Stellingen behorend bij het proefschrift Efficiénte Algoritmes
voor het Numeriek Oplossen van Differentiaalvergelijkingen

Jason Frank

1. Vanwege de conclusie van Hoffmann (Computing 41 (1989), 335-348) dat het
twee keer toepassen van het klassicke Gram-Schmidt (KGS) proces leidt tot een
verzameling van vektoren die orthogonaal zijn tot machinenauwkeurigheid, en
vanwege de conclusie van Hoofdstuk 3 van dit proefschrift dat het rekenwerk
voor het twee keer toepassen van KGS ruwweg hetzelfde is als het rekenwerk voor
Householder orthogonalisatie, en vanwege het feit dat de implementatie van het
Householder algoritme veel complexer is dan van KGS, moet men zich afvragen
of het niet tijd is voor Householder zich terug te trekken naar de leerboeken.

2. Gegeven zij een nxn beneden driehoeksmatrix X. Defineer J(X) als een n-vektor
waarvan het ide element gegeven wordt door de kolomindex van het meest-rechtse
niet-nul element in de ide rij van X. Dan geldt als M een nilpotente beneden
driehoeksmatrix is en N ook een beneden driehoeks matrix is, dat J(MN) <
J(M) en J(NM) < J(M), met elementsgewijze toepassing van <.

. Zij C een symmetrische positief semidefiniete matrix, en P = P? een projectie.
Dan geldt: indien PC symmetrisch is, dan is PC positief semidefiniet.

. Aangenomen dat samenwerken het doel is van het wetenschappelijk publiceren,
biedt het Internet een ideaal forum voor actuele ontwikkelingen. Het is te be-
treuren dat de “publish or perish” werkelijkheid van de meeste wetenschappelijke
betrekkingen het gebruik van het Internet voor dit doel ontmoedigt.

. De driehoekige vorm van het bibliotheek gebouw van de T.U. Delft is in conflict
met de menselijke vorm. Blijkbaar is dit een statement tegen de ergonomische
beweging in design; net zoals de treden van de trap die anderhalve stapgrootte
breed zijn, de acht voordeuren waarvan vier altijd op slot zijn, het tegelpad in
de omgeving waar men elke derde stap in een gat komt, en het onhandige kelder-
archief waar men een half uur moet wachten op een tijdschrift van vorig jaar
terwijl er boeken van vijftig jaar oud op de planken staan.

. Er zou geen leenstatus “Permanent niet beschikbaar” hoeven te zijn voor een
boek in de catalogus van de T.U. Delft bibliotheek.

10.

. De traditionele opzet van het telefoonnetwerk is gebaseerd op vaste verbindingen

tussen gebouwen, terwijl het eigenlijk gaat om communicatie tussen mensen. In
dit opzicht is de mobiele telefoon een veel natuurlijker idee. Men belt namelijk
niet om met een gebouw maar meestal om met een specifiek persoon te spreken.
Daarom gaat de vaste telefoon verdwijnen.

. Door naar Amazon.com te kijken, krijgt men een indruk van het enorme aantal

beschikbare (papieren) publicaties. Tel daarbij op de hoeveelheid papier die over
het gemiddelde bureau en door de brievenbus komt, dan is de 20e eeuw zeker
“de papieren ecuw” te noemen. Het is te hopen dat er in de huidige eeuw meer
gebruik wordt gemaakt van elektronische media.

. Het handmatige afdrukken van foto’s zal een verloren kunst worden in de 21e

eeuw. Ooit zal het mogelijk worden een ambachtsman in 20e eeuwse dracht in
een museum foto’s te zien ontwikkelen voor een “papieren krant”.

Er is een subtiel verschil tussen het ten onrechte vaak als equivalent beschouwde
Engelse ready en het Nederlandse klaar. Ready betekent eigenlijk klaar voor,
maar nooit klaar mee (= finished). Dit kan tot een grappige fout leiden in de
logica van een computer programma als de conditie van een “while loop” vertaald
wordt als: while (.not. ready) do ...

Efficient Algorithms for the

Numerical Solution of Differential Equations

Efficient Algorithms for the

Numerical Solution of Differential Equations

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. ir. K. F. Wakker,
in het openbaar te verdedigen ten overstaan van een commissie
door het College voor Promoties aangewezen,

op maandag 17 april 2000 te 13.30 uur

door

Jason Edward FRANK,

Master of Science in Aerospace Engineering, University of Kansas
geboren te Hutchinson, Kansas,
de Verenigde Staten van Amerika in 1970.

Dit proefscrift is goedgekeurd door de promotoren:
Prof. dr. ir. P. Wesseling
Prof. dr. P. J. van der Houwen

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof. dr. ir. P. Wesseling, Technische Universiteit Delft, promotor

Prof. dr. P. J. van der Houwen, Universiteit van Amsterdam, promotor

Dr. ir. C. Vuik, Technische Universiteit Delft, toegevoegd promotor

Prof. dr. ir. A. W. Heemink, Technische Universiteit Delft

Prof. dr. H. A. van der Vorst, Universiteit Utrecht

Prof. dr. A. E. P. Veldman, Rijksuniversiteit Groningen

Dr. J. Verwer, Centrum voor Wiskunde en Informatica

Ir. A. Segal heeft als begeleider in belangrijke mate aan de totstandkoming van het
proefschrift bijgedragen.

Een deel van het promotieonderzoek werd uitgevoerd bij het CWI in het kader van het
STW-project CWI-4533.

Preface

The papers comprising the chapters of this dissertation were written during my ap-
pointment at Delft University of Technology from 1996 to 1999 and during two visits
to CWI in Amsterdam—one in 1995 and one from 1998 to 1999.

Chapters 2 through 6 have all been published elsewhere or have been submitted for
publication as:

e J. Frank, W. Hundsdorfer and J. Verwer. On the stability of implicit-explicit
linear multistep methods. Applied Numerical Mathematics, 25(1997):193-205.

e J. Frank and C. Vuik. Parallel implementation of 2 multiblock method with ap-

proximate subdomain solution. Applied Numerical Mathematics, 30(1999):403-
423.

e C. Vuik, J. Frank, and A. Segal. A parallel implementation of the block precon-
ditioned GCR method. To appear, Future Generation Computer Systems.

e J.E. Frank and P.J. van der Houwen. Parallel iteration of the extended backward
differentiation formulas. To appear, IMA Journal of Numerical Analysis.

¢ J.E. Frank and P.J. van der Houwen. Diagonalizable Extended Backward Differ-
entiation Formulas. To appear, BIT.

Since the chapters were written as autonomous articles, and in consideration of the
breadth of the subject matter, I have decided not to attempt to define a uniform
notation throughont the dissertation. Instead, I invite the reader to set the book aside

and enjoy a cup of coffee between chapters so that a change in notation will not be too
disturbing.

Acknowledgements

I consider myself very fortunate to have had the opportunity to work at several insti-
tutions, and with many talented colleagues since starting my PhD studies in Kansas
in 1994.

Foremost 1 am grateful to my promotor Pieter Wesseling for carefully reading my
reports, and encouraging outside collaborations and travel. He maintained an open
mind for some drastic changes of direction in the subject of my research. Additionally,
I appreciate his ability to generate interesting discussions on topics outside of work.

vi

My co-promotor Pieter van der Houwen was very patient with me when I began working
with his group. I learned a lot in a short time there and will miss the regular group
meetings to discuss the projects of the various members. I would also like to thank the
other members of the STW group: Walter Hoffmann, Walter Lioen, and Ben Sommeijer
for their interest and contributions to the work of Chapters 5 and 6.

Kees Vuik has been a good collaborator, always remaining optimistic about coopera-
tions, even when I was not, and has given me many good leads; all the while gracefully
handling repeated intrusions into his office.

It is a pleasure to work with someone like Guus Segal, whose professmnahsm and
skepticism are so well complemented by a relaxed good humor.

Besides being a stimulating co-author, Willem Hundsdorfer arranged for my first stay
at CWI, based solely on one meeting and a couple of e-mails. It would have been very
difficult for me to find a Ph.D. appointment without Willem’s help and the support of
Jan Verwer.

Ben Leimkuhler introduced me to numerical mathematics and invited me to pusue a
PhD. His enthusiasm for the field continues to be inspiring, and as my first advisor, he
did the most to shape my ideas of how research should be approached.

Jacques de Swart is always full of advice. In the rare case that he doesn’t have an
opinion on a subject he will take one, just to initiate a discussion. Among other
things, such conversations have helped me a lot in making career-related decisions. I
am grateful for his involvement in arranging the second cooperation with CWI, and
for the use of his LaTeX style files.

Additionally I would mention a number of colleagues whose contributions to this dis-
sertation are less obvious, but whose daily interaction certainly helped to shape ideas
and to make the work experience humane. They are my roommates Hester Bijl, Harald
van Brummelen and Duncan van der Heul, and, standing out among many others, Han
Adriaens and Charles Moulinec.

The help provided by Duncan van der Heul and Kees Vuik with the translations of the
summary and the stellingen is gratefully acknowledged.

1 am also very grateful to my wife Linda for helping with the translations, and most
especially for making the period of my Ph.D. studies an adventure.

Amsterdam, November 1999

Contents

Preface

Contents

1. Introduction

2. On the stability of implicit-explicit linear multistep methods
3. A parallel multiblock method for Poisson’s equation

4. Parallel block-preconditioned GCR for incompressible flows
5. Parallel extended backward differentiation formulas

6. Diagonalizable extended backward differentiation formulas
Appendix A: The parallel/multiblock structure of DeFT
Summary

Samenvatting

Curriculum vitae

vii

11

25

51

67

87

107

123

125

127

Chapter 1

Introduction

In the field of parallel computing—concerned with solving computational problems by
using several cooperating processors—efficiency is clearly defined. The speedup of a
parallel numerical algorithm is defined by

speedup = ;Z;l
P

where Tp is the time needed to execute the algorithm in parallel on P processors and
T is the time needed to execute the best-known serial algorithm which solves the same
problem. The parallel efficiency is defined to be the speedup divided by the number
of processors:

T
efficiency = —7—;;1}—). (1.1)
A parallel efficiency of 100% is only achieved for certain trivial (from a parallel com-
puting point of view) examples consisting of many fully decoupled problems, that is,
problems which require no real cooperation between concurrent processes.

The efficiency of a serial numerical algorithm is not as well defined. If one were to
define serial efficiency by restricting the definition (1.1) to the one-processor limit case,
one would define the efficiency of a serial algorithm by comparing its time to that of the
best known serial algorithm (and if the result were less than 100%, one would promptly
switch algorithms).

Obviously this is not really a very useful definition for comparing the efficiencies of
serial algorithms. The dictionary [3] defines efficiency as “effective operation as mea-
sured by a comparison of production with cost (as in energy, time, and money).” The
problem with applying the definition (1.1) to serial algorithms is that it assumes that
the production of both algorithms is the same, and in that case efficiency is inversely
proportional to cost—measured in seconds of computing effort.

A more sophisticated definition of the efficiency of a numerical algorithm would include
a measure of the production, defined with respect to the accuracy, precision or qualita-
tive agreement of the numerical result. The cost should ideally reflect not only the use
of computing resources, but also that of the human resources (if the fastest known se-
rial program happens to require user intervention every 10 minutes for 8 hours, it may
not be considered to be a very efficient one by the personnel department). Probably,
at the bottom line, the cost of a program should be measured in dollars (Euros?).

2 Chapter 1

In many cases, we can leave the definition of efficiency vague, and consider only the
relative efficiencies of two algorithms. If the products are the same but the costs differ
(the assumption in the definition of parallel efficiency), or vice versa, if the costs are the
same but the products differ, then a direct relative comparison is possible, as well as
in the rare case that one algorithm provides more for less cost than the other (i.e. the
“something for nothing” phenomenon). In general we consider the relative efficiencies
of algorithms in this dissertation.

1.1 Numerical integration of differential equations

This dissertation concerns the design of efficient computational methods for approxi-
mating the solution of systems of ordinary differential equations (ODEs), for which the
prototype is the initial value problem:

¥ (t) = ft,y(), (12)
teR y:R— R",
¥(0) = w,

with the derivative function f continuous and satisfying a Lipschitz condition. Prob-
lems of this form are prevalent in fields such as chemistry and electronics and in areas
of classical mechanics such as astronomy and molecular dynamics.

We will also be interested in a more general class of problems for which y depends
on additional independent variables z;, s, ... ,z; (k being the spatial dimension) and
in which the function f depends on the partial derivatives of y with respect to these
independent variables:

dy dy Oy Py Py
?a—t-—f(t,y,a—zl',az2,...,gg,azlazz,...). (1.3)
Such partial differential equations (PDEs) arise in continuum mechanics, such as fluid
dynamics, structural analysis and heat transfer. In practice, a commonly used tech-
nique is to replace the spatial derivatives in (1.3) with discrete approximations via, for
example, the finite volume method, leaving an ODE (1.2). This technique is called the
method of lines or semi-discretization method. In this case the dimension d of (1.2)
frequently scales with a small grid parameter h according to d ~ h™*, often resulting
in scalable problems of very large dimension. Some parts of this dissertation will deal
with efficient methods for integrating the incompressible Navier-Stokes equations of
fluid dynamics.

Finally, a somewhat more general class of methods than (1.2) is the class of differential

Introduction 3

algebraic equations (DAEs), of which the simplest example is a constrained ODE:

y'(t) = f(t,9(1), _ (1.4)
9(y) =0, (1.5)
teR y:Ro R '
¥(0) = %o, 9(v0) =0

In this case one wishes to find the solution of (1.4) on the constraint manifold defined
by (1.5). The existence of an algebraic constraint can introduce additional complexity
into the numerical method. In fluid flows, the condition of incompressibility can be
seen as a constraint, and the pressure correction method, discussed later, can be seen
as a projection onto the constraint manifold: the space of divergence-free vector fields.

1.1.1 Integration methods for differential equations

Many numerical integration methods approximate the solution of (1.2) over a step of
size 7, by a mapping from y, = y(t,) t0 Yn+1 ~ y(tns1), where tnyy = ¢, + 7. The
characteristic of a numerical integrator having the greatest consequences for efficiency
is whether the mapping is an ezplicit or implicit one. We shall define an explicit
method as one for which the numerical solution over a time step can be obtained in
exact arithmetic within a finite number of operations, independent of the structure of
the function f (except for the assumption that f can be evaluated in finite operations,
of course). The simplest explicit method is the explicit Euler method

Yn+1 = Yn + Tf(tm yn)~

Under the assumption that f can be evaluated in a finite number of operations, the
additional cost of this method is that of a scalar multiplication and vector addition.

An implicit method generally requires an iteration to obtain the solution. The simplest
example is the implicit Euler method:

Yn+tl = Un + Tf(tn+l1 yn+1)' (16)

Since y,41 iS yet to be computed, f cannot be simply evaluated. An important special
case is when f is linear

ft,y) = Jy,

where J is a d X d matrix. In this case we can solve (1.6) from

(I = 7)Yns1=Yn (1.7)

4 Chapter 1

by solving a single linear system of dimension d. For general nonlinear f, however,
an iteration such as modified Newton’s method must be used to solve the implicit
relations:

- T'I(yn))(yg:l) n+1) =Yn — Un+1 Tf(ta+1s yn+l) i=0,1,...

where J(y,) = 0f(y)/3y is the Jacobian of f evaluated at y,. Lacking a better initial

. 0 P
approximate, y,/; = Yn may be used. This iteration is carried out for increasing
j until satisfactory convergence is achieved. In each iteration a linear system with
matrix I — 7J(y,) must be solved.

1.1.2 Efficiency of numerical integration methods

By comparing the explicit- and implicit-Euler methods, one can see that, in general,
the cost of computing one timestep with an implicit method is much more expensive
than with an explicit method. But what is the difference in production?

Explicit methods are usually less robust in the presence of (always present) errors
in the numerical solution. There is typically a problem dependent range of stepsizes
0 < 7 < 7 within which small errors are damped away and outside of which small errors
are amplified. Clearly these stability considerations place a limit on the maximum
allowable step which can be used by explicit methods.

On the other hand, there exist implicit methods, such as implicit-Euler which are
unconditionally stable; that is, errors are damped out for any stepsize. For application
to a linear problem (1.7), once the matrix I — 7J is factorized, the cost of solving
the implicit relations may be sufficiently cheap to make it competitive with an explicit
method with overly restrictive stepsize limitation. What’s more, there is a large class
of applications whose solutions are composed of modes with extremely different time
scales, for which the stepsizes of explicit methods are so restricted as to render them
useless. These problems are known as stiff, and practically demand treatment by an
implicit method.

Improving the efficiency of an explicit method is not easy. One should look for problem-
specific simplifications due to the coupling structure of the dependent variables or to
known relations between problem variables. Implicit methods leave more room for
improvement: one may attempt to accelerate the Newton process, by using iterative
solvers, for example, or one may try to make the strategies for controlling the error and
convergence rate more efficient. Additionally one may seek methods which reduce the
degree of inherent implicitness. In the next section we consider a technique which may
be used for certain problems to improve efficiency through combination of implicit and
explicit methods.

Introduction 5

1.1.3 Implicit-explicit splittings

In cases where stiffness plays a role, one can sometimes identify a splitting of the
function f of the form f(t,y) = f(t,y) + fi(t,y) into terms f; requiring implicit
treatment due to stiffness, and terms fz(y) which may be treated explicitly. The
diffusion term encountered in the incompressible Navier-Stokes equations is stiff though
linear, for example, while the nonlinear terms are nonstiff. In this and similar examples
from atmospheric chemistry, it may be advantageous to use a method which treats
part of the derivative implicitly and part explicitly. Such methods are termed implicit-
ezplicit (IMEX) methods, and the simplest example is the IMEX-Euler method:

Ynt1 = Un+TSE (tm yn) + 'rfl(tn-}-h yn+1)

By introducing such a method, one hopes to find a more easily solvable implicit relation.
Note that in the serendipitous case that the implicit part is linear, f;(t,y) = Jy, the
result is a linearly implicit system requiring just one linear system solve. The Navier-
Stokes equations are an example of a system in which the stiff part is linear.

The IMEX-Euler scheme inherits the stability region of the explicit-Euler method; that
is to say, the time step must be small enough for explicit-part stability. More accurate
IMEX methods suffer an additional restriction on the maximum stepsize, however.
This additional restriction is carefully considered for the class of implicit-explicit linear
multistep methods in Chapter 2.

