
z € RX be the common input and consider two different provers A; and
Az. Suppose there exist w; # wy such that (z,w;) € R for i = 1,2. Then
give w; to 4;. Let B* denote an arbitrary verifier. Now consider the respec-
tive coinflips R4, and Rg4,. Saying that (A, B) is (perfect) honest verifier
zero knowledge is equivalent to saying that for each accepting conversation
the number of possible choices of R4, and Ra, leading to this particular
conversation are (exactly) the same. This is clearly independent of the way
in which the challenge is chosen. m|

2.4.4 Manipulating the Challenge Length

First, we note that the properties we consider in our model (collision-
intractability, collision-property, special soundness from Section 2.4.1, (spe-
cial) honest verifier zero knowledge from Section 2.2.3) are preserved under
parallel composition (that is, the execution of the protocol a number of
times in parallel) of X-protocols. The proof is straightforward.

LEMMA 2.6 Let (A, B) be a Z-protocol for relation R and generator G.
Suppose that it satisfies special honest verifier zero knowledge and collision
intractability (or, the collision-property, or special soundness). Let (4, B")
denote the X-protocol that consists of any polynomial number of parallel
evecutions of (A, B). Then (A', B') is a E-protocol for relation R and gen-
erator G , and satisfies (special) honest verifier zero knowledge and collision
intractability (resp., the collision-property, special soundness).

Next, we consider removing (that is, ignoring) bits from the challenge, as
in some situations we like to have a smaller challenge length in a given
protocol. As an example, we might impose that a fixed number of fixed
bit positions in the challenge is set to 0 always. To simulate the new pro-
tocol, we can only run a simulator for the original and hope that with
good probability the challenge in the output conversation satisfies the same
constraints. However, if we ignore too many bits, the honest verifier zero
knowledge simulator might require too much time?: if we set the last half
of the challenge bits to zero always and if the challenge length is, say, equal
to |z| bits (where & is the common input), then the probability that the
simulator outputs an accepting conversation in which the challenge bits
satisfy the same constraint, is negligible as a function of |z|. Of course, this
problem can be circumvented if we assume that the simulator is special.

*This problem does not occur when ignoring O(log [z|) bits.
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LEMMA 2.7 Let (A, B) be a S-protocol for relation R and generator G.
Suppose that it satisfies special honest verifier zero knowledge and collision
intractability (or, the collision-property, or special soundness). Let (A', B')
denote the S-protocol obtained from (A, B) by ignoring s bits (e.g. setting
the last s bits to 0 always) out of the tp challenge bits (s < tp). Thus, tp =
tp —s. Then (A',B') is a B-protocol for relation R and generator G and
satisfies special honest verifier zero knowledge and collision intractability
(resp., the collision-property, special soundness).

Combining these lemmas, we see that for the case of special honest verifier
zero knowledge, we can in fact construct any challenge size we want,

LEMMA 2.8 Let (A,B) be a S-protocol for relation R and generator G.
Suppose that it satisfies special honest verifier zero knowledge and colli-
sion intractability (or, the collision-property, or special soundness). Let t
be any polynomially bounded function of tg. Then there exists a Y.-protocol
(A', B') for relation R and generator G, satisfying special honest verifier
zero knowledge and collision intractability (resp., the collision-property, spe-
cial soundness), such that tp =t.

In the lemmas above, the challenge size can be increased at the cost of a
larger size of the initial message. Suppose now that (A, B) is a signature
protocol for relation R and generator G (see Section 2.2.7). Using a “chain-
ing technique”, the following proposition shows that, we can increase the
size of the challenge while keeping the size of the initial message constant.
We use the fact that a signature protocol satisfies t4 < 1p.

PROPOSITION 2.4 Suppose there ezists o signature protocol (A, B) for re-
lation R with generator G. Let k be the security parameter. Then there
exists an efficient transformation that takes (A, B) to o signature protocol
(A',B") for R and G, satisfying tp = t(k) for any fized polynomial t(-).

PROOF. Without loss of generality, we may assume that t4 +1 = tp.
Let tg = t(k) be the desired challenge length, a fixed polynomial #(-). For
convenience, put ¢t = t(k). The claimed transformation runs as follows:

Key generation: The prover A’ runs G(1*) to obtain (z,w) € R. Common
input to A’ and B': z. Private input to A’: w.

Move 1: A' computes an initial message a as generated in the protocol
(A, B), and sends a to B'.

Move 2: The verifier B' selects by,...,b « {0,1}, where ¢t = t(k) and
sends these to A'.

Move 8: Put a; = a. By invoking prover A4 on input (z,w), A’ computes
the following values. For i = 1...t, A’ computes an accepting (in
the protocol (A4, B)) conversation (z, a;, ¢, zi) Where ¢; ¢+ @it |b; for
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¢ <tand c; — 0]---|0[b;. A’ sends the a;’s, ¢;’s and z’s to B'. The
conversation is accepting in (A’, B') if and only if (for i = 1...1)
a1 = @, ¢; = aiq|b; for i < ¢, ¢, = 0|---|0|b; and the conversation
(z,ai,c;, z;) is accepting conversations in (A, B).

By construction, the challenge length ¢ for (A', B') can be chosen what we
want it to be, provided t = poly(k). Suppose now that we are given two
accepting conversations in (4', B") for some public string =z with the same
first message @, but with different challenges (b1,...,b;) and (b},...,8).
Let, for j = 1...¢, (aj,c;,2;) and (a_;,c;,z;-) be the respective replies in
those conversations in (A’, B'), and let i be an index such that by # bl
Clearly, this implies that ¢; # ¢!. Take i to be the smallest index such that
¢ # c;. If i = 1, we have a collision in (A, B) with respect to z, as by
definition of (A’, B'), we must have a; = a; = a. On the other hand, if
¢ > 1, ¢i_y must be equal to ¢}_,. Thus we have ailbi_1 = af|bl_,. But
then a; = a and we have a collision (z,ai,¢:,2:), (z,a},cl,2!) in (A, B).
Therefore, (A’, B') is collision-intractable over R and G.

As for special honest verifier zero-knowledge of (4, B'), we now exhibit a
special simulator M’ for (4’, B'), that runs the simulator M for (A,B) asa
subroutine. M’ starts by receiving a public string & and uniformly chosen
challenge bits by,...,b, as input. It proceeds by putting ¢; = 0]---10|b,,
and feeding z and ¢, to M. After M has output an accepting conversa-
tion «,a¢,¢4,2 in (A, B), M’ repeats the following for i = ¢t — 1...1. Put
¢i = ai11|b;, feed z and ¢; to M and receive an accepting conversation
T, ai, ¢, 2; from M. It is now clear that M’ generates accepting conversa-
tions in (A’, B') with respect to z, with exactly the same distribution as
the conversations with the honest verifier in (A, B"). O

Note that each bit of the new challenge size costs one conversation in the
original protocol. It is immediately clear that this can be improved to one
conversation per t — tg bits of the new challenge. More efficient transfor-
mations of this type exist for protocols (A, B) based on one-way group
homomorphisms (see Sections 2.5.1 and 2.5.2).

2.4.6 Trade-offs

At the expense of increased communication complexity, we can compile Z-
protocols satisfying honest verifier zero knowledge and collision intractabil-
ity (or special soundness) into ones that additionally have a special simu-
lator.

PROPOSITION 2.5 Let (A, B) be a Z-protocol for relation R with generator
G. Suppose that (A, B) is honest verifier zero-knowledge, and collision-
intractable over R and G {or has the collision-property, or satisfies special
soundness). Then (A, B) can be compiled into a L-protocol (A', B') for
relation R and generator G, that is also collision-intractable over R and
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G (vesp., has the collision-property, satisfies special soundness) but that
additionally satisfies special honest verifier zero-knowledge.

PROOF. Let I of polynomial size in the security parameter k, and put
| « tp. We abbreviate tp to . The prover A’ and the verifier B’ run A
and B resp. as subroutines. The claimed transformation works as follows.

Key generation: The prover A’ runs G(1¥) to obtain (z,w) € R. Common
input to A’ and B': z. Private input to A w.

Move 1: A' computes ! initial messages a1, - --, a1, each of which generated
as in the protocol (4, B), and sends these to B'.

Move 2: The verifier B’ selects ¢ = (b1,--. ,b;) «— {0,1}! and sends ¢ to
Al

Move 3: A’ selects B1,...,01 < {0,1}*7%, and puts ¢; = Bilb1y.--rc1 =
Bi|b;. A’ finally computes 21,...,2 such that (z,a;,ci,z) is an ac-
cepting conversation in the protocol (4, B), for = = 1...1. A’ sends
the ¢;'s and z’s to B'. The conversation is accepting in (A', B') if
and only if the last bit of ¢; is equal to b; and a, ¢, 2 is an accepting
conversation in the protocol (4,B), fori=1... 5

First, we show that collision-intractability is preserved under this compi-
lation. Suppose we are given two accepting conversations in (A4', B'), with
the same initial message ¢ = (a1,...,a), but with different challenges
¢ = (by,...,br) and ¢ = (b},... ,b). Let the respective replies in those
conversations be B1,-..,81, z1,...,2 and B yveiBy B .., 2}, and let i be
an index such that b; # b}. Then clearly, z, a;, Bi|bi, z: and z, a;, Bi|b, zi are
two accepting conversations in (A, B) for the same common string z, with
B:|b; # Bi|bt. We conclude that (A’, B') is collision-intractable over R and
G (resp. satisfies special soundness).

The special simulator M' for (A', B') runs (A, B)’s simulator M as a
subroutine, and is defined as follows. We run the simulator M for (A, B)
a sufficient number of times on the common input z such that we have
gathered ! conversations in (A, B) where the last bit of the challenges is 0,
and 1 ones where this bit is 1. The probability of failure must be negligible.
When given ¢ = (by...b:) € {0, 1}!, M’ just selects for each bit b; in c a
conversation from those generated as above with the last bit equal to b;.

Let L = max(l, |z|). We use Chernoff’s Bound to show that running M
3L times is sufficient. Let Xy,..., X, be independent random variables,
taking on values in {0,1}. Let p < 1/2, and suppose that the probability
that X; takes on value 1 is equal to p, for each i. Then, for all § with
0 < 6 < p(1 — p), Chernoft’s bound says that

Prob (

n ; 2
Zuimihs —p] > 5) <2- cxp_'ﬂ_ﬂél:ﬁ'".
n



2.4. Basic Theory of Z-protocols 45

We apply this inequality to our case as follows. Let m; denote the number
of times that M outputs a conversation with least significant bit of the
challenge equal to 1. We have 0 < m; < 3L. Note that if 1/3<m,;/(3L) <
2/3, then we have gathered those conversations we are after. Put § — 1/8,
P = 1/2, and n = 3L in the Chernoff’s bound. Then we see that the
probability p that we do not succeed satisfies

p<2-exp 8l
which is negligible as a function of |z|. This concludes our description of
the special simulator M’ for (A’, B'). Finally, it is clear that the honest
verifier in (A', B') receives I conversations from (4, B) where each of these
conversations is according to conversations with an honest verifier in (4, B).
By construction, it is clear that M’ does the same: using simulator M to
select honest verifier conversations in (4, B) according to the last bit in the
challenge, while the selection is according to uniform bits. ]

REMARK 2.1 The transformation from Proposition 2.5 can be modified
such that log |z| challenge bits of the c;’s (from the conversations in (4,B))
are “reserved” for the bits in the challenge c (from the protocol (A', B').
This reduces the communication in (A', B'), but increases the running time
of the stmulator.

When given a collision-intractable hash-function (a function that maps el-
ements from a large set onto elements of a much smaller set, such that it is
infeasible to find two different inputs that map to the same value, see for
instance [114]), quasi-signature protocols (see Section 2.2.7) can be con-
verted into signature protocols. The protocol works just like the one from
Proposition 2.4, except that in the current case we may not assume that
ta < tp. The hash-function simply maps the a;-values from the protocol
in Proposition 2.4 to bit strings of length t5 — 1. Of course, we must have
tp >> 1. If the protocol we start from does not have a special simulator,
we first apply Proposition 2.5,

DEFINITION 2.1 Let (A, B) be a quasi-signature protocol for relation R and
generator G and let H be a family of collision intractable hash functions.
Then Ry consists of pairs ((z,h), w) where (z,w) € R and h € H has
output length tp — 1. The generator Gy first runs G(1*) to get (z,w) € R.
Then it selects h € H with the desired output length.

PROPOSITION 2.6 Suppose there ezists a quast signature protocol (A, B)
for relation R and generator G and that a Jamily H of collision intractable
hash functions exists. Then there ezists a signature protocol (A’, B') for
Ry and Gy.
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PrOOF. If needed, first apply Proposition 2.5. So we may assume that
(A, B) has a special simulator. Consider the following protocol. Let ¢ denote
ta+ 1.

Key generation: The prover A’ runs G3(1¥) to obtain (z,w) € R and
h € H. Common input to A’ and B': z, h. Private input to Al w.

Move 1: A' computes an initial message a as generated in the protocol
(A, B), and sends a to B'.

Move 2: The verifier B' selects by, ...,b < {0,1} and sends these to A'.

Move 3: A' computes ai,...,a; and 21,---; %t such that ai,ci,z; is an
accepting conversation in the protocol (A4,B), for i = 1...%. Here
a =4a and c = h(az)lbl,. ey C—1 = h(ﬂ.t)‘bt._1 and c; = Ol ¥ IOibg
A sends the a;’s, ¢;'s, and 2;’s to B'. The conversation is accepting
in (A',B') ifand only ifay = @, ¢i = h(aip1)|bifori=1...t=1, ¢t =
0| - - - |0|b; and all conversations z, @i, Ci, 2i are accepting conversations

in (A, B).

The remaining part of the proof is similar to that of Proposition 2.4, except
that in addition the collision-intractability of h is used. O

2.5 Existence

We demonstrate that -protocols satisfying special honest verifier zero
knowledge and collision intractability exist under such assumptions as the
existence of one way group homomorphisms, claw-free pairs of trapdoor
permutations, the difficulty of computing discrete logarithms, RSA inver-
sion or factoring integers. Since in all these results we can achieve that
the challenge size is larger than the size of the first message, we state the
results in terms of signature protocols. We also introduce special claw-free
pairs of trapdoor permutations and special one-way group isomorphisms.
Some of our most efficient constructions are based on these functions. In
Chapters 3 and 4 we frequently assume the existence of a L-protocol with
such properties as (special) honest verifier zero knowledge and collision in-
tractability (or special soundness). This chapter provides the ways that are
currently known to us, to realize such protocols.

We emphasize that the Z-protocols presented in this section are the build-
ing blocks to our results in Chapters 3 and 4. Please recall that E-protocols
as such do not constitute any reasonable cryptographic service or applica-
tion 3. From a security point of view, for instance, honest verifier zero
knowledge does not guarantee protection in an adaptive scenario (that is,

3However, T-protocols satisfying honest verifier zero knowledge and collision-
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a setting where (computationally bounded) players may deviate arbitrarily
from the protocols). From the results in Chapters 3 and 4 on partial proofs,
witness hiding, (general) zero knowledge protocols, identification schemes,
secret ballot elections and digital signatures, the usefulness of X-protocols
in adaptive settings becomes clear.

2.5.1 One-Way Group Homomorphisms

A family of one-way group homomorphisms F with generator G is a col-
lection of triples (f, K, L) where K and L are groups and f : K — L is
a group homomorphism. Furthermore, if we let k; denote the number of
bits needed to represent an element of L, it is required that for w € K,
f(w) can be computed in time polynomial in ky. Similarly, the group opera-
tions (multiplication/addition and inversion) in K and L are required to be
computable in time polynomial in k7. On input 1¥ (where k is the security
parameter), the PPT algorithm G outputs an element (f, K,L) € F with
ks =k in a suitable description. Also, it must be possible, in probabilistic
polynomial time, to sample uniformly from K and to decide membership
of K and L. Finally, F is one-way, if no PPT algorithm, receiving as input
(f,K,L) (as generated by G) and x (where z = f(w) for uniformly cho-
sen w) can compute w' € K such that f(w') = z, except with negligible
probability in k.

Typical examples of one-way group homomorphisms are discrete exponen-
tiation modulo a prime (under an intractability assumption for computing
discrete logarithms, see also Section 2.3.2), or discrete exponentiation mod-
ulo a composite (under an intractability assumption for factoring integers,
see also Section 2.3).

We will now show that one-way group homomorphisms (OWGH’s) imply
signature protocols.

DEFINITION 2.2 Let F be a family of OWGH’s. Then Ry is the binary

relation consisting of pairs ((f,K,L,x1,...,2k41), (w1, ... ,Wet1)), where
(fK,L) € F and f(w;) = z;. GF is the generator that on input 1¥ runs
G to get (f,K,L) and then selects wy,..., wry1 at random from K and

finally computes z; = f(w;). Here k denotes the number of bits needed to
encode elements of L, and G is a generator for F.

PROPOSITION 2.7 Suppose F is a family of one-way group homomorphisms
with generator G. Then there exists a signature protocol for Rx and Gr.

PROOF. Consider the following protocol.

intractability may be viewed as digital identification schemes secure against ran-
dom challenge attacks. See Section 3.6.
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Key-generation: Aputs ((f, K,L,z1,...,3), (w1, - Jw;)) — GE(1%) with
¢ = k+1. Common input to Aand B: z = (f, K, L, 1, ..., 4). Private
input to A: w = (wy,...,we).

Move 1: A selects u — K, computes a «— f(u) and sends a to B.

Move 2: B selects cy,...,ct — {0,1} and sends c to A.

Move 3: A computes z — uwS ---wj* and sends z to B, who accepts if

and only if f(2) = azi* + - zf*.

The protocol given above is clearly complete with probability 1. Special
honest verifier zero knowledge is clear by standard arguments: first choose z
and ¢1,...,c; at random, then use this to compute an a-value. It is also clear
that the challenge is one bit longer than the first message from the prover.
Thus, only the collision intractability property remains to be argued. Let
a collision (z,a,c1,...,¢t,2), (z,a,c},...,¢,2") be given. Define ¢ = z/2’
and v; = ¢; — ¢}, for i = 1...t. Then f(o) = z' --.z;* where the ;’s
are equal to 0, —1 or 1 and at least one of them is non-zero. Now suppose
that there exists a probabilistic polynomial time algorithm E that receives
z as generated by Gy and outputs a collision for z with non-negligible
probability. Given a triple (f, K, L) as output by G and a random member
Y € L we now show how to invert f at Y, running E as a subroutine as
follows. Select i at random from {1,...,t} and wy,..., Wi—1,Wit1,---,Wt
at random from K. Next, put z; = Y and z; = f(w;) for 1 < j <t and
j # i. Finally, put z = (f, K, L,#1,...,2¢) and present z to E. We may
assume that E outputs a collision for z with non-negligible probability.
With notation as above, we have that +; # 0 with probability at least 1/2.
This is because = gives no information about i. But now we have

Vi = ViVl |, gy T W1 YT —ie
flo™w; Wy Wip wy )

Flo)™ Flawy) 7T flwig) TV f i) T f(w) T =
. i1 —pinrs e 2
f(o-)"!'ixl_"fn']“l - _xi_’rl-’rn-1xifla’rn+1 e Tivte — z?‘ =2:=Y.
Thus we have a contradiction with our assumption that the group ho-
momorphisms in F are one-way. m]

2.5.2 Special One-Way Group Isomorphisms

We introduce special one-way group isomorphisms.

DEFINITION 2.3 Let F be a family of one-way group homomorphisms as
before. F is called a family of special one-way group isomorphisms if the
following two additional requirements are satisfied.

1. All(f: K — L) € F are isomorphisms.
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2. There exist probabilistic pelynomial time algorithms Dy and Dy with
the following properties. Algorithm D, takes as input an element (f :
K — L) € F and outputs an odd prime T} (typically depending on
the element). Algorithm D, takes as input (f : K — L) € F, any
g € L and Ty, and outputs 6 € K such that f(8) = g77.

EXAMPLE 2.1 We now give ezamples of special one-way group isomor-
phisms. The first ezample is discrete exponentiation in a group G, of prime
order q, which is trivially an isomorphism. When implemented as in Sec-
tion 2.3, the collection of groups {G,} (groups G4 of prime order q) has an
efficient test of membership. Defining f as discrete ezponentiation (taking
the ezponent modulo q) with respect to a fized generator of G,, we have
a family of special one-way group isomorphisms. Nezt consider RSA. Let
n be an RSA-modulus and let the prime v be such that it does not divide
#(n). A family of RSA functions RSA,, , based on this, will certainly suf-
fice (see Section 2.3.3. If we furthermore require that v is larger than n,
than ezponentiation modulo n is an isomorphism anyway, with T = v.

It turns out that we can do the transformation from Proposition 2.7 more
efficiently for special one-way group isomorphisms. There, we have to in-
troduce a new z; for each bit of the new challenge. By Lemma 2.9 below
we have that if we choose the ¢; from [0,T — 1] instead of {0,1} in the pro-
tocol of Proposition 2.7 and use special one-way isomorphisins, it satisfies
collision-intractability and special honest verifier zero knowledge as well.
But moreover, we only need to introduce ¢/|T| z;’s. This results is impor-
tant in Section 4.5 for the construction of secure and efficient signatures.
We have the following proposition.

PROPOSITION 2.8 Let F be a family of special one-way group isomor-
phisms, and let k be the security parameter. Then there exists a signature
protocol where the size of the common input is (t/|T|)k bits and t is the
challenge length. In particuler, if t and |T| are linear as a function of k,
then the length of conversations, including the common string, is linear as
a function of k.

The proof of Proposition 2.8 follows the lines of the proof of Proposition 2.7.
It differs at one point, which is filled in by the following lemma.

LEMMA 2.9 Let f, K, L and the prime T be as above. Suppose we are
given 0 € K, z; € L and a non-zero integer +; such that fle) =z} and
T does not divide v;. Then we can efficiently compute A € K such that
f(A) =xz;.

PROOF. Let s and I be integers such that sy; = 1+IT. Let 6 be such that
f(8) = zT. By our assumptions on JF, 6 can be efficiently computed. Let A
denote §~'0*. Then f(A) = f(§~'0°) = f(6)~*f(0)* = 27 T2 =2;. O
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We now give two examples of signature protocols based on special one-way
group isomorphisms. In both cases, we can get |T| linear as a function of
k. First, based on Schnorr’s protocol [106], we have the following signature
protocol (A’, B'), which we will refer to as DL". Fix any s > 1 polynomially
bounded in |g|- The protocol obeys the construction from Proposition 2.8.
We are given a group G4 of prime order g, where computing discrete loga-
rithms is hard, and random g € G,. Let the set-up be as in Section 2.3.2.

Key-generation: G is as in Section 2.3.2, except that this time it selects
wy,...,Ws — Zg, and computes hy g*t,..., hsy — g*¥s. A runs G,
and obtains = = (Gq,9,h1,...,hs) and w = (w1,...,w,s). Common
input to A’ and B': z. Private input to At w.

Move 1: A’ selects u € Z, and computes @ — g*. A’ sends the a to B'.
q g

Move 2: B' selects c1,...,¢s — Z, and sends, for i = 1...s, the ¢i's to
A

Move 3: A’ computes z — u + cqwy + - - - ¢,w,s mod g and sends z to B',
who accepts if and only if g* = ah{* - - 3.

Note that by choosing s large enough in DL*, we get any challenge length
we may desire. For instance, if elements of G, can be encoded by a number
of bits linear in |g| (as is the case when G, is the unique subgroup of order
g in Z},, where, for instance, p = 2¢ + 1), then to achieve t = tp linear in
lg|, s can be a constant. In the latter case, the length of the conversations,
including the common string is linear as a function of k.

Of course, we can do a similar construction based on RSA. The value T = v,
where v is the RSA-exponent, can be chosen of length linear in |n|, where n
is the RSA-modulus. But there exists an interesting alternative. With some
modifications, the scheme (A4, B) based on RSA from Section 2.3.3, can be
turned into a signature protocol (A', B), which we will refer to as RSA*.
We are given an odd integer n that is the product of two distinct primes
p and ¢, and a prime v that does not divide ¢(n). Let e be polynomially
bounded in |n|. If we want to achieve a given challenge length tp: in the
following protocol, we choose e minimal such that v¢ > tp:. Note that if
the prime v satisfies v > n, then exponentiation to the v-th (or v°-th)
power modulo 7 is guaranteed to be a bijection. Let the set-up be as in
Section 2.3.2.

Key-generation: A’ runs G and gets (z,w) where z = (n,v,h,e) and
w € Z. is such that h = w*" mod n (notice the slight change in
the definition of the generator G). Common input to A" and B': z.
Private input to A': w.

Move 1: A’ selects u € Z;, and computes a « 2" mod n. A’ sends a to
B'.
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Move 2: B’ selects ¢ «+— Z,- and sends ¢ to A’.

Move 3: A’ computes z — w®u mod n and sends z to B’, who accepts if
and only if z*° = ah® mod n.

We indicate that the ability to compute collisions in the protocol RSA*
implies the ability to compute v-th roots modulo n. We are given a random
h € Z} and present h and n to the collision finding algorithm. We compute
h+ as follows. From any collision it outputs, we can compute z € Z and
¢ € Z, such that z°° = h° mod n. Write ¢ = vf¢' with ged(v,¢') = 1.
Then we must have 2" = A< mod n, since taking v-th powers modulo n
is a bijection. Raising both sides to the power 1/c¢' mod v gives us the
desired value. The protocol RSA* plays an important role in our results
from Section 4.7. If we want to achieve tg: = v° linear in the security
parameter k, we just choose e large enough. In that case, the length of the
conversations, including the common string is linear as a function of k.

Our interest in special one-way group isomorphisms comes additionally
from the fact that we can build very efficient X-witness hiding proofs of
knowledge from them (see Proposition 2.9). These will satisfy special sound-
ness and honest verifier zero knowledge. Such protocols can also be seen as
very efficient and secure identification schemes, as we will indicate later.
Later on, in Chapter 3, we will show how protocols based on these functions
lead to very efficient general zero knowledge proofs.

Let g € L. Now consider the following function fg.
fo:[0,T-1xK—L

(w1, w2) = g"* f(ws)

DEFINITION 2.4 We define the relation Ry as Jollows. It consist of all pairs
(z,w) where x = (f,K,L,T,g,h) and w = (wy,ws) such that folwy,wy) =
h. The corresponding generator Gz runs the generator G for F, com-
putes T', selects w1, wy and g at random and finally computes h as h «

fg(wl ) ’LUQ) = h.

PROPOSITION 2.9 Let F be a family of special one-way group isomor-
phisms and let k be a security parameter. Then there erists a X -protocol
(A, B) for relation R and generator G that satisfies special honest veri-
fier zero knowledge and the collision property. Furthermore, the protocol is
collision-intractable and witness-hiding.

PROOF. Consider the following protocol.

Key-generation: A runs Gr toget z = (f,K,L,T,g,h) and w = (w;, w,).
Common input to A and B: z. Private input to A: w.
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Move 1: A selects uy « [0,T — 1] and uz « K, computes a « fg(ul,uz)
and sends a to B.

Move 2: B selects ¢ « [0,T — 1] and sends ¢ to A.

Move 3: A computes § € K such that f(8) = gl, z1 « w1 +cwy mod T
and zg « §urtew div Tyusw§. Finally, A sends z = (21,22) to B, who
first computes 8. Then B accepts if and only if fo(21,22) = ah®.

The honest verifier simulator clearly chooses ¢ and z; at random from
[0,T — 1] and 2 at random from K, and computes a «— fo(21,22)h™¢. For
the collision-property, note that from a collision we can always compute
non-zero a and B from [-T 4 1,T — 1] and v € K such that g*f(v) = hA.
Now compute B’ such that 33’ =1 mod T and # € K such that f(8) = h7.
Put
w) = af mod T,
wh = ,Y,G'éa,ﬁ' div Tg-(86' div 7)_

Then we have fy(w},w}) = h. Collision-intractability: suppose there exists
an efficient algorithm for generating collisions, when given = as generated by
G . It can be turned into an efficient algorithm for inverting the functions
in F as follows. First note that from a collision output by that algorithm,
we can compute a witness w' = (w},w5) for . But since for each g and h in
L, there are exactly T' pairs (wy,wg) such that fg(wl,wg) = h and since =
gives no information about which pair was used in the generation, (w},w5)
will be different from (wy,w2) with probability (T — 1)/T. But in that case,
we have f,(wi,w2) = fq(w},w}). This implies that gr—* = f(wy wh),
where w; # w) since f is an isomorphism and (wy,ws) # (w],ws). But
since we must have that T’ does not divide wy —w}, we can compute A € K
such that f(A) = g by Lemma 2.9. But this means that the one-wayness
of F is contradicted. As for witness hiding, note that for each conversation
(z,a,c,z) and for each such pair (wy,ws), there are T' pairs (u1,us2) that
fit with the conversation. Thus, by the random choice of u; and usg, the
protocol is witness indistinguishable. Collision-intractability and witness-
indistinguishability now imply that the protocol is witness hiding. O

If we would like to use the protocol from Proposition 2.9 for the purpose of
secure identification, we only need to assume that the challenge length |T|
is large enough, say linear in the security parameter k: an efficient attacker
V* that succeeds in extracting enough information from A (by querying
A in any adaptive fashion), to later pass successfully as A, must know a
witness by the collision-property (see Corollary 2.1, and note that 1/2!7!
is negligible as a function of k) and the fact that = has a witness (since
it is generated according to G 5). The existence of such an attacker would
contradict the fact that the protocol is witness hiding.



2.5. Existence 53

Interestingly, if we define F as in Example 2.1 (taking ¢ large enough in
case of discrete logarithms, and taking v large enough in case of RSA) then
we get Okamoto’s identification schemes [93] based on discrete logarithms
and RSA, respectively. Thus our protocol can be seen as a generalization
of Okamoto’s result.

In the above nothing is required about what happens when the prover
presents z such that for no w, it holds that (z,w) is in the relation. And we
may not exclude the possibility that for some z of that kind, the prover will
be successful! Nothing can be said about what the verifier may conclude
from a successful run of (A, B), if it is not given that z was generated
according to the prescribed generator. In Section 3.3, we will apply this
protocol to special types of bit commitments. There, the prover must show
that the contents of a commitment satisfies certain constraints and that
the prover can “open” the commitment. For situations as the latter, we
will need that the protocol is a proof of knowledge. Therefore, we state the
following proposition.

PROPOSITION 2.10 Let F be a family of special one-way group isomor-
phisms. Suppose F' is a family of special group isomorphisms (dropping
the requirement on one-wayness) such that the length of T is linear in k,
F C F' and membership of F' can efficiently be tested, then the protocol
(A, B) from Proposition 2.9 is a proof of knowledge for relation Ep sai-
isfying special soundness and special honest verifier zero knowledge. The
length of the conversations is linear as a function of k. Naturally, in or-
der for (A, B) to be witness hiding, the instances should still be generated
according to Gr.

PROOF. First note that the protocol is complete for relation fZ;-«, since
the one-way property is irrelevant there. The collision-property remains
intact as well. By incorporating an efficient check, whether a given ferF,
in the verification of a conversation, we then conclude that the protocol
satisfies special soundness. The length of T' guarantees that if A* has non-
negligible probability of making B accept in (A*, B), then the knowledge
extractor from Corollary 2.1 runs efficiently. O

F' can, for instance, be realized by taking discrete exponentiation in Gy,
where G, is the unique subgroup of order ¢ in Z; and, say, 2¢+ 1 =p. In
this case we have F' = F. Another example of F' is exponentiation to the
v-th power modulo an integer n (v > n, v prime). Then F is the subset of
functions where n is an RSA-modulus.

2.5.83 Claw-Free Pairs of Trapdoor Permutations

Claw-free trapdoor permutations were defined in [69] and [70]. Informally,
a pair f = (fo, f1) of permutations fy and f; of a set Dy is called claw-free
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if it is infeasible to compute, given only f and Dy,
b,b' € D; such that fo(b) = f1(b')-

The following notations are from [70]. Let fo and fi be two permutations
of the same domain D. For any a € {0,1}* and for any b € D, define the
function fig)(b), composed of fp and fi, as follows.

f[a](b) = fﬂ1(fﬂn(' T (fm{b)) 7 ))s

where for some positive integer ¢, a = ay|---|a; and a; € {0, 1} for i =
1...t. Note that for each fixed a € {0,1}*, fia)(-) permutes Dy. When we
have a pair of such permutations fo and f, we will sometimes simply say
“the pair of permutations f”, its constituents fo and fi, permutations of
the same domain, being understood. Also, we will sometimes refer to the
domain of a pair f as Dy. The proof of the following lemma is elementary.

LEMMA 2.10 Let f be a pair of claw-free permutations. It is infeasible to
find a,a’ € {0,1}*, neither one a prefiz of the other, and b,b' € Dy such
that

Flay(B) = Fran(¥)-

PRroOF. By contradiction. Suppose we could find the values in question.
Put a = ay|---|a; and o’ = aj|---|ay. Let j be the smallest index such
that a;j # aj. Such j exists by our assumption on a and a'. Say a; = 0 and
oy =1.1f 5 =1, define a = b and 8 = V. Else, denote a;41|--*|a: by ¥
and aj, |- |a; by 6. Put a = fi,)(b) and B = fig)(b'). Then, by the fact
that fo and f; permute the same set, we must have fo(a) = fi(8). This
contradicts the assumption (fo, f1) is a claw-free pair. O

Informally, a family of claw-free trapdoor permutations pairs is a collec-
tion of efficiently computable claw-free pairs f permuting efficiently sam-
plable (with uniform distribution) sets Dy, for which we are given an ef-
ficient generator that outputs a description of a pair f from this family,
together with a description of the domain Dy and trapdoor information
sg. It is assumed that membership of Dy can be efficiently tested given
just Dy’s description. Given sy, the inverses fo' and f;! can now also be
efficiently computed. Thus, any computationally bounded adversary who
sees only f and Dy, as output by the generator, cannot find a claw for
f, while the party that generated f, having access to sy, can efficiently
compute claws and invert fo and fi. Also notice that this party can also
efficiently compute (fjo) ' (b) for any a € {0,1}* and any b € Dy. For a
precise definition, see [70].

PROPOSITION 2.11 [70] If factoring integers is intracteble, then a family
of claw-free trapdoor permutations exists.
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The Legendre-symbol of a (non-zero) residue z modulo a prime 7, denoted
L.(z), is equal to 1, if z is a square modulo r (a “quadratic residue”) and
-1 otherwise (z is then called a “non-quadratic residue”). For each non-zero
z,y € Z,, we have L.(zy) = L.(z) - Ly(y). For our composite n = pg, the
Jacobi-symbol of a (non-zero) residu z modulo n, denoted J,(z), is defined

as Lp(z) - Lq(z).

The family of functions from the proposition above is defined as follows.
Let n be an integer that is the product of two primes p and g, such that
p =3 mod 8 and g = 7 mod 8. Then, —1 is a non-quadratic residue modulo
pand q, J,(—1) = 1 and J,(2) = —1 (see for instance [78]), In the following,
we will refer to these integers n as Blum-integers (see also [70]). For any
Blum integer n define

Dn={0<x<%|Jn(z):1}.

Note that by definition of the Jacobi-symbol, we must have ged(z,n) =1,
for all z € D,,. Moreover, membership of Dy can be efficiently tested since
Ju(z) can be computed efficiently given just n and z. From n, a pair of
claw-free permutations fp and f; of D,, is constructed as follows.

fo: Dy — Dy

{xzmodn:0<m2modn<§
T — 9

—z?modn: % <z’ modn < n,
fl:Dn_’Dn
L 4x2m0dn:0<4m2modn<§
x —4z® mod n : ¥ < 42* mod n < n.

Given the factorization of n, fy and f; can be efficiently inverted: for
instance, a square-root of a residue @ modulo a prime r with » = 3 mod 4,
is computed as a{"™t1)/% mod r. Thus, given a square a € ZY, we can effi-
ciently compute a root (if we know p and ¢q) by applying the observation
above in conjunction with the Chinese Remainder Theorem (see for in-
stance [78]). Furthermore, in [70] it is shown that given z,y € D, such that
Sfolz) = fi(y) (a “claw”), the factorization of n can be efficiently computed.
Basically, the argument shows that from a given claw, one can efficiently
compute two different (even when changing the signs) square-roots of the
same square modn. This immediately leads to the factorization of n.

We now show that claw-free trapdoor permutations give rise to signature
protocols in a natural way.

DEFINITION 2.5 Let F be a family of claw-free pairs of trapdoor permuta-
tions with generator G and let f € F denote such a pair (fo, f1) and let
f~! denote the trapdoor that allows for efficient inversion of fy and f.
Putz = (Dy, f) and w = f~1. Then R is the binary relation consisting of
all such pairs (z,w).
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PROPOSITION 2.12 Let F is a family of claw-free pairs of trapdoor permu-
tations with generator Gr. Then there exists o signature protocol (A, B)
for Rx and Gr.

PROOF. Let a security parameter k be given, and let ¢t = tp be of poly-
nomial size in k. Consider the following protocol.

Key-generation: A selects (z,w) by running G(1%). Let D; denote the
domain of the pair f. Common input to A and B: z = (Dy, f).
Private input to 4: w = f~L.

Move 1: A selects a «— Dy and sends a to B.
Move 2: B selects c «— {0,1}* and sends c to A.

Move 3: A computes z f[:]l(a.) and sends z to B, who accepts if and
only if fig(z) =a.