1.2 Parallel computing for differential equations

Whether one measures efficiency in flops or seconds is of lesser importance when con-
sidering algorithms for sequential computing than when parallel algorithms are the
subject. A parallel program is usually less efficient than an equivalent sequential pro-
gram if cost is measured in flops. However one hopes to gain an advantage in execution
time (wall-clock time, waiting time) worth more than the loss in flops.

Gear [4] points out two orthogonal approaches to parallelization of ODE methods:
1) parallelism across the problem space and 2) parallelism across the method space.
Recently a third approach has been the subject of much research: 3) parallelism across
time. The first two of these methods will be considered in the following sections. In the
third approach one attempts to compute different time levels on different processors.
This includes the class of waveform relaxation methods; it will not be considered in
this dissertation, but the reader is directed to [1], [6] for further information.

By orthogonal, we mean that, ideally speaking, these three approaches to parallelization
of ODE methods may be used independently of each other, and that when combined
the the speedups and processor usage of both methods are realized. The usefulness of
this orthogonality will be discussed in the last section of this chapter.

6 Chapter 1

1.2.1 Parallelism across the problem space

In this approach, the method is divided across the problem dimension d. As as simple
example, assume that p processors are available and that m = d/p is an integer. Each
processor is responsible for m components of the solution and coupling encountered
in the evaluation of derivative function and the Jacobian and in the solution of linear
systems requires communication. Clearly for this to be efficient, m (and thus d) should
be sufficiently large. An effective distribution of data should minimize inter-processor
coupling and maintain load balancing, making this approach difficult to apply for
general differential equations.

There is, however, an important class of problems for which this kind of parallelism is
very effective; namely, the class of semi-discretized PDEs are usually of high dimension
with sparse, local coupling, providing an almost automatic load balancing by simply
dividing up the domain of interest into p connected subdomains. The communication
costs are proportional to the length of the shared interface between blocks. Since
communication costs grow at a much slower rate than the grid size, it is intuitive that
methods based on such a distribution improve in parallel efficiency as d is inereased for
a fixed number of processors. Because the communication costs are relatively cheap,
and the problem size is in principle very large, it is feasible to solve these problems on
distributed memory machines and even workstation clusters.

Parallel linear system solvers

The solution of linear systems is by far the most computation intensive task of time-
dependent PDE simulations. Since the systems are large and sparse, iterative methods
are recommended, if not required. Modern iterative methods are Krylov subspace
methods and multigrid methods. The most important tasks for parallelization are
matrix-vector multiplications, inner products and preconditioners. Matrix-vector prod-
ucts with local coupling are easily implemented with exchange of interface data, and
this scales well, since only nearest neighbor communications are required. Inner prod-
ucts are also easily parallelized, but since the communication required is global, these
do not scale well. To overcome this, methods have been suggested where inner products
are grouped together to reduce the number of global communications. Other meth-
ods try to overlap such communications with useful computations to alleviate the cost
somewhat. But these costs are rarely the bottleneck. The choice of a preconditioner

for parallel applications is a trade-off between communication and computation costs

and convergence rate. Domain decomposition methods, to be discussed in the next
section, offer a spectrum of parallel preconditioners.

In time integration of fluid flow problems, high accuracy is rarely demanded, and we will
consider only the implicit Euler method when dealing with the incompressible Navier-
Stokes equations in this dissertation. The results obtained there may be immediately
generalized to linear multistep methods, however.

Introduction 7

The incompressible Navier-Stokes equations are special in that they include a con-
straint. For discussing the issues related to time integration, the following model of
the Navier-Stokes equations is sufficient:

¥ = A(y) + Gp,
0=G"y.

The function A(y) represents the (discrete) momentum operator, p the pressure, and
G the discrete gradient operator. To apply implicit Euler to this system we would like
to solve

Unt1 = Yn + T(A(Yns1) + Gpopa)
subject to the constraint GTy,,; = 0, from which it follows that
G"Gpnyr = -G A(yns1),

assuming the solution y, from the previous time step is also divergence-free. No global
loss of accuracy occurs if we compute the pressure field using the velocity field obtained
by an unconstrained Euler step, and subtract the divergence from that velocity field,
providing the following three-step algorithm:

Ynt1 = Yn + TAWn41) (1.8)
G'Gpnyr = —GTA(ZI;H) (1.9)
Ynt1 = Ynpy + TG Datr.

The matrix GTG is similar to the familiar discrete Laplacian matrix. Due to the poor
conditioning of this system, especially for large d, its solution may require 50%-80%
of the computation time of incompressible flow simulations. Solution of the nonlinear
relation (1.8) is typically easier: it is well-conditioned and often may be approximated
by a linear system without loss of order—but there are cases where the nonlinearity
becomes important, requiring Newton iterations5].

For a complete overview of parallel methods for solving linear systems of equations,
see [2].

Parallel preconditioners

Parallel preconditioners are also reviewed in [2]. These can be roughly divided into two
classes: methods which start with a classical sequential preconditioner and attempt to
distribute the data, and domain decomposition methods which start with distributed
data and attempt to build a preconditioner. In this dissertation we will consider the
second class of methods; the interested reader is referred to [2] and the references
therein for the first class (as well as for a more complete review of the second class).

8 Chapter 1

An introduction to domain decomposition methods is discussed in Appendix A. In
Chapter 3 we consider a nonoverlapping additive Schwarz preconditioner for the Poisson
equation, in which the blocks are approximated by an inner iteration or simply by an
incomplete factorization preconditioner. Since it requires no communication between
blocks, this method is perfectly parallel. In Chapter 4 the same method is applied to
the incompressible Navier-Stokes equations.

To make domain decomposition very effective as a parallel preconditioner, one should
provide overlap of subdomains and should perform a coarse grid correction for global
communication of the error. Particularly the implementation of overlap may require
major code revisions if it is desired to introduce domain decomposition into a mature
code with inflexible data structures.

1.2.2 Parallelism across the method space

Although second order accuracy in time is often sufficient for PDEs, higher order
methods are needed for precise computations in fields such as electronics, chemistry
and astronomy. These applications also frequently involve very complex nonlinear
relations. The parallelism inherent in higher order methods is normally small scale,
improving as the order is increased, and the tight coupling of the relations is best suited
for implementation on shared memory computers.

Many of these methods fit into a class of general linear s-stage methods:

Yot = 1(A® D)F(Yoy1) = (G ® I)Vp, Y1 = (b7 ®)Y, (1.10)
where
Yn+1 Yn—k+1
Yn+1 = y Vo= y
Yn+1 Yn

Y ER AER™, GeR* beR and F(Yp) = (Fupe)™s - y f(Wa41)T)T. The
implicit relations (1.10) may be solved with a Newton iteration:
(I = 74® I)(¥aH — %) = —Ra(v2l1"), (L.11)

where J* is an appropriate approximation to the Jacobian and the residue R,(Y) is
defined by

R,(Y)=Y-1(A®DF(Y)- (G I)V,.
The matrix A above is normally full, but if it is nondefective, there is a matrix @ such

that Q~1AQ = D, where D is a diagonal matrix. In this case it is possible to perform
an equivalent, tra.nsformed Newton iteration

(I -mD® I') X, - X3 = -(@* ® DR((Q ® NXITY), (1.12)
Ya1 = (Q®) Xpy,

Introduction 9

comprised of s decoupled linear systems with matrices (I — d;J*), i = 1,..., s, where
the d; are the diagonal entries of D.

Note that there is a lot of parallelism available in (1.12). At the coarsest level, the s
blocks of (I - 7D ® J*) can be factored and solved solved independently of each other
for the stage updates. In a similar manner the stages of F can be computed in parallel.
If, in addition, all stages are available to all processors, the residue function and the
transformation can be computed concurrently. Fine-grain parallelism is also plentiful:
all vector updates can be parallelized component-wise, and the individual components
of the derivative function f and the Jacobian J can be computed simultaneously,
though these operations require more careful load-balancing and more efficient memory
management than is commonly available on current architectures.

If A is not diagonalizable, or if its eigenvalues are complex, then an alternative must be
sought. A class of methods based on this idea is developed and analyzed in Chapters
5 and 6.

It is clear that parallelism across the method space in (1.12) is restricted to a number
of processors equal to the number of stages s. However, a large number of stages is
only needed if high order accuracy is required. It follows that parallelism across the
method space is most beneficial when high accuracy in time is desired.

1.2.3 Parallel (]|) “orthogonality(1)”?

From the preceding discussions we can identify the classes of problems for which the
two parallelization approaches discussed at the beginning of Section 1.2 are best suited:

o Parallelism across the method parameters—The amount of parallelism is propor-
tional to the number of stages of the method. Since more stages are normally
associated with greater accuracy, we are looking for applications requiring high
order. Furthermore, data transfer on the order of the problem dimension is ex-
pected in each timestep, so that shared memory is advantageous.

e Pargllelism across the problem space—A good load balancing requires either
knowledge of the connectivity graph or approximately equal connectivity between
components. To reduce communications, the connectivity should be sparse. In
this case distributed memory computers may be used.

While it is possible for tightly coupled dynamics applications requiring high accuracy
(and thus allowing effective use of parallelization across the method parameters) to also
take advantage of parallelism across the problem space by dividing up the vector sums,
function evaluations and Jacobian evaluations into blocks, this will only be efficient on
todays computers for fairly large problems.

Techniques exploiting parallelism across the problem space are ideally suited for appli-
cation to time dependent PDEs on massively parallel distributed memory computers,

10 References

but in general, high order is not needed in PDE applications, where the accuracy of
the spatial discretization is normally the limiting factor. The orthogonality of the
parallelisms across space and across the method is in this sense overrated.

References

[1] K. Burrage. Parallel and Sequential Methods for Ordinary Differential Equations.
Oxford University Press, 1995.

[2] J.J. Dongarra, I.S. Duff, D.C.Sorensen, and H.A. van der Vorst. Numerical Linear
Algebra for High-Performance Computers. SIAM, Philadelphia, 1998.

[3] Ed. F.C. Mish. Merriam Webster’s Collegiate Dictionary, Tenth Edition. Merriam-
Webster, Incorporated, Springfield, Massachusetts, 1998.

[4] C.W. Gear. Parallel methods for ordinary differenital equations. Calcolo, 25:1-20,
1988.

{5] D. R. van der Heul, C. Vuik, and P. Wesseling. Stability analysis of segregated
solution methods for compressible fluid flows. Preprint, submitted for publication,
1999.

[6] S. Vandewalle. Parallel multigrid waveform relazation for parabolic problems. B.
G. Teubner Verlag, Stuttgart, 1993.

11

Chapter 2

On the Stability of Implicit-Explicit Linear
Multistep Methods

Abstract. In many applications, such as atmospheric chemistry, large systems
of ordinary differential equations (ODEs) with both stiff and nonstiff parts have
to be solved numerically. A popular approach in such cases is to integrate the
stiff parts implicitly and the nonstiff parts explicitly. In this paper we study
a class of implicit-explicit (IMEX) linear multistep methods intended for such
applications. The paper focuses on the linear stability of popular second order
methods like extrapolated BDF, Crank-Nicolson Leap-Frog and a particular class
of Adams methods. We present results for problems with decoupled eigenvalues
and comment on some specific CFL restrictions associated with advection terms.

2.1 Implicit-explicit linear multistep methods

When adopting the method of lines approach, space discretization of multi-space di-
mensional, time dependent PDE problems results in large systems of ODEs which are
to be integrated in time by an appropriate time stepping scheme. Frequently in such
applications one is confronted with problems having both stiff and nonstiff parts. Here
the term nonstiff is used in a loose way to indicate terms that may be solved efficiently
in an explicit way. For example, in atmospheric chemistry one may have a nonstiff
horizontal advection term and a stiff term containing chemical reactions and vertical
diffusion, see for instance Verwer et al. [10], Zlatev [12]. In such cases it is desirable
to treat the stiff part with an implicit scheme while applying an explicit scheme to the
nonstiff part.

In this paper we look at the general ODE problem
w'(t) = Ft,w(t) + Ct,u(®), ¢>0, 1)

where F represents the nonstiff part and G represents the stiff part of the system. For
the numerical solution of (2.1) we consider implicit-ezplicit (IMEX) linear multistep
methods

k k k
Z QjWay1—j =T Z biF (tnt1-j, Wni1-5) + T Z ¢iG(tn+1-j, Wnt1j)- (2.2)

j=0 j=1 j=0

Here T > 0 denotes the time step and the vectors w,, approximate the exact solution
at t, = nT. Schemes of this type were introduced by Crouzeix [3] and Varah [9].

12 Chapter 2

A natural way to derive such a method is to start with an implicit method that is known
to possess favorable stability properties, and then replace the term F(fp41,Wny1) by
a linear combination of explicit terms using extrapolation. If the implicit method
has order p and the extrapolation is of order g, the resulting scheme will be of order
min{p, ¢}, see [6]. On the other hand, it is not hard to see from the proof of [6] that any
consistent IMEX linear multistep method can be decomposed into an implicit scheme
and an extrapolation procedure. Direct derivations of the order conditions for IMEX
linear multistep methods are given in Ascher et al. [2].

In this paper we will discuss the stability properties of the schemes for the scalar,
complex test equation
w'(t) = Mw(t) + pw(t). (2.3)

In applications for PDEs, these A and u represent the eigenvalues of the nonstiff and
stiff part, respectively, found by a Fourier analysis. We will not assume that A and u
are coupled, so that F' and G may contain discretized spatial derivatives in different
directions. To simplify the notation, we will make in the foliowing the substitutions
A — 7) and p — Tu. Application of the IMEX scheme then gives

k k k
D GWntiog =AY bjtng1oj B G 24
i=0 j=1 j=0

As a simple example consider the first order IMEX Euler method

Watr — W = TF(tn, wn) + 7G(tns1, Wni1)- (2.5)
For the linear test equation this gives

Wy = (1= p) 7' (1 + A)wy,

and it easily follows that the method is stable whenever A lies in the stability region of
the explicit Euler method, |1 + A} < 1, and u is in the stability region of the implicit
Euler method, |1 — p| > 1. As we shall see, this is an exceptional situation. Usually,
stability of the individual explicit and implicit methods does not guarantee stability of
the combined IMEX method.

In this paper we consider several second order methods, where the implicit method is
A-stable. We shall address two questions:

e Suppose that A lies in the stability region S of the explicit method. What re-
strictions are to be placed on the location of i to have stability?

e What additional restrictions, if any, are to be imposed on the location of A to
ensure that the method is stable for all 4 in the left half-plane?

On the Stability of Implicit-Explicit Linear Multistep Methods 13

Some examples of IMEX methods that seem interesting for practical applications are
given in Section 2. In Section 3 we discuss the restrictions on A for having stability
for arbitrary p in the left half-plane. In Section 4 we discuss the question of stability
of the IMEX methods under the assumption that A lies in the stability region of the
explicit method. Some consequences for CFL restrictions are considered in Section 5,
where A will be an eigenvalue for advection discretizations.

Related stability results for IMEX multistep methods have been derived by Varah [9]
and Ascher et al. [2] for the one-dimensional convection-diffusion problem, with central
spatial discretizations, where the convection is treated explicitly. For such problems
there will be a coupling between the eigenvalues A and p. The results presented in this
paper are applicable to more general problems and more general spatial discretizations,
since A and p are considered to be independent of each other and the specific form of
the eigenvalues is not prescribed a priori.

Clearly there is a big gap between the test equation (2.3) and the general problem (2.1).
Results for (2.3) can be easily extended to linear systems with normal, commuting
matrices. Note that if F = L® I and G = I ® M, with Kronecker product ®,
then F' and G will commute. Matrices of this type arise from linear PDE problems
with constant coeflicients if F and G contain discretized spatial derivatives in different
directions. Stability and convergence results for the noncommuting case, but where G
is assumed to be negative definite, can be found in Crouzeix [3]. Generalizations for
G linear, negative definite and F nonlinear are given in Akrivis et al. [1]. Here we
shall restrict ourselves to the scalar, linear case but there is no a priori restriction on
the location of the eigenvalues A and p other than that they should lie in the stability
region of the explicit or implicit multistep method, respectively.

2.2 Preliminaries

Stability of (2.4) is determined by the location of the roots of the characteristic equation

k k k
Dol =AY b) el =0, (26)
=0

i=1 i=0

For a root ¢, stability requires that |¢| < 1, with strict inequality for multiple roots, see
for instance [4, 5, 7). If this last condition is omitted, a weak, polynomial instability
may occur. The requirement that || < 1 is more important, since its violation will
lead to an exponential blow-up.

Dividing the equation by ¢* and making the substitution z = 1/(, the characteristic
equation reads

A(z) — AB(2) — uC(2) =0,

14 Chapter 2

where A, B and C are the polynomials

E k k
AZ) =) ad, B()=) b2, C)=) a @27
=0 i=1 =0
So, for stability we require that all roots satisfy |2| > 1, again with strict inequality if
z is a multiple root. A necessary condition for this is

A(z) — AB(2) - pC(2) #0 for all |z| < 1. (2.8)

Apart from the possibility of multiple roots with modulus 1 this is also a sufficient
condition. We shall use (2.8) as a criterion for determining stability. On the boundaries
of the stability domains it can then be verified separately whether multiple roots with
modulus 1 occur.

In the following we denote by S the stability region of the explicit method. Its interior
int(S), where all characteristic roots have modulus less than 1, is given by the comple-
ment of the set {A(z)/B(z) : |z] < 1}, as can be seen from the above by setting u = 0.
The boundary of the stability region is contained in the root locus curve

{A(e®)/B(€®) : 0 € [-, 7]} (2.9)

Below we give some examples of IMEX multistep methods with the stability regions of
the explicit methods. The attention will be restricted to second order methods for which
the implicit method is A-stable. We shall denote F,, = F(t,,w,) and G, = G(t,, ws)-

ExAMPLE 2.1 (Crank-Nicolson Leap-Frog). Using the explicit midpoint method (Leap-
Frog) for the explicit part with trapezoidal rule (Crank-Nicolson) for the implicit part
provides the popular scheme

1
%(HJ,H.] - w,,_l) = TF,. + iT(G,H.l + G,,_l). (2.10)
The polynomials (2.7) for this method are
A= 30~2), Bl)=z Ole)=301+7),

and the root locus curve for the stability region of the explicit method is

1—¢e? ..
A0) = g = sind, 6 € [—m, 7).
That is, the explicit eigenvalues A must be restricted to the imaginary axis between —i
and i. For the extremal values A = =i the roots of the characteristic equation coincide,
so we then have a linear instability.