By proper choice of t, we have t = tp > ta. As for collision intractability,
note that given two accepting conversations (z,a,c, z) and (z,a,c’, z') with
¢ # ¢', we immediately have a claw for the pair f by applying Lemma 2.10.
Finally, a special honest verifier zero-knowledge simulator runs as follows.
Select ¢ «— {0,1}!, z — Dy and compute a < f{(z). Then z,a,c, 2 1s an
accepting conversation with the right distribution. m]

2.5.4 Special Claw-Free Pairs of Trapdoor Permutations

We now modify the definitions from [70] and define a family of special claw-
free pairs of trapdoor permutations. In some cases, one would like that any
polynomial collection of claw-free trapdoor permutation pairs with security
parameter k works on essentially the same domain. Since this property is
not provided by the general definition in [70], nor by their implementation
based on the difficulty of factoring integers, we modify this definition as
follows.

DEFINITION 2.6 Letk be the securily parameter. A family of claw-free trap-
door permutations pairs F = {F;} is called special if, additional to fo, fi,
f,]_l, fi! and the description of Dy, its generator G outputs, on input 1%,
an efficient embedding® «j : {0,1}E — Dy, where k only depends on k.
Furthermore, 2E/#Df > 1/k® for some constant ¢ and sufficiently large k.

“Here, an efficient embedding means the following. xy, which is injective, effi-
ciently maps any k bitstring to an element of Dy. Furthermore, one can efficiently
decide whether or not any given element of Dy is in the image of «s. Also, given an
element y in the image of ky, one can efficiently compute = such that «y (z)=yv.
Finally, for our purposes, it is sufficient if s is defined on all, except for maybe

a negligible fraction, of {0,1}*.
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Note that this definition® guarantees that for k sufficiently large, the prob-
ability that a random element of Dy is in the image of £, is non-negligible
for each permutation pair f as output by G(1*).

Let a Blum integer n be given as before. We will now demonstrate how
we can construct a pair of claw-free permutations f; and f; of Z;,, from a
pair of claw-free permutations (¥p, F1) of D,,. The basic idea is to partition
Z}, into four pairwise disjoint subsets D; ; of the same size, one of which
is equal to Dy, and define 4 bijections 7; ;, ¢,7 € {—1,1}, between these
sets and D,. Next, the indicator function ¢ maps an arbitrary element
z € Z;, to the pair (i,j) with the property that z € D; ;. For b = 0,1,
fv is defined as follows. Given z € Z},, map z into D,, with the relevant
bijection (depending on which of the subsets  is in) apply Fj, and map
the result back into the subset that z is in.

More technically, this process works as follows. For i, j € {-1,1}, the sets
D; ; are defined as

D;; ={0 <z <n|sign,(z) =i and Ju(z) = 5},

where sign, (z) is equal to 1 if 0 < z < n/2 and equal to —1 if n/2 <
z < n. Note that D, ; = D,. Then, the functions 7;,; are as follows. The
function 7y, is the identity function, and T 110 mapsz € D_;; to —z mod
n. Finally, if j = —1, then 7; _; first flips the Jacobi-symbol of z € D; _ by
computing 2z mod n. This is the output of 7;,_; unless /2 < 22 mod n <
n in which case the output is —2z mod n. From the properties of Blum-
integers as given above, it is easily derived that the sets D; ; partition Z,,
into 4 disjoint sets of the same size and that the functions 7; ;7 are bijective.
It also follows that the indicator function o is well-defined for all z € Z;.
Define the new pair of claw-free trapdoor permutations as follows.

fo:Z, — Z,

T Tg_(lz) o Fp o To(z) (),

f] E Z; e Z;
x 1'0_(1:) o F1 07,5 (x).
The functions sign,,, o and 7; ; (and 'r;jl) can be efficiently computed when
given the modulus n. Thus fo and f; can be efficiently computed when

given n. Furthermore, fy and f; can efficiently be inverted when given the
factorization of n.

*We will also assume that the pair f, as output by G(1¥), can be represented
by a k-bit string and that from such a description, the corresponding embedding
xs and the domain Dy can efficiently be derived. Finally, we assume that & <k
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LEMMA 2.11 fo and f constitute a pair of claw-free permutations of zy,
if Fy and Fy constitute a pair of claw-free permutations of D.

PrOOF. Observe that fo and fi, when restricted to D;;, are in fact
permutations of D;;, i, € {0,1}. Now suppose that we can compute
x,y € Z) such that

folz) = f1(y),
given only n, but not its factorization. It follows that

’rg(i) o Fy o Toz)(T) = 'ro(;) o Fy o 743 ()
But then we must have, for some 7,7 € {—1,1},
o(z) = a(y) = (i,4),

by the first remark and the fact that all D;; are disjoint. Therefore, we
have

Fo(7i,5(x)) = Fi(7,5 (),
with 7; ;(2), 7i.; (y) € Dna. Thus we have created a claw for Fy and F1. O

We can now define our special family F of claw-free pairs of trapdoor
permutations based on the difficulty of factoring integers, by defining a
special generator G.

Let N(k) denote the set of all Blum-integers n such that OEL. ol B,
Let n € N(k), and let f = (fo, f1) be the pair of claw-free permutations of
Z?, as constructed above. Define E(k) to be the set of integers & such that
0 <z < 2%! and put k = k — 1. Suppose that the prime factors of n have
size approximately equal to v/n. Then:

1. All but a negligible fraction of Ej is contained in Dy = Z7,.
2. #Ex/#Dj > 3 — ¢, where € is negligible in k.

DEFINITION 2.7 (Special Generator G)

On input of 1¥, G outputs a random n € N(k) together with its prime fac-
tors p and g, subject to the condition that these prime factors have size ap-
prozimately \/n. The corresponding claw-free permutation pair f = (fo, f1)
is defined as above. The trapdoor information sy consist of the factoriza-
tion p and q of n. The embedding Ky : {0,1}~1 — D; = Z;, is defined
by identifying E(k) with {0,1}*~! and mapping = € E(k) to c mod n. The
family of special claw-free pairs of trapdoor permutations, generated by G,
is denoted ‘Ffact'

REMARK 2.2 The embedding ks is defined for all, except a negligible frac-
tion, of {0,1}F71.

PROPOSITION 2.13 If factoring integers is intractable, then there exists a
special family of claw-free pairs of trapdoor permutations.



3
Partial Proofs and Applications

3.1 Introduction

Most competitive people, like businessmen, artists and scientists, have
the desire to convince the world that they are experts in their field. But
wouldn’t it be typical of cryptographers to show that they are experts in
something without revealing much about what it is? Let’s illustrate this
with a small example. Suppose one were to convince an opponent that one
has expert knowledge about Komodo dragons or about the life and times
of Pierre de Fermat, without revealing which.

One could propose the following protocol. For each of the two subjects, the
opponent supplies a numbered list of 1000 expert questions. Before one is
going to be challenged about one’s knowledge, one is allowed to look up all
answers to the questions in both lists. To this end, the opponent supplies
two lists with the answers. In exactly 5 minutes one must hand back the
lists with answers to the opponent. Now, suppose one knows everything
about the Komodo dragons. One then chooses a random number r in the
range from 1 to 1000, and one looks up the answer to question number r
about Fermat, and memorizes it. After 5 minutes are over and the lists with
answers have been returned, one is challenged with a random number ¢ that
is selected by the opponent. One then computes r’ = c—r (mod 1000) and
one gives the opponent the answers to questions r and 7', where question '
must be taken from the list with questions about the Komodo dragons: a
very obscure question indeed, it turns out. Nevertheless, one is happy and
eager to answer it.
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This protocol will convince the opponent that one is an expert in one of
the two subjects, but giving no information about which. When in turn,
one challenges the opponent to guess which of the two subjects one really
masters, the opponent will answer: “I don’t know about the dragons and
Fermat, but you play such weird games that you must be a cryptographer.”

To put it more abstractly and seriously, the example just given is concerned
with convincing an opponent of the veracity of a subset of a number of
given statements without revealing which subset is in the play. In our little
example, there are two statements and a subset is accepted if it has at least
one member. This idea can for example be extended to saying that a proof
about n statements is accepted if at least d of them are true. If more than
d statements are true, the proof is still accepted, and it is in this sense that
the condition on the subsets of statements that are accepted is monotone.
In fact, any such condition on the set {1,...,n} can be expressed by a
Boolean formula that uses AND- and OR-operators only and vice versa.

In this chapter we develop cryptographic techniques that are useful in the
scenario sketched above. But more importantly, we demonstrate that the
resulting techniques are useful as efficient and secure building blocks in a
variety of cryptographic areas. Applications to identification schemes that
are secure even in the presence of a man-in-the-middle [11], and more gen-
erally to witness hiding protocols are presented. Apart from providing a
general framework that tells us how to efficiently and securely design such
protocols under a wide variety of cryptographic assumptions, some of the
implementations are very competitive to existing proposals. As an applica-
tion we propose a secret ballot election scheme that compares favorably to
previous schemes in that it minimizes work and communication required.

More theoretically, but within reach of what is realizable in practice to-
day, we show that our techniques support the most efficient general zero
knowledge proofs that are known to date. A general zero knowledge proof
is one which works for any (NP) language L, provided that a suitable de-
scription of L is given, such as one based on circuits that verify witnesses.
It is now feasible, for instance, to prove that one possesses a DES-key
mapping a given plain text pair to a given ciphertext. While these meth-
ods rely on suitable complexity assumptions, we also study which classes
of NP-languages admit zero knowledge under monotone operations to be
conducted using no complexity assumptions.

In Section 3.2 we first study X-protocols between a prover and a verifier
that have n strings as common input instead of just one common input
z. Subject to a given monotone condition as discussed above, the prover
demonstrates knowledge about a subset of these n strings, without revealing
which subset it is. We take honest verifier zero knowledge L-protocols sat-
isfying special soundness (or collision intractability) and show that for any
monotone condition there is a corresponding honest verifier zero knowl-
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edge X-protocol satisfying special soundness (or collision intractability).
Techmnically speaking, the idea that a prover does not reveal the subset
regarding which the proof is conducted, relates to the notion of witness
indistinguishability. As in our context witness indistinguishability is im-
plied by honest verifier zero knowledge, our results allow a prover to prove
knowledge about a subset of 1000 RSA-moduli, where any subset defined
by a monotone condition is accepted but without revealing which subset is
used.

If the instances of our scheme are properly generated, this leads to witness
hiding protocols. As noted before, these are a fundamental tool in the design
of secure and efficient cryptographic protocols. Roughly speaking our work
differs from other work in this area [102, 103] in that we consider a different
model of protocols facilitating the kind of services we are interested in.
Moreover, our methods may lead to more efficient implementations since
we have found an intimate relation between the efficiency of the protocols
under consideration and available efficient secret sharing schemes for the
corresponding monotone conditions.

In Section 3.3 we apply the techniques of Section 3.2 to the problem of
designing zero knowledge protocols for proving general NP-statements [71,
24]. More precisely, we present zero knowledge proof for circuit setisfiability,
with low communication complezity. The communication in our protocol
corresponds to a number of bit commitments that is linear in the number
of gates of the circuit that verifies an NP-witness. We therefore improve
on the results of [22, 83, 84]. Our construction is efficient enough to be
practical in many applications.

In Section 3.4 we study NP-languages that admit an honest verifier X-
interactive proof and show that, under composition with monotone condi-
tions as in Section 3.2, we can obtain ¥-zero knowledge proofs for the com-
posite languages. Similar results are obtained even if we allow the atomic
languages to be complementary NP-languages to the ones we started with.
A key technique is interactive hashing that essentially allows us to view
the atomic protocols in terms of the results of the previous section. This
extends the results of [103].

In Section 3.5 we present a fast and secure secret ballot election scheme
[27] that can be implemented under a discrete logarithm assumption. Our
approach follows the paradigm of [17], but achieves a significant reduction
of the amount of communication required by showing that some of the ef-
ficient witness indistinguishable protocols from Section 3.2 are sufficient to
implement some of the key ingredients of secret ballot election schemes.
Previously, these were implemented using more costly zero knowledge pro-
tocols.

In Section 3.6 we show that under the general assumption that honest
verifier zero knowledge and collision intractable £-protocols exist, we can
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implement secure identification schemes that even withstand so-called man-
in-the-middle attacks in several important scenarios. When instantiated for
protocols based on the factoring problem or the discrete logarithm problem,
our construction leads to practical identification schemes that compete with
known ones that do not provide security against the man-in-the-middle
adversary.

The material in this chapter is based on [47, 51, 50, 48, 46].

3.2 Proofs of Partial Knowledge

3.2.1 Introduction

This section provides the theoretical basis for most of the results to follow
in this chapter.

Suppose we are given n RSA-moduli m,...,Mx, and suppose that for, say,
half of them a prover knows a non-trivial factor. Given a Y-protocol that
constitutes a proof of knowledge that the prover knows a non-trivial factor
of some given composite integer, we construct in this section a protocol
that allows the prover to show that he knows non-trivial factors for at least
n/2 of the n given RSA-moduli. But most importantly, the verifier is not
able to decide for which half of the n moduli the prover knows non-trivial
factors.

Our results are much more general than this example. First, we can deal
with any threshold condition “d-out-of-n”. But in fact we can construct
a proof of knowledge that allows a prover to show, for instance, that he
knows non-trivial factors for at least one third of the odd-numbered m;’s
and for at least one fourth of the even-numbered m;’s. In its most general
form, our constructions can handle any condition that can be formulated
by a monotone Boolean formula, that is, a formula consisting of AND-, and
OR-operators only.

As an example of our main result in this section, we now describe a spe-
cial case. Let f be a monotone Boolean formula on n input bits, and let
(A, B) be a Z-protocol for relation R. Suppose that (A, B) satisfies spe-
cial soundness and honest verifier zero knowledge. Let arbitrary bit strings
zi,...,Ty be given (with the same length), and let I be an arbitrary sub-
set of {1,...,n}. Next, suppose we are given a collection of bit strings
w = {w;};er such that for all j € I, |wi| < p(|z;]) for some fixed given
polynomial p. Let ay denote the characteristic vector of I (that is, the i-th
bit of a; is equal to 1 if j € I and equal to 0 otherwise, j = 1,...,m).
We say that w is an (R, f)-witness for (z1,...,2n) if and only if fih=1
and (z;,w;) € R for all j € I. Our result implies a Z-protocol (A, B"),
satisfying special soundness and honest verifier zero knowledge, that the
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prover knows an (R, f)-witness for (z1,...,2n). Since, by Lemma 2.5, hon-
est verifier zero knowledge implies witness indistinguishability, no verifier
can distinguish between two provers who are given distinct (R, f)-witnesses
for (#y;:00yn):

Given an invulnerable generator G for the protocol (4, B) (and some con-
dition on f), the resulting protocol (A’, B') is shown to be witness hiding.
This means that no polynomially bounded malicious verifier B’ can extract
an (R, f)-witness for (z1,...,,). Under some extra condition on f, it is
shown that the malicious verifier cannot even extract a single witness w;
(with respect to the relation R) for any of the z;’s (j = 1...n). And as
such the results in this section are interesting in their own right, as we give
a general and efficient method of design for such protocols. By the results
in Section 2.5, these protocols are now efficiently available under a wide
variety of complexity assumptions.

Qur technical approach makes extensive use of the simulation properties
of our basic protocols (see Section 2.4.3), and secret sharing schemes for
monotone functions, to be explained below.

3.2.2 Monotone functions

A function f : {0,1}" — {0,1}, f # 0,1, is called monotone if the following
holds. If f(a;...an) = 1 and if by...b, € {0,1}" is such that, for ¢ =
1...n,b; =1if a; = 1, then f(b1...b,) = 1. By ., we denote a family
of monotone functions where each of its members takes n bits as input,.
F = Ups0Fn, denotes the union of such collections: a family of monotone
functions. In the notation f, € F, the subscript n to f, serves as a reminder
that f, € F,. Although this is not reflected in our terminology, we will only
consider families F of monotone functions f,, that can be computed in time
polynomial in n. Furthermore, we will assume that membership of F can
be efficiently decided. Finally, by saying f € F we mean the function itself,
or a bitstring encoding this function efficiently. The distinction should be
clear from the context.

Let I C {1,...,n}. We define a; € {0,1}" by setting the i-th position in
ar to 1 if 2 € I and to 0 otherwise. Then f(I) denotes f(ar). A set [ is
called minimal if and only if f(I) = 1 and there is no proper subset J of I
with f(J)=1.

The dual f* : {0,1}" — {0,1} is defined as follows. For each e € {0,1}",
f*(a) = 1if and only if f,(a ® 1) = 0, where 1 denotes the all-one string
and ‘@’ denotes bit-wise xor. It is easily verified that f* is monotone as

well. If F is a family of monotone functions, then its dual F* is obtained
by replacing all monotone functions in F by their duals.

By a monotone Boolean formula we mean a function given as a Boolean
formula consisting of AND-operators and OR-operators only. We assume
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these operators to have two input bits and one output bit. A family F of
monotone Boolean formulas is polynomially sized if the number of operators
is polynomially bounded in n. If f is 2 monotone boolean formula, then its
dual f* is obtained by swapping the AND-operators and OR-operators. It
follows that the dual of a polynomially sized family of monotone Boolean
formulas is polynomially sized as well.

Let n, d be positive integers with d < n. A (n, d)-threshold function f, 4 :
{0,1}® — {0,1} returns 1 if the Hamming-weight wg(a) of a € {0,1}"
(that is, the number of positions in the string a that are equal to 1) is
at least equal to d and 0 otherwise. Such functions are clearly monotone.
It holds that f%; = fan-da+1. Indeed f7 j(a) =1 & frnala® 1) =0 &
wla®1)<d—1& wy(e)>n—d+ 1.

3.2.3 Secret Sharing

Consider a monotone function family 7. We now define an efficient secret
sharing scheme with completion S for F. Let f,, € F. First, a probabilistic
algorithm dist (distribution) is given that takes a (secret) bit b and integer
n as input and outputs n shares si, ..., S, running in time polynomial in n,
whence the length of the i’th share is upper bounded by a polynomial I;(n),
which is given. Furthermore, the following conditions must be satisfied:

1. Perfectness: for any I such that f,(I) = 1, the bit b can be recon-
structed in time polynomial in n using the polynomial time algorithm
rec on input {s;| i € I}, whereas if fn(I) = 0, the distribution of
{si| i € I} generated from b = 1 is the same as when b = 0; this
means that if f,,(I) = 0, then {s;| ¢ € I} gives no information about
b.

2. Consistency Verification: given strings s1,. .., Sn, with s; € {0, 1}“'(“)
for i =1...7n, and a bit b, it is possible, using the algorithm cons to
test in time polynomial in n that for each collection {s;| ¢ € I} with
fa(I) = 1, the reconstruction procedure outputs the bit b. If so, we
say that “the full set of shares si,..., s, is consistent with b”.

3. Completion: if J is a set for which f,(J) = 0, then the distribution of
the subset of shares corresponding to J is independent of the secret
bit, as follows from the perfectness condition. Call this distribution
Dj. Given a subset of shares distributed according to D and a bit b,
it is always possible, using the probabilistic algorithm comp to com-
plete this subset to a full set of shares consistent with b in polynomial
time in n, and with the same distribution as the output distribution
of §.

The algorithms above depend on which f, € F is taken, of course. Implic-
itly, we assume that some suitable and efficient reference to these functions
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is given, and that the algorithms take such a reference as input. A scheme
satisfying the first condition is called a perfect secret sharing scheme (see for
instance [114]). The significance of the novel notions of completion and con-
sistency verification will become clear from the “partial proofs” presented
in Theorem 3.3.

More precisely, the algorithms that constitute an efficient secret sharing
scheme & with completion are as follows. Let f,, € F. Neglecting depen-
dence on f, as before, these algorithms are defined as follows.

dist takes as input a secret bit b and a random bitstring p € {0,1}* and
outputs a collection of shares (s1,. .., s,) corresponding to a member of the
set {0,1}"1 x -+ x {0,1}~. Here  and the I; are of polynomial length in n.
For any set J C {1,...,n}, dist(b, p)|s denotes the shares corresponding
to the members of J. If J is the empty set, then this also denotes the empty
set.

rec takes as input I C {1,...,n} with f,(I) = 1 and shares dist(b, p)|;,
and outputs the secret bit b. More formally, we require that Vb € {0,1},
Vp € {0,1}*,VI C {1,...,n} with fo(J) = 1, we have rec(I,dist(b, p)|;) =
b.

cons takes as input s = (s1,...,5,), with s; € {0,1}%(") fori = 1...n and
a bit b, and outputs! accept if s is consistent with b, and reject otherwise.

comp takes as input any two secret bits b and ¥, and p' € {0,1}*. It
outputs p € {0,1}¥, with the following property. ¥b,' € {0,1}, Vp' €
{0,1}*, ¥J C {1,...,n} with fo(J) = 0, comp(b,b,p’) = p such that
dist(b, p)|s = dist(b', p')|;.

Note that our definition of an efficient secret sharing scheme with comple-
tion allows the distribution of n shares consistent with one secret bit &.
However, all definitions given above can easily be adapted to the situation
where the secret sharing scheme takes as input a secret bit string of variable
length instead of just one bit b. The following lemma is straightforward.

LEMMA 3.1 Let a family F of monotone Boolean functions be given, and
a collection S of algorithms dist, rec, comp and cons defined as above,
running in time polynomial in n. If comp is bijective when the first two
arguments are fized, then S is an efficient secret sharing scheme with com-
pletion for F.

Let F be a polynomially sized family of monotone Boolean formulas. We
now describe an efficient secret sharing scheme S with completion for F
which is based on the perfect secret sharing scheme due to Benaloh and
Leichter [14]. Let f € F take n input bits. For clarity, we now also give the

'Observe that if the s;’s were generated by dist on input b (and some string
p), then cons will output accept.
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monotone function according to which the bit b is distributed as input to
the algorithms dist, rec, comp and cons.

The construction of the algorithm dist below uses induction on the number
of operators in the formula f. AND-, and OR-operators are denoted “A”
and “V” respectively. First note that if f has at least one operator, then f
can either be written as

1. fzflAstor
2. f:flvf21

where f; and f, are monotone Boolean formulas as well. We start by treat-
ing the case where f consists of a single operator. In the first case, for any
b € {0,1}, we put dist(d, p, f) = (b,b® p), where p is a random bit. In the
second case, dist(b, p, f) = (b,b) for any b € {0,1}. Here p is the empty
string. If f is the identity function on one bit, we define dist(b,p, f) = b,
where p is the empty string.

As an induction hypothesis, let d > 1 and suppose that dist handles
monotone Boolean formulas consisting of at most d operators. Now assume
that f has exactly d + 1 operators. The two cases from above are treated
as follows. Write u, u;, ug for the number of A-operators in f, f1 and f,
respectively. Let » € {0,1}, and let p; € {0,1}%, j = 1,2. If f = fi A fs,
write the random string p € {0,1}* as (r,p1,p2). If f = f1 V f2, then pis
written as (p1, p2). For any b € {0,1}, we now define

1. dist(b, p, f) = dist(b, p1, f1) Udist(b @ 7, p2, fo), if f = f1 A fa.
2. dist(b, p,f)= dist(b, p1, fi) U dist(b, pz,fg), if f=fiVfa.

In this construction, the U-operation must be interpreted as follows. As-
sume that f takes n input bits ay, ..., a,. Consider an arbitrary input bit
a; of the formula f, for some 1 < ¢ < n. Assume that f reads input bit
a; I times while f; reads a; I_E-i) times, i = 1,...,n, § = 1,2. Of course
we have 15‘) + JS} = (), The construction can easily be seen to give one
bit “through” each of these input wires. Breaking up f into fi and f; as
above, dist(-, f;) gives I_(ii} bits “to a;”, j = 1,2. If we denote the respective
shares by 3(1':) and sg), the share “for a;” as a result of dist(:, f) is taken
to be (s(li},sgq) for each 1 < i € n. Thus, a full set of shares can be seen
as corresponding to an element of the set {0, 1}’(1) x -+ x {0, 1}"("]. Also,
the number of additions is easily to be seen as u, where u is the number of
A-operators in f. This concludes our description of dist.

Write f = fiAfa or f = fiV fa. In the following, for any set J C {1,...,n},
Ji, respectively Jo, denotes the collection of ¢ € J such that fi, respectively
fa, reads input variable a;. We are now prepared to prove the following
theorem.
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THEOREM 3.1 Let F be a polynomially sized family of monotone boolean
formulas. Then there exists an efficient secret sharing scheme with comple-
tion & for F.

PROOF. All arguments to follow use induction on the number of operators
in f. We will only treat the case f = fi; A f2, as the other case follows
similarly. The statements to follow are trivially true for formulas consisting
of just one operator. Induction hypotheses are made implicitly.

Let I C {1,...,n} with f(I) = 1. Then we have f;(I;) =1, j = 1,2. Note
that

rec(diSt(b1 P f)lI) = reC(diSt(T‘, pl)fl)l'{l) @ reC(diSt(b @, p2, f?)i)&)'

The latter two inputs to rec can be constructed from the first one, which
is given. This is done by inspection of the formula f, and by separating
the parts output by dist(-,-, f;), 7 = 1,2. Now we apply the induction
hypothesis. We have that rec uses u additions.

cons(s, b, f) works by recursively computing the coin tosses p. If any in-
consistencies occur, output reject. If this process results in some value
p € {0,1}*, check if dist(b,p, f) = s. If so, output accept. Else output
reject. cons uses at most 2u additions. Here, cons satisfies a stronger
property than required by the definition of cons: it follows easily? that s
is consistent with the bit b if and only if s is a possible output of dist on
input b and some suitable random string p.

The construction and properties of the comp-algorithm are based on the
following claim.

Cram 3.1 Let J C {1,...,n} such that f(J) =0 and J # 0. There ezists
an efficiently computable function T : {0,1}*+? — {0,1}*, depending on
f and J, such that Vb, b € {0,1}, ¥p € {0,1}*,

diSt(b,: Py f)|J — diSt(b: T(bs b,! P), f)IJ:

where T is bijective if b and b’ are fized.

We now prove the claim. We have dist(¥,p, f)|; = dist(r,p1, fi)|ls, U
dist{b" & T,pg,f2)|_}2 and 0 = f(J) = f](Jl) A fz(.}g). Without loss of
generality, we may assume that f;(J;) = 0. If J; = @, we must have J5 # 0.
Then, dist(b, p, f)|s = dist(b' @7, ps, f2)|s,- The claim follows by putting
Tb,b,p)=(bd ®r,p1,p2)

Now suppose that J; # §. In this case, use of the induction hypothesis is
required. We may assume dist(r, p1, f1)|s, = dist(b@ b @ r, Ti(r,bdV &

*That is, from the observation regarding the linear algebra approach, given at
the end of the proof.
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7, p1), f1)|J,, where T} is the function guaranteed by our induction hypoth-
esis. But now, dist(¥, p, f)|s = dist(b, T'(b,¥', p), f)|s, where T'(b,¥, p) =
(r,Ti(r,b ® b @ 7, p1), p2), obviously a bijection if b and b’ are fixed. The
algorithm comp is now easily defined in terms of dist and T for given J,
v, p and b, compute T'(b, ', p). Then the required full set of shares, consis-
tent with b is equal to dist(b, T'(b,b', p), f). Note that T uses at most 4u
additions. The proof is concluded by applying Lemma 3.1. All algorithms
clearly run in time polynomial in n.

A practical approach to this efficient secret sharing scheme with completion
is given by describing it in terms of linear algebra. Let f have u A-operators
and define ! as 3 .., l;. Then dist is a linear map

dist : GF(2) x GF(2)* — GF(2)".

The first argument stands for the secret bit b while the second argument
captures the u coinflips used at the u A-operators. The image represents
the shares. A matrix describing this map is easily defined in terms of the
formula f and the inductive description of dist. O

REMARK 3.1 The scheme from Theorem 3.1 can be executed m times to
get an efficient secret sharing scheme for distributing secret m-bit strings
instead of just one secret bit b, if m = poly(n).

As pointed out in Section 3.2.2, the dual of a monotone Boolean formula is
obtained by interchanging the A- and V-operators. Thus, we immediately
have the following corollary of Theorem 3.1.

COROLLARY 3.1 Let F be a polynomially sized family of monotone boolean
formulas. Then there exists an efficient secret sharing scheme with comple-

tion & for F*.

Let n, d be positive integers with d < n and let K be any finite field with
|K| > n. Shamir’s protocol [107] provides a perfect secret sharing scheme
for n, d-threshold functions as follows. Select a random polynomial f(X) €
K(X) of degree at most d — 1 with the constraint that f(0) = s, where
s € K is the secret that is to be distributed. The i-th share, 1 <7 < n, is
computed as f(i). By Lagrange-interpolation, it can be shown that from
any set consisting of at least d such shares, the secret s can efficiently and
uniquely be computed. Moreover, no information about s can be inferred
from any set of less than d shares. Note that this scheme is also ideal in
the sense that the size of each share is equal to the size of the secret that
is distributed.

About completion in this scheme. Consider a set J C {1,...,n} with |J| =
m < d. It can be shown easily that the distribution of shares for J is
uniform on K™ and independent from anything else. So, to complete any
set of shares {s;}ics to be consistent with any given secret s, we just choose
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a random polynomial f of degree at most d — 1 such that f(0) = s and
f(&) = s; for i € J. Thus we have the following theorem.

THEOREM 3.2 For threshold functions, there erist efficient secret sharing
schemes with completion.

8.2.4 Main Results

We are now ready to put all the pieces together, and to prove the theorem
promised in the introduction. Let F be a family of monotone functions
and let R be a binary relation as before. We now define the relation Rz.
Let p(-) be a given polynomial such that for all (z,w) € R, we have |w| <
p(|z])- For all n, for all f, € F, and for all k, consider the collection
of all tuples = = (fy,1,...,2x) such that z; € {0,1}* for i = 1...n. Let
w = {w;};er C {0,1}" be given where I is an arbitrary subset of {1,...,n}
and |w;j| < p(|z;|). Then Rz is the binary relation consisting of all such
pairs (x,w) such that f,(I) =1 and (z;,w;) € Rfor j € I. If (z,w) € Ry,
we will say that w is an (R, f,.)-witness for (z,...,z,).

Theorem 3.3 to follow, transforms a -protocol (A4, B) for relation R, sat-
isfying honest verifier zero knowledge and special soundness, into a new
X-protocol (A’, B'), satisfying honest verifier zero knowledge and special
soundness with respect to the relation Rr, instead of R. Here, F is a family
of monotone functions such that its dual F* has a given and efficient secret
sharing scheme (see Section 3.2.3).

First, we give a concrete example of our construction based on Schnorr’s
protocol (see Section 2.3.2) and a threshold function. Then we outline the
general case from Theorem 3.3.

Consider the family F consisting of a single monotone function f that
takes n bits as input, where n is fixed. The output is 1 if and only if the
Hamming-weight of the input is at least d, where 1 < d < n. Then we can
say that Rz consists of all pairs ((z;,...,,), (w1,...,w,)) such that the
z;’s have the same length, the w;’s satisfy |w;| < p(|w;]), and at least d
pairs (z;,w;) are elements of R. In Figure 3.1 we give an example based on
this setting. Here (A, B) is taken to be Schnorr’s identification protocol (see
Section 2.3.2). Let G4 be a group of prime order ¢ and let g € G4 \ {1} and
let z1,...,2, € G4. The common input to (A, B') is a description of the
group G, (including g), g, n, d, z1, ..., .. The purpose of A’ is to convince
B' that A’ knows the discrete logarithms for at least d of the n z;’s, without
revealing which. For convenience we assume that the prover A’ is given the
discrete logarithms log, z; (¢ = 1...d), while the discrete logarithms for the
remaining n — d ;s are not given. Notice that A’ simulates conversations
(in Schnorr’s protocol) for the z;’s with d+1 < ¢ < n. For the other ones, A’
behaves like the honest prover in Schnorr’s protocol. The function f from
Figure 3.1 is the interpolation polynomial from Shamir’s secret sharing
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scheme (see Section 3.2.3), and is defined as f(X) =c+ E:-:ld a; X% here ¢
is the challenge from B’. After receiving this challenge, A’ computes those
a;’s (j = 1...n — d) such that f(i) = ¢; for i = d+1...n (note that
f(0) = ¢), where the c;’s are taken from the simulated conversations. For
i=1...d, the i-th challenge, corresponding to z;, is computed as f(z). In
the final step, A’ computes the replies z;, ¢ = 1...d, and selects the other
z;’s from the simulations. All a;’s and z;'s are sent to the verifier B', who
checks the conversation.

We now outline the general case. Informally speaking, (A’, B') shows to
the verifier B' that the prover A' (R, f,)-knows a witness for their com-
mon string (z1,...,%a) where f € F. Nevertheless, the verifier B’ gets no
information as to which particular witness A’ holds. We get similar results
if we assume that (A4, B) has the collision-property or satisfies collision-
intractability, instead of special soundness. By Proposition 2.5, we may
assume that (A4, B) has a special simulator M. We briefly outline the tech-
niques we use. Let £ = (fn,T1,...,%a) and w = {wj};er be such that
(z,w) € RF as above. Let I' denote {1,...,n} \ I. Suppose an honest
prover A' is given (z,w) € Rr. For j € I, A’ has (zj,w;) € R. Thus,
for such j, A' can successfully (with probability 1) execute the protocol
(A, B) on common input z;, where A’ plays the role of A, and B is an
honest verifier. In contrast, for 7 € I', A’ is not given a witness w; such
that (z;,w;) € R. Here, all A’ can do, is invoke the simulator for (A, B)
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and prepare a random accepting conversation.

In the protocol (A’, B'), the prover A" will compute & first message a;
for each j € I, as the prover A would have done in the protocol (4, B),
given (z;,w;) € R. Now for j € I', the prover A’ will prepare a simulated
accepting conversation (x;,aj, s, 2;), where s; is computed in advance (as
explained hereafter) and given as input, together with z;, to the special
simulator M for (A4, B).

About the computation of the s;, when j € I': by definition of the dual of
a monotone function (see Section 3.2.2), we have f;(I') = 0. Moreover, we
have assumed that 7* has an efficient secret sharing scheme with comple-
tion. To generate the s;, we take such a sharing scheme for f;, and compute
the n shares on input of some arbitrary string (to the dist algorithm). We
now select the shares s; corresponding to I' from the full set of n shares,
and delete the remaining ones. Note that since fX(I') = 0, we can later
extend these shares s; for j € I' to a full set of shares, consistent with
any given string ¢ and with the right distribution (this follows from the
completion property).

In the first step of the protocol (A’, B'), the prover A’ sends all a; (j =
1...n) computed as discussed above, to the verifier B'. In the second step,
the verifier B’ sends a random challenge ¢. With respect to this ¢, the
prover extends the shares s;, 7 € I' so that the full set of shares s;,...,s,
is consistent with c. Finally, for j € I the prover A’ computes the responses
z;j as the prover A would have done given the challenge s; and the first
message a;. Since A’ knows a witness for z; if j € I, this is no problem.
In the last transmission, the prover sends all z; and s;. Those z; where
Jj € I' are selected from the simulated conversations that A' computed in
advance. The verifier checks all conversations and checks whether the full
set of shares is consistent with the challenge ¢ (using the algorithm comp).

Why should this work? Informally, the idea is as follows. Intuitively, it
is clear that for j € I', the prover A’ can effectively answer, as detailed
above, one challenge in the protocol (A, B), given a fixed first message a;.
If A’ can answer two different challenges in the protocol (A', B'), given
fixed first messages ay,...,a,, then we must have that f3(I') = 0; since
the s;, for j € I', were chosen in advance, they must be the same in
those two conversations (with same first messages, but different challenges)
in the protocol (A’, B'). But fX(I') = 1 would imply that the challenge
string they are consistent with is uniquely determined! This contradicts the
assumption that the challenges were different in those two conversations.
Thus, we have f3(I') = 0, and hence, f,(I) = 1. Finally, honest verifier
zero knowledge follows from the properties of the simulator M and the
properties of secret sharing scheme with completion: the simulator ensures
that the first messages a;j, j = 1,...,n reveal no information about the set
I, while our sharing scheme makes sure that the joint distribution of the
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sj, 3 =1,...,n, hides the set I.

Corollary 3.2 shows that the protocol (A', B') is witness indistinguishable,
and in Theorem 3.4 and its corollaries, we show that, under the assumptions
that (A4, B) has an invulnerable generator and that the family F satisfies
some additional property, the resulting protocol (A’, B') is also witness
hiding.

THEOREM 3.3 Let (A, B) be a T-protocol for relation R and generator G,
satisfying honest verifier zero-knowledge and collision intractability (resp.
the collision-property or special soundness). Let F be a family of monotone
functions such that its dual F* has an efficient secret sharing scheme S*
with completion. Then there exists a T-protocol (A', B') for relation Rr
satisfying special honest verifier zero-knowledge and collision intractability
(resp. the collision-property or special soundness).

PROOF. By Proposition 2.5, we may assume that (A, B) satisfies special
honest verifier zero knowledge. If (A4, B) already has a special simulator,
we do not need the transformation from Proposition 2.5. Let M denote the
special honest verifier zero knowledge simulator for (4, B). By definition of
honest verifier zero knowledge, a simulator will run in probabilistic polyno-
mial time, if € RX. Nothing is required about what happens if z ¢ RX.
It may be that even then the simulator outputs an accepting conversation.
If not, we assume that that it halts in polynomial time, and outputs “?”.
We assume for simplicity that S* distributes 1-bit secrets. Let tg(k) be the
size of the challenges in (A, B).

Let I;(n) denote the size of the i-th share when S* distributes one bit
and let K(n) denote maxpl < i < nli(n), the size of the largest share. If
any other share has less bits, standard padding techniques (for instance
padding with zeroes) are applied to the effect that all shares have this
same number of bits. So we may assume that S™ gives shares of size K(n)
bits. Now we define the efficient secret sharing scheme S}, , with completion
by taking ¢t (k) parallel executions of S* to make sure that the new scheme
distributes secrets of size tp(k) bits® Note that the size of each share is now
K(n) -tp(k) bits.