On the Stability of Implicit-Explicit Linear Multistep Methods 15

EXAMPLE 2.2 (Extrapolated BDF). A second order IMEX method can be derived from
the two-step backward differentiation formula, with extrapolation F,, ~ 2F, — F,,_;
for the explicit part, thus giving

3 1
§wn+1 - 271)7; + Ewn_l = T(2Fn - Fn—l) + TG,H.I. (2-11)

In Verwer et al. [10] this method was applied successfully to a large system (2.1)
arising from spatial discretization of an atmospheric transport-chemistry model. The
implementation there was slightly different, with F'(2w,, — wy,_,) instead of 2F, — F;,_;,
but for linear stability this is irrelevant.

The polynomials (2.7) are given by
A= 3321 ~2), Bl)=22-2, C()=1

and the boundary of the explicit stability region & is parameterized by

\6) = (8 —€¥)(1 —€Y)

o —ap » d€lmml

EXAMPLE 2.3 (Adams methods). We consider the class of second order Adams type
methods, with parameter ¢ > 0,

3 1 1 1 1
Wypy ~ Wy = ETF,. - §TF,,_1 + 5(1 +0)7Gpyi + 5(1 —20)7Gp + fm-G"_l'
(2.12)

Again these methods can be obtained from the implicit formula by extrapolation. The
implicit methods are A-stable for any ¢ > 0. For ¢ = 0 the implicit method is simply
the trapezoidal rule (Crank-Nicolson). The choice ¢ = 1/8 was considered by Ascher
et al. [2]; within this class ¢ = 1/8 yields maximal damping at g = co. The implicit
method with ¢ = 1/2 was advocated by Nevanlinna and Liniger [8], with regard to
maximum norm contractivity.

The polynomials (2.7) are given by
1 1 1 1,
A(z)=1-2, B(z)= 5z(3 ~2), C(z)= 5(1 +c)+ -2—(1 - 2¢)z + 6%

The boundary of the stability region of the explicit method, the two-step Adams-
Bashforth method, is given by

_2(1-€%)
 ef(3 e’

A9)

6 € [, 7.

16 Chapter 2

2.3 Restrictions on explicit eigenvalues for implicit A-stability

Defining pa(2) = (A(2) — AB(z))/C(2), criterion (2.8) reads
u# oa(z) forany |2] < 1. (2.13)

We shall apply this criterion to determine under what conditions we have A-stability
with respect to the implicit eigenvalue, that is stability for arbitrary p € €, the left
half-plane. In the first section it was noted already that the IMEX Euler method
remains A-stable with respect to the implicit eigenvalues so long as all of the explicit
eigenvalues are in the stability region of the explicit method. We can show a similar
result for the Crank-Nicolson Leap-Frog scheme (2.10).

EXAMPLE 3.1. For scheme (2.10), with A = —isin @ in the explicit stability region, we
have

1—22+2isinf 1-(2—-2%) - |z\4+2zzsm0(1+z2)
1422 B 1+ (22+2%) + |2

The denominator of this last expression is obviously positive for |2| < 1. The real part
of the numerator is

1—|z|* — 25in0Im [2(1 +22)] =(1-|z*) [1+2*+4* - 2ysin6] >0

pa(z) =

for any |z| < 1, z = z +iy. So A-stability for the implicit eigenvalues y is preserved as
long as the explicit eigenvalues A are in S.

As we shall see, for the other methods of Examples 2.2 and 2.3 A-stabmty for the
implicit eigenvalues is not preserved for arbitrary A € S. We define
D ={) € C: (2.6) is stable for any u € C}. (2.14)

Obviously, D will be a subset of the closure of the explicit stability domain S. The
following lemma gives a characterization for the boundary in terms of the functions
M(8) = A(e*®)/C(e®®) and N(6) = B(e*)/C(€®).

LEMMA 3.2. Suppose ReN(8) # 0 and M(0), N(6) are bounded for all 6 € [—=,].
Then 9D C {A\(6) : 0 € [~x, 7]} with

-3 (405 5 ()]

PROOF. If A € D then, according to (2.13), ¢, maps the interior of the unit disc into
the right half-plane. By assumption the image of the unit disc under p, is bounded.
For a point on the boundary of D we thus have

Repx(¢?) =0 (2.16)

On the Stability of Implicit-Explicit Linear Multistep Methods 17

for some point e? on the unit circle. Moreover,

d 0y _
L Repa(e) =, | (2.17)

which is necessary so that Re)(e*) does not become negative for points near z =
€'’ on the unit disk. We can simplify these conditions somewhat, obtaining a single
parameterization in terms of the functions M and N, evaluated in the point 8, as
follows:

{0 = (M - N}) + (M - N)),
0 = (M —N'X)+ (M - N'N.

Solving this system for A = A(6), we obtain
~NM'+ N'M - NM'+N'M _ N(M'+ M') — N'(M + M)

A0) = NN-NN' NN'—N'N ’
which is equivalent to (2.16). This expression is well defined iff N(f) is not identically
equal to N(6). O

For specific methods the boundary of the set D can be parameterized by evaluating
(2.15) for 6 € [—m,x]. For the IMEX-BDF method (2.11) this leads to a region D with
boundary

A0) = _‘1_3(1 —)3 — &), (2.18)

see Figure 2.1. This region seems only marginally smaller than the explicit stability
region S. Note however that near the origin S stays closer to the imaginary axis than
D.

For the IMEX-Adams schemes (2.7) we get the more complicated formula, found by
Maple,

A0) = P(e*)/Q(e”) (2.19)
with
P(z)= c(2-1) (—6cz3 +2(5c — 6)z% — 2(c + 12)22 — 2(c — 2)),

Q) = 3(c+ @)zt +2(3 — ¢~ 42)23 +2(6 + 1le + 52) 2>+ (2.20)
+2(3 ~c— 4z + 3(c+ &A).

The D regions for ¢ = 1/8 and ¢ = 1/2 are given in Figure 2.2. For ¢ = 1/2 it is close
to S, whereas for ¢ = 1/8 we lose a considerable part of the explicit stability region.
For ¢ = 0 the lemma does not apply since M and N are not bounded near § = m, and
so we consider this method separately.

18 Chapter 2

FIGURE 2.1: The explicit stability region S (dashed) and the region D for the IMEX-BDF2 method.

FIGURE 2.2: The explicit stability region S (dashed) and the regions D for the IMEX-Adams2 methods
with ¢ =1/2, 1/8 and 0.

On the Stability of Implicit-Explicit Linear Multistep Methods 19

ExaMPLE 3.3. For (2.12) with ¢ = 0, the Adams-Bashforth Crank-Nicolson method,
we have

21—2)—Az(3-2)

oa(2) = 1+z
This can be written as
. 3 —
oa(z) =2—2z+ 1+ A)x(z) with x(2)= _z(l e :). (2.21)

By some calculations it follows that Re x(e®) = —2 + cos§. Note that for § — 7 the
real part of x(e) tends to —3 and its modulus to co. Hence x maps the unit disk into
the half plane {¢ € C: Re(> —3} and the imaginary axis lies totally in this image.
It follows that the image of the unit disk under ¢, will have a nonempty intersection
with the left half plane if 1 + A has a nonzero imaginary part. Therefore A has to be
real to be in D.

Since D is a subset of S, the only possible values are in the interval [-1,0]. Indeed
any A on this piece of the real negative axis is in D. This can be seen as follows: we
have for real A

Repr(€?) = -A2—cosf) >0 ifA<0,

and from (2.21) it now follows that the unit disk is mapped into the right half-plane if
A<0and 1+ Xx2>0.

2.4 Restrictions on implicit eigenvalues for full explicit stabil-
ity

Although A-stability is a valuable property, in most practical situations one can settle
for less demanding properties, such as A(c)-stability. In this section we consider what
requirements on y are needed to ensure stability of the IMEX methods for arbitrary
A € 8. The implicit eigenvalues u are supposed to be in the wedge

Wa={¢€C: |arg(-()| < o}

with angle a € (0, ;).

LEMMA 4.1. Suppose that |arg(A(z) — AB(2))| < in + B, |arg(C(2))| < 7 for all
|z| =1 and A € 88, with 8 + 7y < 3m. Then the IMEX scheme will be stable for any
A€Sand p€ Wy, witha=1r—F—1.

PRrOOF. We have

|arg(pa(2))| < |arg(A(z) ~ AB(2))| + | arg(C(2))|.

20 Chapter 2

From the assumptions it follows that |arg(pa(2))| < 37 + 8+ v for all |z] < 1 and
A € 8. Using criterion (2.13), the result follows. O

To determine the angle 3 in the above lemma for the 2-step methods, note that we can
write

A(z) — AB(2) = A(0)(1 — pr2)(1 - p22),

where p; and p, are the characteristic roots of the explicit method. For A € 8S we get
}p1] =1 and |ps] < r with some constant r < 1 determined by the explicit method It
follows by geometrical considerations that we can take 8 = arcsinr.

ExAMPLE 4.2. Consider the IMEX-BDF?2 scheme(2.11). The characteristic equation
of the explicit method reads

g& ~2(1+)¢+ %(1 +2X) =0,

see (2.6) with 1 = 0. If A € S we can set p; = ¥ and by some calculations it is seen
that

_13e¥-2 5
=331’ lo2| < .

Further we have arg(C(2)) = 0. Therefore Lemma 4.1 gives stability with angle

a= 12_r - a.rcéin(;;—’) = 0.317. (2.22)

The region of those u for which we have stability with arbitrary A € S is given by
the complement of the set {pr(2) : A € S,|2| < 1}. Although we do not have a
parameterization of the boundary of this set, we can make a (crude) picture of it by
plotting the value of ©,(z) for sufficiently many A € S and |z| < 1. In Figure 2.3 this
region is shown for the IMEX-BDF2 scheme. By zooming in on the origin one can
establish an ezperimental bound of the angle a, and for this method it was found that
o = 0.32m, which is close to the lower bound (2.22).

ExaMPLE 4.3. Consider the IMEX-Adams scheme (2.12). For the 2-step Adams-
Bashforth method, with A € 08, we get, similar to the previous example, p; = €%
and

i0

[1 1
= — < —

P2 30— 1 |P2|_2,

giving § = arcsin(1/2).

On the Stability of Implicit-Explicit Linear Multistep Methods 21

FIGURE 2.3: Exterior of shaded region: stability for u with arbitrary A € & for the IMEX-BDF2
method.

If ¢ = 1/2 then C(2) = (1 + }2%), and thus we can take y = arcsin(1/3). This gives
stability of scheme (2.12) for A € 48 and p € W, with
a= g - arcsin(%) - arcsin(%) ~ 0.237. (2.23)

As in the previous example we determined from Figure 2.4 an experimental bound for
a and this was found to be ~ 0.30m, so here the lower bound (2.23) seems not very
close.

If ¢ = 1/8 then C(2) = 3(1 + 12)?, leading to y = 2arcsin(1/3). This gives an angle
1
a= g - a.rcsin(i) - 2axcsin(§) ~0.127. (2.24)
The experimental bound for this method, see Figure 2.4, was found to be =~ 0.14x.

ExAMPLE 4.4. For the IMEX-Adams scheme (2.12) with ¢ = 0 we have C(z) =

3(1+ z), leading to y = }n. Hence for his case Lemma 4.1 does not provide a positive

angle . Note that Lemma 4.1 only gives a sufficient condition. We show that indeed

there is no positive « such that the scheme is stable for all A € § and p € W,.

We have

2(1—2) — Az(3-2)
1+2

Now take z = —1 + e + O(?) on the unit circle and A = —1 — i + O(e?) on the

boundary of S, see Figure 2.2. Then ¢5(z) = —1 + O(¢), showing that we can have

values for ¢y (z) arbitrarily close to the negative real axis.

palz) =

22 Chapter 2

FIGURE 2.4: Exterior of shaded region: stability for z with arbitrary A € S for the IMEX-Adams
method with ¢ = 1/2 (left) and ¢ = 1/8 (right).

2.5 CFL restrictions for advection terms

So far we have followed an ODE stability analysis in the sense that the eigenvalues A and
1+ were allowed to take on arbitrary complex values in certain bounded or unbounded
regions in the complex plane. Of course, in actual applications they are determined
by specific spatial operators and selected spatial discretization techniques. Often, the
nonstiff part F in (1.1) emanates from advection and the stiff part G from reaction-
diffusion terms. For example, in the study of atmospheric transport-chemistry models,
a useful test model is the system c; + uc; + vey = ec,, + g(t,), where c is a vector of
concentrations, uc, + ve, models advection in a horizontal wind field, ec;, a vertical
turbulent/diffusion process, and g(t, ¢) stiff chemical reactions, see [10] for instance.
In this section we consider the specific case that) is associated to the advection term
uc, while ;2 may still take on arbitrary values. We consider the first and third order
upwind biased schemes for discretization on a uniform grid with grid size Az. Let v
denote the Courant number |u|T/Az. Then for the first order method we have explicit
eigenvalues

,\=—u(1—cosﬁ+isim9), —-r<8<m, (2.25)
whereas in the third order case
A:—%u((cos0—1)2+isin0(4—c080)), —r<<m, (2.26)

see for instance [10, 11]. Central advection discretization of even order leads to purely
imaginary eigenvalues, and among the explicit methods considered here only the Leap-
Frog method (2.10) will be stable.

We consider the restrictions on the Courant numbers v for all explicit eigenvalues to
be in the regions § or D, introduced in Section 3. The bounds, given in Table 5.1,
have been established experimentally.

On the Stability of Implicit-Explicit Linear Multistep Methods 23

s D S D S D

(2.25) |0.66 0.66 | 0.50 0.50 050 0.50

(2.26) | 046 023 |0.58 0.16 058 0.43
IMEX-BDF2 | Adams,c=1/8 | Adams,c=1/2

TABLE 5.1. CFL restrictions for the IMEX methods (2.11) and (2.12).

For applications, the results for the third order upwind discretizations seem more im-
portant than for the first order discretization. It is interesting to note the effect of the
apparently moderate restriction for implicit A-stability of the IMEX-BDF2 method on
the Courant number. If we demand A-stability for the stiff eigenvalues, the slightly
smaller region D in Figure 2.1 results in a reduction of the maximal Courant number
by approximately half. The reason for this is that eigenvalues of the third order up-
wind scheme are very close to the imaginary axis near zero. In this respect, among the
IMEX schemes considered here, the Adams scheme (2.12) with ¢ = 1/2 gives the best
results. However, for practical purposes the results of Section 4 seem more important,
and there the largest angle o was obtained for the BDF scheme (2.11).

In conclusion, both the IMEX-BDF method (2.11) and the IMEX-Adams method
(2.12) with ¢ = 1/2 give satisfactory stability results. For third order advection dis-
cretization, the Adams scheme allows somewhat larger Courant numbers. On the other
hand, the BDF scheme has optimal damping properties for the implicit eigenvalues.

Remark 5.1. The bounds of Table 5.1 were determined experimentally (using Matlab
graphics) and are sufficiently accurate for practical purposes. Upper bounds could be
obtained by using the techniques of [11]. For the explicit two-step schemes it is even
possible to determine maximal Courant numbers analytically by examining the char-
acteristic polynomial. These examinations are elementary but the derivations involved
are lengthy and readily become very cumbersome. In [10] a derivation is given for the
explicit scheme in (2.11) and the third order upwind discretization. The final steps in
this derivation have been carried out with Maple. To ten decimal digits accuracy, the
maximal Courant number computed from this expression equals 0.4617485908.

We have carried out a similar derivation for the explicit Adams scheme (2nd order
Adams-Bashforth) and the third order upwind discretization. In this case the maximal
CFL number in ten decimal digits accuracy is equal to 0.5801977435. The maximum
can be shown to be equal to

oZin, v(z),

where v(z) is the real zero of the cubic equation

Py(z) A + Py(z) v — g s

24 References

with
(Q(z))? 1 2
= — P = — = — —_ _ .
Py(z) 62 (z— 1) % (z) 3 Qz), Qz)=(z 1) (4z® — 5z — 17)
It can be shown that the above cubic polynomial in » has only one real root for |z| < 1,
which means that v(z) is defined by the well known formula of Cardano. However, the

minimization over z is very complicated and at this stage Maple has to be used to find
the (very long) analytical expression for the maximal Courant number given above.

References

[1] G. Akrivis, M. Crouzeix, and C. Makridadis. Implicit-explicit multistep finite
element methods for nonlinear parabolic equations. Technical Report 95-22, Uni-
versity of Rennes, 1995.

[2] U.M. Ascher, S.J. Ruuth, and B. Wetton. Implicit-explicit methods for time-
dependent PDE’s. SIAM J. Numer. Anal., 32:797-823, 1995.

[3] M. Crouzeix. Une méthode multipas implicite-explicite pour I’ approximation des
équations d’ évolution paraboliques. Numer. Math., 35:257-276, 1980.

[4] E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations
I — Nonstiff Problems. Springer Verlag, Berlin, 1987.

[5] E. Hairer and G. Wanner. Solving Ordinary Differential Equations IT - Stiff and
Differential-Algebraic Problems. Springer Verlag, Berlin, 1991.

[6] W. Hundsdorfer and J.G. Verwer. A note on splitting errors for advection-reaction
equations. Appl. Num. Math., 18:191-199, 1995.

[7] 1.D. Lambert. Numerical Methods for Ordinary Differential Systems. John Wiley
& Sons, Chicester, 1991.

[8] O. Nevanlinna and W. Liniger. Contractive methods for stiff differential equations
II. BIT, 19:53-72, 1979.

[9] J.M. Varah. Stability restrictions on second order, three-level finite-difference
schemes for parabolic equations. SIAM J. Numer. Anal., 17:300-309, 1980.

[10] J.G. Verwer, J.G. Blom, and W. Hundsdorfer. An implicit-explicit approach for
atmospheric transport-chemistry problems. Appl. Num. Math., 20:191-209, 1996.

[11] P. Wesseling. Von Neumann stability conditions for the convection-diffusion equa-
tion. IMA J. Numer. Anal., 16:583-598, 1996.

[12] Z. Zlatev. Computer Treatment of Large Air Pollution Models. Kluwer Academic
Publishers, Dordrecht, 1995.