Next we will tailor (A, B). The ¥ protocol (A, B)nx is just K(n) parallel
executions of (A, B) for each k. The algorithms a(-), 2(-), ¢(-) and M(-,-)
that constitute (A4, B) change accordingly. However, we will use these same
notations to refer to the corresponding algorithms for (A, B)n,i, leaving any

3The protocol description to follow uses the algorithms dist, comp and cons.
Any necessary coinflips are left out and are assumed to be understood. To em-
phasize that we are working with a scheme for F* rather than F, we consider
fn as part of the input. For convenience, comp takes as input a secret c, a set
of shares for a set I' with f(I') = 0, and produces the completion, that is, the
shares for {1,...,n}\ I’
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coinflips implicit. Observe that (A, B), ; trivially satisfies special honest
verifier zero knowledge and special soundness and that it takes challenges
of size tg(k) - K (n) bits. The size tg:(k) of challenges in the target protocol
(A', B' )1 will be equal to tg(k).

The prover A’ is given (z,w) € Rg. Put ¢ = (fy,z1,...,7,) for some n
and f, € F,, while for some & we have |z;| = k, 2 = 1...n. Furthermore,
w = {w;}jer with fo(I) = 1,0 # I C {1,...,n}, and (z;,w;) € R for
J € I. Let I’ denote {1,...,n} \ I. Note that we have f;(I') = 0. Let ¢
denote tg/(k). The common input is z.

Move 1: For j € I'; A’ starts by computing {s;};err — dist(0, f2)|r.
Next, A’ runs M(z;, s;), which results either in an accepting conver-
sation (z;,a;,s;,2;5) or ‘?". In the latter case, A’ puts a; = (‘?’, 5;).

For j € I, A’ computes a; «+ a(z;,w;) as in the protocol (4, B)y, x.

For j=1...n, A’ sends a; to B'.
Move 2: B' selects c at random from {0,1}* and sends c to A'.

Move 3: For j € I, A' computes {s;};ecr «— comp(c,{s;}jer, f1), and
computes z; «— (z(zj,w;,s;),s;) where the algorithm z(-) is as in the
protocol (A, B), k.

For those j € I' where a; = (‘?’, s;), he puts z; = ‘7.
Finally, for j = 1...n, A’ sends z; to B', who accepts if and only
if the following conditions are satisfied. (1) cons(e,s, f}) = accept

where s = (s1,...,5,) and (2) there is at least one § where no ‘?’ is
involved and for all such j the conversation (z;, e;, sj, z;) is accepting
in (4, B)ak-

Completeness of the protocol is proved by inspection of the protocol and by
taking into account the completion property of the secret sharing scheme S*
in particular. As for the collision-property, let two accepting conversations
with the same first messages be given where the challenges ¢ and ¢' differ.
Consider the first messages ¢ = a4,...,a, and @’ = a},...,a!,. For each
J we have a; = a}. Note that for some j (but not for all) we may have
aj = a; = (‘7’,s;) with corresponding reply z; = z; = ‘7. Call such j
degenerate and non-degenerate otherwise. Let J' denote the set of j such
that s; = 5. Since we have that ¢ # ¢’ and that s;,...,s, and s},...,s,
are consistent?

with ¢ and ¢’ respectively, it must be the case that f%(J') = 0. Thus
its complement J (that is, J = {1,...,n}\ J') must satisfy f,(J) =1 by
definition of the dual and the fact that J # §. But by the fact that e = ' all

*Note that, by definition of cons, we are not relying here on any assumption
about how these s;’s and s}’s are generated.
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j € J are non-degenerate. Thus, for j € J we can immediately invoke the
special soundness of (4, B), » and we obtain a witness w; for ;. Collision-
intractability or special soundness, if this assumed for (A4, B) instead of the
collision-property, is argued in the same way (in case of special soundness,
the verifier must also check whether f, € F).

Finally, we argue that the protocol is special honest verifier zero knowledge.
Let z be given as above. The simulator runs as follows. As before let M
denote the special simulator for the protocol (4, B)p x. For any ¢ € {0,1}=
compute {s;}%, < dist(c, fr). Then run M on input z;,s; for each j.
We first observe the following property of M. On input (z;,s;), where
z; € RX and s; is of the proper size, M outputs an accepting conversa-
tion z;,a;,s;,2; with distribution equal to the distribution generated by
(A, B*(8))n,x on common input z;. Here the prover A gets (z;j,w;) € R
and the verifier B* always chooses s; as the challenge. This means that in
fact we can simulate perfectly the protocol (A4, B*), x where B* is any ver-
ifier who selects the challenge independently of the prover’s first message
and is given as a black-box (see Lemma 2.4). Secondly, the distribution
of the s; is exactly as in real life, due to the completion property of the
secret sharing scheme S*. Thirdly, if z; ¢ RX, the simulator faces the
same situation as the real prover: although the verifier B’ may learn that
some z; € RX and that henceforth the prover A" does not know a witness
for that ; (since it does not exist in this case), B’ would have found out
by itself, that is, without talking to A’ and running the simulator instead.
The special honest verifier property of the protocol (A, B') now follows
immediately from these observations. O

By Lemma 2.5, we have the following.

COROLLARY 3.2 The protocol (A', B') is also witness indistinguishable.

REMARK 3.2 Ifig is “large enough” as e function of the security param-
eter k (say for instance tg is linear in k), then (A, B) and (A',B") are
proofs of knowledge. If not, then we can always take an appropriate num-
ber of parallel executions.

REMARK 3.3 Suppose the secret sharing scheme 8™ satisfies the following
additional property. Let any f;; € F* be given and a subset J C {1,...,n}
with fo(J) = 0. Consider the distribution dist(s, fr)|s for any s. If the
joint distribution of the shares for J is uniform and independent of any-
thing else, and if (A, B) does not satisfy special honest verifier zero knowl-
edge, then we can do without the guite costly transformation that first
maps (A, B) into a new protocol that satisfies special honest verifier zero
knowledge. This extra property is met by Shamir’s threshold secret sharing
scheme.

We now give conditions on the family F of monotone functions in order
that the protocol (A’, B') witness hiding. For any (invulnerable) generator
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G of relation R, we let G™ denote the generator that produces an n-tuple
of pairs in R by running G independently n times in parallel. G® proceeds
as follows, when it is given any f,, € F,,. It may discard any subset of the
n witnesses such that the remaining ones comply with f,.

THEOREM 3.4 Let G be an invulnerable generator for relation R, and sup-
pose that for each f, € F there are at least two minimal sets. Then the
protocol (A', B') is witness hiding over G™ and Rx.

PROOF. Let any f, € F,, be given. Now put N = {1,...,n} and define
I C N as the intersection of all sets J C {1,...,n} that are minimal with
respect to f,, (see Section 3.2.2). The condition that for f,, there are at least
two minimal sets, is equivalent to the condition that f,(I) = 0. It follows
that ¢ € I if and only if f,(N\{i}) = 0. To determine the set I, evaluate f,
at the characteristic vector of N\ {i} for each ¢ € N. By our assumption
on F (at least two minimal sets for each f, € F), it follows that N \ I
contains at least two elements (the elements in the symmetrical difference
of two such sets). We follow the line of reasoning from Theorem. 4.3 of [64].
Suppose we are given a probabilistic polynomial time enemy A that has
non-negligible probability of computing a witness, using the honest prover
in the scheme above as a subroutine. We show that .4 can be compiled into
an algorithm that solves with non-negligible probability random instances
x generated by G, thus contradicting the invulnerability of the generator
(see [1]). Our compilation now works as follows:

1. Recall that our input is a problem instance z generated by G. We
now form an instance (zg,wy) € RF as follows: choose at random
j € N\ I, and let z; = z. For all other indices #, run G to produce
a solved instance (z;,w;) € R. Now put =g = (fn,21,...,,) and
wo = {wi}ig;.

2. Give z¢ as input to .A. When A needs to interact with the prover,
we simply simulate the prover’s algorithm on input (zq,wp) from
Theorem 3.3. This can be done because we know witnesses of all
instances except x;, and the fact that j ¢ I guarantees that fa(N\

{ih=1

3. If A is successful, it outputs a witness wf such that (zo,w}) € Ry. If
so, put wy = {w;}ies, where J C N with f.(J) =1 and (z;,w!) € R
for each i € J. Else output something random.

We now show that this compilation finds a witness for z with non-negligible
probability. First note that the joint distribution of the z;’s we give to
A is the same as in an ordinary interaction with the prover. Therefore
A is successful with non-negligible probability. We therefore only have to
bound the probability that j is in J, the set of witnesses we get from A.
Since f,(I) = 0, J must contain at least one index not in I. By witness
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indistinguishability from Corollary 3.2, A has no information about which
j in N\ I we have chosen, and so the probability that j € J is at least
1/|N \ I|. Hence if A has success probability €, we have success probability
at least €/n, which is non-negligible. O

This result can be interpreted as follows. Suppose that » instances of R are
generated according to G, let any f, € F, be given. Let some any subset of
witnesses be discarded, subject to the condition that the remaining ones are
consistent with fn. Let (z,w) the corresponding element from Rz. Then
the protocol (A, B') has the property that a malicious (bounded) verifier
cannot extract a witness w' for z. However, it does not rule out that the
protocol could help him to compute witnesses for a small subset of the
z;’s that = is composed of. Ideally, we would like to prove that the enemy
cannot compute even a single witness. With a stronger assumption on the
access structure, this can be done:

COROLLARY 3.3 If for each f € F, the corresponding set I is empty, then
no probabilistic polynomial time enemy interacting with the honest prover
can with non-negligible probability compute a witness for any of the z; in
the input to the protocol.

PROOF. Let any fn € F be given. Since I = @ implies that fn(I) =0,
there are at least two minimal sets for f,, and therefore the proof is the
same as for Theorem 3.4, except that it follows from the assumption that
the index j is always chosen among all indices. Hence if the enemy outputs
at least one correct witness for some z; with 1 < 7 < n, there is a non-
negligible probability of at least 1/n that this is the witness we are locking
for. (m]

A certain special case of Theorem 3.3 is interesting in its own right:

COROLLARY 3.4 Let (A, B) be a -proof of knowledge for relation R, sat-
isfying honest verifier zero-knowledge and special soundness. Then for any
positive integers n,d with d < n there is a L-protocol (A', B') satisfying
special soundness and special honest verifier zero knowledge in which the
prover shows that he knows d out of n witnesses without revealing which d
witnesses are known.

PROOF. Use Theorem 3.3 with, for example, Shamir’s secret sharing
scheme and a threshold value of n — d + 1. Take into account Remark 3.3,
which implies that we do not have to convert (4, B) into a new protocol
satisfying special honest verifier zero knowledge. m|

COROLLARY 3.5 Let n = 2 and d = 1. In this case the prover shows that
he knows at least 1 out of 2 solutions. For any generator G generating pairs
in R, this protocol is witness hiding over G*.
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PROOF. Since protocols constructed from Theorem 3.3 are always witness
indistinguishable, we can use Theorem 4.2 of Feige and Shamir [64]. 0

Note that for this corollary, we do not need the assumption that G is
invulnerable, as in Theorem 3.4. To build the protocol of Corollary 3.5, we
need a 2 out of 2 threshold scheme. Such a scheme can be implemented by
choosing random shares ¢;, ¢z such that ¢; @ ¢y equals the secret. Therefore,
in the simple case of Corollary 3.5, the protocol constructed by Theorem 3.3
simply becomes a game where the verifier chooses a random s, and the
prover shows that he can answer correctly a pair of challenges c;, ¢z, such
that s = ¢; @ c2. In the prover’s final message, he only has to send ¢
because the verifier can then compute ¢ himself. Hence the communication
complexity of the new protocol (A’, B') is exactly twice that of (4, B),
whence the new protocol is just as practical as (4, B).

3.2.5 Application to Identification and Signatures

Suppose we have n users, for example employees of a company, such that
the i-th user has a public key z; and secret key w; € w(z;). Suppose also
that certain subsets of users are qualified in the sense that they are allowed
to initiate certain actions, sign letters on behalf of the company, etc. This
defines a monotone function on the set of users. Theorem 3.3 now gives a
way in which a subset of users can collaborate to identify themselves as
a qualified subset, without revealing anything else about their identities.
This makes good sense, if they are to assume responsibility on behalf of
the company, rather than personally.

This also extends to digital signatures, since by using a hash function,
any three round proof of knowledge as the one produced by Theorem 3.3
can be turned into a signature scheme by computing the challenge as a
hash value of the message to be signed and the prover’s first message (this
technique was introduced in [66]). By this method, a signature can be
computed which will show that a qualified subset was present, without
revealing which subset was involved. This may be seen as a generalization
of the group signature concept, introduced by Chaum and Van Heyst [34].
One aspect of group signatures which is missing here, however, is that it
is not possible later to ”open” signatures to discover the identities of users
involved (see [39]).

3.3 Linear General ZK Proofs

3.5.1 Introduction

As an important application of the theory of partial proofs developed in
Section 3.2, we now present communication efficient zero knowledge inter-
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active proofs and -arguments (see Section 2.2.3) for general NP-languages.

To this end, it is sufficient to give such a proof for any given NP-complete
problem, such as circuit-satisfiability, as any NP-membership problem can
be efficiently reduced to it. Thus given an NP-language L, and a bitstring
z, a circuit can be constructed that is satisfiable (that is, there exists an
assignment to the input bits such that the circuit’s output bit equals 1) if
and only if z € L. Moreover, such construction carries an original witness
of membership for = € L over to a satisfying assignment of the circuit. We
restrict our attention to a zero knowledge treatment of circuit-satisfiability.

More precisely, let C be a polynomially sized® family of Boolean circuits,
containing just AND-, OR- and NOT-operators. Let C € C, and let |C|
denote the size of C. We construct a zero knowledge proof that C is satisfi-
able, using communication complexity corresponding to the size of O(|C])
bit commitments, and with error probability that is negligible as a function
of |C|.

Informally, a bit commitment scheme is a game between two parties, where
one party takes some secret bit as input. The purpose is to compute a cer-
tain value (a “commitment”) that “hides” this bit, but at the same time
“binds” the committing party to this bit. The commitment is “opened”
by releasing the bit and auxiliary input that was used to mask the bit.
Most known approaches to general zero knowledge proofs use bit commit-
ment schemes (sometimes with extended capabilities) and have the prover
commit to an NP-witness w for a given instance z € L, after the prover
and verifier have agreed on a suitable representation of L and a witness
verification method, based on, for instance, circuit satisfiability or graph
Hamiltonicity, or any other NP-complete language. In the protocol the ver-
ifier will challenge the prover about the contents of the commitments, in
such a way that the prover only passes if these really contain a witness.
Zero knowledge is shown by exhibiting a suitable simulator.

The classical methods of Goldreich, Micali and Wigderson [71] and Bras-
sard, Chaum and Crépeau [24] yielding zero knowledge interactive proofs
and -arguments for general NP-languages respectively first construct a pro-
tocol that allows a prover to cheat with probability 1/2, which is then iter-
ated k times to achieve the required confidence level of 1/2*. These methods
would require Q(mk) bit commitments to show for instance satisfiability of
a Boolean circuit of size m.

The work of Boyar, Brassard and Peralta [22] provides the first approach
that improves on these communication complexities. They present zero

5The size of a circuit is the number of operators it consists of. A family of
circuits is polynomially sized if the size of each circuit in the family polynomial
in its number of input bits.
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knowledge proofs for circuit satisfiability using a “sub-quadratic number of
commitments. Roughly speaking, for large 7 and k they achieve zero knowl-
edge interactive proofs using O(y/mk) bit commitments. Usually, one sets k
equal to the size of the input, yielding roughly O(m3/?) bit commitments in
this case, hence a sub-quadratic number. Note that from this point of view,
the results of [22] use a quadratic number of bit commitments. Kilian [83]
later extended their results by using the probabilistically checkable proofs
(PCP) of [4]. More precisely, a zero-knowledge interactive proof that a cir-
cuit of size m is satisfiable is constructed using® O(m!*<1) + O(log®* (m)k
ideal bit commitments and having error probability 2~%. For interactive
arguments similar results are given, using a collision intractable hash func-
tion in addition. The latter result was further improved in [84], resulting
in an interactive argument with communication complexity O(lklog!) bits.
Here, and in the following, { is the security parameter for the prover. Thus,
in order to cheat with probability larger than 2%, the prover must solve
an instance of size ! of a hard computational problem, such as finding a

discrete logarithm modulo an I-bit prime”.

Given a family C of polynomially sized Boolean circuits, one can easily (as
detailed later) and efficiently transform each C € C to a Boolean formula
@ such that @ is satisfiable if and only if C is. Moreover, |®¢| = O(|C|).
In our approach, we take any Boolean circuit C, map it to ®¢ and apply
the results concerning partial proofs from Section 3.2 to a monotone for-
mula @, that is constructed from ®¢, and a bit commitment scheme with
properties detailed below. Our approach results in zero-knowledge interac-
tive proofs for circuit satisfiability (and thus for NP) with error probability
27% and communication complexity corresponding to O(m) + k commit-
ments; for interactive arguments for NP we get communication complexity
O(m) -max(k,!) bits (we count commitments for the proof and bits for the
argument to facilitate comparison with [83, 84]).

Comparing this to [83], [84] which were the best results so far, we see that
for interactive proofs, the term depending on % has been reduced from
O(log™ m)k to k. For arguments, our result is inferior to [84] when viewed
as a function of m, but superior as a function of the security parameters
k and l. Note that our interactive argument has no need for a collision-
intractable hash function, we only need commitments with the right prop-
erties. Hence our cryptographic assumption is potentially weaker than the
ones needed in [84].8

®Here c; is any positive constant and ¢z = O(1/e1).

"More precisely, one can show that if a prover can argue a false statement
with success probability ¢ > 27%, then he can solve the hard problem in time
O(1/(e — 27F)).

8 Although no example is currently known that would support our needs, and
not simultaneously imply a collision intractable hash function.



80 3. Partial Proofs and Applications

If one adopts the usual convention of setting the security parameter k
equal to the input size, our result implies a zero knowledge interactive
proof that proves satisfiability of a circuit of size n with error probability
9-™ using O(m) commitments. Even if an extremely small PCP would
exist, the protocol in [83] would use Q(mlog™ m) commitments to solve
the same problem. To the best of our knowledge, our protocol is the first to
achieve “linear zero-knowledge” in this sense. For arguments, we get O(m?)
bits using | = k = m, where [84] would be O(m? logm) bits.

The properties we need from the bit commitment scheme are as follows.
First, we require that it allows a linear proof of contents. Thisis a ¥-proof of
knowledge of the contents of a commitment satisfying honest verifier zero-
knowledge and special soundness. The size of conversations is required to
be linear in the size of a commitment. Furthermore, we will assume that
negations of commitments can be computed non-interactively given just
the commitment. In case of zero knowledge interactive proofs, we need
the bit commitment scheme to be unconditionally binding. In the case of
interactive arguments, we need the bit commitments to be unconditionally
hiding and to possess a “trapdoor” that allows a party who holds that
trapdoor to construct commitments that can be opened both as “0” and
«1”_ Finally, there must exist a linear size witness hiding proof of knowledge
of the trapdoor.

The constants involved in the communication complexities we achieve are
small enough for the protocols to be practical in a realistic situation: let
n be the number of times the formula @ reads an input variable. Then
the communication complexity of the protocols when using our concrete
commitment schemes can be more precisely stated as at most 4n + k + 1
commitments for the interactive proof and at most 5nl + 5l bits for the
argument (assuming k < I). By contrast, the PCP-based methods of [83],
[84] hardly have any practical relevance because of the elaborate reductions
needed to build a PCP.

REMARK 3.4 For the case of interactive proofs, we have, like [83], ignored
in the statement of results the communication needed to set up the commit-
ment scheme 2. This is reasonable, as the same commitment scheme can
be reused in many proofs. For arguments, however, an attractive point is
that cheating is only possible if the intractability assumption used is bro-
ken while the protocol is running!®. This, however, is only true if a new
instance of the commitment scheme is chosen in every run of the protocol.

®In any real implementation, the verifier needs to receive some public param-
eters of the commitment scheme, and possibly a zero-knowledge proof that they
were chosen correctly

10T contrast to the situation for proofs, where breaking the assumption at any
later time can cause problems
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Our communication complexity for arguments therefore includes commu-
nication for setting up the commitment scheme. We also remark that in
all our protocols, the verifier only sends public coins, so they can be made
non-interactive using the Fiat-Shamir heuristic.

3.3.2 Bitcommitments and Linear Proofs of Contents

Bit commitment schemes of the kind we use consist of functions commit :
{0,1}* x {0,1} — {0,1} and verify : {0,1} x {0,1}r x {0,1} —
{accept, reject}, whose descriptions are output by a probabilistic polyno-
mial time algorithm G on input 1*, where [ is a security parameter. Here, [,.
is polynomially bounded in I. We refer to commit and verify as the public
key of the commitment scheme. To commit to a bit b, one chooses r at ran-
dom from {0, 1} and computes the commitment C as C « commit(r,b).
The value r masks the bit b. To verify whether a commitment has been
opened correctly, one verifies whether verify(C,r,b) = accept.

For interactive proofs, we will need bit commitments to be unconditionally
binding. This means that the bit b is uniquely determined from the commit-
ment C. Of course we also need the scheme to hide the bit, but the best we
can get in this case, is that it is computationally hiding: the distributions
of commitments to 0 and and to 1, respectively, are computationally indis-
tinguishable: no probabilistic polynomial time algorithm receiving as input
a commitment to 0 or 1, can guess the bit b with probability significantly
better than 1/2.

For interactive arguments, we will use bit commitment schemes with dual
properties. Unconditionally hiding. This means that the distributions of
commitments to 0 and and to 1, respectively, are identical. Now, with
respect to the binding property, the best we can achieve is that the scheme
is computationally binding. This means that no probabilistic polynomial
time algorithm can compute a commitment that can be opened in both
ways: it is infeasible to compute C € {0,1}), and ry,7; € {0,1}'r such
that verify(C,rg,0) = verify(C,r1,1) = accept, except with negligible
probability.

Unconditionally hiding commitment may in addition be trapdoor{24] (also
called chameleon). For a trapdoor commitment, the generator G outputs
in addition a string 7" called the trapdoor information. Given the trapdoor,
one can cheat the commitment scheme. More formally, there is a polyno-
mial time algorithm that on input 7" will produce pairs rp,r; such that
commit(rg,0) = commit(ry,1) = C, verify(C,ro,0) = verify(C,r,1) =
accept, and the distribution of C is the same as that of commit(r,b) for
random 7. We will assume that, on the other hand, given C and any pair
10,71 such that verify(C,ry,0) = verify(C,r1,1) = accept, it is easy
to compute T'. Note that by the binding property, it is infeasible to com-
pute the trapdoor information T' given just the public key of the commit-
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ment scheme. Finally, for an unconditionally hiding trapdoor commitment
scheme, we require that there exists a witness hiding [64] proof of knowledge
of the trapdoor T, with communication complexity linear in [.

Let C = commit(r,b). We say that commitments can be negated, if, given
just C, one can efficiently compute C' which is a commitment to 1 —b.
Furthermore, if one is given r and b, it is easy to compute 7’ such that
C' = commit(r’,1 —b).

A bit commitment scheme has a linear proof of contents, if there is a -
protocol (A, B) with the following properties.

1. (A, B) is a proof of knowledge, satisfying special soundness, that A
knows how to open C as a commitment to 1. More precisely, from two
conversations that constitute a collision, one can efficiently compute
r such that C' = commit(r, 1).

2. (A, B) is special honest verifier perfect zero knowledge, with simulator
M . We assume for simplicity that the simulator always produces an
accepting conversation, even if it is given a commitment to 0 (this
holds in our concrete examples).

3. The size of the conversation is O(l) bits and the challenge size ¢p is
linear in {. By Lemma 2.8, we may assume that tp = I, while the size
of the conversation is still O(1) bits.

From the proof of Theorems 3.5 and 3.6, it will become clear why we re-
quire the bitcommitment scheme to have a linear proof of contents. As a
toy example, suppose that a prover wants to demonstrate knowledge of a
satisfying assignment to the ® = a ®b. Let a bit commitment scheme with
negation and linear proof of contents!! be given. Suppose that the prover
has the satisfying assignment (a,b) = (1,0). Then, the prover provides a
commitment C to a = 1 and shows that among C and its negation C’
(which the verifier can compute on its own), there is at least one commit-
ment to 1. This is done using the techniques from Section 3.2. But then
the verifier must conclude that the bits hidden in C and C’ respectively,
satisfy ®: one of the bits must be 1 by the properties of the proof and if
the other bit were 1 too, this would mean that the prover has broken the
commitment scheme! Also by the results in Section 3.2 and the properties
of the bit commitments, this approach (which is detailed in Section 3.3.6)
can handle any Boolean formula ®. This then leads to communication ef-
ficient honest verifier zero knowledge proofs of satisfiability. Using known
transformations, we can turn them into a zero knowledge proofs.

"Note that since commitments to 0 are assumed to be indistinguishable from
commitments to 1, the simulator M outputs an accepting conversation on input
of a commitment to 0, except with negligible probability. Also, if the commitment
scheme has the negation property, then there exists a linear proof of contents that
A can open a given commitment as 0, as well.
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Concrete examples of the commitments schemes defined here are given in
Section 3.3.6.

3.3.8 General Approach

We first present a general method for constructing a communication effi-
cient perfect honest verifier zero knowledge proof (A4', B') that a given word
z is a member of an NP-language L. Then in the following two sections, we
show how to obtain zero knowledge in general for these interactive proofs,
resp. arguments.

Let € be a polynomially sized family of Boolean circuits that verify wit-
nesses for L. First we prove the following.

ProproSITION 3.1 Let C be a polynomially sized family of Boolean circuits.
Then there exists an efficient transformation that takes C € C to a Boolean
formula ®¢ that is satisfiable if and only if C is. Given a satisfying assign-
ment for C, a satisfying assignment for ® is computed efficiently. Finally,
we have that |®] = O(|C]).

ProoF. Without loss of generality, assume that each circuit consists of
AND-, OR-, and NOT-gates only. Let C' € C and let [C| denote the size of
C, that is, the number of gates in C. Suppose that C takes r input bits.
First note that if we have a gate in C € C with N’ input wires, and we
assign distinct Boolean variables a4, ...,ax to each of its input wires, and
one Boolean variable b to the output wires, there exists a Boolean formula
f that checks the computation at this gate. For instance, suppose we have
an AND-gate, then the Boolean formula “b = a; A --- A an+” does the
trick. Since equality-testing of two Boolean variables b, and b, amounts
to “(by A b2) V (b1 A b2)”, we can make this Boolean formula f that is
satisfiable if and only if the computation at this gate is correct. Number
the input bits from 1 to r and the gates from 1 to |C|, where the |C|-th
gate is the output-gate of C. For the i-th gate (1 < ¢ < |C| — 1), assign
the Boolean variable J; to each of its output wires. For the j-th input bit,
assign the Boolean variable p; to each of its wires. Using the variables just
defined, construct the Boolean formula f; (1 < i < |C| — 1) that checks
the computation at the i-th gate, as detailed above. The Boolean formula
fic| for the output-gate of C, is just the output of that gate in terms of its
input variables. The Boolean formula ®¢ is now defined as

ICl

®c= A £
i=1

It is clear that ®¢ is satisfiable if and only if C is (note, however, that ®¢
and C do not compute the same function) and that satisfying assignments
for C are mapped efficiently to satisfying assignments for ®¢. Since we may
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assume that there exist a constant N such that for each C' € C and for each
gate in C there are at most N input wires, we have that |®c| = O(|C))-
Note also that at the cost of a constant expansion of the formula, we may
assume that the AND-, and OR-gates have two input bits. O

We may now assume by Proposition 3.1 that we have a family of Boolean
formulas ® that verify witnesses for L, with |®| = O(|C]|), & = ®¢ and
C € C. Given, additionally, a bit commitment scheme with negation and
linear proof of contents (A, B), we construct a family F of monotone for-
mulas &' from those ®’s, and invoke Theorem 3.3 and Corollary 3.1. The
prover P will commit to a witness w for z, after which the prover P and
verifier V will run the protocol (4', B'), P running A’, and V running B’
as subroutines, respectively. P will only be accepted by V' if the bits com-
mitted to constitute a witness for z, i.e, = € L. This results in interactive
proofs and arguments for L that are honest verifier zero knowledge. For in-
teractive proofs, we will require the bit commitments to be unconditionally
binding, while for arguments we will require them to be unconditionally
hiding,.

Let an input word z € L of length k bits be given, and let ® be a Boolean
formula verifying a witness for x. Without loss of generality we may assume
that @ consists of AND-, OR- and NOT-operators only, with the NOT-
operators occurring at the inputs'?. Let m denote the number of different
input variables to @, and let n denote the number of times that & reads an
input variable. A monotone formula @' is obtained from & by removing the
negations and by renaming the input variables such that all n references to
the inputs refer to different variables. For example, put ® = (a Ab) V (-a A
-b), and note that n = 4 and m = 2. Now we have & = (a Ab) V (cAd),
with n = n' = m' = 4. In general, ® will satisfy n = n’ =m'.

Let ¥ be any monotone formula on n input variables, and let a set of
commitments Di,.., D, be given. Then we say that the set of strings
1,y Tn U-opens Dy, ..., Dy if ¥(y1,...,7n) = 1, where y; = 1 if and only
if verify(D;,:,1) = accept (i = 1...n). Note that by Corollary 3.1,
there exists an efficient secret sharing scheme with completion for ¥*. This
scheme, that of Benaloh and Leichter [14], can take as input a secret bit
string of [ bits, for any positive integer . If we assume that ¥ reads each
of the n inputs once, the size of each of the n shares output by the scheme
is also [ bits.

We now incorporate the bit commitments from Section 3.3.2. Let R be the
binary relation consisting of all pairs (C,r) such that verify(C,r,1) =
accept. Note that the linear proof of contents (A, B) that comes with our
bit commitment schemes, is actually a proof of knowledge for the relation

12pPushing the NOT-operators to the inputs does not change the complexity of
the formula, and can be done efficiently as well.
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R from above. Recall that we have assumed that both the challenge size tg
is equal to ! and the size of conversations in (A4, B) are linear in I. Here, [
is the size of a commitment. Taking into account that (A4, B) also satisfies
special soundness and special honest verifier zero knowledge, we have by
Theorem 3.3 and Corollary 3.1:

PROPOSITION 3.2 Let F be a family of monotone Boolean formulas of poly-
nomial size, such that for each n, each f, € F reads each of its n input
bits exactly once. Let ¢ bit commitment scheme be given which has a linear
proof of contents (A, B). If commitments D, ...,D, of sizel and U € F,
are given, then there exists an honest verifier zero knowledge T-protocol
(A',B') showing that A’ can U-open D,...,D,.. Furthermore, from two
conversations of (A', B') of form (a,c,z),(a,c',z'), where c # ¢’ one can
efficiently compute a set of strings that W-opens D1, ...,D,. Thus (A', B)
15 a proof of knowledge for relation Ry, satisfying special soundness. The
communication complerity is | bits plus n times that of (A, B). This corre-
sponds to O(|¥|) bit commitments of size .

Combining Proposition 3.2 and Corollary 2.1 we have the following.

COROLLARY 3.6 Suppose that A* is a prover accepted by the honest verifier
B' with probability ¢ > 27'. Then there exists a probabilistic algorithm
Ext that outputs a set of sirings that $-opens D, ..., D,, running A* as
a rewindable black-boz, with expected running time polynomial in T4- and
1/(e—27"), where Ta. denotes A*’s running time.

We now consider the following honest verifier zero knowledge protocol
(P', V") for showing that the Boolean formula ® is satisfiable.

Step 1 : Let € L and let a witness w = (wy, .., w,) be given by input bits
that satisfy ®. For ¢ = 1...m, P’ now computes commitments C;
for these bits w;: P’ puts C; «— commit(r;, w;), where r; is chosen at
random from {0, 1} (notations as in Section 3.3.2). P’ sends these
Ci’s to V'.

Step 2 : For i = 1...m, V' computes the negation, a commitment containing
1 —b;, C] from C;. Number the positions in & where an input bit is
used (at the input wires) from 1 ton. For j =1...n, let D; = C;, if
the bit w; is used at this position, and let D; = C! if the bit 1 — w;
is used.

Step § : Using the protocol (A’, B’) guaranteed by Theorem 3.2, P' now
convinces V' that that the bits contained in Dj,..., D, satisfy the
monotone formula @’ (that is, Dy, ..., D, can be ®'-opened). Here P’
plays the role of A’ and V' plays the role of B,

The protocol (P', V') gives rise to the following theorems.
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THEOREM 3.5 Suppose there exists an unconditionally binding bit commit-
ment scheme, in which commitments can be negated, and which has a linear
proof of contents. Then any L € NP has an honest verifier computational
zero-knowledge interactive proof system that proves © € L with error proba-
bility at most 2~F using a total of O(|z|°) commitments, for some constant
c. The constant ¢ only depends on L: it is determined by a family of Boolean
circuits verifying witnesses for membership of L.

THEOREM 3.6 Suppose there exists an unconditionally hiding trapdoor bit
commitment scheme, in which commitments can be negated, and which has
a linear proof of contents. Then any L € NP has a honest verifier perfect
zero-knowledge interactive argument that ¢ € L, with communication com-
plegity O(|z|°) - maz(k,l) bits, where c is a constant. The constant ¢ only
depends on L: it is determined by a family of Boolean circuits verifying
witnesses for membership of L. If a prover P* can cheat with probability
e > 2% in time Tp., the prover can break instances of the commitment
scheme of size | with expected running time time polynomial in Tp- and
1/(e—27%).

PROOF. In case of interactive proofs, we set k = I, and execute (P',V').
For interactive arguments, we execute (P, V') s times in parallel, where s
is minimal such that sl > k. The security properties are invariant under
parallel composition. Completeness is trivial. As for soundness, note that
if a prover P* has probability of success greater than 2-F then there exist
Pl .., pn that ®-open Dy, ..., Dyn. Thus, ®(71,...,7) =1 wherey; =1
if and only if verify(Dj, pj, 1) = accept. Recall that by definition, each D;
is equal to C; or C! for some 7. Let V; denote the set of indices j,1 < j < n,
such that D; was set equal to C;, and let V! similarly denote those where D;
was set equal to C!. Define the set TV as the set of indices j, 1 < 7 < n, with
v; = 1. We define the bits w; and wi, i =1...m, by setting w; = 1if ¥; N
W # 0 and 0 otherwise, and w! = 1if V/NW # 0 and 0 otherwise. Note that
w; = w! = 1 implies that we can find j and j’ such that verify(Ci, p;,1) =
verify(C!, pj:,1) = accept. If we assume that at least one of w; and w}
is equal to 0 for each i, and put w; = 1, w} = 0 instead in those cases
where w; = w} = 0, it is easy to see that w = (wi,...,wn) satisfies ®.
In case of interactive proofs, where an unconditionally binding scheme is
used, the case w; = w! = 1 is impossible, so the error probability is at
most 2. Now for the case of interactive arguments where unconditionally
hiding bit commitments are used, the case w; = w; = 1 implies that the
prover is breaking the binding property of the commitment scheme: by
the properties of negation, verify(C;, p;j,1) = verify(C}, pjr, 1) = accept
implies that C; can be opened as 0 and 1. Since we may view (P',V') asa
¥-protocol satisfying special soundness with challenge size sl > k, we have
similarly to Corollary 3.6 that the prover can break the commitment scheme
with expected time running time polynomial in Tp. and 1/(e—27F), if the
success probability € is greater than 2~k The latter argument also shows
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that (P’,V'} is a proof of knowledge in both cases of interactive proofs
and arguments. Concerning honest verifier zero knowledge simulation, we
construct the C;’s as a set of all-0 commitments, and compute the C}’s from
this. We then invoke (s times, in case of the arguments) the honest verifier
simulator of (A’, B'). This simulation is perfect for unconditionally hiding
commitments, and is computationally indistinguishable for unconditionally
binding commitments. Finally, the communication complezities are argued
as follows. Note that we may assume that |®| = O(|z|°), where the constant
c only depends on the language L. We also have n = O(|z|°), and that
the communication complexity of (P',V') is that of (A4, B), except that
for arguments it is repeated s times. Therefore, in the case of interactive
proofs, we need communication corresponding to O(|z|?) bit commitments
of size k (since we have put k¥ = ), and for arguments, we need some
[k +1/1] - O(]z|°) bit commitments of size . Since we are counting bits in
this case, the communication is O(|z|®) - maz(k,!) bits. O

3.8.4 Zero Knowledge Interactive Proofs for NP

The problem that (P',V’) is only honest verifier zero-knowledge can be
solved using a method due to Okamoto [54], namely to let the verifier’s
challenge be determined by a two party coinflipping protocol. This turns
(P', V') into a zero knowledge proof system for L.

Step 1 : The prover P sends the first message of protocol (P’, V").

Step 2 : Let an unconditionally binding bit commitment scheme be given
(See Section 3.3.2). For i = 1 to k do: the prover P commits to a bit
pi, the verifier V' chooses a random bit v; and sends it to P. Finally,
the prover P opens the commitment to p;.

Step 3 : The prover P sends the final message of P’ in protocol (P', V'),
taking the challenge of the verifier V' to be p; ® vy, ..., px ® vy.

When the verifier is honest, the challenge is uniformly chosen, so the error
probability is 27%. Moreover, the protocol can now be simulated against a
general verifier since by rewinding the verifier, the simulator can force the
challenge to be a particular value of its choice, and hence the honest verifier
simulator we already had is enough to simulate the rest of the conversation.
The coinflipping step costs k commitments.

THEOREM 3.7 Suppose there exists an unconditionally binding bit commit-
ment scheme, in which commitments can be negated, and which has a linear
proof of contents. Then any L € NP has a computational zero-knowledge
interactive proof system that proves that some given x € L with error prob-
ability at most 27% using a total of O(|z|¢) + k commitments, for some
constant c. The constant c only depends on L: it is determined by a family
of Boolean circuits verifying witnesses for membership of L.



88 3. Partial Proofs and Applications

3.3.5 Interactive Arguments for NP

To build a zero-knowledge interactive argument (P, V) from (P',V'), we
use an unconditionally hiding trapdoor bit commitment scheme with an
efficient witness hiding proof of knowledge of the trapdoor:

Step 1 : The verifier V runs the key generator G, sends the resulting pub-
lic key for the commitment scheme to the prover P, and keeps the
trapdoor T private.

Step 2 : The verifier gives a witness hiding proof of knowledge of the trap-
door.

Step 3 : Protocol (P', V') is executed using the commitment scheme instance
just generated.

The idea is taken from [65). The protocol as shown here has 6 moves,
but this can be condensed to 4 moves in the same way as in [65]. The
proof of soundness remains essentially the same, but note that in order
to fool V, the prover P still has to break the commitment scheme, as
follows from the proof of Theorem 3.6. In the case of trapdoor commitments
we have required that breaking the commitment scheme is essentially as
difficult as finding the trapdoor T. However, the verifier’s witness hiding
proof does not help to do that. Hence the soundness of (P!, V') is preserved.
Furthermore, the protocol is now zero-knowledge, since the simulator can
use the knowledge extractor for the verifier’s proof of knowledge to get the
trapdoor information!®. Given the trapdoor, simulation of the rest of the
protocol is trivial. The witness hiding proof costs, by assumption on the
commitment scheme, a communication complexity that is O(l) bits. We
then get the following by inspection of (P, V):

THEOREM 3.8 Suppose there exists an unconditionally hiding trapdoor bit
commitment scheme, in which commitments can be negated, and which
has a linear proof of contents. Then any L € NP has a perfect zero-
knowledge interactive argument that « € L, with communication complezity
O(|z|°) - max(k,1) bits, where c is a constant. The constant c only depends
on L: it is determined by a family of Boolean circuits verifying witnesses
for membership of L. If a prover P* can cheat with probability € > 2=k in
time Tp+, the prover can break instances of the commitment scheme of size
| with ezpected running time polynomial in Tp. and 1/(e — 27F).

13 Although this by itself may not produce the trapdoor with absolute certainty,
the simulator can run an exhaustive search for the trapdoor in parallel with the
extractor. This will then produce the trapdoor in those exponentially few cases
where the extractor fails, while the expected running time remains polynomial
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3.3.6 FEuzistence of Bitcommitment Schemes

This section contains material related to practical implementation of our
protocols. We present examples of commitments with the properties we
need and compute the concrete communication complexities that result.

An Unconditionally Binding Bit Commitment Scheme

For unconditionally binding schemes, note that we could abstract the prop-
erties needed as follows. Suppose we are given an NP-language Ly where
language membership is hard to decide on the average. Suppose further-
more that there exists an efficient “inversion” algorithm that takes a word
To € Lo as input and outputs a word z¢L,, where L; is the complement
of L, and vice versa. Note that this implies that L; € NP. To commit to
0, the prover selects a random instance zq € Lg, and to commit to 1, the
prover selects a random instance x; € L,. Negation is also taken care of
by the inversion algorithm. To open a commitment to 0, the (unbounded)
prover just computes a witness wy for zg. To open a commitment z; to
1, the prover first maps z; to some zo € L using the inversion algorithm
and proceeds as before. If we now assume that there exists a $-protocol for
Ly that constitutes an honest verifier interactive proof 1 for Ly with the
right communication complexity, then we can easily construct the proof of
contents. If we want a polynomially bounded prover to be able to execute
the protocol we also have to assume that there exists an efficient algorithm
that uniformly samples z; € L;, i = 1,2, and outputs z; together with a
witness w;. We can get around the inversion function if we assume that
Ly itself has an honest verifier zero knowledge X-proof. The prover then
selects zp € L and z;, € L,, presents the pair (20, 1) in random order and
proves in zero knowledge that at least one of the two words is in Ly and
that at least one of the two words is in L;. This is possible by the results
from Section 3.4.

Concretely, the following scheme, which can be viewed as an instance of the
general treatment above, is based on the factoring problem, and is derived
from the identification scheme of Guillou and Quisquater [76).

Key Generation : The key generator G for this scheme chooses an [ bit
integer n as the product of two primes p;,ps of approximately the
same length, such that there is an odd prime q that divides p; — 1,
but not p2 — 1 (easily done by choosing g and ps first and then locking
for a prime of form 2jg + 1 for some j). Then a constant & is chosen
as a random number in Z}; which is not a ¢’th power modulo n. The
public key is now n, g, h.

14Sati3fying special soundness, or a weak variant of it where a PIOVer can answer
only very few challenges if the input word is not in Lo, see Section 2.4.2
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Commitment : The function commit is defined as C = commit(r,b) «
r9h%(®) mod n where r is random in Z7%. The function & takes as input
a bit b and outputs (—1)'7%.

Opening : To open the commitment C, r and b are revealed. This is ac-
cepted if and only if verify(C,r,b) = accept, where verify checks
whether C = r7h%(%) mod n.

Negation : Commitments can be negated: if C = commit(r, b), then anyone
can easily compute C' = C~! mod n = ¢(r™',1 = b).

Using the fact that 2 and g are relatively prime, it is not hard to show that
we can have hr? = h~1#'7 mod n if and only if h is a ¢’th power, and the
scheme is therefore unconditionally binding. After choosing the public key,
P should convince V in zero-knowledge that h does not have a g’th root.
This is easily done using a variant of the protocol from [68] for quadratic
non-residuosity - note that it is easy for P to test if a number y has a
q'th root by testing if y?*(™/9 mod n = 1. Also note we do not count the
communication complexity for this proof, since it only has to be done once
in a pre-processing phase. The prover can use the same instance many times
for proofs concerning different languages even. Finding the bit contained
in a commitment C is precisely the problem of distinguishing cosets of the
subgroup of ¢’th powers in Z}; (the g-th residuosity problem, a variant of
the quadratic residuosity problem). This is a well-known problem, believed
to be hard, if factoring is hard.

Hence we conjecture that the scheme is computationally hiding under the
q’th residuosity assumption: the distributions of 77h mod n and 7 h~! mod
n are computationally indistinguishable, when r is random in Z7 and the
length of g is linear in the length of n, say corresponding to a constant
fraction of the length of p; — 1.

Finally, the following protocol (A, B) is a linear proof of contents:

Move 1 : Let y = C/h mod n, where C = hr? mod n is the input commit-
ment. Now A chooses u at random in Z and sends ¢ = 7 mod n to

B.

Move 2 : B chooses ¢ at random from [0,2* — 1] (where ¢ is maximal, such
that 2¢ < q) and sends it to A.

Move 3 : Asends to B z = u-r° mod n, and B checks that 27 = a-y°* mod n

To verify that the necessary properties are satisfied, is done in very much
the same way as in Section 2.3.3.
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An Unconditionally Hiding Bit Commitment Scheme

Ideally, we would like to present here an unconditionally hiding bit com-
mitment scheme with the properties we require, based only on abstract -
protocols with properties such as special soundness or collision intractabil-
ity and (special) honest verifier zero knowledge. As it turns out, our model
facilitates trapdoor bit commitments. But at present it seems that the other
properties needed in the context of our linear zero knowledge proofs, such
as linear proof of contents and negation, are hard to get without making a
host of new assumptions. Since trapdoor (or chameleon) commitments are
useful in other applications as well, we include the construction here, before
we show that bit commitments sufficient for our linear zero knowledge ar-
guments can be constructed under the assumption that a family of special
one-way group isomorphisms exists (see Section 2.5.2). Thus the discrete
logarithm or RSA-assumptions are sufficient to provide bit commitments
of the type needed here.

As to unconditionally hiding schemes, let (A, B) be a E-protocol for rela-
tion R and invulnerable generator G. Suppose the protocol satisfies special
soundness and honest verifier zero knowledge, and that membership of RX
can be decided efficiently. Let M denote the simulator. The verifier V com-
putes an instance (z,w) « G(1¥) and sends « to the prover P, who only
proceeds if z € RX. To commit to a bit b the prover runs M on input
z until the conversation (z,a,c,z) output by M satisfies that least sig-
nificant bit of ¢ is equal to b. By the honest verifier property of (4, B)
this takes an expected number of two trials. By that same property, the
value a gives no information about b. The commitment C is equal to a.
To open the commitment, the prover sends ¢ and z to the verifier, who
checks whether ¢(z, a,c, z) = accept. The verifier takes the least significant
bit of ¢ as the bit that the prover committed to. Note that if the prover
could break the commitment scheme, the invulnerability of the generator
G would be contradicted. Now we must build in the trapdoor. If it is the
case that the protocol (4, B) is a witness hiding proof of knowledge, we are
clearly ready. If this is not the case, we simply apply the transformation
from Corollary 3.5 first, before going through the definitions above. One
of the variations is where one can commit to many bits simultaneously by
using a special simulator for (4, B).

We now prove the following proposition.

PROPOSITION 3.3 Suppose there ezists a family F of special one-way group
isomorphisms (see Section 2.5.2) such that membership of F can be decided
efficiently and that for each (f,K,L,T) € F it holds that log T is linear in
ky = |L|, then there ezists an unconditionally hiding trapdoor bit commit-
ment scheme with negation, a linear proof of contents and a witness hiding

proof of knowledge of the trapdoor.
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PRrOOF. Let ((f, K, L, T, g, k), (w1, w2)) be an element as output by Ry’s
generator Gz on input 1* where k is the security parameter. Recall that
fg(wl,wg) = g¥1 f(wy) = h, where w; € [0,¢) and wy € K and f is an
isomorphism from K to L. Also recall that 7' is an odd prime such that for
each v € L we can efficiently compute § € K such that f(6) = T,

Key Generation : The public key of the commitment scheme consists of
(f,K,L,T,g,h), while the trapdoor, kept privately by the verifier, is
(w1, w2).

Commitment : Let the function & take as input a bit b, and output (-1)*.
Then the function commit is defined by

C = comnit((r1,72),b0) = ha(b)fg(rl;TZ):

where r; is chosen at random from [0,7 — 1] and 72 is chosen at
random from K.

Opening : To open a commitment C, the values ry, r2 and b are revealed.
It is accepted if and only if verify(C,(r1,72),b) = accept, where
verification consists of checking whether C = RSO £, (r1,72).

Negation : Commitments can be negated: given C = commit((r;,2),b),
then €' = C~! = commit((—ry,75 '), 1 — b) contains 1 — b.

Trapdoor : A trapdoor can be any pair w;, ws such that h = fg(wl,wg).

A linear proof of contents and a linear witness hiding proof of knowledge of
the trapdoor are provided by Proposition 2.10. Note that we have assumed
that T is large enough. It is easily verified that the trapdoor defined above
is indeed a trapdoor and that commitments computed using this trapdoor
have the right distribution. Note that if the prover can compute commit-
ments that can be opened in both ways, this will contradict the fact that
the protocol (4, B) from Proposition 2.10 is witness hiding. Suppose we are
given r; and 7 (i = 1, 2) such that hfg(r1,m2) = h1f (), 7). Leta, B € K
be such that f(a) = g7 and f(8) = ™. Note that by our assumptions on
T such values are computed easily. Now define the following:

1
w; = -2-(1‘; —7m)(T+1)mod T

1
81 = 5(7"1 -m)(T+1)divT
0= (") E
wy = a® B s,

Then fg(wi,wz) = h. Thus the scheme is computationally binding. To see
that it is wnconditionally hiding, note that for each b € {0,1} and r; €
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[0,T — 1] there is a unique r, € K such that commit((r;,3),b) is equal to
any given commitment. O

For the sake of concreteness we include an example based on exponentiation
in a group of prime order g, G4, where computing discrete logarithms is
hard. See Section 2.3.2. For concreteness, we think here of this group as a
subgroup of Z7, where p is a prime and g divides p — 1. But any group of
order g would do, such as an elliptic curve group. Note that we have g = T.

Key Generation : To generate the public key of the scheme, choose an I-bit
prime p, such that the prime g divides p — 1 (this is easily done by
picking g first of length slightly smaller than ! and then searching
for p). Also select two elements g1,92 € Z, of order ¢ at random.
Define f and f,, by f(w) = g¥ for w € Z, and f,,(w;,w;) = g1 g
for w;,wy € Z,. Next choose w;,ws at random from Z, and let
h = g{" g5* mod p. The public key is now p, g, g1, g2, h.

Commitment : Let the function & be as before. Then the function commit is
defined by C' = commit((ry,72),b) < g7'g52h%®) mod p where 71,7y
are random in Z,.

Opening : To open a commitment C, the values ri, 7o and b are revealed.
It is accepted if and only if verify(C, (r1,r2),b) = accept, where
verification consists of checking whether C = g]* g72h%(®) mod p.

Negation : Commitments can be negated: given C = commit({ry,r2),b),
then by computing C' = C~! mod p which is commit((—ry, —rg),1—
b), we have a commitment that contains 1 — b.

Trapdoor : A trapdoor can be any pair u;,u; such that A = ¢} g% mod p.
The scheme has the following linear proof of contents (A, B):

Move 1 : Let y = C/h, where C' = g{" g;*h mod p is the input commitment.
Now A chooses fu;,u; at random in Z, and sends a = g1'95* mod p
to B,

Move 2 : B chooses ¢ € {0,1}* at random (where ¢ is maximal, such that
2! < g) and sends it to A.

Move 3 : A sends to B: z; = u; +¢ry mod ¢ and 2z, = us + cry mod q,
who checks that gi*g3? = ay® mod p

Concrete Communication Complexities

Assume we use one of the two example commitment schemes shown above
to implement our protocols. To evaluate their practical potential, we com-
pute the exact communication complexities that result. In general we can
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say that in the worst case, the formula ® uses every input bit and its com-
plement exactly once, so that no reuse of commitments is possible. Hence,
in the (A’, B') protocol, for each input bit we use at most the commit-
ment containing the bit, and the proof of contents done w.r.t. this bit. For
both commitment schemes, we have to choose the parameter ! such that
either factoring or discrete log is infeasible, which means that [ should be
700 —1000. To ensure a chance of at most 1 in a billion of cheating it suffices
that k = 30, so we reasonably assume that & < [ in any practical situation.

Thus, we have at most n < |®| commitments of size [ bits and only one
iteration of the protocol is necessary. From the description of the scheme
based on factoring, we see that the proof of contents requires communi-
cation equivalent to two commitments, plus a challenge value that will
always be of length at most 1 commitment. One proof of contents there-
fore needs communication corresponding to at most 3 commitments. From
the description of the scheme from Section 3.3.6 based on discrete log, we
see that the proof of contents communicates numbers corresponding to at
most 41 bits (3 numbers plus 1 challenge). Taking into account that for in-
teractive proofs we have to go through the transformation of Section 3.3.4
(k+1 commitments) and for interactive arguments we have to do the proof
of knowledge of the trapdoor from Section 3.3.4 (5[ bits for the public key
and 41 bits for the proof), we have:

PROPOSITION 3.4 Suppose the protocols from Theorem 3.7, resp. 3.8 are
ezecuted using the commitment schemes from Section 3.3.6, resp. 3.3.6,
then assuming that I > k, the communication complezities will be at most
dn+k+1 commitments, resp. 5nl+91 bits, where n is the number of times a
Boolean formula for verifying an NP witness for L reads an input variable.

A simple computation shows that with for example about 3 Mbyte of com-
munication, and using k = 50,1 = 768, n can be up to about 10.000. This
might be enough to prove, for instance, that you know a DES key encrypt-
ing a given cleartext block to a given ciphertext block.

In a similar case, the short discreet proofs of Boyar and Peralta [23] use
significantly less communication, about 0.3 Mbyte, but much more com-
putation - a factor of very roughly k/10logn more than our protocol'®.
However, it is currently an open problem to prove anything about the
soundness and “discreteness” of the proofs from [23], even assuming hard-
ness of factoring or discrete log. Thus the factor 10 in communication seems
to be the price we currently have to pay for provable security.

15This is due to the fact that many randomly generated commitments must be
used for every gate. These commitments can be generated from a short random
seed, and do not have to be communicated. They do have to be computed on by
both parties, however.
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We note that in general, our protocol may be significantly optimized by
building ad hoc as small a formula @ as possible for the problem. Further-
more it may be possible to find a smaller monotone formula computing the
same function as the one constructed directly from ®. For the interactive
proofs, k “extra” commitments are needed to make the proof simulatable
against a general verifier. Some of these can be saved by committing to a
logarithmic number of bits in one commitment, thus doing the two-party
coinflip on a logarithmic number of bits simultaneously.

3.4 Monotone Function Closure of Zero
Knowledge

3.4.1 Iniroduction

Consider a language L (a subset of {0,1}*), and assume that there exists a
zero knowledge interactive proof (P, V) for membership of L. Let n words
T1,...,Zn € {0,1}* be given. How do we give an efficient zero knowledge
interactive proof that, for instance, half of these words are members of
L? In this section we study structural properties of classes of languages
that admit a particular kind of zero knowledge proof. More precisely, given
any monotone function f (see Section 3.2.2) on, say, n input bits, we will
construct a zero knowledge proof (P, V') that there exists a subset A of the
z;’s whose elements are all in L and that A is consistent with the monotone
condition. In other words, the characteristic vector of that set satisfies f.
Given some suitable method for parsing any bitstring z € {0,1}* into n
strings ©1,...,T,, we can then define the language f(L) as consisting of
those words = whose corresponding z;’s satisfy the conditions above. In
fact, (P, V') is a zero knowledge interactive proof for the language f(L). As
an example take f as an (n,d)-threshold function. Then our results provide
a zero knowledge proof that at least d out of the n z;’s are members of L.

QOur transformation can be applied if (P, Vp) is a Merlin-Arthur protocol
in that the verifier is required to send only random bits as a challenge.
Furthermore, we will assume that (Fp, Vj) consists of at most three moves.
If (Py, Va) is perfect (resp. statistical) honest verifier zero knowledge, then
the resulting protocol (P, V) a is perfect (resp. statistical) zero knowledge
interactive proof for the language f(L). Under the same conditions, we
show that the complement language L' of L has a perfect (resp. statistical)
honest verifier zero knowledge interactive proof for the language f(L). Un-
der some extra condition about L, this proof is also zero knowledge against
an arbitrary polynomially bounded verifier. We stated our results in terms
of a fixed monotone function f, but in fact we can achieve similar results
if this function is replaced by a family F of monotone functions and if a
suitable efficient secret sharing scheme with completion is available (see
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Section 3.2). The corresponding composite language is denoted by F(L),
suitable parsing to be understood for the moment.

Please note that our goals here differ from those in Section 3.3 in the fol-
lowing ways. There, we were concerned the commaunication complegity of
zero knowledge proofs for general NP-languages. We needed computational
complexity assumptions to achieve either perfect zero knowledge proofs
that are computationally convincing (argument) or to achieve computa-
tionally zero knowledge proofs that are statistically convincing (interactive
proofs). Here, we do not restrict our attention to NP-languages. But more
importantly, we show how to construct zero knowledge proofs for a larger
class of languages from zero knowledge proofs for given (smaller) class,
without using computational complexity assumptions.

The idea of using monotone operations to build new interactive proofs from
known ones with certain properties was introduced by De Santis et al. in
[103] for statistical zero-knowledge proofs and independently in [47] for
witness hiding proofs of knowledge (see Section 3.2).

The results in [103] apply to a quite specialized subclass of languages in
PZKIP (the collection of languages with a perfect zero knowledge inter-
active proof), namely random self-reducible languages (RSR) (Tompa and
Woll [115]). We show that monotone closure applies to a much more general
class, namely languages with 3-move Merlin-Arthur proofs that are statis-
tical honest verifier zero knowledge. In addition to RSR, this class contains
for example perfect and statistical non-interactive zero knowledge. Non-
interactive zero knowledge proofs differ from the standard zero knowledge
proofs in that no interaction between a prover and a verifier is required.
The only assumption needed is that prover and verifier observe a common
random string p (the “reference string”). A non-interactive zero knowledge
proof of some statement consist of a string p, that the prover constructs
as a function of the reference string p and a “real” proof of the statement.
A dedicated verification procedure can be invoked to check if the proof p
is consistent with the reference string p and the statement. Note that an
interactive proof can be obtained by letting the verifier choose the ran-
dom reference string, send it to the prover and have the prover reply with
the (non-interactive) proof. Hence it contains for example the language
of Blum-integers [77), the language of so called 2-regular integers [10]. Our
results can also be applied to the language of functions that are almost
permutations [8]. None of these problems seem to be in RSR.

This substantially extends the set of languages known to be in PZKIP and
SZKIP (the collection of languages with a statistical zero knowledge inter-
active proof), but we also believe that it provides a better understanding of
the essential properties needed for monotone closure: It holds if the given
proof system has a certain form, and not because of algebraic properties of
the underlying language, such as random self-reducibility.
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Another important point is that it might seem from [103] and [47] that
monotone closure holds only for protocols that satisfy a very strong and
non-standard requirement for soundness, namely that a cheating prover can
never answer more than 1 of the verifier’s potential questions (similar to
special soundness). We show that this is in fact unnecessary - the standard
requirement for soundness suffices. However, if we are given that the zero
knowledge proof we start with, satisfies special soundness (such as is the
case with the standard zero knowledge proof for quadratic-residuosity), the
techniques from Section 3.2 can immediately be invoked to obtain a zero
knowledge proof for the composite language.

The key to our results is a combination of the techniques from [103] and
[47] (see Section 3.2) with the interactive hashing technique of Naor et al.
[90]. Our results do not use unproven complexity assumptions.

3.4.2 Notation and Definitions

The language L is said to be in HV3AM/PZKIP, resp. HV3AM/SZKIP if
it has an Interactive Proof system satisfying the following:

1. It is Perfect, resp. Statistical, Honest Verifier Zero-Knowledge.
2. It is an Arthur-Merlin game with at most 3 moves.

3. Completeness is satisfied with probability 1 (the honest prover always
succeeds in convincing the verifier about a true statement).

Such a proof system is called an HV3AM/PZKIP-proof, respectively an
HV3AM/SZKIP-proof. Some of our results can be shown without the third
condition above, but we have included it mainly to simplify the arguments.
We know of no concrete protocol that satisfies the first two conditions, but
not the third. Note that for interactive protocols of this kind, having at
most three moves, there are essentially the following two possibilities. The
first possibility is that the protocol is of the £-type. The second possibility
is as follows. The verifier starts and sends a random challenge, to which
the prover subsequently replies. This situation may be seen as correspond-
ing to, for instance, non-interactive zero knowledge made interactive by
letting the (honest verifier) choose the random reference string. We model
this possibility as a Z-protocol, by defining the prover’s first message as
consisting of the empty string. In the second move, the verifier sends a ran-
dom reference string as the challenge. The prover responds by sending the
“non-interactive” proof in the third move. Thus, we may now assume that
the protocols we consider are in fact E-protocols. We use the notations as
they are defined for X-protocols.

A parsing scheme is a polynomial time algorithm 7 which takes a k-bit word
T as input and outputs integers mn,%p,%1,...,%n, where 0 = 45 < ) < ... <
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in_1 < in = k. Note that » < k and that n» may depend on z. Having run
7 on input & we can view z as a concatenation of words z = z|z2|...|Zn,
where z; consists of bits é;_ 1 + 1 through 4; of . A parsing scheme is
admissible if there is a fixed non-constant polynomial g such that the length
of any z; is at least (k) (note that ¢ must be linear). This is a technicality
which is needed in the following to preserve soundness and statistical zero
knowledge.

Let F be a family of monotone functions (see Section 3.2.2). The language
F(x,L) is constructed as follows from F,n and L: given a word z, parse
it using 7 to divide z into z1,..,Z,. Define the bit string B = by, ..., by by
b; = 1 if and only if z; € L. Then z € F(m, L) if and only if fo(B) = 1.
Note that it is easy to choose F and 7 such that for any L, L = F(w, L).

Finally, we need an efficient secret sharing scheme with completion for F
(see Section 3.2.3). Recall that this is basically an efficient perfect secret
sharing scheme, where any set of shares for a “non-authorized set”, with
distribution as in “real life”, can be extended to a full set of shares that is
consistent with any given secret input. Also recall that if F is a family of
polynomially sized monotone boolean formulas, then such a scheme exists
for F and its dual F* (see Theorem 3.1 and Corollary 3.1). In particular,
this holds if F consists of threshold functions (see Theorem 3.2).

3.4.8 Overview
We prove the following results:

THEOREM 3.9 If L € HV3AM/PZKIP, resp. L € HV3AM/SZKIP
and the monotone function family F* has an efficient secret sharing scheme
with completion, then for any admissible parsing =, F(w,L) € PZKIP,
resp. F(m,L) € SZKIP.

The following is an immediate consequence of Theorem 3.9 and Corol-
lary 3.1.

COROLLARY 3.7 If L € HV3AM/PZKIP, resp. L € HV3AM/SZKIP
and functions in the family F' have polynomial size monotone formulas then
for any admissible parsing w, F(w,L) € PZKIP, resp. F(m,L) € SZKIP.

We do not know if Theorem 3.9 is strictly stronger than Corollary 3.7, but
conjecture that the answer is yes. Our assumption that F™* has an efficient
secret sharing scheme with completion implies that functions in F' can be
computed in time polynomial in k, but it is known [99] that monotone
functions, such as perfect matching in a bipartite graph, exist that can
be computed in polynomial time, but require exponential size monotone
formulas. However, to the best of our knowledge, no efficient secret sharing
schemes are known for the functions studied in [99].
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Let HVSZKIP be the class of languages with honest verifier statistical
zero-knowledge proofs, and let L' be the complement of L (that is, L' =
{0,1}*\ L). We show that

THEOREM 3.10 If L € HV3AM/SZKIP and the family F' has an effi-
cient secret sharing scheme with completion, then for any admissible pars-
ing w, F(n,L') e HVSZKIP.

COROLLARY 3.8 Suppose L € HV3AM/SZKIP, and that computing wit-
nesses for membership in L is hard, that the proof system for L is also a
proof of knowledge and the family F has an efficient secret sharing scheme
with completion. Then for any admissible parsing =, F(w,L') € SZKIP.

‘We remark that the extra assumptions on L in the corollary are only needed
to ensure that we have a unconditionally hiding bit commitment scheme,
by [53]. Any other assumption that would ensure this could be substituted,
such as the existence of one-way permutations [90] or existence of collision
intractable hash functions [91]. All our proofs are constructive and preserve
efficiency in the sense that the new provers and verifiers we construct are
polynomial time machines that call the prover and verifier of the original
proof system for L as subroutines. Finally, it is interesting to note that
our construction starts with a protocol that is only honest verifier zero-
knowledge, and produces a protocol that is zero-knowledge in general. Thus
our results contain parts of those in [53] as a special case.

We briefly indicate our technical approach. Regarding Theorem 3.9, sup-
pose for a moment that L has an interactive proof (Fp, Vp) satisfying the
properties stated in the theorem and that, additionally, this proof has the
property that there exists a reply to at most one challenge, in case ¢ € L.
Note that Theorem 3.3 faces a situation similar to the current. By straight-
forward inspection of the proof of that theorem, especially the case of spe-
cial soundness and honest verifier zero knowledge, it becomes clear that,
with the extra condition on (Fp, Vp) from above, we could just carry out
the construction from Theorem 3.3 to achieve our purposes here. However,
in general we can not assume that (P, Vp) satisfies this “special sound-
ness” property. In Section 2.4.2, we showed how we can transform (P, Vp),
by means of interactive hashing, into an interactive proof (P{H, Vi) for
the same language and with the same zero knowledge properties, such that
“special soundness” is obtained. Using this transformation in addition, the
techniques from Theorem 3.3 can be applied to obtain the target protocol
(P, V) for the language F(=, L).

In the proof of Theorem 3.10, we reverse the roles of the prover and the
verifier in the protocol from Theorem 3.9, to get the claimed result for the
complement language L’. It is only here that we must allow the prover
to be computationally unrestricted. The basic idea is as follows. Since the
protocol (P, V) from above itself satisfies special soundness, we make the
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following observation. Let M be a simulator for (P, V). If z & F(x,L'),
then M(z) may output an accepting conversation z, ¢, ¢, z, but the number
of values ¢’ different from ¢, such that z, a, ¢, 2’ is an accepting conversation
for some 2, is negligible. If z € F(m, L'), on the other hand, such 2’ exists
for all ¢'. Thus, we let the verifier prepare a simulation with M on input
z, and let the (unbounded) prover guess c.

3.4.4 The Closure Property for L

We now prove Theorem 3.9. Let a language L in HV3AM/PZKIP or in
HV3AM/SZKIP, a family F = {f.} of monotone functions, an efficient
secret sharing scheme S for 7~ (see Section 3.2.3, and an admissible parsing
« be given. We only need S to distribute secrets of one just bit. Without loss
of generality, we may assume that the size of each of the shares s;,...,s,
is equal to I(n) bits, for some polynomial {. We let s; ; denote the j'th bit
of the i’'th share. Let z be a word parsed as z1,...,2,, and let A denote
the set of indices ¢ such that z; € L. Its complement is denoted A’. Our
purpose is to exhibit a ZKIP that f,(A) =1 holds. The description of the
protocol (P{#,VyH#) is found in Section 2.4.2.

Overview

We first give an informal description of the proof system (P, V) claimed
by the theorem. Let’s assume, for clarity, that I(r) = 1. The basic idea is
that, for z; € L, the prover and the verifier engage in an execution of the
preamble of (P{H, V]H#), while for z; ¢ L, they execute (MJ¥,VJ#). This
is done in parallel for all z;. In all n cases, two challenge values are isolated.
In case z; € L, the prover can answer both of them, while if z; ¢ L, he can
answer at most one. This means that for all 7 € A’, the prover is effectively
committed to a bit, which challenge (which v-value) he can answer.

The verifier now selects a random bit bg. The prover must then (on his own)
complete all the conversations of (P{#, V) that were started earlier and
send the results to V. All these conversations must be accepting. But in
addition, we interpret the v-value answered in the i’th instance as the bit
s; in an output of §. This determines a set of shares sj,..,5,, and V will
accept, only if this set of shares is consistent with the bg he chose.

Intuitively, this is sound since if too many z;’s are not in L (f.(4) = 0),
we have f:(A") = 1. This means P will be committed to so many s;’s,
that a secret is already uniquely determined before V' chooses bg, so P can
only survive with probability 1/2. It is zero-knowledge because it is easy to
simulate if the 1-bit challenge from V is known in advance, thus standard
techniques apply.
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Proof of Theorem 3.9

Here follows a formal description of the protocol: Initially, both P and V'
parse the input z using 7 to obtain n and z1,...,2,. Then the following
steps are repeated k times, where k is the binary length of z:

1. First P generates a set of shares {s;| 7 € A’} distributed according
to D 4. This can be done by choosing a random bit b, running S on
input n, b, and discarding all shares that do not correspond to indices
in A'. Now for i = 1 to n do the following:

If i € A, P executes I(n) copies of the preamble of (P{H,Vy'#) with
V on input ;.

Ifi € A, then for j = 1 to I(n), P and V run (M§",V{#) on
input input z;. Here s; ; is P’s private input. If any instance of MH
produces output ?, then P sends ? and s; to V. P stores the I(n)
AnsSwWers 74,1, ..., Ti,|(n) Produced privately.

2. V chooses a random bit bs and sends it to P.

3. P completes the set of shares {s;| i € A’} to a full set of shares
consistent with bg. For each i € A he completes the [(n) preambles
of (P{H,V{™) by using for the j’th copy the bit s;; as the v-value,
and using the algorithm of P{# to compute a correct answer r; ;.

P now sends to V the complete set of answers {r;;} and the set of
shares s; that were not already sent in step 1.

4. For each i where P did not send ? in step 1, V has now received I(n)
complete conversations of (PO" i VUI H) with z; as input. V checks that
all these conversations would lead to acceptance by V7.

V has also received a complete set of shares {s;| ¢ = 1,..,,n}. He
checks that this set is consistent with bs.

If all checks are OK, V accepts this iteration, otherwise he rejects
and halts.

V accepts if and only if all k iterations are accepted. We now argue that
this protocol has the required properties. Completeness follows trivially
from the completeness of (Pp, V), the properties of the simulator My and
our assumptions on the sharing scheme S. As to Soundness, there is nothing
to prove, unless when parsed, the input word is of the form 1, ..., Z,(x) and
fn(A) =0, where the index set A is defined as in the protocol description.
Consider an arbitrary prover P*.

Consider the situation after step 1 of the protocol. For each index i € A,
either the prover has sent 7,s; or for each j = 1,...,l(n) he can answer
one of the two challenges resulting from each execution of (M{H, V{#). By
Proposition 2.2, in the latter case, the challenge that can be answered (and
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hence s; ;) is uniquely determined, except with probability 6(k;), where k;
is the length of z;. Therefore, after step 1, the set of shares {s;| i € A'} that
the verifier will accept in step 4 is uniquely determined because of either
of the following two reasons. First, from the preambles or second, because
the prover sent ?,s; immediately. In the latter case, the set is uniquely
determined except with probability at most e(k) := 3, (n)é(k;). Since
the parsing is admissible, all k;’s are polynomial in k, and hence e(k) is
negligible in k.

Now note that f.(A) = 0 implies f;(A') = 1, by the definition of dual
functions, and that therefore any set of shares {s;| 7 € A’} can be consistent
with at most one value of the secret. Hence the probability that V accepts
k iterations of steps 1-4 is at most (1/2 + (k))*¥, which is clearly negligible
in k.

Finally, we argue that the protocol is Zero-Knowledge. We describe a sim-
ulator that works against any verifier V*. Repeat the following & times:

1. Start by choosing a random bit b and run S on input n, b to get shares
81,3 8m-

2. For i =1 to n do the following:

For j = 1 to I(n), start (M, V{") on input z;,s; ;. If any of the
copies produce ? as output, send ? and s; to V*. Otherwise, let each
copy execute the preamble of (P{#, V{7) with V*. Save all answers

T4,; produced.
3. Receive bg from V*.

4. If b = bg, send to V* all answers r; ;, all shares s; not yet sent, and
stop simulation of this iteration.

Otherwise, rewind V* to its state at the start of step 1 and go back
to step 1.

To show that this simulation works, consider first the case where the hon-
est verifier simulation of (P, ¥p) is perfect. Note that we are required to
simulate correctly only in cases where the input is in F(w, L). This means
that f,(A) = 1 and hence f2(A') = 0, using the notation from above.
By Proposition 2.3, V* receives no information about s; where i € A, and
hence since f;(A’) = 0 receives also no information on b. Hence V*’s choice
of bg is uncorrelated to b so that the probability that b = bg is 1/2, and
the complete simulation takes expected linear time.

For correctness of the output distribution, note that for ¢ € A’, the sim-
ulator follows completely the prover’s algorithm. For ¢ € A, consider the
simulation of a single preamble. The a sent initially has exactly the right
distribution. In the interactive hashing, both simulator and prover answer
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consistently with an original choice ¢ with uniform distribution, so all mes-
sage sent there also have the right distribution. The event that b = bg is
uncorrelated to all messages considered so far (by Proposition 2.3), so the
fact that we wait until b = bs does not bias the distribution actually that
is output. Finally, the answers r; ; produced by P resp. the simulator are
in both cases random samples of what the original Py would produce, given
the initial conversation defined in the preamble.

This finishes the perfect zero-knowledge case. In case of statistical zero
knowledge, we use the same simulator, except that the oracle we have
for making conversations of (Fp, V) (the honest verifier simulator) now
generates output that is statistically close to the perfect case. Hence the
output we produce will also be statistically close to perfect.

3.4.5 The Closure Property for L'

We now prove Theorem 3.10 and Corollary 3.8. The notation is the same
as in the previous section. Note, however, that we now require an efficient
secret sharing scheme with completion & for F (and not F*).

Overview

First the verifier V' will (privately) choose a bit bg and will share it using the
secret sharing scheme to get shares s;,...,s,. Thenforeachi =1...n,j =
1...l(n) the verifier V and the prover P will run (M{¥#, V{#) on input z;,
BUT this time the verifier will play the role of MJ#. V uses the bit s; ; as
private input for the (7, 7)’th instance. The verifier V is now able to answer
correctly v = s; ;. Then the prover must guess the bit bg, and V rejects if
the guess is incorrect.

Note that for i’s where z; € L there is a correct answer in (Pp,Vp) to
any challenge value, so the execution of (M, VJ#) tells P nothing about
si,j, whereas if z; € L, s;; is most likely uniquely determined from the
conversation. Hence, intuitively, the protocol is complete since if enough
z;’s are in L' (f,(A") = 1), P can find enough s;’s to be able to compute
bs. It is sound since if too few ®;’s are in L' (f,(A4') = 0), P gets only
negligible information about bg. It is honest verifier ZK, since the honest
verifier knows in advance what the prover’s answer will be.