25

Chapter 3

A parallel multiblock method for Poisson’s
equation

Abstract. Solution of large linear systems encountered in computational fluid
dynamics often naturally leads to some form of domain decomposition, especially
when it is desired to use parallel machines. It has been proposed to use approx-
imate solvers to obtain fast but rough solutions on the separate subdomains. In
this paper approximate solutions via (1) an inner preconditioned GMRES itera-
tion to fixed tolerance and (2) incomplete factorization (RILU, restricted to the
diagonal) are considered. Numerical experiments for a fundamental test prob-
lem are included which show speedups obtained on a cluster of workstations as
well as on a distributed memory parallel computer. Additionally, the parallel
implementation of GCR is addressed, with particular focus on communication
costs associated with orthogonalization processes. This consideration brings up
questions concerning the use of Householder reflections with GCR.

3.1 Introduction

Domain decomposition arises naturally in computational fluid dynamics applications
on structured grids: complicated geometries are broken down into (topologically) rect-
angular regions and discretized in general coordinates, see e.g. [30, 40, 39}, applying
domain decomposition to iteratively arrive at the solution on the global domain. This
approach provides easy exploitation of parallel computing resources, and additionally
offers a solution to memory limitation problems.

This paper addresses the parallel implementation of a domain decomposition method
for the DeFT Navier-Stokes solver described in [30], and is the continuation of work
summarized in {7]. Results from a parallel implementation of a Krylov-accelerated
Schur complement domain decomposition method are presented in [5]. A serial im-
plementation of nonoverlapping, one-level additive Schwarz method with approximate
subdomain solution [6] gave more promising results. For the present research, our goal
was to obtain an impression of the behavior of this method in parallel without incur-
ring the programming workload of a full implementation in the DeFT software; which
would require fundamental changes. To this end, we report preliminary results for a
Poisson problem on a square domain, and refer the reader to a forthcoming article with
more realistic experiments. The Poisson problem is representative of the system which
must be solved for the pressure correction method used in DeFT.

26 Chapter 3

Theoretical results on approximate solution of subdomain problems for Schur com-
plement domain decomposition methods are given by Bérgers [4], Haase, Langer and
Meyer [26, 17, 15, 16], and Cheng [9]. Brakkee (7] gives theoretical and experimental
results for non-overlapping Schwarz iterations with variable approximate inner solvers.

In this paper we demonstrate that a reasonable amount of parallel speedup can be
observed for a nonoverlapping, one-level additive Schwarz method if the subdomain
problems are solved using only a rough approximation. In Section 3.2 we briefly re-
view the relevant mathematics and give some theoretical motivation for approximate
subdomain solution.

Much effort has focused on efficient parallelization of Krylov subspace methods. Aside
from the preconditioning, the main parallel operations required in these methods are
distributed matrix-vector multiplications and inner products. For many problems, the
matrix-vector multiplications require only nearest neighbor communications, and may
be very efficient. Inner products, on the other hand, require global communications;
therefore, the focus has been on reducing the number of inner products [12, 31}, over-
lapping inner product communications with computation [10], or increasing the number
of inner products that can be computed with a single communication [2, 24].

Some practical points are brought out in Section 3.3 concerning parallel implementa-
tion of orthogonalization procedures for the GCR method. A performance model is
developed for comparison of these methods, and the validity of the model is checked
against experimental results in Section 3.4.

Additional results reported in Section 3.4 include speedup ratios, obtained by com-
parison of the parallel multiblock computation times to both the single block serial
time and the multiblock serial times, and scalability tests for which the number of
unknowns per processor is held constant as the number of participating processors is
increased. The timings were made on a cluster of workstations and a Cray T3E. In par-
ticular, our results suggest that the most efficient subdomain approximation in terms
of computation time is a simple incomplete factorization.

3.2 Mathematical Background

3.2.1 One-level, nonoverlapping domain decomposition

We consider an elliptic partial differential equation discretized using a finite volume or
finite difference method on a computational domain). By a computational domain
we mean the set of unknown values to be approximated, together with their associated
locations in space. Let the domain be the union of M nonoverlapping subdomains 2,y,,
m=1,...,M.

Discretization of the PDE results in a sparse linear system

Az =b, (3.1)

A parallel multiblock method for Poisson’s equation 27

with z, b € RV. The structure of the matrix A is determined by the stencil of the
discretization. Even if there is no overlap between the subdomains, there is an inter-
subdomain coupling due to the stencil. That is, the equation for an unknown adjacent
to a subdomain interface is dependent on an unknown across the subdomain boundary.

One technique for solving this problem is to permute the system (3.1), grouping to-
gether into blocks those unknowns which share a common subdomain to produce a
block system:

A11 N A]M Iy bl
AM1 ve. Auum IyMm bM

In this system, one observes that the diagonal blocks Ay, express coupling among the
unknowns defined on a common subdomain (€2,,), whereas the off-diagonal blocks A,
m # n represent coupling across subdomain boundaries. The only nonzero off-diagonal
blocks are those corresponding to neighboring subdomains.

The additive Schwarz iteration introduces the block Jacobi preconditioner:

All
K = ‘e . '
Amm

which, together with the residual, defines a system whose solution provides an ap-
proximation of the error. Note that this system may be efficiently solved on parallel
computers. It is this form of domain decomposition which we will consider in the rest
of the paper.

For a thorough discussion of domain decomposition methods see the book [32] and
the review article [8]. Each of these publications contains an extensive bibliography.
Convergence theory for domain decomposition methods is discussed in [32]. Roughly
speaking, the convergence rate suffers proportionally to the number of subdomains in
each direction. If a constant overlap (in physical units) is maintained, the convergence
rate is independent of grid size; however, for zero overlap the convergence is relatively
poor. The convergence rate may additionally be made independent of the number
of subdomains if a coarse subspace correction is applied: for example, the residual is
projected onto a single coarse grid domain, where a correction is computed which is
then interpolated back to the subdomains.

3.2.2 Krylov subspace acceleration

In practice (3.2) is solved iteratively, using K as a preconditioner for a Krylov subspace
method, such as the conjugate gradient method for symmetric problems or the GMRES
method [29] for nonsymmetric problems. For our purposes a practical method is GCR.

28 Chapter 3

Algorithm: GCR

Given: initial guess z,

To = b— A.’L'o

for k=1,..., convergence
Solve K& = rx—; (approximately)
§g= Av
[qln vk] = orthonorm (q.’: ¥, i, Vi, & < k)
7= qfrk_l
Update: z; = 25— + yvi
Update: ry = 11 — Ygi

end

FIGURE 3.1: The GCR Algorithm

[11], shown in Figure 3.1. In the algorithm and elsewhere in this paper the Euclidean
inner product (z,y) = zTy and associated norm ||z|| = (z¥z)/? are used.

The function orthonorm() takes input vectors § and %, orthonormalizes § with respect
to the g;, ¢ < k, updating ¥ as necessary to preserve the relation § = A%, and returns
the modified vectors ¢; and vx. In serial computations, the modified Gram-Schmidt
method, Figure 3.2, is often employed for the orthonorm() function. We discuss
alternative orthogonalization methods in later sections of this paper.

Algorithm: Modified Gram-Schmidt
lgk, vi) = orthonorm (§,%, g;, v;,% < k):
fori=1,...,k—1
o= <67 qi)
i=q-aa
U =7— ay;
end
B =l
o =4q/B; v =7/8

return

FIGURE 3.2: The modified Gram-Schmidt algorithm

In exact arithmetic, and assuming it does not break down, GCR produces the same
iterates as GMRES. However, GCR does not take advantage of the Lanczos recursion,
but instead requires the storage of an extra set of orthogonal residual search vectors.
GCR has a number of benefits; among them: (1) the preconditioner K need not re-
main constant (nor even be a linear operator; the GMRESR algorithm in [34] uses
GMRES(m) as a preconditioner); (2) one is free to employ truncation strategies such

A parallel multiblock method for Poisson’s equation 29

as in [35]; and (3) if the LSQR switch is employed [34], the method will not break
down. The importance of allowing a variable preconditioner will be discussed in the
next section. In Figure 3.1 the GCR method is defined for an unlimited number of
iterations, and may incur memory limitations. In practice, therefore, it is necessary
either to restart the iteration periodically, discarding all stored vectors, or to maintain
only a fixed number of vectors, applying some criterion to determine which vectors
will be kept. This second option, referred to as truncation, is shown in [35] to be very
effective in reducing the number of iterations. In the numerical experiments of this
paper we do not use any truncation strategies, but simply restart; however, truncation
is used in the DeFT software.

3.2.3 Approximate subdomain solution

Solution for # from the preconditioning equation K& = ry_; in the GCR algorithm
requires solution of M subdomain systems Appmiim = rm, m = 1,..., M. Since these
problems have a nonzero structure similar to that of the original matrix A, and since
they may still be quite large, it is advantageous to solve them using an iterative method.
A question which arises naturally, and for purely practical reasons, addresses the tol-
erance to which these inner iterations should converge. Perhaps a very rough approxi-
mation would be sufficient. A number of authors have considered approximate solution
of subdomain problems. In particular they have considered the consequences of using
very fast, rough approximations to reduce the total computing time necessary to solve
the global problem.

Some possible strategies for approximating the subdomain solutions are:

e A second (inner) iterative method (possibly preconditioned) either to a fixed
tolerance, to a variable tolerance, or for a predetermined number of iterations.

e Approximate factorization or approximate inversion of the subdomain problems.

e Do nothing at all. In this case one uses the domain decomposition purely as a
form of data distribution and applies the unpreconditioned Krylov method.

Tan [33] shows that if the inner problems are solved to some tolerance in each outer
iteration, then the optimal strategy for choosing the tolerance is a fixed one. That
is, it is not necessary to make the subdomain solution tolerance smaller as the global
solution converges.

Brakkee [7] has proven the following theorem. Let A;! be the matrix which represents
the approximate inversion of the ith block. In the case of a Krylov subspace method as
inner solver, this would be the actual value of the minimizing polynomial applied to A.
Similarly define K~! to be the approximate preconditioner consisting of the diagonal

30 Chapter 3

blocks A;*. If for each subdomain i = 1,..., M it holds that || — AzAZ!|| < €, then
the condition number of the approximately preconditioned matrix satisfies

k(AK™Y) < 1+e

~“1-¢

K(AK™Y). ' (3.3)

where x(A) = ||A|||A~"]} is the condition number of A. Unfortunately, the condition
|I — AzAZ'|| < e is nontrivial to check.

Essential to the proof of the above theorem is the fact that
K(AK™) = k(AK'KK™') < k(AKY)k(KK™Y).

This bound may be clarified by noting that the matrix B = KK~ is a block diagonal
matrix with blocks B; = AzAZ!, i = 1,..., M. The spectrum of the block diagonal
matrix BT B is a subset of the union of the spectra of the blocks; thus, if there exist v, 3
bounding the singular values of all blocks: 0 < @ < min; omin(B;) < max; Ima(B;) < 8,
then

(AR < gn(AK'l).

Competing against convergence rate for an efficient solution method is the expense of
computing the subdomain approximate solutions. The RILUD preconditioner, though
a less effective approximate solver than GMRES iterations in terms of convergence rate,
is far cheaper, at least for the problems considered here. Thus one makes a tradeoff
between effectiveness of an approximate preconditioner in terms of convergence rate
and speed in terms of computational expense.

Note that if the subdomains are solved using a Krylov subspace method such as GM-
RES, then the approximate solution is a function of the right hand side, which is the
residual of the outer iteration. Furthermore, if the subdomains are solved to a toler-
ance, the number of inner iterations may vary from one subdomain to another, and
in each outer iteration. The effective preconditioner is therefore nonlinear and varies
in each outer iteration. A variable preconditioner presents a problem for GMRES:
namely, the Lanczos recurrence relation no longer holds. To allow the use of a vari-
able preconditioner, Saad [28] has developed the Flexible GMRES (FGMRES) method,
which requires storage of an auxiliary set of vectors such as with GCR. However, it is
not possible to use truncation strategies with FGMRES. Because we use truncation in
our Navier-Stokes code, we consider GCR in the following.

Our choice of approximate solution methods is motivated by the results obtained in
[6]. In that paper, GMRES was used as to approximately solve subdomain problems to
within fixed tolerances of 1074, 103, 10~2 and 10~. Additionally, a blockwise appli-
cation of the RILUD preconditioner was used. RILUD, a diagonal-restricted variant of
the preconditioner introduced in [1], is a weighted average of an ILUD preconditioner
[25] and an MILUD preconditioner [14]. The weighting parameter w, was assigned a

A parallel multiblock method for Poisson’s equation 31

value of 0.95 in our experiments. See also [37] for useful results with RILU factor-
izations applied to Navier-Stokes equations. The use of incomplete factorizations to
obtain subdomain approximations has been advocated by Keyes [22] and Goossens et
al. [13] among others. The results of [6] indicated that coarser tolerances were more
effective. However, all numerical results presented therein were obtained from serial
runs. In Section 3.4 we will present numerical results using the above approximate
subdomain solution methods in parallel.

3.2.4 Orthogonalization methods

The primary challenges to parallelization of GCR are parallelization of the precondi-
tioning—a difficulty which disappears when a block preconditioner K is used—and
parallel computation of the inner products. Inner products require global communi-
cation and therefore do not scale. Much of the literature on parallel Krylov subspace
methods and parallel orthogonalization methods is focused on orthogonalizing a num-
ber of vectors simultaneously. See, e.g. [27, 20, 2, 10, 24]. However, this is not possible
using a preconditioner which varies in each iteration. For this reason, we need a method
for orthogonalizing one new vector against an orthonormal basis of vectors.

The modified Gram-Schmidt method of Figure 3.2 suffers from the fact that the inner
products must be computed using successive communications, and the number of these
inner products increases by one with the iteration number. This is not the case if one
uses the classical Gram-Schmidt method, Figure 3.3. In this algorithm all necessary

Algorithm: Classical Gram-Schmidt
[gk, vx] = orthonorm (§, %, gi, v, ¢ < k):

B=(a,q)

fori=1,...,k—-1
o; = {({,)

end

B=y\B-XTia?

aw=p"i-r, aiQi)

w=p"1 {1~ a.-v.-)
return

FIGURE 3.3: The classical Gram-Schmidt algorithm

inner products can be computed with a single global communication. Unfortunately,
as shown by Bjorck [3], the classical Gram-Schmidt method is unstable with respect
to rounding errors, so this method is rarely used.

On the other hand, Hoffmann [19] gives experimental evidence indicating that a two-
fold application of Figure 3.3 is stable. Furthermore, it appears that if orthogonality

32 Chapter 3

is important, such a re-orthogonalization is also required even for the more stable
modified Gram-Schmidt algorithm.

A third method which has been suggested is the parallel implementation of Householder
transformations, introduced by Walker [38]. We shall reformulate that method for GCR
in the following section. Additionally, we will present a simple parallel performance
analysis for comparison of these three orthogonalization procedures.

3.3 Householder orthogonalization

Walker [38] has proposed a GMRES variant using a vectorized version of House-
holder transformations as an alternative to the modified Gram-Schmidt procedure.
The Householder method has the advantage that it requires only a fixed number of
communications per GMRES iteration. In this section we describe the GCR. imple-
mentation and discuss some practical details concerning its use.

3.3.1 Description of the method

In the following discussion we use the notion ay to represent the kth column of a matrix
A and a® to represent the ith component of a vector a. Let a matrix A € K™ m < n
with linearly independent columns be factored as QZ, where Q is orthogonal and Z
is upper triangular. Then the kth column of A is given by e, = Q2. It follows that
a € span{qi,...,qx}. In other words, the columns of) form an orthonormal basis for
the span of the columns of A.

We construct @ as the product of a series of Householder reflections, Q@ = Py --- Py,
used to transform A into Z. The matrices P; have the following properties:

i) P?=1I=PFP,
ll) Re,— = €j, lf] <1,
iil) P(P_1--- P)as = 2.

In property ii) e; is the jth canonical unit vector in R*. A Householder reflection is
wiw]

given by P, = I — 2=0%-, for some w; € R®. Note that such a matrix has property i).

w; w; .
Property ii) is ensured by requiring the first i — 1 components of w; be zero: w?)=¢

for j < 1.

Suppose one has already produced k orthogonal basis vectors qy, . . ., ¢; and stored them
along with the transformation vectors wj,...,w; corresponding to P,..., P. Given
a candidate vector ax,;, one must first apply the previous reflections as described in
(38]:

a=PF---Pag, = (I - 2WkL;lW,Z‘)ak+1

A parallel multiblock method for Poisson’s equation 33

where here and elsewhere we denote by W the matrix whose columns are wy, ..., w,
and where

1
2ulw, 1

Ly
2wTw, ... 2wlwey 1

Note especially that in the (k + 1)th iteration one must compute the last row of Ly,
which is the vector (2w W_1,1), as well as the vector W7 ax,1. This requires 2k — 1
inner products, but they may all be computed using only a single global communication.

Now having computed & one wishes to find wg; such that Py, satisfies iii):

Pk+16' =241 = zil_')_lel + -4 zl(c'-::]-.l)ek-!»l
=l + - +aPe; + cers, (3.4)

where property ii) has been used for the last equality.

Because of the relation

T T
~ Wi41W P Wiy1Q
Popa= (I - 2——)a =G — 20—y, (3.5)
We1Wk+1 Wi 41 Wk+1
one must have wgy, € span{d,ey,...,ex1}. However equation (3.4) provides the
relation which must hold among d, e, ..., ex. Let @ be the vector obtained by setting

the first k£ elements of @ to zero. Formally, one has % = Jy,a, where

0,
Jk+1 - [) In-—k] |

Thus, wi41 € span{w, ex+1}. The length of wy4, is a free parameter, so take wgy =
W + fBeg,1. Substituting into (3.5) gives

wy, @
-~ ~ + ~
Pepd=a— 2-T—‘—(Jk+1a + Bex+1)
W1 W+1
T ~ T o~
Wiy, 8 . wi 18
=(I-2 THl Ji41)d —- 2ﬂTk+—1—ek+1-
Wi 1 Wh+1 W1 Wk+1
. wl &
To ensure that all elements below the (k+1)th are zero, one requires 12 “’;}Hl =
k+1

But,

Wiy = (B + Peprs)Td = ||| + pa+),

Wi Wiyt = (B + Been) | = |B]1* + 28a¢+Y + 2.

34 Chapter 3

Substituting these numbers into the above relation, one finds § = +||@||, and the
sign of § is chosen to be the same as that of w(*+1) to reduce the risk of subtractive
cancellation:

Wiyt = @ + sign (G&+V) || D |ex 1.