Proof of Theorem 3.10 and Corollary 3.8

Initially, both P and V parse the input z using 7 to obtain n and z1, ..., z,.
Then the following steps are repeated & times:

1. V chooses a random bit bg and runs S on input n,bs to get shares
81y .e-ySn-

2. For ¢ = 1 to = do the following:



104 3. Partial Proofs and Applications

For j = 1 to I(n), V and P run copies of (M7, Vi) on input z;
(roles reversed!). V’s private input is s; ;. If any of the copies produce
? as output, send ? and s; to P.

3. For i = 1 to n do the following:

If z; ¢ L, P uses the messages received in the 4, j’th preamble exe-
cuted with z; as input to determine s; ;. Then P knows {s;| i € A'}.
He uses these shares to determine a secret (bit) b and sends it to V.
If the shares are inconsistent or could not be determined, P sends a
random bit b.

4. V checks that b = bg and accepts this iteration if this is case, other-
wise he rejects and halts.

V accepts, if and only if all k iterations are accepted. We now argue that
this protocol has the required properties: Regarding completeness, consider
an i € A. Thus, ; ¢ L. For such an i, either s; is sent to V directly or
is with overwhelming probability uniquely determined from the preambles
executed on z;, by Proposition 2.2. Therefore P can compute the shares
{si] i € A’} (although this may require unbounded computing power). We
assume here that the input is in F(r, L'), which means that f,(A4") = 1.
Therefore bg is uniquely determined from {s;| ¢ € A’} and hence P can
answer correctly, except with negligible probability.

As to soundness, there is nothing to prove, unless the input word when
parsed is of the form z1,...,z, and fn(A’) = 0. An arbitrary P™ may be
able to compute the shares {s;| i € A'}, but these contain no information
on bg since fn(A') = 0. By Proposition 2.3 the preambles executed on
z; € L give at most a negligible amount of information on the shares, and
therefore P* cannot guess any bg with probability significantly different
from 1/2. For k iterations the acceptance probability therefore becomes
negligible in k.

Finally, honest verifier zero knowledge simulation is straightforward: simply
follow the honest verifier’s algorithm and use the value of bg (which you
know from the verifier’s random tape) as the prover’s answer b. This is
statistically close to the real conversation as the simulation of all messages
but the last one (the b) is perfect, and we have shown that the real prover’s
b-values are correct except with negligible probability.

To show Corollary 3.8, notice that the assumptions imply, by results in
[53], that an unconditionally hiding bit commitment scheme exists. Using
the method from [95] such a bit commitment scheme can be used to trans-
form any honest verifier statistical zero-knowledge protocol into one that
is statistical zero-knowledge in general.
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3.4.6 FExtensions

We have assumed for simplicity that only one basic langlage L is involved
in our construction. But our method generalizes trivially to proving in sta-
tistical zero knowledge statements such as z; € L; V ... V2, € L, where
L; € HV3AM/SZKIP, put differently, our results still hold, even if each
statement on a subword refers to a different language. It is also possi-
ble to mix languages and their complements. For example, the statement
zy € L1 Vz3 € Ly can be proved in statistical zero knowledge using a
straightforward generalization of a corresponding method from [103].

3.5 Linear Secret Ballot Elections

3.5.1 Introduction

We present cryptographic protocols for multi-authority secret ballot elec-
tions that guarantee privacy, robustness, and universal verifiability. A spe-
cial case of the theory developed in Section 3.2 combined with the verifiable
secret sharing scheme of Pedersen, reduce the work required by the voter
or an authority to a linear number of cryptographic operations in the pop-
ulation size (compared to quadratic in previous schemes). Thus we get
significantly closer to a practical election scheme.

An secret ballot election scheme is viewed as a set of protocols that allow
a collection of voters to cast their votes, while enabling a collection of
authorities to collect the votes, compute the final tally, and communicate
the final tally that is checked by talliers. In the cryptographic literature on
voting schemes, three important requirements are identified:

Universal Verifiability ensures that any party, including a passive observer,
can convince herself that the election is fair. This means that the published
final tally is computed fairly from the ballots that were correctly cast.

Privacy ensures that an individual vote will be kept secret from any (rea-
sonably sized) coalition of parties that does not include the voter herself.

Robustness ensures that the system can recover from the faulty behavior
of any (reasonably sized) coalition of parties.

The main contribution in this section is to present an efficient voting
scheme that satisfies universal verifiability, privacy and robustness. The
efficiency of our schemes can be summarized as follows, when there are
n authorities, m voters, and security parameter k. The total amount of
communication will be O(kmn) bits (posted to a “bulletin board”), while
the required effort (in elementary operations) for any authority and any
voter will be O(km) and O(kn) operations, respectively. For any threshold
t < m, privacy will be assured against a coalition that includes at most £ — 1
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authorities, and robustness against a coalition that includes at most n —
authorities.

A fourth property recently stated (see [105, 67]) is that of prevention of
vote-duplication (one voter copying the vote of another voter without know-
ing the actual vote). There are various efficient ways to incorporate this
property in the schemes we present. We will include a straightforward so-
lution.

3.5.2 Overview of the Approach

The parties in a voting scheme are modelled as probabilistic polynomial
time processes. Two means of communication are typically assumed to be
available for these parties:

A bulletin board, which is a broadcast channel with memory that can be
observed and read by all parties. Each party controls her own section of
the board in the sense that she can post messages exclusively to her own
section, but not to the extent that she can erase or overwrite previously
posted messages.

Private channels to support private communication between voters and au-
thorities. For this task any secure public-key encryption scheme is suitable,
possibly using the bulletin board to post the corresponding encryptions.

The parties of the voting scheme perform the following steps to execute
an election. To cast a vote, each voter constructs a ballot as an encryp-
tion of the desired vote, and posts the ballot to the bulletin board. At
this point, a proof of validity is also required that convinces all parties
that the posted encryption contains a valid vote, without revealing it. The
authorities, however, are able to decrypt the ballots (because of extra infor-
mation received from the voter through a private channel). In the end, the
final tally is published together with some auxiliary information to enable
universal verifiability: any interested party (a tallier) may “accumulate”
the encrypted votes and check the final tally, by holding it against this
accumulation and the auxiliary information.

More technically, universal verifiability is achieved by requiring the encryp-
tion function to be suitably homomorphic. At the same time a different se-
curity property of the encryption function, which is similar to the binding
property of commitment schemes, ensures that the authority (assume mo-
mentarily to be a single entity) cannot accumulate the individual votes in
any other way than the voters actually voted. Such homomorphic encryp-
tion schemes are available under a wide variety of common cryptographic
assumptions.

Central to our results is the way we achieve an efficient proof of validity
for ballots. The proof of validity shows that a ballot actually represents
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a vote, which means that it either represents a yes or a no, and nothing
else. To maintain privacy for the voters, the general idea is to use some
sort of zero-knowledge proof. The problem is however that zero-knowledge
proofs usually require a large number of repetitions before the desired level
of confidence is achieved. The efficiency of these proofs to a great extent in-
fluences the efficiency of the whole scheme, both in terms of computational
effort and in terms of the required bandwidth for each voter.

Our contribution now is twofold. We use a particular efficient homomorphic
encryption scheme, based on the discrete logarithm problem (although, as
we show, it can be based on other cryptographic assumptions as well).
Moreover, by applying results from Section 3.2, the proof of validity is
a simple three-move protocol which is witness indistinguishable (in fact,
witness hiding as well), instead of zero-knowledge as in previous schemes.
This leads to a significant reduction of the effort required by the voter,
from quadratic in the security parameter to linear, while still hiding the
vote.

Clearly, in the scenario above, the authority learns individual votes. This
situation is alleviated by having multiple authorities instead of one. The
encrypted vote is distributed over the authorities such that fewer than
some number of authorities remain ignorant about individual votes. To
make sure that the authorities are convinced that the posted shares actually
represent the vote cast, verifiable secret sharing is employed. Here, we apply
Pedersen’s scheme [96], as it fits with the other primitives remarkably well.
It is also by this method that robustness is achieved in the sense that only
a subset (of a size larger than a certain threshold) of the authorities is
required to participate throughout the execution of the scheme in order to
compute the final tally.

3.5.8 Related Work

The type of voting schemes considered here was first introduced and im-
plemented in [40, 19, 17]. In these schemes, privacy and robustness are
achieved by distributing the ballots over a number of tallying authorities,
while still achieving universal verifiability. This contrasts with other ap-
proaches in which the ballots are submitted anonymously to guarantee pri-
vacy for the individual voters. Such schemes rely on the use of anonymous
channels [27], or even some form of blind signatures as in privacy-protecting
payment systems (see, for instance, [38]) to achieve privacy. For these ap-
proaches it seems difficult however to attain all desired properties, and still
achieve high performance and provable security.

The voting schemes of [40, 19, 17] rely on an r-th residuosity assumption.
In [104] it is shown that such schemes can also be based on a discrete
logarithm assumption (without fully addressing robustness, though), and
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how this leads to considerable efficiency improvements. In this section we
will also address various number-theoretic assumptions.

As with our result, the efficiency improvement in [104] is mainly due to
an improved zero-knowledge protocol to show validity of ballots. As noted
by Benaloh, such cryptographic capsules [16, 17] are at the heart of the
problem of electronic elections and also useful for other applications.

3.5.4 Cryptographic Primilives

We use the discrete logarithm problem (see Section 2.3.2). Each family G for
which it is reasonable to assume the intractability of the discrete logarithm
problem is suitable for our purpose of constructing efficient and secure
homomorphic encryption schemes with corresponding proofs of validity. A
well-known family, however, is obtained by choosing large primes p and ¢
at random such that ¢ | p— 1; then G is the unique subgroup of order ¢ in
Z;. The discrete logarithm problem for elliptic curves over finite fields is
also a candidate for implementation.

Homomorphic Encryption with Efficient Proof of Validity

Let G be a family of groups of prime order, and generator Gen as in Sec-
tion 2.3.2. Assume that the discrete logarithm problem for G is intractable.
The encryption scheme below is obtained as an extension of Pedersen’s
commitment scheme [96] with an efficient proof of validity.

Initialization: The participants, or a designated subset of them, run the
generator Gen(1*) and obtain a description of a group G, of prime
order g, and random group elements g and h. One way to do this
honestly, is that the participants agree on a program for Gen first.
Then they each run separately Gen(1*) where the coinflips needed are
selected mutually at random, either by observing a common source of
physical randomness, or by executing some well-known cryptographic
protocol suitable for this purpose.

Encryption: A participant encrypts v € Z, by choosing a € Z, at random,
and computing
B «— g®h".

Opening: A participant can later open B by revealing both v and a. A
verifying party then checks whether B = g*h”, and accepts v as the
encrypted value.

Homomorphic Property: Encryption is homomorphic in the sense that, if
B; and B, are encryptions of v; and wa, respectively, then B;Bs
is an encryption of v; + ve mod g. In general, an encryption of any
linear combination of v; and ve can be obtained from B; and Bs; in
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FIGURE 3.2. Encryption and Proof of Validity of Ballot B

particular, the sign of v; can be flipped by computing B;!. Note also
that B1h encrypts v; + 1 mod q.

Proof of Validity: In our voting scheme to follow, it will be the case that
a voter posts an encryption of a value v € {1,—-1}. To demonstrate
that the encrypted value is indeed in {1, -1}, without revealing it,
the voter and the verifier execute the efficient proof of walidity of
Figure 3.2. This proof requires only a very small number of modular
exponentiations.

THEOREM 3.11 Under the discrete logarithm assumption, the encryption
scheme is binding in the sense that it is infeasible to open a given encryption
in two different ways. Furthermore, the proof of validity is a convincing ar-
gument that a given encryption is indeed an encryption of a value from the
set {1, -1}, thereby not releasing any information about the actual value.

PROOF. If any party is able to open an encryption B in two different
ways, , which means to present values a,v,a’,v" such that B = g*h" =
g*' k¥ with a # o and v # ', it follows that logg h = (@ —a')/(v' — ),
which contradicts the discrete logarithm assumption. Furthermore, the pro-
tocol in Figure 3.2 is a witness indistinguishable proof of knowledge that
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the voter knows log, Bh or log, B/h, by Corollary 3.5; here, Schnorr’s iden-
tification protocol [106] is used as the basic protocol in the construction.
Thus the verifier learns that the voter knows & and v € {1, —1} such that

B = g®hY, without obtaining any information about the actual value of v.
]

Note that it even follows that the proof of validity is witness hiding. Jump-
ing ahead a little bit, envision that a voter posts an encryption of his vote
and that all other participants must verify its validity. As depicted in Fig-
ure 3.2, a source of randomness is required in the program for the verifier.
For this purpose, one can use some unpredictable physical source of ran-
domness [40], or agree on mutually random bits by cryptographic means.
A more practical way, however, making the protocol non-interactive, is to
apply the well-known Fiat-Shamir heuristic [63]. Their idea is to compute
the challenge in a three-move identification scheme as a hash value of the
message to be signed and the first message of the prover. So, let H be a
suitable strong cryptographic hash function (thought of as a random ora-
cle). In the non-interactive version of our proof of validity, the challenge c is
computed as ¢ = H(B, a1, a2). The set of values di, dz, 71 and rg is denoted
by proof(B). Given the values in proof(B), any participant can check the
validity of B by verifying that d; + da = H(B, g™ (BR)~%1,g"*(B/h)~%).

Verifiable Secret Sharing

To achieve robustness efficiently, non-interactive verifiable secret sharing is
employed. We use the scheme of Pedersen [96], as it is based on discrete
logarithms as well and fits nicely with our encryption scheme. Being infor-
mation theoretically secure, this scheme also contributes to privacy in our
multiple authority scenario.

3.5.5 Secret Ballot Election Scheme

We now present our main result, a secret ballot election scheme satisfying
privacy, universal verifiability and robustness. The participants in the elec-
tion scheme are n authorities Aj,..., 4, and m voters Vi,..., V. Privacy
and robustness are as follows. No collusion of fewer than t authorities can
reveal an individual vote, while the election will be successful when at least
t authorities operate properly (1 < ¢ < n). At the same time we incorpo-
rate a simple mechanism to postpone the decision on what to vote until
the preparation of the election has been completed. In this way several
elections can be prepared beforehand at the beginning of the year, say, and
casting a vote in an election then boils down to publishing essentially one
bit of information.

Informally the scheme works as follows. Each voter V; prepares a vote by
randomly selecting a number b; in {1, —1}. The voter first encrypts b; by
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computing B; = g* h%, where o; € Z, is chosen randomly, and posts B;
to the bulletin board. Subsequently, b; is considered as a secret which is
to be shared among the authorities. We employ a verifiable secret sharing
scheme to prevent voters from disrupting elections by sending false shares
to authorities. The efficient scheme by Pedersen [96] is a perfect candidate
as it applies exactly to the discrete log setting we are considering. The idea
is thus to let the voter act as the dealer in Pedersen’s scheme, sending a
verifiable share of the secret b; to each authority using the proper private
channels. The voter also posts proof(B;) to the bulletin board to prove that
B; indeed encrypts a value in {1, —1}. Later, voter V; may then cast a vote
v; € {1,—1} by publishing the value s; = b;v;. In the end, the aggregate
value T = ) 7, v; reduced modulo g such that —g/2 < T < q/2 represents
the total number of yes-votes minus the total number of no-votes, hence
the total number of yes-votes is (m+T')/2. For these numbers to be correct
the obvious requirement is that m < g/2.

We assume that the group G; and the members g and h are generated as
described in Section 3.5.4. In particular, it then follows that log, h is not
known to any participant.

Ballot Construction
Each voter V; prepares a masked vote b; € {1,—1} in the following
way.

1. The voter V; chooses b; randomly from {1,—1}, and computes
the ballot B; = g® A%, where a; is randomly chosen from Z,.
The voter also computes proof(B;). Finally, the voter determines
polynomials G; and H;,

Gi(z) =i +anc+- + a2t
Hi(z) = b+ Baz+ - + Bigazt L,

where the coefficients a;;, 8i1, 1 <1 < t, are chosen at random
from Z,. Also, for these coefficients the voter computes the com-
mitments By = g%t hPit,

2. The voter V; posts Bj;, proof(B;), Bi1, ..., Bii—1 to the bulletin
board.

3. All participants verify whether ballot B; is correctly formed by
checking proof(B;).1®

4. The voter V; sends the shares (aij;, bi;) = (Gi(j), Hi(j)) to au-
thority Aj;, using a private channel.

16T prevent vote duplication, a bit string specific to voter V; is also included
in the input to the hash function H in proof(B;). In case the proof of validity is
done interactively, as depicted in Figure 3.2, this bit string could be incorporated
in the challenge.
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5. Each authority checks the received share (a:j, bi;) by verifying
that

t—1
guu hbs:‘ = B"HBE:'
=1
Vote Casting

To cast a vote, V; simply posts s; € {1,—1} such that v; = b;s;
represents the desired vote.

Tallying

1. Each authority A; posts the sum 8= Z:’;l ai;$; and the sub-
tally T; = Z:n:l bi;si.

2. Each tallier checks the share (S;,T;) posted by authority 4; by
verifying that

m t—1 8
gthT- :H (Bil_‘[B;?:) '
=1

=]

3. From ¢ pairs (7, T;) that correspond to authorities for which the
shares (S;,T;) are correct, each tallier can compute the final
tally T from the formula:

!
=17 ] =

jeA  leA\{j}
where A denotes a set of ¢ correct authorities.

We assume (w.l.o.g.) that in a successful election the shares of every voter
have been accepted by all authorities. That is, all verifications by the au-
thorities in the last step of the ballot construction are successful. In case
an authority receives a share that does not pass this step, the authority
may post the share so that anybody can verify that the share is not correct
and that it corresponds to the posted encryption of step 4 of the ballot
construction.

THEOREM 3.12 Under the discrete logarithm assumption, our secret-ballot
election scheme satisfies universal verifiability, robustness and privacy.

PRrRoOF. To prove universal verifiability first note that only correct bal-
lots are counted on account of Theorem 3.11. Further, to prove that the
final tally is correct, we reason as follows for each correct authority Aj.

Let G(z) = >, 8:Gi(z) and H(z) = Z:’;l s;H;(z). By the binding
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property!” of the encryptions B; (see Section 3.5.4), we have:

m

g = QZ:‘;‘ 5iGi) p2 i, 5 H)
= gimy %1% p 2oL b
= [TiZ, (g*7 hbis)s
I B B

By the assumption that the verification in step 2 of the tallying proto-
col holds for (S;,T;), we thus have gCDRAG) = ¢S hT | which implies
S; = G(j) and Tj = H(j) under the discrete logarithm assumption. As
a consequence, the final tally T is indeed equal to H(0) and thus repre-
sents the result of the election if the verification in step 2 of the tallying
holds for at least ¢ authorities. This deals with universal verifiability and
robustness. The privacy property can easily be proved from the fact that
the secret sharing scheme and the proofs of validity (see Section 3.5.4) are
information-theoretically secure. O

Thus, fewer than ¢ authorities do not obtain any information about in-
dividual votes, other than what can be derived from the final tally (and
accounting for votes that have been revealed by individual voters). To sum-
marize the performance of our scheme, we note the following. The hard op-
erations are the modular exponentiations with full exponents (exponents
of expected size |g|). Counting these operations, we see that the work for
each voter is O(1) for the construction of the ballot (including the proof
of validity) plus O(t) for the commitments for the verifiable secret sharing
scheme. Each authority has to do O(m) work to check all the shares. So
active participants do linear work. Finally, verification of the election (done
only by interested talliers) requires O(m) work to check the ballots plus
O(tlog? t) multiplications to check the shares of the final tally. Note that
the parties’ work can all be done either before or after the casting of the
votes. The actual election simply consists of every voter posting essentially
one bit of information to the bulletin board. This represents essentially an
improvement of two orders of magnitude over the best schemes known so
far (assuming k& = 100), and enables much of the work required to be done
oft-line.

1"The description of our scheme above assumes that the hash function in the
Fiat-Shamir style proof(B;}, behaves like a random-oracle. Instead of using this
technique, the participants can get the necessary random bits as explained in
Section 3.5.4, thus also removing the need for this extra assumption.
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3.5.6 Conclusion

We have presented election schemes of provable security and practical ef-
ficiency. The computational and communication complexity are essentially
linear, instead of quadratic as for previous schemes. Even with a large num-
ber of authorities like n = 10, a voter need not communicate more than
approximately 10.000 bits of information to submit a vote, assuming that
|p| = 512 bits and |g| = 160 bits for our discrete log scheme. (Note that
the actual ballot plus its proof of validity require only 1152 bits.) Compare
this, for instance, to [104] with in the order of a million bits per vote for
the same level of security.

A property of voting schemes, recently identified, that we do not consider
here is that of non-coercibility [18]. Non-coercibility ensures that no voter
will obtain, as a result of an execution of the voting scheme, a receipt that
can prove how she voted. The intention of this property is to prevent vote-
buying and other tactics of voter persuasion. It is possible that extensions
of our ideas can give a scheme which incorporate non-coercibility while
maintaining universal verifiability, privacy, robustness, and efficiency.

3.6 Efficiently Combatting Man-in-the-Middle
Attacks

3.6.1 Introduction

A (public key) identification scheme (see for instance [63]) is an (interac-
tive) protocol by means of which one party (the prover) proves its identity
to another party (the verifier). Securing log-in procedures is a main appli-
cation of such schemes. An identification scheme consists of an algorithm
to generate public-key/private-key pairs, and a protocol for the prover and
the verifier. The collection of eligible key-pairs is chosen such that it is in-
feasible to compute a corresponding private key when only the public key
is observed. Typically, the protocol’s purpose is to show that the prover
“knows” the private key that corresponds to the prover’s public key. Most
known identification schemes take the form of three move interactive where
the verifier is required to send a random bitstring as a challenge. For such
methods to be secure, the verifier must not be able to extract this private
key from the prover. Formally, this notion of security is captured by consid-
ering adaptive impersonation attacks. The (probabilistic polynomial time)
attacker is given a prover, who has access to a key-pair as produced by the
key-generation algorithm, as a black-box. Thus, the attacker only sees the
prover’s outputs as dictated by the identification protocol and not any of
its internal coinflips, private inputs, etc. Next, the attacker is allowed to
query the black-box a polynomial number of times, playing the role of a
(malicious) verifier. This means that the attacker is allowed to choose the
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challenges in any way thought suitable to extract information about the
private key. In particular, the choice of any next challenge may depend on
the entire history of the attack and public key. Next, the attacker is denied
any further access to this black-box prover. The identification scheme is
called secure against adaptive impersonation attacks if the attacker is still
unable to impersonate the prover (execute the prover’s part of the protocol,
facing an honest verifier).

In [11] a weakness of identification schemes proposed until then was ex-
posed. There, the authors explained how a malicious man-in-the-middle
V may abuse his conversations with an honest prover P to misrepresent
himself as P to yet another verifier V. The attack is not by cryptographic
ingenuity. But, simply pretending to be a verifier himself, V actually for-
wards V’s challenges to P and forwards P’s replies to V. Thus, while P
is under the impression that he is identifying himself to V, he is actually
identifying himself to V, to the advantage of V. A remedy suggested in [11]
has the prover and verifier (rather the devices that represent them) isolate
themselves physically from the outside world. A Faraday’s cage could be
a suitable implementation. However, for identification over networks, for
instance, this measure seems not to be useful.

We present a simple method to construct identification schemes resilient
against adaptive impersonation and man-in-the-middle attacks. Though
zero-knowledge or witness hiding protocols are known to withstand at-
tacks of the first kind, all such protocols previously proposed suffer from
the weakness observed by Bengio et al. [11], since a malicious verifier may
simply act as a moderator between the prover and yet another verifier,
thus enabling the malicious verifier to pass as the prover. Using a collision
intractable (without knowing the private key, it is infeasible to pass the
protocol), honest verifier zero knowledge three-move public coin protocol,
we build a witness-hiding identification scheme that differs from previous
proposals in that an execution of a given proof of identity can only be
unambiguously appreciated by the intended verifier. This is achieved by
having the prover direct the protocol to the intended verifier’s public key.
It is subsequently shown that resilience against man-in-the-middle-attacks
follows from this approach. Note that required primitive protocol corre-
sponds to an identification scheme secure against passive impersonation
and honest verifiers. Directing a proof to an intended verifier has been con-
sidered by other researchers in a different context, as we will explain later.
Our contribution is to provide a general, secure and efficient immunization
against adaptive man-in-the-middle impersonation attacks in identification
schemes. Furthermore, we want the immunization to work even if the orig-
inal identification scheme satisfies only weak security properties.

As an example, Schnorr’s scheme based on discrete logarithms [106] or
Guillou-Quisquater’s scheme based on RSA [76] can be immunized by our
construction. But more generally, any one-way group homomorphism or any
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pair of claw-free trapdoor permutations gives rise to the desired building
block. If we would take, for example, Schnorr’s scheme [106] as input to
our constructions, the resulting identification scheme would have twice the
complexity (in terms of computation and communication) of [106]. But
we are then able to prove that our scheme is witness-hiding and resilient
against man-in-the-middle attacks if computing discrete logarithms is hard.

Conceptually, our method to disable man-in-the-middle attacks is as fol-
lows. Let X and Y be two players, where X wishes to identify himself to
Y. Suppose now that we have an efficient method by which X could take
Y’s public key, and his own key-pair (his public key and secret key), and
securely prove the statement “I know X’s secret key or I know Y’s secret
key.” If this protocol is witness indistinguishable (no information is released
as to which is the case), only Y can be sure he is talking to X rather than
anyone else. For, any other verifier Z would only know that he is talking
to X or Y. Thus, if X directs his proof to ¥ as outlined above, the proof
is unambiguous only to Y.

So why would this help against man-in-the-middle attacks? By the symme-
try of the statement proved and by the asserted witness-indistinguishability
of the proof, if Y could abuse his conversation with X to pass as X at Z as
the man-in-the-middle would do, he must be able to do so without talking
to X. Thus the man-in-the-middle attack reduces to a cryptographic at-
tack. But now we invoke the witness-indistinguishability again to show that
if ¥’s attack would succeed, he could compute X’s secret key. This then
contradicts our assumption that it is hard to compute the secret key from
a random public key. We stress that this approach makes sense only if the
keys are sufficiently independently generated. In the extreme case that two
verifier keys are identical, it is clear that man-in-the-middle attacks are still
feasible. More generally, a proof of security will fail if there is dependence
among these keys: if one is chosen as a clever function of the other (such
as a random and secret power of a given key based on discrete logarithms),
proof given to one verifier may still be “diverted” to another verifier. In our
application from Section 3.6.7, dependence of keys is enforced in a natural
way.

We note that the same basic idea of proving one of two statements in
order to direct a proof to one specific verifier was found independently
by Jacobson, Impagliazzo and Sako in [82]. Their main motivation was
to make undeniable signature schemes more secure and non-interactive.
Their method for building a verifier designated protocol uses a trapdoor
bit commitment scheme. In comparison, our method shows that if you start
with a protocol of a certain form, then a separate trapdoor bit commitment
is not needed. On the other hand, their methods works for some protocols
that are not of the form we consider.

It is not so much the concept explained above that we advocate as a signif-
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icant contribution here. We would like to stress that the concept has been
applied implicitly before, prior to [82]. [82] is the first paper applying the
ideas to verifier-directed proofs, however. We know of at least one example,
namely the protocol of Feige and Shamir [65] for bounded round general
zero knowledge proofs. There, the prover commits to a witness for the
NP-statement to be proved using an unconditionally hiding trapdoor com-
mitment scheme, an instance of which is generated by the verifier. Indeed,
the proof conducted there can be seen as showing that the NP-statement is
true, or that the prover knows the verifier’s trapdoor! To get the designated
verifier proofs for general languages, postulated in [82] but not given, we
can use the result of [65] and make sure that the verifiers’ instances of the
trapdoor commitment scheme are independently generated.

In our setting, we restrict ourselves to the problem of identification, and at-
tempt to formulate a very efficient solution to the problem of identification
in the presence of an adaptive man-in-the-middle attacker. Moreover, we are
only interested in solutions that allow for some well-defined and accepted
cryptographic intractability assumption to be reduced to the security of
the identification scheme.

It is interesting to note that our results apply to a general class of identifi-
cation schemes which in their normal mode of operation need only satisfy
seemingly weak security properties. Namely, zero knowledge with respect
to the honest verifier and collision intractability (that is, the scheme is se-
cure against passive impersonation attacks). As a result of our simple and
efficient transformation, we obtain the required security level.

Technically speaking, our approach is close to the ones taken in [47, 43].
However, it is not clear from those papers (which may partly be seen as
investigations into witness hiding) how we can efficiently obtain security
against adaptive man-in-the middle attackers in our context. Please note
that such was neither clear from [82], since there the focus is on undeniable
signatures. Although it appears to be true that their approach using trap-
door bit commitments has a wider applicability than that, their approach
does not indicate that immunization of an identification scheme against
man-in-the-middle attackers, can be done efficiently and securely even if
the given scheme is only weakly secure in normal mode of operation, as we
discussed above,

Please note that, for example, digital signatures secure against chosen mes-
sage attacks also lead to identification schemes secure against imperson-
ation and man-in-the middle attacks. The prover would simply sign a mes-
sage consisting of a random challenge, supplied by the verifier, and the
verifier’s public key. Although we feel that our schemes could compare fa-
vorably in terms of practical value to even such solutions, we like to point
out that we aim for a practical identification scheme that is proven secure if
some standard cryptographic intractability assumption holds. Seen in this
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light, digital signatures, for example, with such proven security still come at
too high a price in this context. Nevertheless, it may be reasonable here to
use them for key-certification. If one is concerned with practical value and
proven security (relative to a plausible assumption), it may be true that our
proposal for identification schemes secure against impersonation and man-
in-the-middle attacks comes close to what one could reasonably achieve in
this area, due to its conceptual simplicity and efficient implementation.

3.6.2 Relation to Identification Schemes

Let (A, B) be a X-protocol for relation R and generator G. Suppose that
it is collision-intractable (over R and G) and that it is honest verifier zero
knowledge. It is easy to see that such a protocol constitutes an identification
scheme secure against passive attacks, if (A, B) is collision-intractable and
if the length tp of the challenges is large enough, say linear in the security
parameter. A public/private key-pair is (z,w) € R, as generated by G.
By Proposition 2.1, we can efficiently extract collisions from a successful
passive attacker (that is, one which is given the public « only). But this
contradicts our assumptions on (4, B).

Adding honest verifier zero knowledge to our requirements, makes sure
that the resulting scheme is secure against random challenge attacks. By
this we mean that even an attacker which is allowed to query a prover
on random challenges, cannot later pose as that prover (note that we use
the previous observation here that collision-intractability implies security
against passive attacks.

Security against adaptive attacks means that even though the attacker is
allowed to query a prover on any challenge of his choice, it can still not
later pose as the verifier. The adaptive man-in-the-middle attacker, is one
which also has “adaptive access” to a prover X. But this time, the attacker
pretends to be verifier ¥;. If it’s still infeasible for this attacker to make an-
other (non-malicious) verifier ¥ accept X'’s identification, we say that the
identification scheme is secure against adaptive man-in-the-middle attacks.

3.6.3 Main Result

Let (A, B) be a collision-intractable E-protocol for relation R and generator
G. Suppose that (A, B) is honest verifier zero-knowledge, with simulator M,
and that the challenge length tp is linear in the security parameter k. Thus,
by the remarks above, (A, B) constitutes an identification scheme secure
against random challenge attacks. Our purpose is to transform (A, B) into
a new identification scheme which is secure against adaptive man-in-the
middle attacks. This transformation works as follows.
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Key Generation

A keypair (z,w) € R, consisting of a public key = and a secret key w, for
participant X is generated as

(z,w) « G(1*)

for an appropriate security parameter k. The public key = is placed in X’s
public directory. The secret key w is held privately.

Identification of X to YV

Here, participant X will identify itself to participant Y. Let their respec-
tive public keys be z and y, and let X's secret key be w. The claimed
identification protocol runs as follows.

Move 1: X computes a «— a(z,w) and (y,b,d,s) — M(y). Then X sends
the pair (a,b) to Y.

Move 2: Y selects C « {0,1}'# and sends C as a challenge to X.

Move 3: X puts ¢ «+ C @& d and computes z «— z(z,w,a,c). Then X sends
z,d, s to Y. Finally, ¥ checks the conversation by verifying whether
¢(z,a,C @ d,z) 2 accept and ¢(y,b,d, s) < accept. If these verifica-
tions are satisfied, X is accepted by Y.

3.6.4 Implementation

Clearly, Section 4.5.5 provides ways for implementing the required primitive
for our results in this section, that is, collision-intractable, honest verifier
zero knowledge protocol (A, B) For efficiency, claw-free pairs of trapdoor
permutations (see Section 2.5.3) or special one-way group isomorphisms
(See Section 2.5.2) are most eligible as a basis for the protocol (4, B).

3.6.5 Security Analysis

We give proof of security under the assumption that the participants’ keys
are generated as prescribed in the Key Generation protocol. In the next
section we give an example application where this condition is satisfied in a
natural way. If we abandon the assumption on the key generation, we would
have to, for instance, assume a trusted center to which all participants have
to demonstrate knowledge of their secret key first, before their public key
can be registered.

THEOREM 3.13 Let (A, B) be a collision-intractable L-protocol for relation
R and generator G. Suppose that (A, B) is honest verifier zero-knowledge
and that the challenge length tp is linear in the security parameter k.
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Then the identification scheme based on (A, B) from Section 3.6.3 is secure
against impersonation and man-in-the-middle attacks.

PROOF. The idea is as follows. First we generate public key ' accord-
ing to G, and discard the corresponding secret key. We show that, if the
protocol were not witness hiding or were not resilient against man-in-the-
middle attacks, there exists an efficient algorithm that takes z' as input
and outputs a collision for z' in the protocol (A, B). But this would then
contradict (A, B)’s collision-intractability.

The following game is easily to be seen as modelling the situation. Let
m be polynomial in the security parameter k. We generate m public keys
with known secret keys by running G m times. We flip a coin b. If b = 0,
then we put ¢ «— z' and assign the m key pairs to Y7...Y,. If b =1, we
select j at random from {1,...,m}, and put y; + z', and assign the m key
pa.irs to X, Y],...,YS‘_I,Y}+1,...Ym.

The game consists of two stages.

1. The attacker gets the following prover as a black-box. We define P as
the prover who gets = and all public keys y; as input, plus the secret
keys as generated above. P can perform the identification protocol
for all pairs (x, y;). The attacker is allowed to play with P (as a black-
box, but not rewindable) for a polynomial amount of time. Then, the
attacker gives us a number j' € {1,...,n}, and hands back P. This
models the idea that before the real attack, the attacker may try
to extract as much information as needed for winning in the second
stage.

2. With probability (m + 1)/(2m), the attacker chose j' = j such that
P was not given the secret key for ¥; in the beginning or was not
given the secret key for x. Let’s assume that this event happens (If
not, we re-run the previous stage). Next, the attacker gets as input
the secret keys for all public keys y; with ¢ # j. This models the idea
that (possibly via a man-in-the-middle attack), the attacker tries to
pass as X to any other verifier intended by X. To make the proof
easier, we just give the attacker the secret keys which allow him to
perfectly simulate X’s behaviour at any other site than Yj, rather
than giving him X as a black-box: if he can’t do it with the secret
keys, than he certainly can’t when he is given X as a black-box who
only identifies himself at ¥; with ¢ # j. The attacker wins the game,
if he can pass the protocol against the honest verifier on input (z, y;).

Let’s assume that the attacker won with probability € > 272 (recall that
tp is assumed to be of linear size in k). Then, by Proposition 2.1, we can
extract a collision for y; or for z from the attacker (running it as a rewind-
able black-box) with expected time polynomial in the running time of the
attacker and 1/(e—1/2'#). Thus, if € is non-negligible, then we can extract
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a collision from the attacker in expected polynomial time. But, this is a
collision for key =’ with probability 1/2, since the attacker cannot distin-
guish between the cases b = 0 and b = 1 by witness indistinguishability
of the protocol (which follows by the properties of the simulator M). This
contradicts the assumption that (4, B) is collision-intractable over G. O

3.6.6 FEzample

As an example, we give an implementation based on discrete logarithms.
As in Section 2.3.2, let G, be a group of prime order ¢ such that computing
discrete logarithms in Gy is hard. Let g denote a fixed element from G,\{1}.

Key Generation

A keypair, consisting of a public key and a secret key, for participant X is
generated as
(z=g",v)

where w is chosen at random from Z,. The public key z is placed in X’s
public directory. The secret key w is held privately.

Identification of X to Y

Here, participant X will identify itself to participant Y. Let their respec-
tive public keys be = and y, and let X’s secret key be w. The claimed
identification protocol runs as follows.

Move 1: X computes a = g and b = ¢°y ¢, where z, s and d are chosen
at random from Z;. Then X sends the pair (a,b) to Y.

Move 2: Y selects C at random from Z, and sends C as a challenge to X.

Move 3: X puts ¢ « C+d mod ¢ and computes r «— cw+z mod ¢q. Then X

sends r, d, s to Y. Finally, Y checks whether g" < az¢ and g° L by<,
where ¢ is defined as C' + d mod g If these verifications are satisfied,
X is accepted by Y.

3.6.7 Applications

Imagine an organization with n sites to which restricted access is applica-
ble. Some m officials are granted access to some of these sites. When an
accessor presents himself at one of these sites, his access rights are checked
by verifying his identity. These sites may vary from buildings, to specific
sections of buildings, or even to databases or computer systems. The orga-
nization keeps a central list of the identities of the officials and their specific
access rights. It is assumed that each site has access to this list, either by
having a copy of the list at hand, or by consulting the central database.
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Let Xi,...,Xn be the collection of participants. The collection of sites
with restricted access is denoted Y1, ..., Ym. The organization generates a
keyset (z;,w;) for each participant Xj, as described in the Key Generation
protocol in Section 3.6.3. Each participant X; is given a tamperresistant
smartcard S;, capable of performing our protocols. The keyset is securely
loaded into the cards. Now, for each site ¥j, the organization generates a
keyset (y;,v;). The secret key v; is destroyed. We assume that each site
is represented too by some device capable of performing the protocols.
For each site, the organization prepares a list of the public keys of the
officials that are granted access to this site. This list is made available
to the site. Please note that the devices for the sites need not store any
secret information. One only has to make sure that the data they store is
authentic and cannot be modified by unauthorized parties.

When participant X; wishes to exercise his right of access to site Yj, he
lets his smartcard simply perform the identification protocol with site Y
as the verifier, on common input (z;,y;). By the security properties of
the identification scheme, the resulting protocol is secure against adaptive
impersonation attacks, but furthermore, no adversary can by means of a
man-in-the-middle attack, divert the communication to a different site Y3,
and pass there as X;, even if X; has the right of access at site Y;.



4

Secure and Efficient Digital
Signatures

4.1 Introduction

Digital signatures have now become widespread as an electronic alternative
to the traditional handwritten signature. They are a key technique for many
electronic transaction schemes now in use or proposed, such as electronic
commerce schemes. The concept of a digital signature, as well as that of
public key encryption, was put forward by Diffie and Hellman in their
seminal paper [56] which kicked off the field of public key cryptography.
Soon after, Rivest, Shamir and Adleman proposed a practical method,
commonly known as RSA, that implements the ideas of Diffie and Hellman.
While [56] proposes key exchange protocols based on exponentiation in a
finite field, [100] considers protocols based on exponentiation in the ring
of integers modulo a composite number. In the former case, security is
obtained from the (supposed) difficulty of computing discrete logarithms,
while in the latter case factoring integers is assumed to be intractable.
For relevant results from the field of computational number theory, please
consult [113].

Since then, many papers in the cryptographic literature have been devoted
to the design of digital signatures. Roughly, one can distinguish three main
directions.

1. Weaker intractability assumptions.

2. Better efficiency.
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3. Variations on the concept.

Researchers have identified digital signatures with extended capabilities.
First in this line of research, Chaum defined blind signatures [28]. This
type of signature allows a receiver to obtain a signature on a message such
that the message-signature pair is not completely hidden from the actual
signer. Chaum used this intriguing concept to build electronic payment
schemes where the anonymity of the payer is guaranteed. Fail-stop signa-
tures [20, 79, 80] provide a means for the signer to take a forged signature
to a court and prove that that it is indeed a forgery. Undeniable signa-
tures [32, 33, 21] are like ordinary signatures except that cooperation of
the signer is required when verifying a signature. These signatures are zero
knowledge in the sense that the string that constitutes the signatures con-
tains no information about its validity. Furthermore, the confirmation of
a signature is a zero knowledge proof. A signer can deny a signature that
he didn’t compute, but can’t deny one that he did compute. In some sce-
narios the fact that the signer must cooperate, may be a shortcoming of
these undeniable signatures. This is alleviated in the notion of designated
confirmer signatures [37], where additionally the verification can be dele-
gated to designated parties. We will only be concerned with ordinary digital
signatures.

On the theoretical side, it was important to establish the weakest in-
tractability assumption supporting secure digital signature schemes. In a
sequence of results Merkle [89], Bellare-Micali [5], Naor-Yung [91] and fi-
nally Rompel [101], it was established that the existence of one-way func-
tions is necessary and sufficient for the existence of secure signatures. This
result, though theoretically very important, does not give rise to a practical
signature scheme. The construction, which is based on a general one-way
function, uses a costly “bit-by-bit” signing technique in conjunction with
tree authentication [89]. As a result, the size of signatures is O(k? -log B,)
bits, where B, is an arbitrary (polynomial) bound on the number of sig-
natures to be made (the “signature bound” and k is a security parameter.

Benefiting from the special properties of claw-free trepdoor permutations,
the secure scheme presented by Goldwasser, Micali and Rivest [70] achieves
signatures of size O(k-log B, ) bits, with a public key of size O(k) bits. Their
scheme also uses a tree structure. Intractability of factoring integers is a
sufficient assumption for the existence of the family of functions required
for their scheme. Though yielding shorter signatures asymptotically, the
size grows rapidly in practice as the number of signatures made increases.
An interesting question is whether schemes with this efficiency or better
exist under weaker cryptographic assumptions exist than given in [70].

Furthermore, [70] provides formal definitions of security for signatures that
have since then been commonly accepted. The strongest notion of security
combines the most flexible attack with the weakest target for the attacker:
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Running a signer as a black-box, which may be queried in an adaptive
fashion, the attacker must produce a valid signature on a message whose
signature was not requested from the black-box (an ezistential forgery). If
no attacker can efficiently perform this task, the signature scheme is called
not existentially forgeable under adaptive chosen message attacks. Weaker
forms of security defined in [70] are obtained by setting a stronger target
for the attacker or giving it less control over the signer. For example, not
existentially forgeable under random message attacks means that the at-
tacker only gets to see signatures on uniformly chosen messages before it
must compute an existential forgery. Even, Goldreich, and Micali [59], [60]
have shown that signatures with the latter degree of security imply the
existence of signatures satisfying the former security level. The transfor-
mation, however, has a linear (in the security parameter) blow-up of the
size of signatures as a drawback.

Many practical digital signature schemes have been proposed, for instance,
El Gamal [61], Feige-Fiat-Shamir [66], Schnorr [106], Guillou-Quisquater
(76], Okamoto[93], ISO9796 [81] based on RSA, Digital Signature Algorithm
(58], Bellare-Rogaway (7] and Pointcheval-Stern [97]. In these schemes the
size of the signatures is O(k) bits. Also, minimizing the amount of (on-line)
computation for signer and receiver is an important issue in this type of
result.

Although many of them are actually used in practice today, these schemes
seem to have the property that their security is hard to analyze. We cer-
tainly do not mean to suggest here that their security is dubious. On the
contrary, these schemes rely on common cryptographic assumptions, such
as the difficulty of factoring or inverting RSA functions, the difficulty of
computing discrete logarithms or the collision intractability of certain hash
functions, and have so far resisted many years of cryptanalytic efforts.

However, none of these practical schemes has been shown to be secure
in the sense of [70] provided that any of these mentioned cryptographic
assumptions holds. This implies that, independently of their validity, these
necessary and common cryptographic assumptions may still turn out to be
insufficient for the security of these signature schemes.

Recently Bellare and Rogaway [6] and [7] (see also [97]) revived and further
developed design of cryptographic protocols in the rendom oracle model,
first used by Fiat and Shamir in this context. This model provides as a
means to analyze the security of a large class of cryptographic schemes
such as the practical schemes mentioned previously. Here, a cryptographic
function can be modelled as an unrestricted black-box that first selects a
truly random function with the desired input/output size (this is some-
times also called an ideal hash-function). Then it can be queried by any of
the players in the scheme. Note that if the oracle is queried twice at the
same input it will give the same output. But moreover, any sequence of
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input/output pairs will give no information about the output correspond-
ing to a new input. Many of the schemes mentioned above are derived
from identification schemes by replacing the challenge with a hash of the
message to be signed and the preamble of the conversation. In [97] it is
indicated that the security analysis of such schemes in the random oracle
model comes close to showing that the underlying identification scheme is
zero knowledge from the point of view of an honest verifier, while addition-
ally it must be hard to pass as the prover when only given the public key.
Different types of schemes are given in [6] and [7].

Nevertheless, security analysis of signatures in the random oracle model
does not provide a proof of security in the sense of [70], since no reduction
of any cryptographic assumption is given to the existence of the necessary
random oracles (it gives however a better argument than with no proof at

all).

Thus, based on the above, it is an open problem to design a secure and
truly practical digital signature scheme, that may be used in today’s or
tomorrow’s information systems.

Recently, progress has been made in this area. Starting with [57], it can be
concluded that proven security based on RSA, moderate amount of com-
putation and provision of any reasonable number of small-sized signatures,
can be satisfied. This scheme yields practically much smaller signatures
compared to, for instance, [70]. A drawback of their scheme is that all
players must have reliable (available when needed and authentic) access to
a large random string that is chosen in advance and then fixed. This makes
the scheme less suitable for operation on devices that have limited storage
capabilities, such as smartcards.

4.2 Our Contributions

The results in this chapter are based on [45], [43], [44] and [49]. Our goal
is to construct secure (that is, not existentially forgeable under adaptively
chosen message attacks) digital signatures with low communication com-
plexity (that is, size of signature and public key must be “small”), under
cryptographic complexity assumptions as weak as possible.

In Section 4.4 we review the Goldwasser-Micali-Rivest scheme [70] (the
“GMR-scheme”) and give an efficiency improvement of that scheme that
allows to reduce the size of signatures by a factor of logl, where ! can
take on any value of our choice. The price we pay is an increased size of a
signer’s key by a factor ! and the requirement that all players have access
to a shared random string of size Ik bits, where & is a security parameter.
The GMR-scheme is based on claw-free pairs of trapdoor permutations
(see Section 2.5.3), while our scheme is based on special claw-free pairs of
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trapdoor permutations, defined in Section 2.5.4.

Next, in Section 4.5 we address the question whether the GMR. scheme
can be realized under weaker cryptographic assumptions than those used
in [70], while preserving the size of signatures and public key. We will show
that linear signature protocols (See also Section 2.2) are sufficient to guar-
antee, for any polynomial bound B, on the number of signatures to be
made, the existence of secure signatures of size O(k log B, ) bits and public
key of size O(k) bits. Thus we answer this question affirmatively, as we
also show that our primitive can be based on special one-way group iso-
morphisms (see Section sec:3am.exist.sowgi) as well as claw free pairs of
trapdoor permutations (see Section 2.5.3). Note that the latter assumption
is not known to imply the former. We give an example of a one-way group
homomorphism based on the difficulty of computing discrete logarithms,
which is particularly efficient and serves to separate our results from those
of [70]. To the best of our knowledge, linear signature protocols provide
the weakest cryptographic assumption known to guarantee the existence of
signature schemes not existentially forgeable under adaptive chosen mes-
sage attacks, with signatures! of size O(k log B, ) bits and public key of size
O(k) bits.

Providing security against adaptive attacks is an important goal in many
cryptographic schemes. In an adaptive attack an enemy may deviate arbi-
trarily from the protocols and may, for instance, request an honest player
to invert a certain cryptographic function controlled by the honest player,
on an input of the attacker’s choice. It may be the case that a clever choice
of such inputs helps the attacker to obtain information that should re-
main in private possession of the honest player. Transforming cryptographic
schemes that are secure against non-adaptive attacks to schemes that with-
stand adaptive attacks, is a desirable goal. Even more so when the trans-
formation is efficient. Such efficient transformations may be helpful when
designing cryptographic protocols for the following reason. It seems eas-
ier to first design a scheme that is secure in a weaker sense than desired,
especially when one does not have to take into account adaptive attacks,
than to design a scheme with the right security properties from scratch.
The efficient transformation is then used to map the scheme into a new
scheme with the desired security level. In Section 4.6 we show how signa-
ture schemes secure against random message attacks can be compiled into
signature schemes secure against adaptive chosen message attacks, result-
ing only in a constant increase of the size of a signature. Thus we improve
the transformation given in [60], which has a linear blow-up

Finally, in Section 4.7 we present a practical and secure signature scheme

'In both the GMR-scheme as well as in our scheme, the size of the private key
is O(k) bits.
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based on RSA that is suitable for smartcards. We build on the construction
given by [57] and modify their scheme in a number of ways to the effect that
the necessity of a large shared random string is circumvented. To the best
of our knowledge, our RSA-based signature scheme is the most efficient and
secure signature scheme known to date.

4.3 Definitions

Formally, a digital signature scheme consists of a key generation algorithm
G, a signing algorithm S and a verification algorithm V. A signer generates
his key pair (pk, sk) by running G on input 1% where k is a security param-
eter. The public key pk is placed in the signer’s public directory while the
secret key sk is private input to the signer. Given a message m from the
message space M, the signer computes a signature ¢ on m by running S
on input (pk,sk) and m. A receiver of the signature verifies the validity of
the signature with respect to public key pk by invoking V' on input pk, o
and m. The algorithm V returns accept if the signature is valid, and reject
otherwise. The algorithms are required to run in probabilistic polynomial
time.

Consider a signer A with public pk. A forgery of A’s signature is a valid
signature with respect to pk on some message m, that is not computed by A.
To capture the natural and strongest notion of security, [70] considers the
most general attack against a digital signature scheme, an adaptive chosen
message attack, and combines it with the weakest goal for the attacker, an
existential forgery.

In this model, a polynomial time attacker A is given the public key pk, the
triple (G, S,V), and the signing algorithm § instantiated with pk and sk,
as a black-box. As part of the attack, A is allowed to request a polynomial
number of signatures on messages of its choice. Moreover, A may choose
these messages as a function of previously received signatures, the public
key, etc. This models the idea that an attacker may first want a signer to
generate signatures on particular messages, say mi, ..., M, that may later
help the attacker to forge a signature. The attacker is successful if it is now
able to compute a valid signature & on a message m different from any of
the messages that A requested the black-box s to sign. More technically,
this means that 7 # my, ..., m;. If for any polynomially bounded attacker
it holds that this task can only be completed with negligible probability,
we say that the signature scheme (G, S,V) is not existentially forgeable
under adaptively chosen message attacks. If an attacker cannot compute
an existential forgery given just signatures on uniformly chosen messages
instead of adaptively chosen ones, the scheme is called not existentially
forgeable under random message ottacks.
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4.4 Shorter GMR-signatures

We present an efficient signature scheme that is not existentially forgeable
under adaptively chosen message attacks. The main feature of our scheme
is that any practical number of signatures can be made while the size of
the signatures remains relatively small, under the condition that all users
have access to a list of shared random strings.

More precisely, let integers ! and d be fixed and let £ be a security param-
eter. Given a list of I random k-bit strings shared by all users, at least I¢
signatures can be made by each signer in our scheme, where the size of a
public key is k bits. The size of a signature does not exceed (3d — 2)k bits.
The schemes requires a fixed private input (corresponding to the private
key) to the signer of size (I +1)k bits, while it needs (d— 1)k bits of dynamic
storage for employing tree-authentication.

A typical implementation value for the security parameter is & = 1000. Our
scheme can be based on the difficulty of factoring integers. Let’s assume,
as an example, that 10° is a reasonable bound on the number of signatures
a signer may wish to make (“the signature bound”). Let’s also assume that
signers and receivers have workstations at their disposal so that sufficient
memory is available. To reduce bandwidth needed for sending a signature
over the Internet, we would like the signatures to be “small.” So when we
set d = 3 and ! = 1000, signatures have size at most 7 - 10? bits. The size
of the shared list and the size of the private input for the signer together
is then slightly over 2 - 10% bits, while the public key is only 103 bits.
Roughly speaking, the GMR-scheme is the special instance of our scheme
with ! = 1. In the example above with a signature bound B, = 107, the
size of signatures in the GMR-scheme can become 10 times as large.

The first secure signature scheme where such trade-offs between shared
randomness and the size of signatures were investigated was proposed by
Dwork and Naor [57]. Their scheme is based on RSA, while their method
for achieving efficiency relies on special properties of RSA that seem to go
beyond the properties of general trapdoor permutations.

With parameters set as above, the scheme of Dwork and Naor offers signa-
tures of 4 - 10® bits. Their public keys and shared lists have the same size
as ours. A drawback of our scheme compared to [57] is that the private
storage for the signer is larger by a factor of [.

If one accepts the assumption that RSA-inversion is intractable, one might
argue that the scheme of [57] is more desirable. However, in Section 4.7,
we show how to modify their scheme so as to get rid of the shared list alto-
gether. Thus for secure signatures based on RSA, our scheme of Section 4.7
compares favorably to [57].

Our contribution here is to is to show that a secure signature scheme with
efficiency (in terms of the size of signatures) similar to [57] can be based on
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a general cryptographic assumption that is potentially weaker than an RSA
assumption, namely the existence of a special family of claw-free trapdoor
permutations, which we have shown to exist under the factoring assumption
(Proposition 2.13).

As shown in Section 2.5.3, claw-free pairs of trapdoor permutations give
rise to a special kind of E-protocols, namely signature protocols. Here, it
is more convenient however, to use the common notation and terminology
for such functions rather than our notation for X-protocols.

4.4.1 Notation

Let f = (fo, f1) denote a claw-free pair of trapdoor permutations. Since for
a fixed value of a, the function fi) (see also Section 2.5.3) is a permutation
of Dy, it makes sense to define its inverse. So, for any b’ € Dy, (f[a])‘l(b')
denotes the pre-image of b’ under fi,). The notation f) refers the j-th
pair of permutations out of some sequence which will be clear from the
context. The meaning of the notation f[(aj])(b) should now be clear from the
above if one puts fU) = ( fu(j), fl(j)) and applies the earlier definition of
composition. For fixed a € {0,1}", and for any b in the domain of the
pair (), the expression ( fg]))_l(b') denotes the pre-image of b’ under the

permutation f[(j]).

4.4.2 The Goldwasser-Micali-Rivest scheme

We briefly and informally describe the GMR-scheme from [70]. Let F be a
family of claw-free pairs of trapdoor permutations (see Section 2.5.3). In the
GMR-scheme a signer generates two such pairs f = (fo, f1) and g = (g0, 01)
with known trapdoor information, and a random S from f’s domain Dy.
The public key is equal to (f,g,5). The trapdoor information is private
input to the signer. Suppose that the signer expects to make at most 2¢
signatures. The message space M can be, for instance, {0,1}*, where k
is the security parameter. We assume that elements from the domains Dy
and D, can be efficiently encoded into k bits.

As the first ingredient, f is used to construct a binary authentication tree
of depth d, the root being S: All nodes are k-bit encodings of elements
from D;. Note that such a tree has exactly 2¢ leafs. We give an inductive
description of the creation of new nodes, starting at the root S. Let © €
D; be an internal node (that is,  is not a leaf) that has already been
created. Its “left-child” z is chosen at random from Dj. Its “right-child”
xR is defined as zp « f[;i](x). By our assumption on Dj z; can be
given as a k-bit string. Let ieas be any leaf in this tree, and let z(0) =
S,...,z(d—1) denote the ancestors of Zjeay, and for each of these ancestors
(i), let x1(i) and zR(é) denote their left-, and right-child, respectively.
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Of course we have that our given Ziay € {xp(d — 1),2r(d — 1)}, and
that z(¢) € {zr(i — 1),zr(z — 1)}, ¢ = 1,...,d — 1. An authentication
path auth(jeqs) for Eieas consists of the collection {(=(2), z1(2), zr(2))} =g
The validity of an authentication path is established by verifying whether
©(0) = S and whether, for i =0,...,d — 1, fiz,(i))(zr(9)) = (7).

We can now describe the signature scheme. The signer does not compute
the authentication tree in advance, but rather constructs it “on the fly”.
The most efficient way to do it, from a storage point of view, is to generate
it depth first. When reaching the first leaf in the authentication tree, the
signer is ready to make the first signature. Let’s take a look at the construc-
tion of the first signature. Let %j.,5 be this first leaf that is reached. Now g
and D, come into the play. The signer selects a random = (b for “bridge”)
from D, and authenticates it by computing ys < f[;:;(Wleaf). Again, we can
say that x, is given as a k-bit string, by our assumption on D,. A message
m € M is finally authenticated by computing 2z, «— g[;;l](xb). The signa-
ture on m consists (Zieas, Ys, 25) and the authentication path auth(zieqy).
A receiver of this signature establishes the validity of the signature by
checking whether auth(zeqs) is valid and whether fiz,)(ys) = Tieas and

gim)(28) = .

The next signature can be made when the second leaf is available, et cetera.
In this way, the signer can compute 2d signatures on any messages m €
{0,1}*. One final remark about the construction. As long as some node in
the tree can be part of a future authentication path, it should be stored.
But as soon as this is not the case anymore, it can be deleted. In this way,
the signer need only store a linear number (as a function of d) nodes at
any time.

The proof of security for this signature scheme basically shows that given
just the trapdoor information for one of the two f and g, we can define
a signer that is indistinguishable from one who is given both trapdoors.
In particular, the simulator can give out 2¢ signatures, just like the real
signer above. So when the “simulated” signer is adaptively queried by an
attacker, it cannot be biased as to which of the trapdoors the simulation
knows. With out loss of generality, assume that the attacker queries the
simulator 2% times, so that “the whole tree is used up”. The next step is
to show that from an existential forgery and the history of the attack (all
signatures output by the simulation), we can efficiently derive a claw for
either f or g. But since the attacker cannot be biased, with probability
1/2 this will be a claw with respect to the permutation pair for which the
simulator was not given the trapdoor information! This then contradicts
the existence of an efficient and successful attacker, since we have assumed
that the permutation pairs were claw-free. This type of argument is used
throughout this chapter.



132 4, Secure and Efficient Digital Signatures

4.4.3 The Modification

Obviously, the use of an I-ary authentication tree would result in signatures
with an authentication path smaller by a factor of log, I. If I = 1000 for
instance, the size is decreased by a factor of 10, approximately. The first
idea that comes to mind when trying to realize this, is using ! different
claw-free trapdoor permutation pairs f, and try to construct ! new nodes
out of a given one rather than 2, each of these ! new nodes authenticated
by a different pair f. We then encounter two problems.

The first is that these f’s have potentially different domains Dy. It turns
out that even when we take the factoring based implementation of F (see
Section 2.5.3), this is the case and the proof of security would fail for
some subtle reasons. So, from which set should the nodes be chosen? These
problems are solved once we are given a family of such functions that
permute the same domain. Such a special family is defined in Section 2.5.4,
where it is also proved to exist under the assumption that factoring integers
is intractable. Let D now denote that common domain. The nodes in the
tree are selected at random from D and each internal node has [ children.
If () is the -th pair of permutations and if z is an internal node, then its
child z; is authenticated by computing (fi:})_l(:c). Leafs xjeqy can be used
to compute a signature g[_n:](x;eaf} immediately.

Now, the second problem arises. How to authenticate all these pairs f? One
way would be to view them all as part of the signer’s public key. But then
its size increases by a factor I, which will results in an enormous directory
of public keys if { is large. The solution is found when we borrow the idea
of [57] to use a large shared random string. This string is once generated
at random in a way trusted by all players and then fixed. The players only
need reliable access to the string. The trick is that each signer uses the g-
pair from above in conjunction with the shared string to authenticate each
of its [ pairs f. Furthermore, the shared string is viewed as a collection
of 1 roots for authentication trees. Then a signer starts to construct the
first l-ary tree with depth d — 1 and with root given by the shared random
string. This uses at most d — 1 out of the [ pairs f. The signature consists
of the authentication path in this tree plus the at most d— 1 authentication
values for the used pairs f. When the first tree is used up, which is the case
when [9-! signatures have been made, the signer is free to go on to the
next with root as given by the shared random string, and so on. This way,
the length of a signature is O(klog; B, ) bits instead of O(klog, B, ) as in
the GMR-scheme. The size of the public key is just & bits. However, the
shared random string will have size lk bits, and each signer needs a little
more than Ik bits of private storage.
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FIGURE 4.1. Overview

4.4.4 Preliminaries

In the signature scheme described in Section 4.4.5, the signers have access
to the generator G for family F of special claw-free trapdoor permutations.
If k is the security parameter, the corresponding message M(k) space is
equal to {0, 1}*, although this choice is arbitrary. Recall from Section 2.5.4
that each permutation pair generated by the special generator G(1¥), has

a domain in which the set {0,1}* can be embedded. The embedded set will
then take up a non-negligible fraction of that domain. The value % only
depends on k. Also, the signers agree on integers ! and d such that 1 is
larger than or equal to the expected number of signatures to be made by
an individual signer. Furthermore, the signers must have access to a list
L of shared random numbers and an auxiliary algorithm DFS, both to be
explained hereafter.

The Shared List L

Before the signers set up their instances of the signature scheme, they agree
on a list L of shared random numbers. This list is to be viewed as part of
the system constants. Given the security parameter k and the integer I, the
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list consists of I bitstrings S € {0, I}E. The list is written as follows.
L = {Su, ey Sf_l}.

Ways of generating L can vary from observing a common physical source
of randomness to executing well-known cryptographic techniques for estab-
lishing common random strings. Once this list is generated, all signers and
receivers of signatures must have access to this list.

The Algorithm DFS

DFS gradually builds { full {-ary trees with depth d — 1 and with roots
So, - .- Si—1 respectively. DFS selects the nodes at random from the set
{0,1}*. The trees are constructed sequentially, in the sense that DFS starts
to build the j-th tree after the first j — 1 trees are completed. Each of the
trees separately, is developed in depth-first order. The algorithm has access
to the security parameter k£ and the integers [ and d.

The construction is gradual in the following sense. At the i-th call (denoted
by DFS(3)) (¢ = 1...1%), DFS creates a path z1,...,z4_5 to anew leaf z4_,
(a node at depth d — 1) and outputs these nodes. Notice that with the i-
th call a path to a new leaf in the r-th tree with root S, is output, with
r =14 —1div 1971, It will be assumed that the order in which the nodes in
the path are output is such that z; is a child of S, and =; is a child of z;_;,
for j = 2,...,d -1 Also, DFS(i) outputs indicators i;, with j = 1...d— 1.
These indicators point out that z; is the i;-th child (1 < 4; < I) of its
ancestor x;_;.

In the mean time, DFS administrates sufficient information so as to be able
to carry on with the construction. It only has to store the latest path to
a new leaf and the corresponding indicators. Notice that it is sufficient,
as far as concerns the indicators, to store i; Write ¢ « (171 —1)/(I - 1)
then write (i — 1) mod 197! 4+ 1 + ¢ in l-ary representation, say, it is equal
to Zj;ll ij - U1 mod 1971, Tt follows easily that these i; are in fact the
required indicators.

When a tree is completed, storage regarding this tree (excluding the root)
is deleted. Neglecting r and the indicators i; whose storage is negligible,
the storage needed for DFS does not exceed (d — 1)k bits at any time.

4.4.5 Description of the Signature Scheme

Initialization: The signer generates [ + 1 independent pairs of claw-free
trapdoor permutations

G5 eesy U,

with known trapdoor information, by running G(1*) I + 1 times. It
is assumed that a; € {0,1}* is a suitable encoding for f(), for j =
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0...1—1. The signer places his public key
pk—g

in his public directory. The trapdoor information to all these claw-free
permutation pairs is private input to the signer.

Signing: For a schematic overview of the signing procedure, see Fig-
ure 4.1. Let a message m € (k) be given. Suppose this is the i-th
execution of this procedure (i = 1...1%). Put r « i —1 div 1971, The
signer first invokes DFS.

(mluila" s smd—laid—l) = DFS(i)'

The authentication values g;; for the FU) he computes

JB‘E,' b (g[or.'j])_l (Ng(‘s‘i,‘)))

for j = 1...d — 1. Here &, is the efficient embedding of {0, 1}I into
D, (see Definition 2.6). Next, he computes the authentication values
for the nodes x; as follows.

= (f[(_:ll]))_l (K'f("l) (5-))

RN ) I CRINCIY)}
for j =2...d — 1. Finally, he authenticates the message m, by com-
puting
z = (gm) ™ (Kg(2a-1))
The signature o,4(m) is as follows.

Opk (m) = (T:‘ 2,4, ?:11 @, ﬁil yeeyYd—1, z.d_l y Xiq ﬂid_l )
Verification: The receiver puts
ng(m) = (Z! Yl 1 z-1 ) Ai1 y Bil yroeey Yd—l y id—ls Ai; 1 Bid_1 ):

retrieves the S;; from the shared list L and the signer’s public key
pk, and interprets the A;, as claw-free function pairs h(%) for j =
1...d — 1. The receiver proceeds by verifying whether

9(a:;)(Bi;) = rg(S5;),
for j =1...d — 1. Next, he computes X4_; € {0, 1}I such that
Kg(Xa-1) « gm)(2),
and recursively computes X; € {0,1}* such that
K60 (X5) hf;?'j)ﬂ](yjﬂ),
forj=d—1...0.If Xy = S,, then the signature is accepted.
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4.4.6 Proof of Security
We prove the following theorem.

THEOREM 4.1 Suppose that a family F of special claw-free pairs of trap-
door permutations exists. Let | and d be fized positive integers and let k be
the security parameter. Then the signature scheme, described above, is not
existentially forgeable under adaptively chosen message attacks. The size of
the public key is k bits, while the size of the secret key is Ik bits. The size
of the shared list L is Ik bits. At least 19 signatures can be made. The size
of a signature is at most (3d — 2)k bits.

PROOF. Let a shared list L and a signer with public key g be given and
let, as before, @, ..., f{"1) denote the ! permutation pairs that the signer
uses as part of the construction of the authentication-tree. If an attacker is
able to forge a signature on a message that the real signer hasn’t signed,
we can distinguish between two cases.

1. The forgery uses a subset of these f (4)’s to authenticate the nodes in
the forged signature.

2. The forgery uses at least one permutation pair f different from all

fU)’s.

First, we conduct the proof by treating the permutations FI0) s P g
part of the public key. Thus, the authentication values §;; are not regarded
as part of the signature in this part of the proof. This corresponds to the
first case above. Also, in this case we will only consider a forgery that hooks
into the first tree with root Sp. The proof that takes all  trees into account,
follows immediately.

If these matters are settled, the proof is finalized by observing that a
forgery that uses some permutation pair different from any of the fU)
for j = 0...1 — 1, gives rise to a claw with respect to the permutation
pair g, which corresponds to the second case above. The generation of the
shared list L will be depending on the simulated signer. This is no problem,
since it will be indistinguishable from the list L as generated according to
Section 4.4.4.

For simplicity of the proof, it is assumed that the verifier of a signature
does a length-check by verifying whether the signature uses exactly d — 1
nodes (excluding the root). Disposing of this length-check is available at the
price of a slightly more technical, but nevertheless correct proof of security.

Without loss of generality, we may assume that the attacker outputs the
forgery after exactly I4 calls to the signer: if he can compute a forgery on
a message 1 after fewer calls, we simply redefine the attacker so that he
will make additional calls on a message that is not equal to m.

The compilation works as follows. Suppose we are given a pair h =
(ho, h1) from the family F as generated by the generator G on input s 18
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but not its trapdoor information s;. We will use the attacker to compute a
claw for this pair k. We start by running G(1*)  times in order to obtain
a list of ! claw-free pairs of trapdoor permutations with known trapdoor
information.

Secondly, we select a random r € {—1,0,...,I—-1}.If r > —1, we will add
the pair & to the list such that it becomes the (r+2)-nd entry. The resulting
list of I + 1 pairs consists of g = (g0, 1), F® = (2, F0),..., 0D =
[fél_l) 1“_1)), where h = f("). If » = —1, we put h at the head of the list
such that h = g.

Next we demonstrate that in all cases 7 with —1 <r < 1—1, we can set
up a signer for the signature scheme, whose permutation pairs are those in
the list of I + 1 claw-free pairs of trapdoor permutations as defined above,
such that one cannot distinguish between a real signer and this “simulated”
signer (who doesn’t know the trapdoor information for exactly one of the
1+ 1 pairs). In particular, it follows from this (perfect) simulation that all
cases are indistinguishable from one another.

Running the attacker on this simulated signer, we may expect the at-
tacker to produce a forgery with essentially the same success probability as
in real life, by the perfectness of the simulation. Our argument is completed
by the observation that from a forgery and the signatures output as a result
of the attacker’s calls to the simulator, we can derive a claw for at least one
of the I + 1 permutation pairs. By the perfectness of the simulation, this
forgery leads to a claw exactly for the pair &, for which we were not given
the trapdoor information, with probability 1/ + 1.

As argued above, it is now sufficient to describe our simulation, and
demonstrate the perfectness of the simulation and prove that a forgery
leads to a claw for one of the [ + 1 permutation pairs.

r>-1:
We have to build a full authentication tree of branching degree ! and
depth d — 1 while the trapdoor information to f{*) is not given for
exactly one r with 0 < r < I — 1. This tree is now built from the
bottom up. Observe that it works for trees of depth 1 as follows.

Choose zg, ..., z;—1 + {0, 1}; Then, select y, « D~y and compute
f[(:j] (r)- If this value is in the image of k), we compute z € {0, 1}*
such that x;r(z) = f[tfl(y,) and we halt. Otherwise, we keep se-
lecting ¥, + D¢y until this is the case. Note that, in any case, z is

distributed uniformly over {0, 1}* and is independent of zy, ..., z;_;.
By our assumptions on the embeddings, the process just described
has non-negligible success probability of being completed in polyno-
mial time. After this, fori =0,...,l—~1and i #7r, y; is computed as

-
Yi — (f[(;‘,)]) (k5 (x)). Note that all values y;, for i =0,...,1—1,
follow deterministically from z,zg,...,2;—;. The value z is to be
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viewed as the root, and g, ..., T;—1 as its children.

Suppose now, as an induction hypothesis, that we can build such
authentication trees with depth n — 1. Now, given ! such trees, we
can easily build an authentication tree of depth n by putting the roots
of these [ trees of depth n — 1 in the roles of zg,...,%;—1 as above
and compute the root in the same way as z was computed above.

All nodes in the authentication trees thus constructed have uniform
distribution over {0,1}* and are independent of each other and any-
thing else. The corresponding authentication values follow determin-
istically.

After a full authentication tree with resulting root Sg, depth d — 1
and branching ! has thus been constructed and the attacker is given
the public key and Sp, the simulator can start answering the calls by
the attacker, as the trapdoor information to the pair g is given in this
case where r > —1. As the real signer, the simulator will reveal paths
to new leaves (as if) constructed in depth-first fashion.

=-1L

In this case, we are given the trapdoor information for the pairs 8
fori=0,...,l — 1, but not the trapdoor information for the pair g.
This time, we will select the root Sp for the authentication tree as
in the description of the scheme and present the resulting public key
and Sy to the attacker.

Next, we construct the authentication tree top down interleaved with
the requests from the attacker, as follows. Given a request for a sig-
nature on a message m, we simply compute gjm)(y) for y « D, and
with non-negligible probability, gm)(y) is in the image of &, and we

compute z € {0,1}* such that £y(x) = g{mj(y)- Finally, we authenti-
cate T as in the description of the scheme. In this way, the simulator is
able to answer all calls by the attacker. Again, as in the case r > —1,
the nodes in the authentication tree have uniform distribution over
{0,1}* and are independent of each other and anything else. Also, the
corresponding authentication values follow deterministically. As the
real signer, the simulator constructs the tree in depth-first fashion.

From the above analysis we conclude that the simulation is perfect and
runs in probabilistic polynomial time. Next, we may assume that the at-
tacker outputs a forgery with some probability €. Let the forgery, on a new
message 1, be

Z;?}liih- i 1yd—1sid—1-

From this forgery, we first re-compute the corresponding nodes

BijanagBd=1s
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as is done in the verification phase of the signature scheme. Let j be the
largest index such that Z1,%; ...,Z;,¢; is a path in the authentication tree
constructed by the simulator, starting at the root Sp. Recall that it was
assumed that the attacker makes 9! calls, so the authentication tree is
fully constructed. There are two possibilities now. The first is, j = d — 1.
But this means that Z4_; is a leaf, and since m is “new” and %4_; must
have been used by the simulator to make a signature on a message m # m
(with corresponding authentication value z), we must have a claw gj,,)(z) =
gim)(Z) = Kg(Z4-1) This happens with some probability €;.

If, on the other hand j < d with probability ez, we have that the ;4 ,-st
child z;; of &; (with corresponding authentication value y;41)) in the tree
output by the simulator is different from £;41 by definition of j.

This results in a claw for the pair f(:+1) since we have f[('j::]}(yjH) =
S @) = £ 0500 (&5).

This part of the proof is completed by observing that, from the perfect-
ness of the simulation, with probability at least

3] + €2 _ €
I+1 141 141

The claw we have obtained will be with respect to the pair A, for which we
were not given the trapdoor information. Thus breaking the claw-freeness
of the family F.

Recall that the above analysis treated the permutations pairs f(°, ...,
FU=1) as part of the public key. The remaining part of the proof is to show
that it is infeasible for the attacker of the full scheme to produce a forgery
that uses at least one permutation pair f different from all f(9)’s. In the
above analysis in case 7 = —1, let @; be a description of the pair f{), If
we generate the j-th entry of the list L as

Sj — ga;)(B5),

for a random B; € Dy such that S; is in the image of &, for j =0...1 —
1, then a forgery that uses a permutation pair f different from all f()’s
immediately leads to a claw for the pair g. If » > 1, the list L is generated
as in the simulations above. Thus, we conclude that if the attacker can
compute a forgery in the signature scheme, with probability €, then we can
compile the attacker into an algorithm for finding claws for the family F
with probability (€)/(l + 1) in essentially the same time. ]

4.4.7 Alternative Descriptions

There are various implementations of the basic ideas that underly our
construction in Section 4.4.5. We mention one alternative. For clarity of
exposition, the signature scheme is described in such a way that one au-
thentication tree after another is completed, and that only the leaves of
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those trees are used for making signatures. However, one can also use the
i-th (internal) nodes for making a signature, instead of the i-th leaf that
is reached. Furthermore, one can develop the trees level after level instead
of sequentially. Thus, one gains the potential of making an additional (at
least) 19-! signatures, whose size is at most (3d — 5)k bits. The proof of
security is easily adapted to this scenario.