In practice, the w; are normalized to length one. Since « is the (k + 1)th component
of Py41d, substitution of the above relation into (3.5), and noting that

T ~
WyG& 1
B
Wi 1Wk+1

gives @ = a®+1) — *+1) _gign (§*+1)|||| = —sign (F*+D)||d]| = — B, and the length
of wy4; can be expressed as

[lwgs1]l = V202 — 2amk+D).
The (k + 1)th column of @ is the new orthonormal basis vector,

Qery1 = Py -+ Prpiegy,

and because of property ii), the yet to be computed reflections will not affect this
column. Multiplying both sides of (3.4) by P, - - - P4 gives:

axs1 =@V + -+ d%gq + ages,

from which it follows that

k
1 (s
Q41 = [ak+1 - E a(')q.] . (3.6)

=1

Within the GCR. algorithm, the same linear combination must be applied to the v;
to obtain v;;. As pointed out by an anonymous referee, use of equation (3.6) may
result in subtractive cancellation, causing the reduced stability of this Householder
implementation observed in the next section. However, a relation of this form is needed
to be able to enforce the identity gx+; = Avi,,, necessary for GCR.

Our implementation requires three communications in the k + 1th iteration, namely:

1. The computation of @ using Walker’s approach, requires 2k — 1 inner products,
all of which can be performed with a single communication.

2. A second communication is necessary to broadcast the first k + 1 elements of &.

3. A communication is required to compute ||@]| for determining a.

A parallel multiblock method for Poisson’s equation

35

Algorithm: Householder Orthogonalization
[qk, 'Uk] = orthonorm (qv 57 qs, ’l),',’i < k)
if k==
w; =§
else
ifk==
L] =1
else
Lk_g 0
Lk-l - [2wg‘_1Wk_2 1]
end
y= WJ;I‘_lq
Solve Ly 1d=1y
wi =§—2Wi_1d
end
@ =wd i=1,...,k
Broadcast (d@)
G=0— Y ag;
vk =T = i 6%
Set w,(:) =0,i=1,...,k—-1
a = —sign(@®)||w||

w,(ck) = 'w,(f) -

o =q/o

Uy = 'uk/a

wi = wi/ v/ 20(a — a®)
return

FIGURE 3.4: The Householder orthogonalization algorithm

The algorithm is shown in Figure 3.4, with ¢ playing the role of ¢ in the above discus-

sion.

Comparing the Householder implementation with modified Gram-Schmidt,

e In the kth iteration the Householder method requires three communications,

whereas Gram-Schmidt requires k + 1.

e Householder requires approximately twice as many inner products as Gram-

e The Householder method requires the storage of an extra set of k vectors.

Schmidt, plus 1% times the number of ‘axpy’ operations.

A drawback of the Householder method is that there appears to be no simple way to

36 Chapter 3

incorporate truncation schemes in the GCR method if Householder is used for orthog-
onalization.

In the next section we develop a performance model for comparison of the Householder
and Gram-Schmidt methods.

3.3.2 Performance model

To give insight into the choice of an orthogonalization procedure, consider a simple
performance model. Let the time required for communication of a message of n floating
point numbers be given by

teomm = o + fn,

where 1, is the fixed time required for a message of length zero, and S is the time per
floating point number (bandwidth). Let the time for n floating point operations be
given by

tcomp = ¢n,

where ¢ is the time for 1 floating point operation. Similar computation/communication
models are used, for example, in [10, 27, 18, 23].

Let p denote the number of processes, and define a function f(p) which gives the max-
imum number of non-simultaneous sends necessary for any given process participating
in a broadcast operation to p — 1 processes. The function f(p) is machine-dependent
and also dependent on the distribution of processes on the machine. For example,
assuming perfect connectivity and that processes not participating in a given com-
munication are free to participate in a concurrent communication, the broadcast of a
message among p processes requires f(p) = [log, p| consecutive send operations from
the broadcasting process. An Ethernet broadcast requires f(p) = p — 1 consecutive
send operations.

Assume each processor is responsible for an n x n subdomain with n? unknowns. Define
the times for some basic operations:

Op. Communication | Computation | Definition

send (k) | to + Bk send a message of length k
flop (n) neg n floating point operations
B(p, k) | f(p)(to + Bk) broadcast k elements

G(p,k) | 2f(p)(to + Bk) global sum k elements
SIP(k) | G(p,k) 2kn%¢ k inner prod. simult. comms.
FS(k) k%9 forward substitution, order k
axpy 2n2¢ z=az +y, scalar a

A parallel multiblock method for Poisson’s equation 37

Note that we distinguish between inner products that can be computed simultaneously
(i.e. with a single communication) and inner products that cannot. For example, k
simultaneous inner products are denoted SIP(k), whereas k non-simultaneous inner
products are denoted k SIP(1). The modified and re-orthogonalized classical Gram-
Schmidt and Householder routines can be broken down into components as follows. In
the kth iteration of GCR:

Mod. Gram-Schmidt | k SIP(1)

2k — 1 axpy
Re-orthog. CGS 2 SIP (k)

3k — 1 axpy
Householder SIP (2k — 3)
SIP(1)

FS (k—-1)

3k — 3/2 axpy
1B (p, k)

We have implemented the re-orthogonalized classical Gram-Schmidt method so that in
the kth iteration, the candidate residual search vector § is twice orthogonalized against
the basis qi,...,qc_; to obtain g;, and only then is the search vector vy computed.
This eliminates a series of vector updates and explains why there are only 3k —1 ‘axpy’
operations. .

Based on the communication model outlined in the previous two tables, the orthogo-
nalization time required for s iterations of GCR (without restart) using the modified
Gram-Schmidt (MGS), re-orthogonalized classical Gram-Schmidt (CGS2) and House-
holder (HH) methods, respectively, is given by:

tMas =&g;—1) [6n°6 + 21 (p) (o + B)] — s(2n?¢), 3.7
toas =272 [1on%g + 47()8] + s [47)t - 20], (3.8)
tan =" DD 4D 1000 g)g 4 57(5)0)

+ 5 [£(p)(6to — 4B) — (Tn* — 1)¢] . (3.9)

If the forward substitution in the Householder algorithm is negligible, the model be-
comes

N Chad)) ; D (10026 + 57(5)8] + s [£(9) (6t — 48) — Tn*g]

Comparing this expression with (3.8) for the re-orthogonalized classical Gram-Schmidt
algorithm, we see that the two methods are very similar in cost, while we shall see later
that re-orthogonalized Gram-Schmidt is much more stable than Householder for the
standard test problem. The similarity in cost is confirmed by our experiments.

tar

38 Chapter 3

Tests were performed on a cluster of HP workstations to obtain representative values
for the parameters tg, # and ¢:

o 47x107, BmaT5x107% g~ 49x1078

Similar tests were performed on a Cray T3E using MPI communications with the
results:

tp~24x107° fBx54x10"% $~58x10%.

Assuming the models (3.7), (3.8)and (3.9), and assuming f(p) = p — 1 for the work-
station cluster and f(p) = [log, p] for the Cray T3E, the quantities

_ orthog. time MGS
Fan = orthog. time HH ’
orthog. time MGS
orthog. time CGS2

(3.10)

(3.11)

Feas2 =

are plotted as a function of n for s = 60 and p = 4,9 (p = 4,9, 25 for the Cray T3E) in
Figure 3.5. The Householder (resp. CGS2) method is faster at points in the figure where
Fan > 1 (resp. Fegsz > 1). The model predicts that the alternative methods (HH) and
(CGS2) are only advantageous for small enough subdomain size. On the workstation
cluster this size may be about 10000 unknowns on 4 processors and somewhat more
on 9 processors. On the Cray T3E, the number of unknowns per processor should be
fewer than 1000 for 9 or even 25 processors. For larger problems the smaller amount
of work involved in modified Gram-Schmidt orthogonalization outweighs the increased
communication cost. Note also that the model indicates that the computational efforts
of Householder and re-orthogonalized classical Gram-Schmidt are very similar, with
the Gram-Schmidt variant to be preferred in the useful range.

In the following section we shall see that, while the model is qualitatively correct, the
observed performance curves are lower than the ones predicted here.

Another issue of relevance to the choice of an orthogonalization method is the stability
of the method with respect to rounding errors. Figure 3.6 shows a comparison of
the classical, modified, and re-orthogonalized classical Gram-Schmidt methods and the
Householder implementation for the test matrix of [3]: '

11

The comparison method is the QR decomposition function of Matlab, based on the
traditional Householder implementation. We see that the re-orthogonalized classical

A parallel multiblock method for Poisson’s equation 39

HP cluster

Y T T T T T T —

20 30 40 50 60 70 80 90 100
subdomain gridsize, n

Cray T3E

— T —

1.4f — HH_ A
--- CGS2 ||

0. . . A A ; ;
20 30 40 50 60 70 80 90 100
subdomain gridsize, n

FIGURE 3.5: Predicted speedup with Householder orthogonalization

Gram-Schmidt method gives the smallest orthogonalization error of all methods for
this test case.

In conclusion, we mention that there does not seem to be any reason to prefer the par-
alle] Householder method over the re-orthogonalized classical Gram-Schmidt method,
at least in this context. In terms of parallel efficiency the two methods are almost
identical. However the Gram-Schmidt variant is simpler to implement, provides signif-
icantly less orthogonalization error, and allows truncation strategies to be employed in
a natural way.

3.4 Numerical experiments

In this section, we give numerical results which provide useful insights into approximate
solution techniques. Numerical results were obtained from both a cluster of HP-735
and HP-755 workstations (99-125 MHz) and from a Cray T3E parallel computer. All

40 Chapter 3

o Bjorck test case
10 : — . —
10° 1
CGS
g 10-‘° r =% 2 4
E M-
MGS Taas
107, QR ——
[T T T T e
CGS2
107! .
-7 -6 -5 -4 -3 -2 -1 [
Iog‘ of

F1GURE 3.6: Comparison of orthogonalization error for classical (CGS), modified (MGS), re-
orthogonalized (CGS2) Gram-Schmidt methods, Householder (HH) method, and Matlab QR function
on Bjorck test problem.

communications were handled with MPI. Reported times are obtained from the MPI
timing functions, and are the minimum time achieved over three runs. For our interests,
the workstation results are as important (or more so) than those from the parallel
machine, due to the immediate availability and relative cheapness of workstations.

As a test example, we consider a Poisson problem, discretized with the finite volume
method on a square domain. The pressure correction matrix, which we solve in each
time step of an incompressible Navier-Stokes simulation to enforce the divergence-free
constraint [21], is similar to a Poisson problem, but with asymmetry arising from the use
of curvilinear coordinates. Solution of this system requires about 75% of the computing
effort. So that we can obtain a useful indication of the performance of our method on
the pressure correction matrix, we do not exploit the symmetry of the Poisson matrix
in these experiments. The domain is composed of an M x M array of subdomains,
each with an n x n grid. With h = Az = Ay = 1.0/(Mn) the discretization is

A5 ~ Uipaj = Uim1j — Wijo1 — Ui = B2 Sy,

The right hand side function is f;; = f(ih, jh), where f(z,y) = —32(z(1-z)+y(1-y)).
Homogeneous Dirichlet boundary conditions u = 0 are defined on 9, implemented by
adding a row of ghost cells around the domain, and enforcing the condition, for example,
Up; = —uy; on boundaries. This ghost cell scheme allows natural implementation of
the domain decomposition as well.

A parallel multiblock method for Poisson’s equation 41

3.4.1 Evaluation of performance model, Householder orthogonalization

The performance model for the orthogonalization methods in the previous section pre-
dicts that the modified Gram-Schmidt algorithm is to be preferred for large subdomain
problems. We wish to investigate this experimentally, to confirm the model predictions.
The results presented here were computed for a fixed number of iterations s, equal to
the restart value.

Figure 3.7 is the experimental analog of Figure 3.5. The parameters Fgg and Fogsa
are plotted for subdomain grid sizes of n = 20, 40, 60, 80, 100 and a fixed number
of iterations s = 60. Measurements were made for 4 and 9 processors (M = 2,3,
respectively) on the HP cluster and 4, 9 and 25 processors (M = 2,3, 5, respectively)
on the Cray T3E.

HP cluster

HH 1
CGS2

60
subdomain gridsize, n

Cray T3E

60
subdomain gridsize, n

FIGURE 3.7: Measured speedup with Householder (HH) orthogonalization and re-orthogonalized
classical Gram-Schmidt (CGS2), restart value s = 60.

By comparison one sees that the model developed in the previous section is qualitatively
correct, but is rather optimistic with respect to the range of problem sizes for which

42 Chapter 3

Householder is more effective than Gram-Schmidt.

3.4.2 Evaluation of approximate subdomain solvers

In this section we compare speedups obtained with a number of approximate subdomain

solvers to get an impression of which solvers might be effectively used with the Navier-

Stokes equations. For the tests of this section, a fixed restart value of s = 30 was

used, and modified Gram-Schmidt was used as the orthogonalization method for all
computations. The solution was computed to a fixed tolerance of 10~% unless noted '
otherwise. The performance measure is computation time, after initialization, taken

as the minimum achieved over three runs.

The subdomain approximations will be denoted as follows:
e GMR6 = restarted GMRES with a tolerance of 1075, (preconditioned with RILUD)
e GMR2 = restarted GMRES with a tolerance of 10~2, (preconditioned with RILUD)
e GMRI = restarted GMRES with a tolerance of 10~ (preconditioned with RILUD)

e RILUD = one application of an RILUD preconditioner.

Speedups are compared both to single and multiblock serial computations.

Single block serial case

The single block serial solution times in seconds on grids of dimension n = 60, 120,
180, 240 and 300 are, on the HP cluster:

n=60 120 180 240 300
GMR6 0.788 7.56 281 825 195
GMR2 0.862 800 34.7 758 180
GMR1 0815 6.75 29.3 821 166
RILUD 110 11.0 41.6 117 292

and on the Cray T3E:

n=60 120 180 240 300
GMR6 0.483 3.98 11.9 34.7 80.6
GMR2 0563 4.24 148 320 749
GMR1 0552 362 132 354 69.3
RILUD 0.666 549 17.2 499 119

A parallel multiblock method for Poisson’s equation 43

Note that GCR preconditioned with GMRES iterations gives a variation of the GM-
RESR method of [34]. All three lead to approximately the same solution time. This
is in agreement with the findings of [34, 35, 36] for the GMRESR method. The fourth
case is equivalent to solving the problem with GCR, preconditioned with the RILUD
preconditioner. It is also in keeping with the findings of the above papers that this
method is slower than GMRESR.

Multiblock solution, fized problem size

In this section we compare results for a fixed problem size on the 300 x 300 grid with
4 and 9 processors on the workstation cluster and 4, 9, 16 and 25 processors on the
Cray T3E. We use one processor per block. The timing results in seconds are, for the
HP cluster:

p=4 p=9
GMR6 1430 386
GMR2 346 220
GMR1 457 261
RILUD 157 89

and for the Cray T3E:

p=4 p=9 p=16 p=25
GMRS6 685 178 143 79.3
GMR2 167 102 63.3 37.1
GMR1 222 118 65.6 38.9
RILUD 653 259 21.9 14.9

On both systems one observes that the method using RILUD as the subdomain ap-
proximation gives a faster computation time than the fastest serial computation times
from the previous subsection. On the Cray T3E, the methods GMR1 and GMR2 are
also somewhat faster than the fastest serial time, for p = 16 and p = 25 processors.

Furthermore, one sees that among those methods in which GMRES is used to solve the
subdomain problems, a tolerance of 102 gives a faster solution time than a tolerance
of 107, Thus some subdomain convergence appears to be desirable. On the other
hand, the fastest solutions in each case are obtained with the least accurate subdomain
approximation—namely, the RILUD preconditioner.

To give insight into these results, it is useful to look at the iteration counts: both the
number of outer iterations and the average number of inner iterations (in parentheses).

p=4 p=9 p=16 p=25
GMR6 78(68.4) 83(38.7) 145(31.4) 168(26.4)
GMR2 86(15.7) 118(15.7) 168(13.7) 192(10.9)
GMR1 139(13.6) 225(9.3) 287(7.1) 303(5.9)
RILUD 341(1) 291(1) 439(1) 437(1)

44 Chapter 3

Note the large increase in the number of outer iterations incurred for GMR1 over
GMR?2, which helps to explain the faster time for GMR2. Apparently, an inner loop
tolerance of 107! is insufficient for fast global convergence, yet is still a very expensive
subdomain approximation. The RILUD approximation, on the other hand, though it
gives the worst convergence rate of the outer loop, is very cheap to apply; in fact, cheap
enough to make it the fastest method.

Figure 3.8 illustrates the speedup against the multiblock serial solution, obtained on
the workstation cluster and on the Cray using GMR6, GMR2, GMR1 and RILUD
subdomain approximations. We would expect nearly perfect speedup, especially for
large problems, since the work required for preconditioning is proportional to the total
number of unknowns, while the amount of communication is proportional to the length
of subdomain interfaces. The observed speedup is quite good on the Cray; however,
on the workstation cluster, especially for p = 9 the subdomain grid size needs to be
quite large to obtain a high speedup. In any case we can conclude that if domain
decomposition is going to be used anyway for geometric reasons or due to memory
limitations, a speedup can be achieved by parallelization and subdomain approximation
with an RILUD preconditioner.

Multiblock case, scaled problem size

Figure 3.9 shows a comparison of the parallel scalability of the domain decomposition
method with approximate subdomain solution. The figure shows computation times
on 1, 4 and 9 processors (1, 4, 9, 16 and 25 processors for the Cray T3E) with a fixed
subdomain size of 120 x 120. A fixed number of outer iterations (30) were computed.
Note that the method scales almost perfectly on the Cray for this range of processors.
On the workstation cluster, the scaling is somewhat poorer, but reasonable.

3.5 Conclusions

For applications which require domain decomposition for some reason other than par-
allelism, it is possible to achieve a great reduction of computation time by solving
subdomain problems approximately. A reasonable speedup with respect to the single
block serial solution method is also attainable, particularly when using many processors
of a massively parallel distributed memory machine. This speedup is less impressive
when computing on a cluster of workstations, due to the increased communication
latency.