We also note that, if desired, the shared list L can be traded for large
public keys and slightly shorter signatures. This is done by simply removing
L from the description and requiring that the permutation pairs f () are
included in the public key. However, the public directory where public keys
are registered will become a factor [ larger. If public key certificates are
used instead, these have to be taken into account as well. It would then
be reasonable to have a separate certificate for each pair f (1), The size
of the resulting signature might then be equal to the size of a signature
in our scheme. Note however, that in order for this public key certificate
based option to be as secure as our scheme, the certification authority must
also use a secure signature scheme. This scheme must then handle at least
N(l 4 1) signatures, where N is the number of participants. In certificate-
based variant, the certifying authority must only generate N certificates.
In many applications, the alternative with large public keys may result in
a less desirable signature scheme.

4.5 Secure Signatures based on Interactive
Protocols

4.5.1 Introduction

Given only a Z-protocol of a certain type as a primitive, we can build a
(non-interactive) signature scheme that is secure in the strongest sense of
Goldwasser, Micali and Rivest (see [70]): not existentially forgeable un-
der adaptively chosen message attacks. There are numerous examples of
primitives that satisfy our conditions, such as the identification schemes
of Feige-Fiat-Shamir, Schnorr, Guillou-Quisquater, Okamoto and Brickell-
Me.Curley ([66], [106], [76], [93], [26]).

More precisely, our primitive is a particularly efficient signature protocol
(see Section 2.2). Recall that a signature protocol is a E-protocol satisfying
collision-intractability and special honest verifier zero knowledge. Moreover,
the length of a challenges is larger than the length of a first message of a
conversation. In the constructions to follow we will additionally require
that the protocol is linear in the sense that the length of a conversation
as well as the length of a challenge satisfies some linear expression in the
security parameter k.

A main consequence is that efficient and secure signature schemes can now
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also be based on computationally difficult problems other than factoring
(see [70]), such as the discrete logarithm problem. Here, by efficient we mean
signatures of size O(klog B,) bits where B, is a bound on the number of
signatures to be made, and public keys of size O(k) bits.

In fact, the existence of certain one-way group isomorphisms (see Sec-
tion 2.5.2) is a sufficient assumption to support our construction. Further-
more, our construction can also be based on claw-free pairs of trapdoor
permutations (which are not known to imply one-way group homomor-
phisms). When instantiated for these functions, our scheme is essentially
identical to the scheme of [70]. As our general scheme also has the same
efficiency as [70] in terms of the size of signatures, our results can be viewed
as a generalization of [70]. Linear signature protocols can be viewed as the
weakest cryptographic assumption known to be sufficient for the existence
of secure signatures with size O(k log B, ) bits and public keys of size O(k)
bits.

However, cryptographic protocols are usually instantiated using a specific
intractability assumption, such as collision-intractability of a hash func-
tion, the difficulty of factoring integers or computing discrete logarithms.
Although the general assumptions mentioned above are believed to be un-
related, our claim that we generalize the results of [70] is best argued when
we give a specific intractability assumption that separates cur results from
[70].

To this end, we give a particularly efficient example of our scheme based
on discrete logarithms. Other efficient instances of our scheme are based on
the difficulty of factoring integers. However, under the difficulty of factoring
assumption one can construct a family of claw-free pairs of trapdoor per-
mutations. Since it is believed to be unlikely that one can construct secure
trapdoor functions, based on the discrete logarithm problem, the example
of our scheme based on discrete logarithms shows that we extend [70].

4.9.2 Notation

Let (A, B) be a signature protocol for relation R and generator G (see
Section 2.2.7). Let M denote the special simulator and let k be the security
parameter. As before (see Section 2.1), let a(-) denote the algorithm for A
to compute the first message of the conversation and let z(-) denote the
algorithm to compute the reply given B’s challenge. The length of the first
message is denoted ¢4 and the length of the challenge is given by tp. By
definition of a signature protocol we have tg > t4. With the algorithm ¢
the verifier B checks the validity of a conversation. We will also explicitly
use the random string R 4 from Section 2.1 in the description of our results.
The length of the random tape R, is denoted by tp.
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4.5.8 Overview of Our Method

Roughly speaking, to compute a signature, a signer will act as both A
and B and run their respective algorithms. A signature will consist of a
collection of conversations from the protocol (A, B) and all the receiver of
the signature will have to do is to check the validity of those conversations.

Initially, a signer will generate two independent instances (zo,wp) and
(z1,w;) of R for the prover A and a first message ao with respect to
(w0, wp)- For this task, the algorithms G() and a(-) are at the signer’s
disposal. The public key then consists of the two public strings o and wy,
and the first message ag, while the private key consists of wp and w; (and
the random bits that are used to generate ap).

When given a message m to be signed, our signer computes a conversation
in (A, B) where m is the challenge, say by, m, 50. But this time the other in-
stance (z1,w;) is used. However, this step could be completed by any party,
since the special simulator M is available to anyone. Therefore, the signer
also interprets by as a challenge and computes the reply zo given the first
message ag and the key pair (zg,wo), and thereby effectively authenticates
bo. For this, the signer uses the algorithm z(-). This approach provably
thwarts any forgery attempts. The receiver of the signature merely checks
the validity of both conversations by using ¢ and verifies whether the first
message of the latter conversation is part of the public key.

Of course, this is just part of the whole story. The method above only shows
how to make one signature; if this process would be repeated, and the next
signature on a different message would be computed, the signer reveals
two conversations for the same key pair with the same first message but
with different challenge values. This is very much the same as giving away
the secret key! To get around this and enable the signer to compute many
more signatures, the signer not only authenticates by as above but at the
same time authenticates two new first messages a; and a; with respect to
(xo,wo). This is done by authenticating the concatenation of by, a; and ay
instead of just by. Now, a; and az will in the two subsequent signatures play
the role of ap. Obviously, this construction can inductively be carried on to
the effect that the signer can make any polynomial number of signatures.
Note that as more signatures are made, the number of conversations that
a signature consist of grows: each of the a-values is authenticated by a
previous one, and the final one must be equal to ag. Since our way of
generating these a-values gives rise to a binary authentication tree (see
Section 4.4.2), the number of conversations in a signature is a logarithmic
function of the number of signatures made so far.

In our proof of security will use a simulation technique to set up a simulated
signer that looks like a real signer from the point of view of an attacker.
However, the simulated signer misses one of the private inputs wp and
w;. Our technique makes extensive use of the special simulator M for the
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protocol (A, B). We then show that a forgery will immediately lead to a
collision with respect to one of the two instances xp and z;. But since our
simulation is indistinguishable from a real signer, as seen from the outside
world, with good probability we get a collision for exactly that instance
whose private information our simulator was not given. This is how we
show that forging signatures contradicts the assumption that our primitive
protocol (A, B) is collision intractable.

The overview of our method hides an important aspect. The length of
challenges in the protocol (A, B) might simply be too small to authenticate
the necessary information. Recall that in the description given above, we
must be able to handle challenges as large as three times the length of a
first message.

For example, if we take (A4, B) to be Schnorr’s protocol [106] (see also
Section 2.3), it is clear that the length of any challenge is at most equal to
the length of any encoding of the elements in G4. Since the first message a in
that protocol is just a random element from G, we have that tp < t4. This
is insufficient for our purposes, since in our description above we required
that tp > 3t4 (in our formal treatment, tg > 2t4 will be sufficient).

A general way to increase the length of challenges in signature protocols
is given by Proposition 2.4. In fact, given any signature protocol and any
desired challenge length, we can transform the given protocol to a new
signature protocol (for the same relation and generator) that has the desired
challenge length while the length of the first message remains the same. We
have to be careful, however, since this transformation increases the size of
the conversations.

For instance, let’s say that our original signature protocol (A, B) has the
following properties: t4 = [z| = k, and t4 + 1 = ¢tp where as usual z
is the common input and k is the security parameter. We can easily give
examples of signature protocols satisfying this. Then to achieve tg: = 2t
in the resulting protocol (A4’, B'), we get that the length of the conversations
in (A’, B') is at least tpitq > Qt:‘i = 2k? bits (recall that t4 = £ in the
transformation). Clearly, this is too much for our purposes here. To alleviate
this situation, we define linear signature protocols in the next section.

4.5.4 Linear Signature Protocols

We now define linear signature protocols, the weakest cryptographic as-
sumption we have been able to find that supports digital signatures not ex-
istentially forgeable under adaptive chosen message attacks, with signatures
of size O(klog B,) bits and public key of size O(k) bits (see Section 4.5.7).

DEFINITION 4.1 Let (A, B) be a signature protocol (see Section 2.2) for
relation R and generator G such that the length of a conversation is linear
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in the security parameter k. Suppose furthermore that the challenge length
tg satisfies tp > (14 c)t4 for some positive real constant c, where k is the
security parameter. Then (A, B) is called a linear signature protocol.

Recall that a conversation includes the common string. A variant of Propo-
sition 2.4 will provide a way to map a linear signature protocol (4, B) with
tg > (1+¢;1)ta, for some positive real constant ¢; to a linear signature pro-
tocol (A’, B') with tg > (1 + ca)ta for any positive real constant ¢ > ¢
(recall that t4 = tar in the construction of Proposition 2.4, and that the
length of the common string is invariant). The proof of Proposition 2.4 uses
a “chaining technique” to facilitate larger challenges. In fact, per bit of the
new and larger challenge in (4, B') it creates a conversation in (4, B).

But we can easily extend this approach and take cit, bits per link in the
chain. In this way, the chain consists of at most a constant number of
conversations in (A4, B), which is just a constant blow up. So linearity is
preserved. We have the following proposition

PROPOSITION 4.1 Let (A, B) be a linear signature protocol for relation R
and generator G. Suppose tp > (1 + ¢1)t4, for some positive real constant
c1. Then there ezists a linear signature protocol (A', B') for relation R and
generator G, satisfying tpr > (1 + c2)tar for any positive real constant
Ca 2 C1.

Thus, when we require in our constructions that a linear signature pro-
tocol has challenge length that is a constant number of times larger than
the length of the first message (the authentication length), we can invoke
Proposition 4.1 to get it right.

4.5.5 Emistence of Linear Signature Protocols

Section 2.5 provides a number of cryptographic assumptions under which
signature protocols are shown to exist; most notably one-way group ho-
momorphisms, claw-free pairs of trapdoor permutations, the discrete loga-
rithm assumption, the RSA-assumption or the factoring assumption.

More precisely, Proposition 2.12 in Section 2.5.3 can be seen to guarantee
linear signature protocols based on claw-free pairs of trapdoor permuta-
tions, by just choosing the challenge length in that protocol appropriately.
Recall that the factoring assumption is sufficient for the existence of these
functions.

Proposition 2.8 in Section 2.5.2 yields linear signature protocols based on
special one-way group isomorphisms; concrete ones are given by the two
examples based on discrete logarithms and RSA.
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4.5.6 The Algorithm DFS

Our signature scheme from Section 4.5.7 employs a binary authentication
tree. The nodes of this tree correspond to random strings that are used as
part of the generation of signatures. Since signatures comprise of conver-
sations in a linear signature protocol (A4, B), these random strings actually
constitute the randomness R 4 required for the algorithms of A as described
in Section 2.1. Recall from Section 4.5.2 that the length of B4 is denoted
tr (we leave its dependence on the security parameter k implicit in this
notation).

Let d be a fixed positive integer and let py € {0,1}*~. The algorithm DFS
gradually develops, in depth first fashion, a full binary tree of depth d. We
set the level of the root to 0. The root pg of the tree and the depth d are
given as input to the algorithm. DFS selects the nodes at random from
{0,1}r,

At the i-th call (denoted by DFS(i), i = 1...2¢), DFS outputs the i-th
leaf, say pg accompanied by an extended path to the root ag. This path is
extended in the sense that not only the ancestors of the leaf are given, but
their siblings as well. So, for instance, at the first call DFS creates d nodes
that constitute a path to the first leaf and d siblings of the ancestors of the
first leaf. Note that these latter nodes also include the second leaf.

This extended path, including the leaf, is written

£0> D1, Py -+ s Pd—1, Ply—15 Py Pl

where the indices tell at which level a node resides. The strings p;, i =
0...d — 1, reflect the ordinary path from the leaf to the root, while the
strings p}, ..., p} are the remaining siblings of the nodes on the path from
the leaf py to the root pg.

DFS does not need to store the complete history of the construction. Those
parts of the tree that will not appear anymore in future outputs are erased.
Roughly speaking, it is sufficient for DFS to store the latest extended path.
The required storage capacity of the algorithm is then O(dtg) bits.

4.5.7 Main Result

Let (A, B) be a linear signature protocol, and let all related notations be
as in Section 4.5.2. By Proposition 4.1, we may assume that tg > 2t 4. The
claimed signature scheme is defined as follows.

Initialization: Let a security parameter k be given, and a positive in-
teger d such that logd is polynomially bounded as a function of k.
The signer runs G(1*) twice and obtains two instances (zq,wg) and
(z1,w1) in R. Next, pg is selected at random from {0, 1}*%. The string
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ap is computed as ag — a{xg,wo, po). The public key (zo,1,a0) is
placed in the signer’s public directory. The strings wy, w; and pg are
private input to the signer. Assume without loss of generality that
the signature bound B, is equal to 24(¥) and that d(k) = O(logk).
The algorithm DFS gets as input po and the integer d (dropping its
possible dependence on k).

Signing: The message space M is set to {0,1}*#. Suppose this is the i-th
signature ( = 1...2¢), and let m € M be the message to be signed.
First, the signer puts

(PﬂsPl:Piv- . :pd—lrpfd—lipd‘prd} e DFS(i)'

The signer performs the following computations.?

1. o« {Dil}tsr be— ﬂ‘(zlawlao—)a S z(xluwlsgsm):

2. ag — a(To, o, pa); Zd — 2(To, Wo, pa; b)-

3. For j=1...d — 1: aj « a(zo,wo, pi), aj — a(zo, wo, P}),
4.

For j = 0...d — 1: z; « z(zo,wo, pj [aj+1,0541]), Where we
use [a;41,a};,] to denote the concatenation of a;;1 and aj,
such that the left part and the right part in the concatenation
correspond to the left child and right child of p; in the tree,
respectively.

The signature o(m) is now
! I H
(ag,al,al,zu,...,ad_l,ad,ad,zd_l,md,zd, b,s,)

where ind is a string of d bits such that the j-th bit indicates how to
compose [a;41,054,] from a; and a;.

Verification: Given the public key (zo, 1, a0), the receiver puts
g(m) = (AO:AI;A‘IL: ZI]: hia )Ad-—erds A’d) Zd_l.,iﬂd, Zda‘Bs Sa )r
where Ag «— ap, and checks whether

1. ¢(z,B,m,S) = accept,
2. d’(EBlAds B: Zd) = accept,
3. Forj=0...d -1, ¢(zg, 4;, [Aj+1,A;+1], Z;) = accept.

If all verifications are satisfied, the signature is accepted.

2Please note that we make the coinflips to the algorithms a(-) and =(-) explicit
as described in Section 2.1.
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ag

b

FIGURE 4.2. Secure Signature based on Interactive Protocol

REMARK 4.1 Storing the a-values instead of the coinflips will reduce the
amount of on-line computation needed. But of course, an authentication
path can also be computed off-line before the next message to be signed is
known to the signer.

REMARK 4.2 We develop the authentication tree in depth first fashion to
minimize storage. However, breadth-first development of the tree is equally
possible. Moreover, our scheme also accommodates the use of the internal
nodes for making signatures as is done with the leaves. To this end, the
description of DFS and the main result and the proof of security are easily
adapted.

REMARK 4.3 The result remains valid for general (not specifically linear)
signature protocols. However, we may not get the desired efficiency in the
general case.

4.5.8 Proof of Security

The proof of security of the proposed signature scheme is by showing that
the existence of a successful attacker of the signature scheme contradicts
the collision-intractability of (A4, B). To this end, we construct a simulated
signer that is indistinguishable from the real signer from the point of view
of the attacker. This simulation differs from a real signer in the sense that
it is given the witness w for only one of the two instances z. The proof
is concluded by the observation that any forgery leads to a collision in
(A, B) for at least one of the two instances. By the indistinguishability of
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the simulation, this is a collision for exactly that instance = for which the
simulation was not given a witness, with probability 1/2. Thus an attacker
of the signature scheme can be efficiently transformed into an algorithm
that computes collisions for (A4, B), and we have arrived at the desired
contradiction. We now prove the following theorem.

THEOREM 4.2 Let (A, B) be a linear signature protocol for relation R and
generator G. Then the signature scheme constructed from (A, B) is not
existentially forgeable under adaptive chosen message attacks. Let k be the
security parameter and let B, be a bound on the number of signatures to be
made. Then the size of each signature is O(klog B,) bits, while the public
keys has size O(k) bits.

PROOF. Put B = 2¢ for some positive integer d. Let A denote an attacker
who efficiently forges signatures using an adaptive chosen message attack.
First, we generate two independent instances (z;,w;) € R, 7 = 0,1, by
running the generator G twice. Then we flip a random coin 3, and discard
the witness w; 5. The simulated signer receives as input (zg,wg) and z1_g,
and is defined as follows (coinflips are implicit in our description). Let M
be the special simulator for (4, B).

g=0
First, ag is generated as ag < a(zo,wo). The rest of the simulation
is as in the description of the signature scheme, except that band s
are computed by (z1,b,m,s) — M(z1,m).

B=1

In this case, the authentication tree is constructed bottom-up. First,
all 2¢ b-values are generated by computing b «— a(z1,w1) 24 times in-
dependently. Then for each b-value a leaf aq is generated together with
an authentication value zq by computing (o, @q, b, zd) M (zq,b).
Now, given two adjacent leaves ag, ajy which should have the same
ancestors (suppose that ag is left from aj), their parent as—; is gen-
erated together with the authentication value z4— by computing
(zo,@d-1,ad|ay, za—1) — M(zo,aqlay). This process is inductively
repeated until we have a full binary tree of depth d. Let ay denote
the resulting root. Since in this case w; is known to the simulation, it
can compute s « z(z1,w1,b,m) for any of the b-values as generated
above and for any m.

Now the attacker A comes in the play. After the public key (zg,21,a0) has
been made available to .4, it is allowed to carry out the adaptive chosen
message attack on the simulated signer. From inspection of the simulated
signer, it is clear that it can fulfill any of the at most 24 requests form
the attacker. Note that in the case 8 = 1, the simulation pre-computed
the tree, but only reveals the nodes in the order that a real signer would.
Indistinguishability between the cases 8 = 0 and 8 = 1 follows immediately
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from Lemma 2.4; the distribution of all a, z, b and s values is exactly the
same as when generated by a real signer, due to the properties of the
simulator M for (A, B) (see Section 2.4.3).

Next, we assume without loss of generality that the attacker makes exactly
29 requests to the simulation. Since we are assuming that A4 is successful,
it will output some forgery

-~ - —f - - . ~f o~ . P
(Go,al,al,Zﬂ,...,Gd_l,ﬁd,ﬂ.d,Zd-l,ind,Zd,b,S),

on some message m whose signature has not been requested from the simu-
lation. Note that we must have @ = ag. For convenience, we assume that a
verifier in the signature scheme always does a length-check that a signature
consists of exactly d values a. This is not necessary for the security of our
scheme, but it simplifies some of the arguments to follow. Let T' denote the
full binary tree of depth d tree consisting of the a values as generated by
the simulation, and let H denote the collection of the 2¢ signatures output
by the simulation.

Now consider the largest integer j such that do,@1,...,a; is a path in T
Since &y = ap and T has depth d, we have 0 < j < d. Then, since we have
assumed that the simulator output the maximal number of 2¢ signatures,
there exists o(m) € H for some m # m where

= r ] .
J(m) = (al]; a1,@1,20,...,04—1,04, Ay, 2d—1, tnd: 2d, ba S)

and a; = @; for i = 1...4. Suppose that j < d, then (by the maximality
of j) we have @41 ¢ {a,_,-H,a_’?-H}. Then [&j+1,"1}+1] # @jt1,a},,]. Thus,
since d; = a;, we immediately have a collision (2o, a;, [a;41, aj,1],2;) and
(z0,aj,[@541,8;,,), Z;). In case j = d, we must have that Gg = ag is a leaf
in T. If b # b, we have a collision (o, aq,b, z4) and (zo, ag, b, 34). Finally,
if b= b, we must have a collision (z1,b,m,s) and (z1,b,7m, 3).

By the perfectness of the simulation, the probability that we get a collision
with respect to ;_g is 1/2. Thus the existence of a successful attacker of
the signature schemes contradicts the collision-intractability of the protocol
(A, B). The claims about the size of signatures and of the public key follow
by inspection of the protocol, and by taking into account Proposition 4.1.

O

4.5.9 FEzample

Let (A, B) be the signature protocol DL* from Section 2.5.2. Suppose el-
ements from G4 can be encoded using u = O(|g|) bits. We can now carry
out the construction of Section 4.5.7. As a toy example, put d = 3. Thus,
the authentication tree will eventually have 15 nodes, and the signer can
make 8 signatures in this small example.
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Let ¢ be the smallest integer such that t|g| > 2u. To set up an instance of the
signature scheme, the signer generates two independent instances of (4, B),
(:’B,"{LT) =1 ((zl,wl), sy (mt,wg)) and (E,'!_U-) = ((‘_I-l,’f.—l}'l), S (Ehﬁt)), with
zi=g¥andT; =g fori=1,...,t The w; and W; are chosen at random
from Z,. The root of the authentication tree, ag, is computed as ap = g°°,
where pp is chosen at random from Z,. All 14 other nodes a; are computed
as a; = g# for random p; € Z;, i =1...14. The 8 b-values are computed
as b «— g% for random o € Z,. The initialization phase is completed when
the public key of the signer, (z,7, ag), is placed in the public directory.

If we number the nodes in the order in which they are generated, the top
has number 0, the first level (from left to right) contains number 1 and 2,
the second level number 3, 4, 9 and 10, the third level number 5, 6, 7, 8,
11, 12, 13 and 14. So, for instance, as part of the first signature, the signer
generates nodes 1,2,3,4,5,6, where as is the first leaf. The second leaf, ag,
is used in the second signature. Now assume that the signer is making the
5-th signature. Note that after the fourth signature, for instance, there is
no need to store nodes 3, 4, 5, 6, 7 and 8, since these will not occur on
the extended authentication path of any of the forthcoming leaves. So at
this point, the tree only consists of nodes 0, 1 and 2. To make the 5-th
signature, the signer generates nodes 9, 10, 11 and 12 as described above.
Note that node 11 is the 5-th leaf. This gives rise to new values pg, p10,
p11 and py2. The values pg, p1 and p; are still in memory. The path to the
root 0 from node 11 consists of the nodes 9 and 2, while nodes 1, 10 and
12 are the other children of the nodes on this path.

Let I be the largest integer such that 2 < g, and let message m € {0, 1}
be the message to be signed, where m = my|...|mq and the m; are I-
bitstrings, to be interpreted as members of [0... 2!). For instance, ag and
a1 are authenticated by computing zz as zg = p2 + W1 """ + pw;, where
p1| - |t = aglaio. The p; are l-bitstrings, to be interpreted as members
of [0,. ..,2"). In the same way, a1 and az are authenticated from ag, and
a;; and ai2 from ag. Summing up, this results in authentication values
20, 72 and zg. Now b is generated and authenticated by z1; (from a11) as
above. Similarly, s is computed from ¢ and m. Finally, zg, @1, a2, 22, a9,
@10, 29, @11, G12, 211, b and s are forwarded to the receiver, who performs
the obvious verifications.

Previously, the only known way to get a signature scheme provably secure
based on discrete log was to use the method from [52] to build a collision
intractable hash function and then use Merkle’s construction. This would
require an exponentiation for each bit processed in the hashing, and more-
over we would need as a part of the signature a full preimage under the
hash function to authenticate 1 bit. Therefore we would get signatures of
length O(k?log B,) bits and would need O(k?log B,;) exponentiations to
make a signature,



4.5. Secure Signatures based on Interactive Protocols 151
4.6 Security Amplifications for Signatures

As a by-product of their investigations into so-called on/off-line signatures,
Even, Goldreich and Micali [59] showed that the existence of signature
schemes secure against known message attacks implies the existence of
schemes secure against adaptively chosen message attacks. Unfortunately,
this transformation leads to a rather impractical scheme. We exhibit a sim-
ilar security amplification, which takes the given scheme to a new signature
scheme that is not even existentially forgeable under adaptively chosen mes-
sage attacks. Additionally, however, our transformation will be practical:
The complexity of the resulting scheme is twice that of the original scheme.
As argued in Section 4.1, such transformations may be an aid to the design
a practical and secure signature schemes.

As in [70], and in many other cryptographic schemes, their approach works
with two independently generated instances of the signature scheme S that
is given as input. The resulting keys constitute the keys for the instance of
S.

Let m be a message of length n. The first instance is used to authenticate
the concatenation of 2n bit-strings, chosen uniformly at random by the
signer. Bit-wise, the message m is used to select n of these strings which are
finally authenticated, one-by-one, using the second instance of S. For each
new message, this procedure is repeated. As a result of this bit-wise signing
technique, the complexity of the transformed scheme becomes, roughly, the
complexity of § times the number of bits that are signed. Therefore the
transformation from [59] is not suitable to serve as a basis for security
amplifications of practical signature schemes.

Consider a signature scheme that is secure when an attacker just sees sig-
natures on random k bits messages. Our approach is to take a subset M
of this message space M that contains just a negligible fraction of the ele-
ments but contains an exponential number of elements. For instance, take
the subset of strings where the last k/2 bits are set to 0. A signer in the new
scheme first generates two independent instances of the original scheme. To
sign a message m € M in the new scheme, the signer computes a random
pair my,my € M such that m; @ my; = m, and signs m; with respect to
the first instance and ms with respect to the second instance. The intuition
behind the security of this scheme, is that an adaptive attacker cannot get
around the random split of the message and will still only see signatures
(in the original scheme) on random messages. The idea behind the smaller
message space is that it prevents the attacker from making forgeries out of
cross-combinations of signatures.
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4.6.1 The Transformation

Let S be any signature scheme and let M(k) denote the message space
and |M(k)| its size corresponding to k. Moreover we assume that M(k) =
{0,1}**)| where t(k) is some non-constant polynomial in k. Let M(k) de-
note a subset of M(k) that consists of a negligible® large fraction p(k) of
M(k). For instance, M(k) could consist of all bit-strings of length ¢, with
the last /2 bits set to zero. Using S as a building block, a new scheme S
is constructed as follows:

Initialisation
Let the security parameter k be given. To generate an instance of
S, the signer runs G twice, yielding two key-pairs (pky,sk1) and
(pks, sk2). The public-key pk for the instance of § will be (pk1, pka),
and the secret key sk will be (sk;, ska).

Signing
Let m € M(k) be the message to be signed. The signer chooses a
random pair (my,mz), with my,mg € M(k), such that my @mz =m,
and computes o;(m;) for i = 1,2, where o;(m;) denotes a signature
in §, with respect to the key-pair (pk;, sk:). The signature, 7(m), in
S is (m1,ma,01(m1), 02(m2)).

Verification o
To verify a signature a(m) on m € M(k) with respect to pk, the

receiver checks whether m; @ ms z mn, and whether a;(m;) is a valid
signature in S with respect to pk; for i =1, 2.

It is now shown that if S is secure against a known message attack, then
S is secure against a chosen message attack.

We first need a lemma which says that it is very unlikely that oy (m;)
and o2(m}) corresponding to signatures on two different messages, m, m' €
M(k), can be combined to a valid signature in S.

Consider the following game involving two players A and B. Player B
submits any member m! € M(k) to A, and A returns a random pair
(ml,m}), with m},m} € M(k), such that m} @m} = m'. They repeat this
procedure, say, r times. This results in a sequence

(ml ) m% ’ mé), ooy (M7, mY,my),
such that m"{ Gam'; =m? for j =1...r. B is allowed to choose the values of
m’ adaptively. B wins if he can find a pair (m}, m}) such that m{ ®&mj €
M(k) and v #vand 1 <u,v <.

3A non-negative function f : IN — IR is negligible iff Yc > 03no € NVn € IN:

n>ng = f(n) <n™°
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LEMMA 4.1 In the game described above, B’s probebility of winning the
game is at most r(r — 1)p(k).

PROOF. Define for 1 < u,v < r and u # v, the stochastic variable X , =
m¥ ® m}. The probability that X, , € M(k) is clearly fully determined by
A’s uniform coin flips, and therefore equal to p(k). As there are r{r — 1)
pairs (u,v), B will win with probability at most 7(r — 1)p(k). O

Now consider the signature scheme S described above. Let A be any proba-
bilistic polynomial time algorithm that executes an adaptively chosen mes-
sage attack on §, and let A’s signature requests be on messages

mt, ..., m"¥) ¢ M(k),

with 7(k) polynomially bounded. The signer then returns

(o1(mi), o2(md)), -, (91 (X)), o2 (mz ™),
as required.

PROPOSITION 4.2 If the signature scheme S is not existentially forgeable
under known message attacks, the attacker A has only negligible probability
of outputting a signature 6(m) in S, where m # m! for j = 1,...,7(k),
and &(1h) is a valid signature with respect to pk;, with i =1 ori = 2.

Proor. We use standard simulation techniques. Suppose .A’s probability
of success is non-negligible (in k). Let a signer A in S, with public key pk,
be given. We will use the attacker A to conduct a successful known message
attack on signer A, thus contradicting the assumption on §.

Generate an instance (pk',sk’) in S. Choose ¢ at random in {1,2}, and
put pk = pk; and pk’ = pks_;. Now present the resulting key (pki, pks) for
S to the attacker. The signer 4 with public key pk;, used as a subroutine in
the simulation, will output signatures on randomly chosen messages. More
specifically, the simulation works as follows.

1. Receive message m € M(k) from the attacker.

2. Receive a signature o;(m;) from A4, where A chooses m; € M(k)
uniformly at random and ¢ is as defined earlier.

3. Compute m3_; = m; @ m and o3-;(m3_;). Forward &(m) to the
attacker.

As the attacker cannot distinguish this simulation from a true signer in 5,
the probability that (i) is a forgery of A’s signature is half A’s success
probability. This is still non-negligible. m]

THEOREM 4.3 Let S be any signature scheme that is not ezistentially forge-
able under known message attacks. Then the signature scheme S is not
ezistentially forgeable under adaptively chosen message attacks.
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PROOF. Let m € M(k) and let G() = (m1,ma,01(m1),02(m2)) be a
forgery in S on a new message, obtained after an adaptively chosen message
attack. By Proposition 4.2, except with negligible probability o1(m1) =
o1(m¥), and o3(ma) = oa(m3), for some u,v with 1 < w,v < r(k) and
u # v (notation as in Proposition 4.2). So we must have that m} @m3 = m.
However, by Lemma 4.1, this has only negligible probability. O

4.6.2 Minimality of the Construction

Naor [92] gave a counterexample in case one chooses (pki, sky) = (pko, skz)
in the transformation. This proves that our construction is minimal in
some sense. For the history dependent case (where each new signature has
a dependence on previous executions), taking the GMR-scheme [70] and
Section 4.4 and applying the proposed transformation, leads to an insecure
scheme.

Let f, be a pseudo-random function [12] with seed s, and let S denote the
signature scheme we start from. Suppose S signs messages of size k bits.
Let sk be the private input to the signer in S. First we make S into a new
signature scheme S’ that is also “not existentially forgeable under random
message attacks”, as follows.

The private input to the signer in S’ is sk, s. Given a k-bit message m, let
m' denote m without its least significant bit mg. In S', the signer now sends
S(m), fo(m')® (sk-my). If this scheme $’ is taken as input to the proposed
transformation, the attacker just asks for a signature on the message 0...01.
From the resulting signature, the attacker is able to compute the private
input sk.

4.7 Secure and Practical RSA-based Signatures

For most digital signature schemes used in practice, such as ISO9796/RSA
or DSA, it has only been shown that certain plausible cryptographic as-
sumptions, such as the difficulty of factoring integers, computing discrete
logarithms or the collision-intractability of certain hash-functions are nec-
essary for the security of the scheme, while their sufficiency is, strictly
speaking, an open question.

A clear advantage of such schemes over many signature schemes with se-
curity proven relative to such common cryptographic assumptions, is their
efficiency: as a result of their relatively weak requirements regarding com-
putation, bandwidth and storage, these schemes have so far beaten proven
secure schemes in practice.

Qur aim is to contribute to the bridging of the gap that seems to exist
between the theory and practice of digital signature schemes. We present
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a digital signature that offers both proven security and practical value.

More precisely, under an appropriate assumption about RSA, the scheme
is proven to be not existentially forgeable under adaptively chosen mes-
sage attacks. We also identify some applications where our scheme can be
conveniently implemented using dedicated smartcards that are available
today.

Our exposition is organized as follows. In Section 4.7.1, we outline the
technical ideas behind our design. The formal presentation of the scheme
can be found in Section 4.7.2. The latter section left open the choice of
some parameters. This is resolved in Section 4.7.3, which is followed by a
discussion of the performance of our scheme in Section 4.7.4. The proof of
security is given in Section 4.7.5. In Section 4.7.6, we give optimizations of
the proposed scheme that cut the storage requirements even further.

4.7.1 Basic Ideas

Conceptually, our signature scheme may be viewed as a cross between [70]
and [57], together with modifications enabling their synthesis. These modi-
fications are facilitated by our signature protocols RSA* from Section 2.5.2.
Recall that these these provide an important example of a special one-way
group isomorphism. Let [ and d be integers. In [57], all players in the signa-
ture scheme must have access to two lists. The first list contains ! primes.
Depending on the particular RSA-assumption one wishes to make, these
could be, for instance, the first ! odd primes, or / random primes. The sec-
ond list consists of / random k-bit strings. Here, k is a security parameter
and ! is an integer with ! > k. Our first objective is to remove the necessity
of the list of random numbers.

In [57], the system constants are as follows. Let L denote the list of primes
{Po,...,p1-1}, L' the list of I random I-bit strings {zg,...,z/_1} and let a
denote a random I-bit string, to be used as the root of all authentication
trees. Let a signer be given an RSA-modulus n together with its factoriza-
tion. The public key consists of n and ypoot. The latter is to be the root
of an l-ary authentication tree of depth d. The factorization of n is private
input for the signer.

The “basic authentication step” in [57] is
-1 ;
y — (a- Hz’f")"_i mod n
i=0
where a is an already authenticated value, 8 = By|- - -|B;-1 is an I-bit string

to be authenticated, and p; is a prime from the list L that has not been
used before in connection with a. Instead, our basic authentication step is

y— (- hﬁ)"_‘f mod n,
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where h is a member of Z;, and part of the signer’s public key. Furthermore,
e; is the smallest integer such that v; = p;j > n. Here the values that can
be authenticated are elements of Z;. This removes the list L' and the
condition that ! > k. However, implementing this idea only results in a
scheme that we can prove secure against random message attacks. Such a
scheme can be efficiently transformed to a scheme that is secure against
active attacks, as is desired here, by means of a technique described in
[44]. The loss of efficiency is a factor of two (twice as much computation,
signature size twice as large). But we can do better in this case, if we add
one prime ¢ with a special purpose to the list: it is only used when a message
m, agreed upon between the signer and a receiver, is to be authenticated,
as follows
z+— (a- hm)iT mod n,

where a is a “freshly” generated leaf in the authentication tree and e is
the smallest integer such that w = ¢° > n. This relates to the idea [70]
of applying sufficiently independent functions to the actual signing process
and the construction of an authentication tree, respectively.

To minimize the storage needed for the list of primes, we can take L to
consist of I consecutive primes. Then, only the first prime and all consecu-
tive differences are stored. In Section 4.7.6, two other techniques are given
for further improvements of the efficiency of the scheme.

4.7.2 Description of the Scheme

In a preprocessing-phase, a security parameter k is determined, as well
as integers | and d. Next, a list L consisting of I 4+ 1 distinct primes is
generated by invoking an algorithm H(1*,1!), say L = {q,po,...,pt-1}.
Ways of choosing H are discussed in the next section.

Furthermore, we assume that we are given a probabilistic polynomial time
generator G that, on input 1%, outputs a triple (n,r,s), where r and s are
primes and » = r- s is a k bits integer. It is assumed that G is defined such
that it is infeasible to factor n, when only n as generated by G is given as
input. Finally, we must have that g and the p; are co-prime to ¢(n). Given
n and L, define e as the smallest integer such that ¢ > n and e; as the
smallest integer such that p{* > n for ¢ = 0...1 — 1. In the following, w

denotes ¢°¢ and v; denotes p¢*, fori =0...1—1.

We start with an informal overview of the scheme. The signer has as public
key an RSA-modulus n, h € Z;, and zo € Z;,. Here, n is generated by
G(1*) and h and =z are chosen at random from Z] by the signer. In a
possible variation of the scheme, zo and h are chosen mutually at random
and are the same for all signers. In any case, h and o must be chosen at
random to avoid weak keys.
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As always, his knowledge of the factorization (r, s) of n enables the signer
to compute X% mod n for any X € Z, and any integer w such that
ged(wu, (r — 1)(s — 1)) = 1. The public key consists of the triple (n, k, zg).
The factorization of n is private input to the signer.

The algorithm DFS, which is used in the formal description of our scheme,
gradually develops a full l-ary tree of depth d by selecting the nodes at
random from Z}. The tree is constructed in depth-first fashion. Although
not explicitly given as input to DFS, it is assumed that it has access to [,
d, o and n. The value zy serves as the root of the tree. The i-th time DFS
is invoked, denoted DFS(¢) (i = 1...19), it creates a path to a new leaf z4
and outputs this path, say, 1, ..., 24 (the root zy being understood). This
sequence is ordered such that z;_; is the parent of z; (j =1...d).