In our experience, the best subdomain approximation method in parallel is a simple
incomplete factorization restricted to the diagonal: the RILUD factorization. With this
preconditioner used as a subdomain approximation, the approximate solves become so
cheap (and yet sufficiently accurate) that they offset the increased number of global
iterations resulting from inaccurate subdomain solution.

A parallel multiblock method for Poisson’s equation 45

HP cluster

©

‘-!‘d)\l

speedup
=

N W
T T

%0 100 150 200 250 300
grid size

FIGURE 3.8: Speedup vs. multiblock solution on the cluster of workstations and the Cray T3E.

A performance model for the modified Gram-Schmidt, re-orthogonalized classical Gram-
Schmidt, and Householder orthogonalization methods indicates that classical Gram-
Schmidt and Householder require approximately the same amount of work and com-
munication, making the classical Gram-Schmidt more attractive, since it is easier to
implement and more stable. The Householder and re-orthogonalized Gram-Schmidt
methods are most effective for relatively small problems: using nine processors, up to
about 900 unknowns per processor for a Cray T3E, or 8000 unknowns per processor
for a cluster of workstations. One promising area of application for these procedures
is in long-time simulations of systems of this size.

Acknowledgements

The authors are indebted to Pieter Wesseling and an anonymous referee for critical
remarks on the manuscript.

46 References

? HP cluster -
10 i
............. GMAB.....ccooovivees
2] S GMR2_ ..o
21 S
R S GMR1
RILUD
0|
1 N—
01 s 9
processors, p
¥ Cray T3E
10
o e GMR6
1%t
GMR2
R S Lt e
g | eemom T I
) GMR1
10} 1
RILUD
10° L .
! 4 16 25
processors, p

FIGURE 3.9: Computation time for fixed subdomain size of 120 x 120.

References

[1] O. Axelsson and G. Linskog. On the eigenvalue distribution of a class of precon-
ditioning methods. Numerische Mathematik, 48:479-498, 1986.

[2] Z. Bai, D. Hu, and L. Reichel. A Newton-basis GMRES implementation. IMA
Journal of Numerical Analysis, 14:563-581, 1994.

[3] Ake Bjérck. Solving linear least squares problems by Gram-Schmidt orthogonal-
ization. BIT, 7:1-21, 1967.

[4] Christoph Borgers. The Neumann-Dirichlet domain decomposition method with
inexact solvers on the subdomain. Numerische Mathematik, 55:123-136, 1989.

[5] E. Brakkee, A. Segal, and C. G. M. Kassels. A parallel domain decomposition
algorithm for the incompressible Navier-Stokes equations. Simulation Practice
and Theory, 3:185-205, 1995.

References 47

[6] E. Brakkee, C. Vuik, and P. Wesseling. Domain decomposition for the incom-
pressible Navier-Stokes equations: Solving subdomain problems accurately and
inaccurately. International Journal for Numerical Methods in Fluids, 26:1217-
1237, 1998.

[7] Erik Brakkee. Domain Decomposition for the Incompressible Navier-Stokes Equa-
tions. PhD thesis, Delft University of Technology, P.O. Box 5031, 2600 GA Delft,
The Netherlands, April 1996.

[8] Tony F. Chan and Tarek P. Mathew. Domain decomposition algorithms. In Arieh
Iserles, editor, Acta Numerica, pages 61-143. Cambridge University Press, 1994.

[9] H. Cheng. On the effect of using inexact solvers for certain domain decomposition
algorithms. East-West J. Numer. Math., 2(4):257-284, 1994.

[10] E. de Sturler and H. A. van der Vorst. Reducing the effect of global communica-
tion in GMRES(m) and CG on parallel distributed memory computers. Applied
Numerical Mathematics, 18:441-459, 1995.

[11] Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. Variational
iterative methods for nonsymmetric systems of linear equations. SIAM Journal
on Numerical Analysis, 20(2):345-357, April 1983.

[12] J. Erhel. A parallel GMRES version for general sparse matrices. Electronic Trans-
actions on Numerical Analysis (http://etna.mcs.kent.edu), 3:160-176, 1995.

[13] S. Goossens, E. Issman, G. Degrez, and D. Roose. Block ILP~'U(0) precondition-
| ing for a GMRES based Euler/Navier-Stokes solver. In H. Liddell, A. Colbrook,
B. Herzberger, and P. Sloot, editors, High Performance Computing and Network-
' ing ’96, Lecture Notes in Computer Science 1067, pages 619-626. Springer-Verlag,
1996.
[14] Ivar Gustafsson. A class of first order factorization methods. BIT, 18:142-156,
1978.
|
|
\
\
|

{15] G. Haase, U. Langer, and A. Meyer. The approximate Dirichlet domain decom-
position method. Part I: An algebraic approach. Computing, 47:137-151, 1991.

[16] G. Haase, U. Langer, and A. Meyer. The approximate Dirichlet domain decom-
position method. Part I: Applications to 2nd-order elliptic B.V.P.s. Computing,
47:153-167, 1991.

[17] G. Haase, U. Langer, and A. Meyer. Domain decomposition preconditioners with

inexact subdomain solvers. Journal of Numerical Linear Algebra with Applications,
1(1):27-41, 1991. :

48 References

[18] R. W. Hockney and C. R. Jesshope. Parallel Computers 2: Architecture, Pro-
gramming and Algorithms. Adam Hilger, Bristol, 1988.

[19] Walter Hoffman. Iterative algorithms for Gram-Schmidt orthogonalization. Com-
puting, 41:335-348, 1989.

[20] W. Jalby and B. Philippe. Stability analysis and improvement of the block
Gram-Schmidt algorithm. SIAM Journal of Scientific and Statistical Computing,
12(5):1058-1073, 1991.

[21} J. van Kan. A second-order accurate pressure-correction scheme for viscous incom-
pressible flow. SIAM Journal on Scientific and Statistical Computing, 7(3):870~
891, 1986.

[22] David E. Keyes. Aerodynamic applications of Newton-Krylov-Schwarz solvers.
In S. M. Despande, S. S. Desai, and R. Narasimha, editors, Fourteenth Interna-
tional Conference on Numerical Methods in Fluid Dynamics, pages 1-20. Springer,
Berlin, 1995.

[23] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Com-
puting; Design and Analysis of Algorithms. Benjamin/Cummings, Redwood City,
1994.

[24] G. Li. A block variant of the GMRES method on massively parallel processors.
Parallel Computing 28, 23:1005-1019, 1997.

[25] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear
systems of which the coefficient matrix is a symmetric M-matrix. Mathematics of
Computation, 31:148-162, 1977.

[26] A. Meyer. A parallel preconditioned conjugate gradient method using domain
decomposition and inexact solvers on each subdomain. Computing, 45:217-234,
1990.

[27] D. P. O’Leary and P. Whitman. Parallel QR factorization by Householder and
modified Gram-Schmidt algortihms. Parallel-Computing, 16:99-112, 1990.

[28] Yousef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM
Journal on Scientific and Statistical Computing, 14:461-469, 1993.

[29] Yousef Saad and Martin H. Schultz. GMRES: A generalized minimum residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific
and Statistical Computing, 7(3):856-869, July 1986.

[30] A. Segal, P. Wesseling, J. van Kan, C.W. Qosterlee, and K. Kassels. Invariant
discretization of the incompressible Navier-Stokes equations in boundary-fitted
co-ordinates. International Journal for Numerical Methods in Fluids, 15:411-426,
1992.

References 49

[31] R. B. Sidje. Alternatives for parallel Krylov subspace basis computation. Numer-
ical Linear Algebra with Applications, 4(4):305-331, 1997.

[32] Barry F. Smith, Petter E. Bjgrstad, and William D. Gropp. Domain Decom-
position: Parallel Multilevel Methods for Elliptic Partial Differential Equations.
Cambridge University Press, 1996.

[33] Kian H. Tan. Local Coupling in Domain Decomposition. PhD thesis, Utrecht
University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands, April 1996.

{34] Henk A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES
methods. Numerical Linear Algebra with Applications, 1(4):369-386, 1994.

[35] C. Vuik. Further experiences with GMRESR. Supercomputer, 55:13-27, 1993.

[36] C. Vuik. New insights in GMRES-like methods with variable preconditioners.
Journal of Computational and Applied Mathematics, 61:189-204, 1995.

[87] C. Vuik. Fast iterative solvers for the discretized incompressible Navier-Stokes
equations. International Journal for Numerical Methods in Fluids, 22:195-210,
1996.

[38] Homer F. Walker. Implementation of the GMRES method using Householder
transformations. SIAM Journal on Scientific and Statistical Computing, 9(1):152-
163, 1988.

[39] P. Wesseling, A. Segal, and C.G.M. Kassels. Computing flows on general three-
dimensional nonsmooth staggered grids. J. Comp. Phys., 149:333-362, 1999.

[40] P. Wesseling, A. Segal, C.G.M. Kassels, and H. Bijl. Computing flows on general
two-dimensional nonsmooth staggered grids. Journal of Engineering Mathematics,
34:21-44, 1998.

50

References

51

Chapter 4

Parallel block-preconditioned GCR for
incompressible flow problems

Abstract. Efficient parallel algorithms are required to simulate incompressible
turbulent flows in complex two- and three-dimensional domains. The incompress-
ible Navier-Stokes equations are discretized in general coordinates on a structured
grid. For a flow on a general domain we use an unstructured decomposition of
the domain into subdomains of simple shape, with a structured grid inside each
subdomain. We have developed a parallel block-preconditioned GCR method to
solve the resulting systems of linear equations. The method can be smoothly
varied between a coarse grain parallel method in which the subdomain problems
are solved accurately with an inner iteration process and a fine grain parallel
method when only a preconditioner is used to approximate the solution on the
blocks. Parallel performance results for Boussinesq flow in a cavity are included.

4.1 Introduction

Efficient parallel algorithms are required to simulate incompressible turbulent flows in
complex two- and three-dimensional domains. We consider the incompressible Navier-
Stokes equations:

ou 1
?a?——R:Aqu-uV-uﬁ-Vp—.f,
Vou=0,

where R, is the Reynolds number. These equations are discretized in general coordi-
nates using a staggered finite volume method on a structured grid, see [17, 28, 3, 27].
For a flow on a general domain we use an unstructured decomposition of the domain
into subdomains of simple shape, with a structured grid inside each subdomain. We
have developed a parallel block-preconditioned GCR method to solve the resulting
systems of linear equations.

Let V™ and P" represent the algebraic vectors containing velocity and pressure un-
knowns at time t", respectively. Application of the backward Euler method in time
yields

Vn+1 S £

—— = F(V)v™ - GP™, (4.1)

52 Chapter 4

DVt =, (4.2)

where (4.1) represents the discretized momentum equation and (4.2) represents the dis-
cretized incompressibility condition. The matrix F is the linearized spatial discretiza-
tion of the convection and stress in the Navier-Stokes equations, G is the discretized
gradient operator, and D is the discretized divergence operator. To solve (4.1) and
(4.2) with the time-accurate pressure correction method [21], these equations are ap-
proximated by:

(Prediction)
YV~ rmyve —cpr - 4.3)
and
___V”;; V2 PV - GP™, (44)
DV =0, (4.5)

Subtraction of (4.3) from (4.4) gives

Vn+1 -V
At

Taking the discretized divergence of both sides of (4.6) and using (4.5) results in the
pressure correction equation:
(Projection)

Dv*

DGAP = A (4.7
where AP = P! — P*_ After the pressure correction AP has been computed from
(4.7), it is substituted into (4.6), which leads to:

(Correction)

= —G(P™ - pP"). (4.6)

V™ = V* — AtGAP. (4.8)

In summary, the pressure correction method consists of three steps: (i) computation of
V* from (4.3), (ii) computation of AP from (4.7) and computation of V**! from (4.8).
The linear systems are solved by a Krylov subspace method with an ILU [23, 24] or a
multigrid [30] preconditioner.

The linear systems (4.3) and (4.7) are solved with GCR [10, 20] using a block-diagonal
preconditioner based on a nonoverlapping domain decomposition[9, 6, 29]. This allows
us to handle more general domains with a structured discretization, by decomposing
the domain into regions which are topologically similar to a square or cube, within each

Parallel block-preconditioned GCR for incompressible flow problems 53

of which the grid is structured. The block-diagonal structure additionally facilitates
parallelization, allowing us to handle very large domains in which memory limitations
come into play.

Additionally, the independent blocks of the preconditioner can be solved as precisely
as desired using an inner iteration procedure (5, 6]. Thus, our method can be smoothly
varied between a coarse grain parallel method when the subdomain problems are solved
accurately [4], to a fine grain parallel method when only one subdomain iteration is
done in every domain decomposition iteration (compare [25]).

Efficient parallel implementation of GCR method requires, in addition to the precondi-
tioner, a proper handling of the matrix vector multiplication and inner products. For
a matrix vector product only nearest neighbor communications are required, which
is efficient on most parallel computers. Inner products, on the other hand, require
global communications; therefore, the focus has been on reducing the number of in-
ner products [11, 18], overlapping inner product communications with computation
[8], or increasing the number of inner products that can be computed with a single
communication [2, 16].

The details of our domain decomposition algorithm are given in Section 4.2.1. The GCR
method is summarized in Section 4.2.2, whereas various orthogonalization methods are
discussed in Section 4.2.3. Speedup results are presented in Section 4.3.

4.2 The block-preconditioned GCR method

We begin by describing in detail our block-diagonal preconditioner, the Krylov subspace
method used to accelerate the iterations, and its parallelization aspects, especially the
question of an orthogonalization procedure.

4.2.1 The block Gauss-Jacobi preconditioner

The pressure correction algorithm, (4.3)-(4.8), is used for the solution of the Navier-
Stokes equations on the global domain Q. Let the domain be the union of M nonover-
lapping subdomains Q,, m = 1,..., M. The equations (4.3) and (4.7) are solved
using domain decomposition. We require that the subdomains intersect regularly, i.e.
the grid lines are continuous across block-interfaces. The correction of V* (4.8) is
independently carried out in all blocks.

When discretized on the global grid, both the momentum equation (4.3) and the pres-
sure equation (4.7) can be written as a linear system

Av = f, (4.9)

with either A = S(V™, P*) := 4, I—F(V", P") and v = V* for the momentum equation
or A= DG and v = AP for the pressure correction equation. If we decompose A into

54 Chapter 4

blocks such that each block corresponds to all unknowns in a single subdomain, with a
small modification for the momentum equation (see further on), then we get the block
system

A11 e A1M I bl
. : s l=1:1] (4.10)
AMl S AMM ITMm bM

In this system, one observes that the diagonal blocks A,,,, express coupling among the
unknowns defined on a common subdomain (,,), whereas the off-diagonal blocks Ay,
m # n represent coupling across subdomain boundaries. The only nonzero off-diagonal
blocks are those corresponding to neighboring subdomains.

The unaccelerated domain decomposition iteration for Equation (4.9) is analogous to
a classical iteration of the form:

o™ =™ + K7Y(f — Av™). (4.11)
with the block Gauss-Jacobi method matrix K defined as

Ay
K=
Ann

When (4.11) is used, systems of the form Kv = r have to be solved. Since there is no
overlap the diagonal blocks Apmtm = rm, m = 1,..., N can be solved in parallel. In
our approach these systems are solved by an iterative method. An important point is
the required tolerance of these inner iterations (see [5, 12]). Since the number of inner
iterations may vary from one subdomain to another, and in each outer iteration, the
effective operator K~! ~ K~ is nonlinear and varies in each outer iteration.

Our choice of approximate solution methods is motivated by the results obtained in
[5] and [12]. where GMRES was used to approximately solve subdomain problems
to within fixed tolerances of 1074, 10~3, 10~2 and 10~!. Additionally, a blockwise
application of the RILU(D) preconditioner has been used [24].

We cannot apply the above described block Gauss-Jacobi algorithm directly to the
momentum matrix S because the normal velocity components on the block interfaces
belong to two blocks. Instead, we first augment the matrix S in the following way.
It is sufficient to consider a decomposition into two blocks (N = 2). Let the velocity
unknowns be divided into three sets:

1. The first set consists of velocities belonging to Block 1, excluding the normal
velocities at the block interface.

2. The second set consists of the normal velocities at the interface.

Parallel block-preconditioned GCR for incompressible flow problems 55

3. The third set consists of velocities belonging to Block 2, excluding the normal
velocities at the block interface

With respect to these sets of unknowns, the matrix S(V", P*) has the block form

Su Siz Sis
SV™P") = |Sn S»n Sxu|.
S31 Ss2 Sas

(4.12)

The system of equations S(V", P")V* = f can be augmented, doubling the interface
unknowns to arrive at

Su Sz 0 Sg| [W fi
Sn Sm 0 Syl |V _|f
Sn 0 S» Su| || |f|- (4.13)

Su 0 Sy Ss| | Ve f3

SV, PP =

The solution of Equation (4.13) satisfies V;; = V,* whenever Sy, is invertible (see [19])
and in this case, Equation (4.13) is equivalent to the original system of equations
S(V*, P*)V* = f. In view of Equation (4.10) we have

_|Su Sw _ 152 S
Au = [521 522] and A = [532 5'33] ’ (4.14)

so that the domain decomposition for the momentum equation has been described.

4.2.2 The GCR method

The block Gauss-Jacobi iteration (4.11) described in Section 4.2.1 can be accelerated
by a Krylov subspace method. To do so, we choose K~! as preconditioner. Due to
the approximate solution of the subdomain problems the effective preconditioner is
nonlinear and varies in each outer iteration. We choose the GCR method [10, 20]
because it can be used with a variable preconditioner, and furthermore is quite flexible
for use with restart/truncation strategies when the number of iterations exceeds the
prescribed limit 744n.. In practice truncated GCR converges faster than restarted
GCR. If the number of outer iterations is less than ngyunc an optimized version of the
GCR method is used [22].

The preconditioned GCR. method is given by:

Algorithm: GCR
Given: initial guess zg
Tg = b— A.’IIQ
for £k =1,..., convergence
Solve Ko = r_; (approximately)

56 Chapter 4

§= Ap
[gk, vi] = orthonorm (g, ¥, ¢;, vs,% < k)
Y=gk

Update: zx = zx_1 + Yvg
Update: r¢ = 751 — Vg
end

The vectors g; and v, are distributed over the processors in the same way as the solution
vector . All vectors ¢;,v;,%7 < k are stored in memory. The function orthonorm()
takes input vectors § and 9, orthogonalizes § with respect to the g;, ¢ < k, and returns
the modified vectors g; such that {|gx||z = 1. In order to preserve the relation § = A
equivalent operations are done with 4.

Apart from the preconditioner, the main challenges to parallelization of GCR is parallel
computation of the inner products, which require global communication and therefore
do not scale. Much of the literature on parallel Krylov subspace methods and parallel
orthogonalization methods has focused on performing several iterations before orthog-
onalizing, so that a number of vectors can be orthogonalized simultaneously with a
single communication However, this is not possible using a preconditioner which varies
in each iteration. For this reason, we need a method for orthogonalizing one new vector
against an orthonormal basis of vectors.

4.2.3 Orthogonalization methods

A disadvantage of the modified Gram-Schmidt method in parallel is that the number of
inner products increases proportionally to the iteration number and these inner prod-
ucts must be computed using successive communications. This is not the case if one
uses the classical Gram-Schmidt method. In this algorithm all necessary inner prod-
ucts can be computed with a single global communication. Unfortunately, the classical
Gram-Schmidt method is unstable with respect to rounding errors, so this method is
rarely used. On the other hand, Hoffmann [14] gives experimental evidence indicating
that a two-fold application of the classical Gram-Schmidt method is stable. Another
method which has been suggested is the parallel implementation of Householder trans-
formations, introduced by Walker [26]. Below we reformulate this method for GCR
(see also [12]).

In the Householder orthogonalization we use the notion aj to represent the kth column
of a matrix A and o) to represent the ith component of a vector a. Let a matrix
A € R¥™ m < n with linearly independent columns be factored as QZ, where Q is
orthogonal and Z is upper triangular. Then the kth column of A is given by a; = Qz
and the columns of Q) form an orthonormal basis for the span of the columns of A.

We construct () as the product of a series of Househok;er reflections, Q = P, --- Py,

used to transform A into Z. The matrices P, = I — 25:‘,%, with wfj) =0 for j < i have
the property: P;(FPi—1--- P)a; = .

]

Parallel block-preconditioned GCR for incompressible flow problems 57

Suppose one has already produced & orthogonal basis vectors. To compute w;,; one
must first apply the previous reflections to ax; as described in [26): & = Py - -+ Piag41 =

(I —2WkL;1W,Z')@i+1, where Wy, is the matrix whose columns are wy, . . ., wg, and where
1
2'(1)%‘ wn 1
k= 5
2w,{w1 ... 2wfw,,_1 1

Note especially that in the (k + 1)th iteration one must compute the last row of Ly,
which is the vector (2w] Wi_1,1), as well as the vector Wl ag.1. This requires 2k — 1
inner products, but they may all be computed using only a single global communication.

Let @ be the vector obtained by setting the first & elements of @ to zero. The vector w4
is chosen as: wy4; = &+ sign (*+Y)||a|lsex+1- In practice, the vectors w; are normal-
ized to length one. The length of w4, can be expressed as ||wi41|]2 = V202 — 2aa*+1)
where a = sign (6*1V)||allz. The (k + 1)th column of Q is the new orthonormal basis
vector:

k
1 .
-2 N " a),,
Q41 = [am ?21 at Qz] .

Within the GCR algorithm, the linear combination with the same coefficients must be
applied to the v; to obtain vg;.

In Table 4.1 we summarize the round-off properties and the amount of work and com-
munication for the following orthogonalization methods (for details see [12]):

e Classical Gram-Schmidt (CGS)
e Reorthogonalized Classical Gram-Schmidt (RCGS)
o Modified Gram-Schmidt (MGS)

o Householder (HH)

Comparing the costs we expect that the wall-clock time for RCGS and HH are com-
parable. When communication is slow (large latency) compared to computation, one
expects that these methods are faster than MGS, with of course a preference for RCGS.
Otherwise, when computational costs dominate, MGS is the fastest method because it
requires fewer floating point operations.

58 Chapter 4

round-off | daxpy | ddot | communications
CGS bad 2k k 1
MGS good 2k k k
RCGS | good 3k 2k 2
HH good 3k 2k 3

TABLE 4.1: Properties of the various orthogonalization methods

4.3 Numerical experiments

In this section we illustrate the parallel performance of the block Gauss-Jacobi pre-
conditioned GCR method when implemented within the Navier-Stokes software DeFT
[27]. Numerical experiments were performed on a network of workstations (NOW)
consisting of Hewlett-Packard 700-series machines connected by a 10 Mb Ethernet and
on a Cray T3E.

The test problem considered was a two-dimensional Boussinesq flow [7} on (0,1) % (0, 1).
The governing equations are given by

du 1 G,

Frie R—eAu+uV-u+Vp-—gR—3T, (4.15)
V-u=0, (4.16)
dT 1 ., _

Et——RePrAT+u~VT—O, (4.17)

with g = (0, —1) and boundary conditions u(0,y) = u(1,y) = u(z,0) = u(z,1) =0,
T(0,y) =1, T(1,y) = 0, and 8T /8y(x,0) = 8T /dy(z,1) = 0. The Reynolds, Prandtl
and Grashof numbers were taken to be R, = 1, P, = 0.71 (air) and G, = 1500, re-
spectively. The simulation was carried out for 10 timesteps of size At = 0.05 to diffuse
the influence of start-up latencies. It is known that due to the temperature differ-
ence a circulating flow arises, with the number of vortices depending on the Grashof
number. This recirculation makes the momentum equation (4.15) and heat transport
equation (4.17) relatively difficult to solve. Since the domain is rectangular, it is easily
decomposed into various block configurations.

In the inner jteration process, blocks were solved to various accuracies using GMRES
with a restart of 40, preconditioned with the relaxed incomplete factorization, RILU(a),
of [1] using a relaxation parameter o = 0.975 for the pressure correction equation (4.7)
and o = 1 for the momentum and transport equations. In the extreme case, we perform
no GMRES iterations and use only the RILU preconditioner on the blocks. For the

Parallel block-preconditioned GCR for incompressible flow problems 59

outer iterations, GCR was used with a Krylov subspace of dimension 25 and employing
the Jackson and Robinson truncation strategy [15, 22].

The timings listed in this section are wall-clock times obtained with MPI timing rou-
tines, and indicate the time spent in the linear solver part of the code. In particular,
they do not include time required to construct the matrices.

In all of our tests, we observed very similar behavior for the transport equation (4.17)
as for the pressure equation (4.7), so we will neglect the discussion of the transport
equation in the ensuing.

4.3.1 Comparison with diagonal scaling

As a basis for comparison of the effectiveness of the block preconditioner, we ran a few
tests using a simple diagonal scaling (Gauss-Jacobi) preconditioner. This precondi-
tioner is very popular in a parallel computing environment. Table 4.2 gives wall-clock
times and iteration counts using both preconditioners. The table indicates that the
number of iterations required for convergence with diagonal preconditioning is quite
large and increases drastically as the grid is refined. Furthermore the block Gauss-
Jacobi preconditioner needs much less wall-clock time than the Gauss-Jacobi precon-
ditioner.

TABLE 4.2: Wall-clock time and iteration counts given in parentheses for a Gauss-Jacobi and block
Gauss-Jacobi preconditioning

Gauss-Jacobi block Gauss-Jacobi
blocks subgrid | Momentum Pressure | Momentum Pressure
2x2 24x24| 13.8(119) 9.0 (144) 4.8 (39) 2.6 (38)
60 x 60 159 (301) 101 (390) 62.6 (91) 21.2 (69)
3x3 24x24| 25.2(180) 19.7 (226) 8.7 (60) 6.1 (64)

4.3.2 Comparison with serial block-preconditioner

To measure the cost of parallelization, we compare the parallel and sequential com-
putation times using the block Gauss-Jacobi preconditioners. Tables 4.3 and 4.4 give
the speedup factors on a Cray T3E for the momentum and pressure equations, respec-
tively, using the approximate solvers or the RILU preconditioner on the blocks. The
subdomain approximations will be denoted as follows:

e GMRS6 = restarted GMRES with a tolerance of 107,
e GMR2 = restarted GMRES with a tolerance of 1072,
e GMRI = restarted GMRES with a tolerance of 101,

60 Chapter 4

e RILU = one application of an RILU preconditioner.

The trends are as expected: when the blocks are solved very accurately, the relative cost
of communication to computation is low, giving a high speedup in parallel; whereas for
the less accurate approximations, the communications are relatively more expensive,
and a lower speedup is observed. In general, the parallel efficiency is quite high for
a small number of blocks but decreases as the number of blocks is increased. The
speedups are higher for the momentum equation than for the pressure equation.

TABLE 4.3: Attained speedups over sequential implementation (Momentum equation, 24 x 24 subgrid
resolution)

blocks | GMR6 GMR2 GMR1 RILU(1)
4 3.7 3.6 3.6 3.4

9 8.1 7.5 74 7.0

16 14.0 12.9 12.6 12.2

25 18.4 17.1 16.6 16.4

TABLE 4.4: Attained speedups over sequential implementation (Pressure equation, 24 x 24 subgrid
resolution)

blocks | GMR6 GMR2 GMR1 RILU(0.95)
4 3.2 3.0 2.9 2.6

9 6.4 5.9 5.4 5.0

16 10.5 9.3 9.2 9.3

25 14.2 9.9 9.6 12.1

4.3.3 Scalability comparison
Fized problem size

In this section we compare the parallel computation times for a fixed probiem size on
a 120 x 120 grid. The grid is decomposed into 2 x 2, 3 X 3, 4 x 4 and 5 x 5 subdomains.
Tables 4.5 and 4.6 give timing results for the momentum and pressure equations. The
number of outer iterations required in the final timestep is given in parentheses.

The single block solution times are listed in each table for reference. The number of
necessary outer iterations increases severely in the multiblock case as compared to the
single block case of only one iteration. This initial loss of convergence rate can only be
offset in the case of the momentum equation by using very rough approximations on
the blocks and many processors. For the pressure equation, some speedup can already
be obtained with only 4 blocks.

Parallel block-preconditioned GCR for incompressible flow problems 61

TABLE 4.5: Scalability study on 120 x 120 grid (Momentum equation)
Single block solution time = 21.4 (1)
blocks GMRS6 GMR2 GMR1 RILU(1)
2x2|200. (36) 72.7(38) 56.1(58) 62.1(78)
3x3| 744 (50) 349 (52) 28.7(62) 30.8 (77)
4x4|424(56) 229 (39) 20.2(69) 19.3 (80)
5x5 | 324 (51) 18.3 (51) 16.7 (54) 17.0 (97)

TABLE 4.6: Scalability study on 120 x 120 grid (Pressure equation)
Single block solution time = 30.8 (1)

blocks GMR6 GMR2 GMR1 RILU(0.95)
2x2 | 71.5(29) 40.4 (29) 44.1(30) 20.5 (66)
3x3 (359 (33) 228(33) 23.7(34) 15.8 (87)
4x4 |229(39) 21.3(65) 17.5(40) 13.0 (103)
5x5 | 19.5(62) 19.0 (76) 21.3 (91) 14.5 (116)

Fized subdomain size

It is often argued that a better measure of the effectiveness of a parallel algorithm
is obtained by fixing the per-processor problem size while increasing the number of
processors [13]. In this section we therefore fix the subdomain grid at 24 x 24, and the
domain decomposition is increased from a single block to a 5x5 block decomposition. In
tables 4.7 and 4.8 we list the wall-clock times for the momentum and pressure equations,
respectively. For perfect scaling, the wall-clock time would be constant, independent of
the number of blocks. Given in parentheses are the number of outer iterations required
in the final time step. For a fixed block size we observe for the momentum equation
that the computation time scales roughly as the square root of the number of blocks.
For the pressure equation the scaling is somewhat poorer, especially for the 5 x 5 block
decomposition. For both equations there is a large increase in the number of outer
iterations.

TABLE 4.7: Scalability study with fixed block size (Momentum equation)
blocks | GMR6 GMR2 GMR1 RILU(1)
2x2 105 (22) 57 (22) 49 (24) 4.7 (36)
3x3 |16.4(39) 9.3(39) 83(43) 8.5 (50)
4x4 |223(50) 12.7(51) 11.6(57) 116 (66)
5x5 |32.4(51) 183 (51) 16.7 (54) 17.0 (97)

62 Chapter 4

TABLE 4.8: Scalability study with fixed block size (Pressure equation)
blocks GMR6 GMR2 GMR1 RILU(0.95)
2x2 | 42(20) 27(23) 2.8(20) 2.6 (37)
3x3 | 86(27) 63(27) 6.5(28) 6.0 (62)
4x4 |12.8(36) 10.3 (36) 10.2 (37) 8.9 (90)
5x5 |19.5(62) 19.0 (76) 21.3 (91) 14.5 (116)

4.3.4 Orthogonalization methods

In this section we compare parallel performances of the modified Gram-Schmidt (MGS),
Householder (HH), and reorthogonalized classical Gram-Schmidt (RCGS) processes on
a NOW and on a Cray T3E. First we compare these methods for an artificial test
problem. Thereafter we make a comparison for the Boussinesq problem.

In our first experiment the wall-clock times in the orthogonalization part are measured
when 60 GCR iterations are performed. In Figure 4.1 the parameters

_ orthog. time MGS

Fo = and Frogs = orthog. time MGS

orthog. time HH orthog. time RCGS

are plotted as functions of n. In each subdomain an n X n grid is used. The number
of subdomains is equal to the number of processors. On the workstation cluster (HH)
and (RCGS) are only advantageous when the number of unknowns is less than 3600
on 4 processors and less than 6400 on 9 processors. On the Cray T3E, the number of
unknowns per processor should be fewer than 1000 for 9 or even 25 processors. For
larger problems the smaller amount of work involved in modified Gram-Schmidt or-
thogonalization outweighs the increased communication cost. Furthermore we observe
that RCGS is somewhat more efficient than HH. Therefore we have not implemented
the Householder orthogonalization in our Navier-Stokes solver.

Finally we report the total wall-clock time spent solving the linear systems originating
from the two-dimensional Boussinesq flow problem. We consider the case for which
orthogonalization is most likely to be a factor, i.e. relatively small blocks approximated
by the RILU preconditioner. Since the approximate block solver is cheaper in this case,
the communication costs weigh more heavily.

Table 4.9 compares times obtained on a Cray T3E. We see that the orthogonalization
time is actually negligible on the Cray, so that neither of the strategies (MGS/RCGS)
provides a significant advantage.

Table 4.10 presents analogous results on the NOW. For the 4-block decomposition, the
workstations were directly connected by Ethernet, whereas for the 9-block decomposi-
tion, the workstations were located at different points on the local network, such that
some messages had to pass through routers. Due to the relatively low communication
bandwidth of the Ethernet, the inner product communications become an expensive

Parallel block-preconditioned GCR for incompressible flow problems

63

HP cluster

HH |
RCGS

100

60
subdomain gridsize, n

Cray T3E

20 40 60 80 100
subdomain gridsize, n

FIGURE 4.1: Measured speedup with Householder (HH) orthogonalization and reorthogonalized clas-

sical Gram-Schmidt (RCGS) with respect to modified Gram-Schmidt (MGS)

part of the computation, and a good speedup can be achieved by using reorthogonalized

classical Gram-Schmidt.

In this paper we have presented parallel performance results for a block Gauss-Jacobi
preconditioned GCR method for the Navier-Stokes equations. We summarize these

results in the following remarks:

¢ The block Gauss-Jacobi preconditioner is perfectly parallel and gives better per-

4.4 Conclusions
formance than a simple diagonal scaling which is also perfectly parallel.

o The convergence rate degrades substantially as the number of blocks is increased
from one, but less appreciably thereafter. Current research into using overlap or

multilevel techniques promises to improve this behavior.

64 References

TABLE 4.9: Comparison of computation times on a Cray T3E using MGS and RCGS orthogonalization
processes (24 x 24 subgrid resolution, RILU subdomain approximation)

MGS RCGS
blocks | Momentum Pressure | Momentum Pressure
2x2 4.7 2.6 4.7 2.6
3Ix3 8.5 6.0 8.5 5.5
4x4 11.6 8.9 11.7 84

TABLE 4.10: Comparison of computation times on a NOW using MGS and RCGS orthogonalization
processes (24 x 24 subgrid resolution, RILU subdomain approximation)

MGS] RCGS
blocks | Momentum Pressure | Momentum Pressure
2x2 38.6 36.5 23.3 17.0
3Ix3 563 799 164 236

o It is sometimes advantageous to use the reorthogonalized classical Gram-Schmidt
process on workstation clusters, particularly when the number of workstations is
large and the network is slow.

o Parallelization of a multi-block problem leads to good speedups; however using
this kind of domain decomposition simply for exploiting a parallel machine leads
to only a modest decrease of wall-clock time.

Acknowledgement

The authors thank HPaC for providing computing facilities on the Cray T3E.

References

[1] O. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned
gradient method. Num. Math., 48:499-523, 1986.

{2] Z. Bai, D. Hu, and L. Reichel. A Newton-basis GMRES implementation. IMA J.
Num. Anal., 14:563-581, 1994.

[3] H. Bijl and P. Wesseling. A unified method for computing incompressible and
compressible flows in boundary-fitted coordinates. J. Comp. Phys., 141:153~173,
1998.

[4] E. Brakkee, A. Segal, and C.G.M. Kassels. A parallel domain decomposition
algorithm for the incompressible Navier-Stokes equations. Simulation Practice
and Theory, 3:185-205, 1995.

References 65

[5] E. Brakkee, C. Vuik, and P. Wesseling. Domain decomposition for the incom-
pressible Navier-Stokes equations: solving subdomain problems accurately and
inaccurately. Int. J. for Num. Meth. Fluids, 26:1217-1237, 1998.

[6] J.H. Bramble, J.E. Pasciak, and A.T. Vassilev. Analysis of non-overlapping do-
main decomposition algorithms with inexact solves. Math. Comp., 67:1-19, 1998.

[7] G. de Vahl Davis and L.P. Jones. Natural convection in a square cavity: a com-
parison exercise. Int. J. Num. Meth. Fluids, 3:227-248, 1983.

[8] E. de Sturler and H. A. van der Vorst. Reducing the effect of global communication
in GMRES(m) and CG on parallel distributed memory computers. Appl. Num.
Math., 18:441-459, 1995.

[9] M. Dryja and O.B. Widlund. Domain decomposition algorithms with small over-
lap. SIAM J. Sci. Comp., 15:604-620, 1994.

[10] S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods
for nonsymmetric systems of linear equations. SIAM J. Num. Anal., 20:345-357,
1983.