Furthermore, for each node z; in this sequence, DFS(i) also outputs an
indicator #; (f = 1...d) in such a way that i; is assigned to z; if and
only if z; is the i;-th child of z;_;. The amount of storage needed for this
procedure (apart from !, d, z9 and n) does not exceed the amount of storage
needed for d — 1 pairs consisting of a node and an indicator.

By invoking DFS, the signer gradually constructs, in a depth first fashion,
an l-ary authentication tree with depth d: each time a new signature is
required he constructs a path to a new leaf. All nodes = are members of
Z}, given by their smallest non-negative representative modulo n. The
message space is equal to the set {0,1}*, which we will also identify with
the set of non-negative integers smaller than 2*.

In Figure 4.3, the signer is making his i-th signature, on a message m € Z,,.
S0, in particular x4 is the ¢-th leaf he reaches. The part of the tree on
the right side of the path zg,...,z4_1,Zq is not yet constructed. Since x;
happens to be the ¢;-st child of z¢, the signer authenticates =; with respect

sales
to the prime p;, by computing y; < (zg-h*')*1 mod n. Similar rules apply
to the authentication of the remaining nodes in this path. In particular, it
so happens to be in our example that z4 is the ig-th child of z4—;. Thus

x4 is authenticated by computing yg4 « (z4_; - h”"):‘l: mod n. Finally, the
message m is signed by computing z « (z4- h™)% mod n. Notice that the
prime g is only used when the “actual signature” is computed, while the
other primes in the list L are used exclusively in the process of constructing
the authentication tree. The signature on m consists of the y; and indicators
t5, ( =1...d) and z.

Concerning the storage needed for the signer, notice that the part of the
tree left from the path (zg,...,Z4_1,%4) can be deleted. Actually, x4 itself
can also be removed. In order to carry on with the depth-first construction
of the tree, it is sufficient to store zg,...,z4_; and the indicators to their
parents. This storage amounts to at most (d — 1)(k + log!) bits (the root
xg is part of the public key).
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A receiver of this signature gets only the message m, authentication values
Y;, the indicators i; ( = 1...d) and z. So, what about the nodes? These
are re-computed as follows. On input of the public key, the list L, m and
z he recomputes z4 as x4 — z¥ - h~™ mod n. Recursively, the receiver re-
computes z;_; from z;, y; and i; in a similar fashion (j = d...1). The
last node zy he thus computes should be equal to the actual zo, which
is part of the public key. If so, the signature is accepted. We point out
that in many tree-structured signature schemes, it is sufficient to send the
authentication values and have the verifier re-compute the nodes, instead
of defining these as part of the signature. It is easily seen why this does not
affect the security at all: briefly, if the verifications in the “reduced” scheme
hold, one gets a signature in the original scheme (on the same message, of
course) by simply incorporating the re-computed nodes. More formally, the
description of the new signature scheme is as follows.

Preprocessing:
A security parameter k, integers [ and d are determined. Next, the sys-
tem constant L = {q, po,...,pi—1} consisting of I + 1 distinct primes

is generated by invoking H(1*,1'). Define e as the smallest integer
such that w = ¢° > n, and e; as the smallest integer such that
v; = pf* > n, for i = 0...1 — 1. For possible choices of H, see Sec-
tions 4.7.3 and 4.7.6.

Initialization:
The signer runs G(1¥) and obtains a triple (n,r,s) such that ¢ and
the p; are co-prime to ¢(n). Next, he chooses h and zp at random in
Z>. His public key pk is now the pair (n, h,zp), while his secret key
sk consists of the pair (r, s).

Signing:
Let m be a k bit message. The i-th signature, where 1 < i < 19, is
computed as follows. First, the signer runs the algorithm DFS to get
(z1,%1,...,%d,1q) < DFS(:). Next, he computes (for j = 1...d) y; «
-

(zj—1 - h%3)" mod n. Finally, he computes z « (zq - A™)% mod n.
The signature o on m consists of the values z,y1,%1,...,¥d, td.

Verification: Verification is done as follows. The receiver of a signature
puts
g = (Z, Yl,il e ,Yd,id),

and, on input of pk = (n,h,zo), m and o, he computes X4 «— Z% -

h~™ mod n. Finally, he computes X;_; + Y;i"' ~h % modn (j =
d...1). If Xy =z mod n, the signature is accepted.

REMARK 4.4 For a more convenient exposition of the scheme, we have cho-
sen to let the signer only use the leaves for signing. However, the scheme is
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FIGURE 4.3. Secure and Practical RSA Signature

easily adapted so as to allow for a more extensive use of the authentication
tree. In this modified scheme, each freshly constructed node can immedi-
ately be used for making a signature. The proof of security is easily adapted
to fit with this modification.

4.7.83 Generating the List of Primes L

In order to minimize the storage needed for the system constants (L, k, !
and d), it is convenient to set L to any [ + 1 consecutive primes greater
than 2. In this case, only the first prime, the differences between consecutive
primes and the exponents e and e; are stored. As an example, one could
take L to consist of the first I+ 1 (odd) primes.

It must be emphasized, however, that the correctness of the scheme is
independent of the particular ways of generating L. Also, the proof of
security is not affected by such choices. What is dependent on the choice
of L, is the particular assumption we have to make about RSA-inversion.
See Section 4.7.5.

4.7.4 Performance of the Scheme

A signer can make at least [? signatures (see also Remark 4.4) such that the
size of each signature does not exceed (d + 1)k bits (neglecting the dlog!
bits needed to indicate the path). A public key has size 3k bits.
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Concerning the amount of computation needed, signing requires two full
RSA-exponentiations and one modular multiplication on-line. A path to
the current leaf can be authenticated by pre-processing, using 2d full-RSA
exponentiations and d modular multiplications. A receiver of a signature
will have to perform 2(d + 1) full RSA-exponentiations and d + 1 modular
multiplications.

For the gradual depth-first construction of the authentication tree, the
signer stores at most (d — 1)(k + log!) bits at any time. Secure storage
in the strongest sense (storage not accessible or alterable by “the outside
world”) is only needed for the secret key (k bits) and the relevant nodes of
the latest path in the tree, which is at most (d — 1)k bits. The public list
L only has to be securely stored in a weaker sense: the signer must have
certainty that L is authentic.

Please note, however, that by storing the last signature up to the leaf,
including all preceding authentication values, the generation of the next
signature will cost just on-line RSA-operation in general (observe that this
applies to each ! consecutive signatures that having the same authentication
path). Thus, if [ is large, storage/computation trade-offs of this kind may
reduce the required computation for the signer to virtually only one RSA-
computation.

4.7.5 Proof of Security

The proof of security works for any choice of the list L. However, the par-
ticular assumption we make about the difficulty of RSA-inversion depends
on this very choice in the following way. We require the following of the
algorithm H.

ASSUMPTION 4.1 Let k be a security parameter and let | be of polynomial
size in k. Let L be generated by H(1%,1') and let n be an RSA-modulus as
generated by G(1%) and let « be a random member of Z,,. Then there is no
probabilistic polynomial time algorithm that has non-negligible probability
of computing £= mod n with o« € L, on input L, n and z.

Under this assumption, we can prove that the signature scheme is not
existentially forgeable under adaptively chosen message attacks.

THEOREM 4.4 Under Assumption 4.1, the signature scheme presented in
Section 4.7.2 is not existentially forgeable under adaptively chosen message
attacks.

PROOF. We are given integers ! and d, a list L = {g,po,...,p1—1} con-
sisting of I + 1 distinct primes and an RSA-modulus n. Let w and v; be
defined as in Section 4.7.2, for i = 0...l—1. We assume that n is generated
according to G(1%), but we are not given the factorization. Also, we assume



4.7. Secure and Practical RSA-based Signatures 161

that ¢ and the p; are co-prime to ¢(n) and that L is generated according to
H(1*,1"). The proof is by contradiction. We show that existence of a suc-
cessful attacker implies that we can compute X ¢ mod n, given a random
a € L, and a random X € Z,. Which contradicts Assumption 4.1.

Let a € L. First, we show that we can set up a “simulated” signer, who
as input h € Z,, and h* mod n for all g8 in L different from a, but is
yet indistinguishable from a signer who proceeds as in Section 4.7.2 after
he is given h, n and its factorization. To this end, we consider two cases
separately and focus mainly on the differences with Section 4.7.2. Finally,
we run the attacker against this simulated signer and obtain the desired
contradiction.

Technically, the simulation runs as follows. In case o« = w, the root zg
is computed as zg «— a,° "'~ mod n, for randomly chosen ay from Z2.
The value ag is stored. All nodes z, excluding the leaves, are computed as
z + a"""-1 mod n, where ¢ is chosen at random from Z}. The value a
is stored. If any z is the f-th child of his parent z, = a.° ™! mod =, the

authentication value y is computed as y « @,° "/~ "V (hef )* mod
n. After the i-th signature on a message m, the i-th leaf z is computed
as ¢ « a" - h™™ mod n where a is chosen at random from Z),. Next,
the simulated signer reveals the path to the i-th leaf, together with all
authentication values, and the authentication value z = a of the message
m.

In case o # w, say, a = v;, the authentication tree has to be constructed
from the bottom up. We first show how this is done for d = 1. We select
the j-th child at z at random from Z;,. The parent z. is then computed
as T, « b"""™-1h~% mod n, where b is chosen at random from Z. The
value b is stored. The authentication value y of z is computed as y «—
bvo¥i-1%i+1¥i-1 mod n. Finally, the remaining ! — 1 children of z, are se-
lected at random from Z7,. Let 2’ be the f-th child (f # 7). Then its authen-

tication value y' is computed as y' « Yo "Vr/-1vs+1+ %11 .(h;l?)z’_z mod n.
When we have constructed ! — 1 other such trees with d = 1, the same
procedure can be used to combine them into a tree with d = 2, by letting
the roots play the role of the leaves as above. By induction, we can build
an l-ary tree of any depth d.

One choice has been left open in the present case. The leaves z of the
target tree of depth d must be chosen as z « b* mod n, for random b
in Z},. With the i-th signature request, the simulated signer can reveal
the path to the i-th leaf, together with all authentication values, and the
authentication value z « b- (k%)™ mod n.

It is clear that in both cases each node in the tree has a uniform dis-
tribution and is independent of anything else. All other values follow de-
terministically. Thus this simulation cannot be distinguished from the real
signer.
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In the next step of our proof, we run the attacker against the simulated
signer and show that we can compute X% mod n, for random € L, and a
random X € Z7,. Here, we have essentially the same success-probability as
the attacker. Recall that n and L were generated by G and H respectively.

We proceed as follows. We choose a random o € L, a random X € Z;

and a random p from Z},. Put h « XHBELHﬂ}ﬁ . ,()I-L'-’EL‘G mod n. Next we
feed L, n, h, and h# mod n for all B in L different from « to the simulated
signer and run the simulation (note that k is also distributed as in “real
life”) Next, we run the attacker against this simulator. Assume that after
!4 calls to the simulated signer, the attacker outputs a forgery:

"ﬁ:g:x():il:il:gh . '15:111?:&:?&-

This is a signature® on a message 7 that has not been signed by the
simulator in the course of the attack. Now, let T denote the full-tree of
depth d and branching ! that the simulated signer has output in the course
of the attack. Define j to be the largest integer such that g, #1,%1,...,%;,%;
is a path in 7.

If j = d, then %4 is a leaf. So, there exists a signature

m,2,T1,81,Y1,---,Tdy2dy Ydy

output by the simulated signer, such that €4 = zq4. By the assumption on
11, we have 7 # m. So, we have

(Ya - yﬁi_l)“’ =A™ ™ mod n

Assume without loss of generality that m > /. Now, since the parameters
are chosen such that any message is numerically less than w = ¢, we can
extract /% mod n from this information as follows: Put m —m = a - ¢%,
where (2,q) =1 and 0 < b < e — 1. Let integers f, be such that a - f =
1+i-g°% Then h1/7 = (y:; ga T f‘l,"‘.)q'g_&_1

If, on the other hand, j < d, then &; is a node in T at depth j and Z;4;
is not a child of #; in T. Let z;1 denote the ¢;4;-th child of Z; in T'. Then
clearly, by assumption on j, j4+1 # £j+1. Thus,

(yi41 3}3_...11 )¥i+1 = hFi+1 7%+ mod n,
” B _1_
with ;41 —#;4+1 # 0 mod v;,,, . From this value, 2™+1 mod n is extracted

as above in the case j = d. We conclude that the forgery allows us to
compute h=* mod n for some a € L. By the construction of k, it follows, by

“In the verification, the receiver of the signature checks if the signature consists
of d nodes. We can remove this “length-check”-condition at the expense of a
slightly more technical proof than presented here.
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the same calculations as above, that we can efficiently derive X 3 mod n
from this value.

From the perfectness of the simulation the probability that o = 3 is
1/(1 + 1). Thus, if the attacker has non-negligible success- probability, then
we can extract random a-th roots also with non-negligible probability, for
aclL. m]

Note that if a signer deviating from the signer’s algorithm, should deliber-
ately compute two messages that have the same signature, a receiver can
easily compute a multiple of the order of h, which may allow that receiver
to forge or even factor the signer’s modulus.

In the Section 4.7.3 we have suggested to make a particular choice that
minimizes the storage of L, namely of having L consist of  + 1 consecutive
primes. Furthermore, for reasons of simplicity, we have suggested that these
are the first  + 1 primes of size k + 1 bits.

4.7.6 Optimizations

In this section, we describe a number of provably secure methods for de-
creasing the required size of the exponents in the list L (See also Sec-
tion 4.7.1).

Using Multiple Values of h

In this variation, the signer generates two values h as described in Sec-
tion 4.7.2, hy and hy. Let 8 be some k bits string that has to be authenti-
cated. The signer splits 3 into two blocks 8; and B of size k/2 bits each
and computes the authentication value for 8 as follows.

y — (a- h’f‘hgz)é mod n,

for some appropriate exponent p and node . This cuts the required size of
the exponents by a factor of two, The expenses are an increase of the size
of the public key by k bits. As noted before, the value of & may be chosen
mutually at random between the signers. This also holds for this method,
and as such it would mean an increase of k bits of the system constant.
This method preserves the security properties of the scheme, and can be
used in conjunction with the other methods presented.

Using a Hash-Function

Let H be a collision-resistant hash-function that maps arbitrary sized input
strings to strings of size k, << k. All values that need to be authenticated
in the signature scheme (nodes in the tree and the messages), are to be
hashed down to k. bits first. Also, the root of the authentication tree as
part of the public key, can be replaced by a hash of that root.
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The effect is that the required size of the exponents is now k, bits instead
of k bits. The security statement now also requires that H is collision-
resistant. This method can be used in conjunction with any of the other

methods presented here.
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Van oudsher hield de cryptologie zich voornamelijk bezig met het ontwik-
kelen van “geheimschriften” (cryptografie) en het bestuderen van de be-
trouwbaarheid daarvan (cryptanalyse). Na WO II, vooral onder invloed
van Claude Shannon’s informatie theorie [109, 110], is de cryptologie een
op mathematische leest geschoeide wetenschap geworden. Een tweede grote
doorbraak vond plaats in 1976 met de publicatie [56] van het artikel New
Directions in Cryptography door Whitfield Diffie en Martin Hellman. Zij
formuleerden het idee van public key cryptografie. Indachtig aan de pu-
blic key cryptografie zoals die zich nadien heeft ontwikkeld, heeft Oded
Goldreich [75] het vakgebied als volgt omschreven:

“Cryptografie kan men beschouwen als de wetenschap die zich bezighoudt
met het beperken van de effecten die teweeg gebracht kunnen worden door
oneerlijke dan wel zich misdragende partijen”.

Indien er bij de lezer zich een vergelijking met de rechtspraktijk opdringt,
wijs ik er op dat de cryptografie beoogt het succesvel ontplooien van zulke
bezigheden op voorhand onmogelijk dan wel ondoenlijk te maken.

Strikt genomen hebben de begrippen “cryptografie”, “cryptanalyse” en
“cryptologie” nog steeds betrekking op repectievelijk ontwerp, studie van
veiligheid en de combinatie daarvan (zij het nu in een veel bredere con-
text), maar voor het gemak zal ik hier “cryptografie” als de verzamelnaam
nemen. Belangerijke begrippen in de cryptografie zijn authenticiteit en ge-
heimhouding van informatie. Het laatste begrip heeft hier een zeer ruime
betekenis: gegevens van welke inhoudelijke aard dan ook, zoals die over een
computer-netwerk verzonden en ontvangen kunnen worden, worden als “in-
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formatie” aangemerkt. In deze beschouwing wordt een computer-netwerk
opgevat als een collectie van computers of “processoren” die afzonderlijk
kunnen functioneren. Communicatie, dat wil zeggen, uitwisseling van infor-
matie, wordt mogelijk gemaakt door een netwerk van verbindingen tussen
deze processoren.

Laten we aannemen dat dit netwerk volledig is, dat wil zeggen, tussen elk
tweetal processoren bestaat er een verbinding. Stel dat een zekere proces-
sor A een “bericht” m ontvangt, dat wil zeggen, een pakketje informatie
gezonden over de verbinding tussen processor A en een andere processor
B. Processor A beschouwt m als authentiek, indien A met zekerheid kan
vaststellen dat m inderdaad van B afkomstig is. Indien de verbindigen
tussen processoren op generlei wijze beveiligd zijn, is het onjuist om au-
thenticiteit vast te stellen op grond van de “fysieke” oorsprong van het
bericht: de verbinding tussen A en B. Immers, het bericht zou ook afkom-
stig kunnen zijn van een mogelijk kwaadwillende partij C die zich toegang
heeft verschaft tot de onbeveiligde verbinding tussen A en B, en een be-
richt aldaar heeft ingevoerd en verzonden, als ware dit afkomstig van B.
Laten we nu aannemen, afgezien van de vraag of A de authenticiteit van
m heeft vastgesteld, dat B het bericht inderdaad heeft verzonden, en wel
als “klare tekst”. Dan mogen we aannemen dat partij C het bericht had
kunnen afluisteren. Van geheimhouding van m, dat wil zeggen, de inhoud
van het bericht is slechts bekend aan zender en ontvanger, kan dan a priori
geen sprake zijn.

De public key cryptografie, waarvan de principes in 1976 door Diffie en Hell-
man zijn geformuleerd, biedt een elegante wiskundige oplossing voor het
authenticiteits- en het geheimhoudings-probleem. Voordien waren er reeds
wiskundige methoden om authenticiteit en geheimhouding te waarborgen,
in feite gebaseerd op bilaterale “geheime afspraken” tussen elk tweetal par-
tijen die onderlinge veilige communicatie nodig achten. Deze zal ik eerst
gedeeltelijk toelichten.

Een in de praktijk nog steeds gebruikt voorbeeld van een dergelijke “ver-
cijferingsmethode” die geheime communicatie mogelijk maakt, is de Data
Encryption Standard (kortweg DES), die in het begin van de jaren ze-
ventig door IBM is ontwikkeld. Het bestaat uit een publiekelijk bekend
vercijferings- en ontcijferings-algoritme (een algoritme is een berekenings-
voorschrift). Elk tweetal partijen in het netwerk kiest samen een random
(willekeurige) geheime sleutel. Hiertoe dienen zij, voor de duur van de
totstandkoming van deze geheime, gedeelde sleutels, over een veilig ka-
naal te beschikken, bijvoorbeeld door gebruik te maken van een betrouw-
bare koerier, verzegelde enveloppen of anderzijds fysiek beveiligde kanalen.
Deze geheime sleutel stelt een dusdanig grote hoeveelheid random informa-
tie voor, dat het juist gokken ervan door een derde partij praktisch gezien
geen kans van slagen heeft. Door de grootte van de sleutel is het tevens
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praktisch beschouwd onmogelijk dat dezelfde sleutel gekozen zal worden
door meer dan een tweetal partijen. Een partij A versleutelt een klare tekst
bericht m bestemd voor B door de functie DES te berekenen op m en hun
gedeelde geheime sleutel k(A, B). De vercijfering ¢ ontvangen hebbende,
roept B de functie DES aan, met als invoer k(A, B) en ¢, om de klare
tekst m te verkrijgen. De veilige werking ervan berust op de grootte van
de sleutels en op het feit dat het DES-algoritme zo ontworpen is dat, hoe-
wel vercijfering en ontcijfering gegeven de sleutel snel uitgevoerd kunnen
worden, het “kraken” van vercijferingen zonder wetenschap van de geheime
sleutel waarmee de onderliggende klare tekst is versleuteld, praktisch ge-
zien ondoenlijk is. Op DES en andere zogeheten common key cryptografi-
sche methoden kunnen ook messege authenticity codes gebaseerd worden
als oplossing van het authenticiteits-probleem.

De public key cryptografie van Diffie en Hellman vindt zijn oorsprong in hun
pogingen cryptografische systemen te ontwerpen die geheime afspraken tus-
sen elk tweetal partijen (zoals noodzakelijk in de common key cryptografie)
overbodig maken: niet alleen als een besparing op de benodigde hoeveel-
heid werk om het systeem op te zetten, maar vooral ook omdat de fase
waarin deze afspraken gemaakt worden grote veiligheidsrisico’s met zich
mee kan brengen. Immers, in die fase beschikken de partijen nog niet over
een betrouwbare cryptografische methode.

De sleutel tot de oplossing wordt gegeven door zogeheten trapdoor one-way
functies; deze functies zijn eenvoudig te evalueren voor elk argument uit hun
domein, maar het berekenen van de inverse van deze functies op een wil-
lekeurige waarde uit hun beeld is ondoenlijk, tenzij men de trapdoor kent,
dat wil zeggen, de geheime sleutel. Als er voldoende veel van zulke trap-
door one-way functies bestaan, zullen in de visie van Diffie en Hellman alle
partijen afzonderlijk een willekeurige functie met corresponderende trap-
door kiezen. Laten we zeggen dat partij A de functie f4 gekozen heeft met
sa als trapdoor. Dan plaatst A een beschrijving van f4, A’s public key,
in een publiekelijk toegankelijk bestand, dat op een betrouwbare manier
bijgehouden wordt. A bewaart s4 als geheime sleutel. Wanneer B een ge-
heim bericht m naar A wil verzenden, berekent B, na A’s public key in
het bestand opgezocht te hebben, de vercijfering c als fa(m), en verstuurt
het over de (onveilige) verbinding tussen A en B. De eigenschappen van de
gebruikte functies garanderen dan dat alleen A bericht ¢ kan ontcijferen,
en wel door m = f~1(c) te berekenen met gebruikmaking van de geheime
sleutel s 4. Tot zover het geheimhouding-probleem.

Een andere zeer belangrijke bijdrage van Diffie en Hellman is de digital
signature: de digitale equivalent van de handgeschreven handtekening. Een
handtekening moet aan twee eisen voldoen: de handtekening die een bericht
vergezeld, moet de authenticiteit van het bericht waarborgen, en verder
moet deze authenticiteit door elke partij te controleren zijn. Nu wordt aan
de laatste eis in alledaagse pen-en-papier praktijken, in de meest strikte
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zin beschouwd, niet immer voldaan. Digitale handtekeningen daarentegen,
voldoen aantoonbaar aan beide eigenschappen. Een digitale handtekening
systeem werkt eveneens volgens het public key principe. Laat f een functie
zijn waarvoor het ondoenlijk is om deze te evalueren op enig argument uit
zijn domein, tenzij men de beschikking heeft over een geheime trapdoor s.
Laat de handtekening op een bericht m de waarde o = f(s,m) zijn en laat
g een functie zijn die voor een gegeven o, m en f bepaalt of o inderdaad
het f-beeld van m is. Dan bestaat de verificatie van een handtekening
uit het toepassen van g op ¢, m en f. Gegeven een grote verzameling
van zulke functies f en g, kiest iedere partij A een willekeurig paar (f,g)
met bijhorende trapdoor s. De public key van A bestaat dan uit f en
g, terwijl de trapdoor s de geheime sleutel vormt. Tegenwoordig spelen
digitale handtekeningen een cruciale rol in de praktijk, met name in die
electronische informatie systemen waar integriteit van informatie van groot
belang is.

Nadat Ron Rivest, Adi Shamir en Leonard Adleman [100] een realisatie van
trapdoor one-way functies hadden gegeven (de “RSA-functies”), gebaseerd
op de computationele moeilijkheid van het factorizeren van samengestelde
gehele getallen met alleen grote priemfactoren, heeft het cryptografische
onderzoek een enorme vlucht genomen. Zonder op deze plaats technische
details te vermelden, de crux van hun idee is dat het relatief eenvoudig is
om twee willekeurige, verschillende, priemgetallen van, zeg, ieder 100 cijfers
decimaal te selecteren en het product daarvan te berekenen, terwijl wanneer
men slechts dat product gegeven is, het ondoenlijk is om de priemfactoren te
berekenen. In de public key cryptografie wordt de graad van veiligheid van
een systeem ontleend aan de computationele moeilijkheid van getaltheoreti-
sche problemen zoals factorizatie en discrete logaritmen, of het bestaan van
functies met voor de cryptografie relevant eigenschappen. Een veiligheids-
analyse dient aan te tonen dat indien een cryptografisch systeem effectief
gekraakt zou worden, men tevens een effectieve methode in handen zou
hebben om die zeer moeilijke getaltheoretische problemen op te lossen. De
huidige stand van zaken is dat indien men de probleem instanties groot ge-
noeg kiest (als voorbeeld, het factorizeren van willekeurige samengestelde
getallen van, zeg, meer dan 200 decimale cijfers is tot op heden ondoenlijk),
elk bestaand wiskundig algoritme buitensporig veel tijd vergt om deze op
te lossen. Sterker nog, het lijkt erop dat deze problemen intrinsiek moeilijk
zijn.

Naast het onderzoek naar public key encryptie/decryptie en public key di-
gital signatures, waarvoor in de jaren tachtig de theoretische fundamenten
zijn gelegd, ontwikkelde de (theoretische) cryptografie zich in de breedte
met het onderzoek naar diverse klassen one-way functies, (functies die ge-
makkelijk te berekenen zijn, maar ondoenlijk om te inverteren), pseudo-
randomness (functies waarvoor het ondoenlijk is de geproduceerde uitvoer
van een willekeurige uitvoer te onderscheiden, en dat terwijl de grootte van



Nederlandse Samenvatting 169

de invoer slechts een fractie van de grootte van de uitvoer betreft), ano-
nimiteit in electronische transactie systemen (bijvoorbeeld anonimiteit van
de betaler in een digitaal betalings systeem), en zo verder. Andere funda-
mentele onderzoeksgebieden binnen de cryptografie zijn secure multi-party
computations en zero knowledge protocollen.

Deze laatste twee begrippen zal ik nu nader toelichten, daar zij naast digi-
tal signatures een grote rol spelen in dit proefschrift. Losjes gezegd, in een
multi-party computation berekenen een aantal partijen samen een gegeven
functie (waarbij elk van de partijen z’n eigen invoer heeft) zodat de uit-
komst aan iedereen bekend geraakt en de berekingswijze bestand is tegen
deelnemende partijen die “vals spelen”, terwijl de afzonderlijke invoer van
elk van de partijen voor de andere partijen verborgen blijft. Een belangrijk
voorbeeld is de electronische verkiezing. In zo'n systeem kunnen, bijvoor-
beeld, alle daartoe gerechtigde Nederlanders bij de Tweede Kamerverkie-
zingen een electronisch “stembiljet” invullen en aan de autoriteiten sturen.
Maar dan wel op zo’'n manier dat individuele stemmen voor de autoritei-
ten verborgen blijven. Slechts de totale verkiezingsuitslag kan gepubliceerd
worden, en zelfs door iedereen op juistheid gecontroleerd worden. Eveneens
vanwege de gebruikte cryptografische methode, kan het vervalsen van de
verkiezings uitslag ondoenlijk dan wel onmogelijk gemaakt worden.

Een zere knowledge protocol is een interactief vraag-en-antwoord spel tus-
sen een “prover” (een partij die bewijst) en een “verifier” (een partij die
verifieert). De prover beweert dat een zekere wiskundige stelling geldig is,
maar wenst het bewijs van die stelling niet aan de verifier te tonen, wellicht
omdat de prover bevreesd is dat de verifier met de eer gaat strijken. In jeder
geval wil de prover de verifier ervan overtuigen dat de stelling klopt. Maar
dan wel op zo’n manier dat de verifier daaruit geen informatie verkrijgt
zodat die op zijn beurt een derde nu eveneens van de waarachtigheid van
de stelling kan overtuigen. En natuurlijk wil de verifier niet overtuigd ge-
raken van een stelling die onjuist is. Zero knowledge protocollen bieden de
mogelijkheid om een skeptische verifier te overtuigen, zonder dat deze enige
informatie over het bewijs verkrijgt. Deze zero knowledge protocollen spelen
een een belangrijke rol in complexe cryptografische systemen, met name op
plaatsen waar een bepaalde partij een andere partij ervan moet overtuigen
dat, bijvoorbeeld, een zekere gegeven waarde op een van tevoren afgeproken
manier is berekend, zonder de precieze waarden die ten grondslag hebben
gelegen aan de berekening prijs te geven. Anderzijds, vindt zero knowledge,
naast het daaraan gerelateerde witness hiding, een directe praktische toe-
passing in toegangscontrole van, bijvoorbeeld, computernetwerken (merk
op dat een aanpak simpelweg gebaseerd op passwords geen hout snijdt
wanneer de toegangscontrole over een onveilige lijn tot stand moet komen,
en dat dan in ieder geval de te volgen procedure interactief dient te zijn
om de mogelijkheid van replay-attacks uit te schakelen).

Dit proefschrift poogt de theoretische cryptografie en de cryptografische
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praktijk dichter bij elkaar te brengen. In de theorie worden zeer elegante op-
lossingen gegeven voor bovenstaande fundamentele cryptografische vraag-
stellingen. Deze oplossingen hebben dan de eigenschap dat men de vei-
ligheid volgens een wiskunding bewijs kan herleiden tot de veiligheid van
onderliggende cryptografische primitieven zoals bepaalde typen one-way
functies of specifieke zeer ingewikkelde getaltheoretische problemen. Een
nadeel is echter dat de resulterende methoden vaak te veel werk (bereke-
ning, tijd, opslag of communicatie) vergen om praktisch te kunnen zijn.

Aan de andere kant, methoden die direct zijn toegesneden op de prak-
tijk (en dus “handzaam” zijn), missen meer dan eens duidelijkheid wat
betreft hun veiligheid: de wiskundige reducties die moeten aantonen dat
een gegeven praktisch systeem veilig is indien, bij voorbeeld, factorizeren of
het berekenen van discrete logaritmen inderdaad fundamenteel moeilijke
problemen zijn, blijft vaak achterwege, en wel omdat het in die gevallen
volstrekt onduidelijk ® is hoe zo’n reductie zou moeten verlopen.

Teneinde deze discrepantie in een aantal belangrijke gevallen te doen verwij-
nen, worden in Hoofdstuk 2 zogenaamde X-protocollen ingevoerd: Merlin-
Arthur “spelen” met drie zetten waarbij de verifier slechts random coinflips
(“toevalsgetallen”) geacht wordt te verzenden. Typisch cryptografische ei-
genschappen die hiervan geéist zullen worden zijn (een zekere vorm van)
zero knowledge en collision-intractability. Deze laatste eigenschap houdt
in dat het moeilijk moet zijn om voor zekere functies afgeleid van de Z-
protocollen (en onder zekere condities) twee verschillende invoer waarden
te berekenen die dezelfde beeld waarde hebben. E-protocollen zullen de
bouwstenen vormen voor de resultaten in de latere hoofdstukken, maar
niet voordat er een theorie over is ontwikkeld, die leert hoe men op prakti-
sche en betrouwbare wijze kan “stapelen” met de gegeven bouwstenen, en
hoe men deze abstracte bouwstenen praktisch kan realizeren.

Gebaseerd op E-protocollen, worden in Hoofdstuk 3 eerst partial proofs
(partiéle bewijzen) ingevoerd. Als voorbeeld, met een partieel bewijs kan
een prover een verifier ervan overtuigen dat van, zeg, 100 gegeven stellingen
er ten minste 50 waar zijn, zonder de verifier enige informatie te geven welke
50 waar zijn. Veel algemener gezegd, is het mogelijk om zero knowledge,
collision-intractable S-protocollen die betrekking hebben op één stelling
(willekeurig gekozen uit een zekere verzameling stellingen) over te voeren
in E-protocollen (met dezelfde cryptografische eigenschappen) die betrek-
king hebben op n willekeurige stellingen waarop een willekeurige monotone
conditie (dat wil zeggen, een voorschrift dat gegeven kan worden in termen
van logische AND- en OR-operatoren) is gelegd. Indien een familie van
zulke (polynomiaal begrensde) condities gegeven, kan de transformatie nog

SDat wil zeggen, in theoretische zin. Van veel praktische cryptografische syste-
men is het tevens sinds lange tijd volstrekt onduidelijk hoe men ze efficiént zou
moeten breken.
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steeds doorgang vinden, maar dan onder de aanname dat een zeker type ef-
ficiént secret sharing schema beschikbaar is. Indien de probleem-instanties
(de “stellingen”) waarop de Z-protocollen betrekking hebben, op de juiste
manier uit een collectie “zeer moeilijke problemen” gekozen worden, dan
is het resulterende scheme witness hiding: een malicieuze verifier kan de
bewijzen niet aan de prover onttrekken. Er is een subtiel verschil tussen
zero knowledge en witness hiding: in het laatste geval kan de verifier geen
informatie onttrekken die deze verifier zou helpen later zelf als de prover
op te treden, terwijl in het eerste geval de verifier helemaal geen informatie
leert (buiten de juistheid van de stelling). Echter, in menig cryptografisch
protocol volstaat witness hiding als garantie voor de veiligheid ervan. Te-
vens zijn witness hiding protocollen in het algemeen efficiénter dan zero
knowledge protocollen.

Deze partial proofs zullen daarna de basis vormen van zero knowledge proof
systeem voor het circuit satisfiability-probleem. Het resultaat bereikt de
laagste bekende communicatie-complexiteit voor dit probleem, namelijk
een lineair aantal bit commitments (een bit commitment wordt berekend
door een functie waarvan de beeld waarde (het commitment) het bijbe-
horende origineel verbergt, terwijl het ondoenlijk is om twee originelen
te vinden die door deze functie in hetzelfde beeld overgevoerd worden) als
functie van de grootte van het onderhavige circuit. Voorgaande oplossingen
vergden tenminste een logaritmische factor (in de grootte van het circuit)
meer aan communicatie. Aangezien circuit satisfiability een NP-compleet
probleem is (in een NP-probleem dient men voor een gegeven verzameling L
en een gegeven element z te beslissen of dat element in die verzameling zit,
terwijl gegeven is dat, indien = € L, er een kort bewijs daarvan bestaat ©),
levert deze methode een communicatie-efficiént (in termen van de grootte
van een circuit dat vervulbaar is precies wanneer een gegeven « in de gege-
ven NP-taal L zit) ) zero knowledge proof systeem voor alle “wiskundige”
stellingen die als een NP-bewering op te vatten zijn. Onder NP-beweringen
vallen bijvoorbeeld alle stellingen van het type “Laat y een gegeven waarde
zijn en f een efficiént berekenbare fuctie. Er bestaat een 2z zodanig dat
f(z) = y).” In complexe cryptografische systemen komt het vaak voor
dat een zero knowledge proof voor zo’n type stelling gegeven moet worden
(waarbij f dan een one-way functie voorstelt). In praktische situaties kan de
efficiénte methode die in dit proefschrift gepresenteerd wordt, aanzienlijke
besparingen op de benodigde hoeveelheid communicatie opleveren.

Verdere resultaten in Hoofstuk 3 betreffen efficiénte zero knowledge proofs
voor monotone afsluitingen van talen (verzamelingen bitstrings) die een
membership-proof (een bewijs dat een gegeven element in de verzameling
zit) van het type E-protocol toelaten. Steunend op sommige van de voor-

SAlleen de existentie is a priori gegeven, niet hoe men het bewijs zou moeten
construeren.
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gaande resultaten, wordt Hoofdstuk 3 afgerond met het presenteren van
een klasse digitale identificatie methoden die bestand zijn tegen zogeheten
adaptive impersonation attacks, de meest krachtig aanval die een malicieuze
partij zou kunnen uitvoeren op een identificatie methode (binnen het po-
lynomiale tijd berekenings model zoals dat in de public key cryptografie
wordt gehanteerd), en het tot op heden meest efficiénte electronische ver-
kiezingssysteem.

Hoofdstuk 4 gaat uitsluitend over digitale handtekeningen. L-protocollen
worden hier aangewend om digitale handtekeningen te ontwikkelen die be-
stand zijn tegen ezistential forgery under adaptively chosen message al-
tacks, het hoogste veiligheids niveau (wederom binnen het standaard po-
lynomiale tijd berekenings model) van digitale handtekeningen. Enerzijds
worden handtekeningen ontwikkeld die een zelfde communicatie complexi-
teit hebben als voorgaande methoden met relatief lage communicatie com-
plexiteit, maar dan onder zwakkere “intractability” hypothesen (aannamen
met betrekking tot de moeilijkheid van zekere computationele problemen).
Het proefschrift wordt afgesloten met een digitale handtekening systeem
gebaseerd op RSA. Nu waren er reeds zulke systemen, maar de bijzonder-
heid van dit schema is gelegen in het feit dat dit het eerste schema is dat
zowel bewezen veilig is (in de strikte zin van resistentie tegen adaptively
chosen message attacks, en onder aanname dat de RSA-functies veilig zijn)
en praktisch genoeg is om, bijvoorbeeld, op een smartcard (plastic kaart
met daarop een “intelligente” chip) uitgevoerd te kunnen worden.
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