[11] J. Erhel. A parallel GMRES version for general sparse matrices. Electronic Trans-
actions on Numerical Analysis (http://etna.mcs.kent.edu), 3:160-176, 1995.

{12] J. Frank and C. Vuik. Parallel implementation of a multiblock method with
approximate subdomain solution. Appl. Num. Math., 30:403-423, 1999.

[13] J.L. Gustafson. Reevaluating Amdahl’s law. Comm. ACM, 31:532-533, 1988.

[14] Walter Hoffmann. Iterative algorithms for Gram-Schmidt orthogonalization. Com-
puting, 41:335-348, 1989.

[15] J.P. Jackson and P.C. Robinson. A numerical study of various algorithms related to
the preconditioned conjugate gradient method. Int. Num. Meth. Engng, 21:1315—
1338, 1985.

{16] G. Li. A block variant of the GMRES method on massively parallel processors.
Parallel Computing, 23:1005-1019, 1997.

[17] A. Segal, P. Wesseling, J. Kan, C.W. Qosterlee, and K. Kassels. Invariant dis-
cretization of the incompressible nawier-stokes equations in boundary fitted co-
ordinates. Int. J. for Num. Meth. Fluids, 15:411-426, 1992.

[18] R. B. Sidje. Alternatives for parallel Krylov subspace basis computation. Num.
Lin. Alg. Appl., 4(4):305-331, 1997.

[19] W. Tang. Generalized Schwarz splittings. SIAM J. Sci. Stat. Comput, 13:573-595,
1992.

66 References

[20] H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods.
Num. Lin. Alg. Appl., 1:369-386, 1994.

[21] J. van Kan. A second-order accurate pressure-correction scheme for viscous in-
compressible flow. SIAM J. Sci. Stat. Comput., T:870-891, 1986.

[22] C. Vuik. Further experiences with GMRESR. Supercomputer, 55:13-27, 1993.

[23] C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with
the GMRES method. Int. J. for Num. Meth. Fluids, 16:507-523, 1993.

[24] C. Vuik. Fast iterative solvers for the discretized incompressible Navier-Stokes
equations. Int. J. for Num. Meth. Fluids, 22:195-210, 1996.

[25] C. Vuik, R.R.P. van Nooyen, and P. Wesseling. Parallelism in ILU-preconditioned
GMRES. Parallel Computing, 24:1927-1946, 1998.

[26] Homer F. Walker. Implementation of the GMRES method using Householder
transformations. SIAM Journal on Scientific and Statistical Computing, 9(1):152-
163, 1988.

[27] P. Wesseling, A. Segal, and C.G.M. Kassels. Computing flows on general three-
dimensional nonsmooth staggered grids. J. Comp. Phys., 149:333-362, 1999.

[28] P. Wesseling, A. Segal, C.G.M. Kassels, and H. Bijl. Computing flows on general
two-dimensional nonsmooth staggered grids. J. Eng. Math., 34:21-44, 1998,

[29] J. Xu and J. Zou. Some nonoverlapping domain decomposition methods. SIAM
Review, 40:857-914, 1998.

[30] S. Zeng, C. Vuik, and P. Wesseling. Numerical solution of the incompressible
Navier-Stokes equations by Krylov subspace and multigrid methods. Adv. Comp.
Math., 4:27-49, 1995.

67

Chapter 5

Parallel Iteration of the Extended
Backward Differentiation Formulas

Abstract. The extended backward differentiation formulas (EBDFs) and their
modified form (MEBDF) were proposed by Cash in the 1980s for solving initial-
value problems (TVPs) for stiff systems of ordinary differential equations (ODEs).
In a recent performance evaluation of various IVP solvers, including a variable-
stepsize-variable-order implementation of the MEBDF method of Cash, it turned
out that MEBDF often outperforms codes such as RADAUS, DASSL and VODE.
This motivated us to look at possible parallel implementations of the MEBDF
method. Each MEBDF step essentially consists of successively solving three non-
linear systems by means of modified Newton iteration using the same Jacobian
matrix. In a direct implementation of the MEBDF method on a parallel com-
puter system, the only scope for (coarse grain) parallelism consists of a number
of parallel vector updates. However, all forward-backward substitutions and all
righthand side evaluations have to be done in sequence. In this paper, our start-
ing point is the original (unmodified) EBDF method. As a consequence, two
different Jacobian matrices are involved in the modified Newton method, but
on a parallel computer system, the effective Jacobian-evaluation and the LU-
decomposition costs are not increased. Furthermore, we consider the simultane-
ous solution, rather than the successive solution, of the three nonlinear systems,
so that in each iteration the forward-backward substitutions and the righthand
side evaluations can be done concurrently. A mutual comparison of the perfor-
mance of the parallel EBDF approach and the MEBDF approach shows that we
can expect a speedup factor of about 2 on 3 processors.

5.1 Introduction

The extended backward differentiation formulas (EBDF's) were proposed by Cash[2] in
1980 for solving initial-value problems (IVPs) for stiff systems of ordinary differential
equations (ODEs)

d

=) v R, t2h (5.1)
To conserve notation we will consider the autonomous problem, but the results of this
paper can be trivially extended to derivatives with explicit dependence on time i.e.
f = f(t,y). Each EBDF step essentially consists of successively solving three nonlinear

68 Chapter 5

systems by means of (modified) Newton iteration. Since two different Jacobian matrices
are involved, the method needs two different LU decompositions after each Jacobian
update or change of stepsize. In order to reduce the LU costs, Cash[3] modified the
EBDF methods (MEBDF methods) such that only one LU decomposition is required.

In a recent performance evaluation [11] of various IVP solvers, including a variable-
step-variable-order implementation of the MEBDF method due to Cash, it turned out
that the MEBDF code often performs more efficiently than codes like RADAUS (9],
DASSL[12] and VODE]J1]. This motivated us to look at possible parallel implementa-
tions of the MEBDF method.

In a direct implementation of MEBDF on a parallel computer system, the only scope
for (coarse grain) parallelism consists of a number of parallel vector updates. However,
all forward- backward substitutions and all righthand side evaluations have to be done
in sequence. In this paper, our starting point is the original (unmodified) EBDF
method. As a consequence, two different Jacobian matrices are involved in the modified
Newton method, but on a parallel computer system, the effective costs of the Jacobian-
evaluations and the LU-decompositions are not increased. Furthermore, we consider
the simultaneous solution, rather than the successive solution, of the three nonlinear
systems, so that in each iteration the forward-backward substitutions and the righthand
side evaluations can be done concurrently. A mutual comparison of the performance
of the parallel EBDF and MEBDF approaches shows that we can expect a speedup
factor of about 2 on 3 processors.

5.2 The EBDF and MEBDF methods of Cash

The EBDF method of Cash[2] is based on the formula

Yn+l = G1Yn + GoYn1 + - 4 QkYn—ict1 + hbo f(Ynt1) + Ab1 f(Yns2) (5.2)

for computing an approximation yn41 to the exact solution y(t,11) of (5.1). Here, yn42
is an approximation to y(fn+2) obtained by some predictor formula and the coefficients
a; and ¥ are determined by imposing the conditions for order k + 1 accuracy. Cash
used the standard (implicit) BDF as a predictor:

Upp1r = G1Yn + Baln-1 + * - * + BkYnk+1 + hbof (Unt1),
Unio = B1Un41 + Bl + « - - + Grln—ks2 + Bbof(Unq2), (5.3a)

to obtain an approximation un42 for the ‘future’ value y,,2. Thus, ¥, is computed
from the equation

Ynt1 = G1Yn + QoY1+ * + GkYn—k+1 + hbof (Ynt1) + Aby f (tny2)- (5.3b)

The coefficients @; and b, are the BDF coefficients. The internal vectors %, and Uni2
defined by (5.3a) have order of accuracy k and the external (or output) vector gypn4;

Parallel Iteration of the Extended Backward Differentiation Formulas 69

defined by (5.3b) has order of accuracy k + 1. Hence the stage order s equals k and
the actual order p equals k + 1. Furthermore, {(5.3a),(5.3b)} possesses a considerably
larger stability region than the classical BDF method of order p = k + 1. This can be
explained by observing that the underlying corrector formula (5.2) is much more stable
than the classical BDF (for k > 1). For future reference, the coefficients {a;, by} and
{@i, bo, b1 } are given in the Tables 5.1 and 5.2 for k = 2,...,5. The MEBDF method
arises from the EBDF method {(5.3a),(5.3b)} by replacing (5.3b) with the formula (see
3, 8))

Yn+1 = Q1Yn + Q2Yn—1 +** j‘ QkYn—k+1 + hj’o.f(yn+l)
+h(bo — bo) f (Un+1) + hby f (tnt2).

The advantage is that the modified Newton iteration of the subsystems (5.3a) and
(5.3b) can use the same LU-decomposition. Furthermore, the order of accuracy is not
affected and the stability regions are even slightly larger than for the EBDF methods.

Note that in {(5.3b),(5.3c)} each of the required derivatives f(un11) and f(un42) canbe
computed either with an additional function evaluation or by solving the corresponding
formula (5.3a) for the (converged) derivative as a linear combination of back-values,
whichever is cheaper [3].

(5.3¢)

TABLE 5.1: Coefficients {G;,bp} in the BDF formulas (5.3a).

k @10 G0 @30 @s0 @sé byd é
2 4 -1 2 3
3 18 -9 2 6 11
4 48 -36 16 -3 12 25
5

300 -300 200 -75 12 60 137

TABLE 5.2: Coefficients {a;, bo, b1} in the EBDF and MEBDF formulas (5.3b) and (5.3c).

k a;0 ad azd asd asd bgd b 4
2 28 -5 22 -4 23
3 279 -99 17 150 -18 197
4 4008 -2124 728 -111 1644 -144 2501
5 26550 -18700 9600 -2925 394 8820 -600 14919

5.2.1 The implicit relations

The EBDF and MEBDF methods are implicit in %441, %z42 and y,41, and use the
back values Yp—x+1,- .-, Yn 85 input. Let us define the stage vector Y, ,; and the input

70 Chapter 5

vector V;, according to

Un+1 Yn—k+1
Yot1= {tns2), Va= :

Yn+1 Yn

Then, using tensor notation, both the EBDF method {(5.3a), (5.3b)} and the MEBDF
method {(5.3a), (5.3¢)} can be represented in the compact form

(B® I)Yn1— H(C @ N)F(Yny1) = (E® I)Vh, (5.4)

Here, ® denotes the Kronecker product, h the stepsize t,,1 — t,, and F(Y,+1) contains
the righthand sides f(un+1), f(tn+2), f(Uns1)- We denote the identity matrix by I,
and its dimension will always be clear from the context. In the EBDF case, B, C and
E are defined by

1 00 Bo 0 0 Gk gy --- @
B:=|-a 10/,C:=}0 b O|,E:=|0 & --- aGgf- (5.5)
0 01 0 bl bo A Qg1 a

In the MEBDF case, the last row of the matrix C changes to (by — o, b1, bp)-

5.2.2 [Iteration processes

Instead of solving for the unknown components %y41, tpiz and Y1 of Yoy1 sequen-
tially, as was the original approach of Cash, we here consider an approach where these
components are solved simultaneously, that is, the subsystems in the EBDF or MEBDF
method are solved simultaneously. As we shall see below, one option in this approach
is approximating the matrix B~1C by a diagonal matrix., The relative error of the
diagonal approximation will be smaller if the diagonal elements of B-!C are large
compared to the off-diagonal elements. For this reason, we choose the EBDF method,
rather than the MEBDF method, as our starting point, because the additional nonzero
off-diagonal element of the MEBDF matrix is taken out of the diagonal such that the
row sum remains the same.

Premultiplying (5.4) by B~! ® I, we can rewrite it in the form

Rn(},n+1) =0, (56)
B, (Y) =Y —h(A®)F(Y) — (B'EQ®I)V,, (5.7)
b 0 0
A:=B"C= [&150 Bo 0] .
0 b b

Let us iterate the system of implicit relations R,(Yp+1) = 0 by the Newton type method
(I = A* @ hdp)(YD — YUV = —R,(YUD), j=1,...,m, (5.8)

Parallel Iteration of the Extended Backward Differentiation Formulas 71

where A* is a suitably chosen matrix, Y(® is an initial approximation to Yo, and
Jn+1 is an approximation to the Jacobian matrix of the righthand side function in
(5.1) at t,4; (note that in the preceding timestep an approximation t0 y,; has been
computed, which can be used to update the Jacobian if necessary). Suppose that the
first and third component of Y(® are defined by the second component of the stage
vector Y, computed in the preceding step, and that the second component of Y@ is
obtained by extrapolation of the most recent approximations available at the points
tatlstny - tn-kst1. Then, YO has order of accuracy p = k and is expected to be
an excellent initial approximation to Y,,;. Moreover, the computational costs are
negligible.

It is tempting to set A* = A resulting in the familiar (modified) Newton method and
to try to diagonalize (5.8) by a Butcher similarity transformation Y¥) = (Q-1 @ I)Y¥)
such that the matrix Q' AQ is diagonal. Unfortunately, the matrix A is defective, so
that this does not work. However, if we approximate A by the matrix

5, 00
A*'= 10 b 0], (5.92)
{C1 C2 bo
then diagonalization is possible. It can be shown that
[« 0 0 o
Q= Qo ¢ 0| =Q7'A'Q=D, D:=diag(bo,b,bo) (5.9b)
cigitesqs a2
“bo-bo ho-b B

for all nonzero diagonal entries of Q. This family of transformation matrices does not
represent all possible transformation matrices @ with the property Q1 4*Q = D, but
for our purposes, we do not need more generality.

Using {(5.9a),(5.9b)}, we can define the transformed iteration method

(I -D® hJﬂ'H)(Y(J) - ?(1—1)) == (Q_l ® I)RH(Y(J_I))a .7 = 17 ceey,m, (510)
YO =(Q e I)YY.

We shall refer to {(5.9a),(5.9b),(5.10)} as the transformed EBDF method. In particular,
we may set ¢ = ¢ =0 in (5.9a), i.e. A* = D, so that we can use @ = I which avoids
transformation costs. We shall call {(5.8), A* = D} simply the diagonal EBDF method.
Both iteration processes {(5.9a),(5.9b),(5.10)} and {(5.8), A* = D} have the advantage
of possessing a lot of additional intrinsic parallelism when compared with the MEBDF
method as implemented in [3], where the three equations in {(5.3a),(5.3¢)} are solved
sequentially by Newton iteration (to be referred to as sequential MEBDF). Firstly, the
two LU decompositions can be obtained in parallel; and secondly, in each iteration
the forward-backward substitutions for the 3 subsystems and the three components
of the residue function R,(Y") can be computed in parallel. Furthermore, in the

72 Chapter 5

case of {(5.9a),(5.9b),(5.10)}, the similarity transformation can largely be computed
concurrently, at the cost of some data relocation.

Let us compare the iteration cost of diagonal and transformed EBDF on three pro-
cessors with that of sequential MEBDF. Suppose that respectively m;, my and my
iterations are required to solve {(5.3a),(5.3c)} in sequence. Then, sequential MEBDF
requires one LU decomposition, m; + my + m3 sequential forward-backward substitu-
tions, and m, 4+ mq + m3 sequential evaluations of f. Thus, diagonal and transformed
EBDF (if we ignore the transformation costs) are less costly than sequential MEBDF
if m < my +mg+m;. Finally, we remark that in an actual implementation of diagonal
and transformed EBDF, it is sometimes advantageous to use in the system matrix in
(5.8) the Jacobian Ji,;; in the blocks of the first and third row and an approximation
Jaia of the Jacobian at t,., in the blocks of the second row (see Section 5.4). Since
these Jacobians can again be evaluated concurrently, the effective costs do not increase.

5.3 Convergence of diagonal and transformed EBDF

Let us consider the rate of convergence of the iteration process (5.8). Defining the
iteration error £ := YU) — ¥;,.,, we subtract the exact solution relation:

(I — A* @ hdpi1)(Yatr1 — Yor1) = —Rn(Yai1)
from (5.8) getting
(I = A" ® hJns1)(e? — €971) = Ry(Yns1) — Ra(Yarr +697Y)
== €00+ HART) [F(Yns1 +eU™V) — F(Yan)]
== (I —A®hp41)eY™D — A I)(I ® Jpy1)e¥ ™V
+ h(A ® I) [F(Yn+1 + 80_1)) - F(Yn+1)] ’
or,
(I — A* @ hJpy1) €9) = (A — A*) @ hJ,py 169D
+h(AQT) [F(Yars +6U™Y) — F(Yai1) — (I ® Jnp1)e¥™D].
Defining
M:=(I-A®hJp)) (A— A") @ hJpy1),
L:=(I~A*Q®hdp1) (AR I),
®(e) = F(Yat1 +€) — F(Ya1) — (I ® Jnna)e,
the error recursion becomes
) = MeU™D 4+ hLO(eUD), 5> 1, (5.11)
Hence,
€9 = MIe® + AMILO(E®) + - - - + RML®(Y~?) + hLO(YV). (5.12)

Parallel Iteration of the Extended Backward Differentiation Formulas 73

5.3.1 The rate of convergence

Let A* be defined by (5.9a), so that A* has the same diagonal entries as A. Then the
3-by-3 lower block-triangular matrix M has zero diagonal blocks

0
M=(I—-A"®hJy)? |G1bohdnss 0 , (5.13)
—cithJpt1 (b — e)hdpia 0

so that M vanishes for all j > 3. Thus,

eW = Me© 4+ hL@ (D),

e® = M?*® + AMLO(D)LO(D),

D) = hM?L®(eU~Y) + RML®(0-2) + hLB(YY), j > 3. (5.12)
In the case of linear problems, where the function ® vanishes, we have convergence

within three iterations (of course, if A* = A, then (5.8) reduces to modified Newton,
which converges within one iteration for linear problems).

For nonlinear problems, we consider the first-order approximation to (5.12'). Let us
write ®(¢) = K& + O(e?), where K is the (3-by-3 block-diagonal) Jacobian matrix of
®(c) at € = 0. Let N := hLK, and neglecting terms of degree higher than one in ¢,
the first-order approximation to (5.12') becomes

e = (M + N)e©,

e? = (M + N)*O,

€9 = M2NeU=3 4 MNeU-2 4 NG| 5 > 3. (5.14)
In the modified Newton case (A* = A), we have M = 0, so that the first-order error
recursion (5.14) reduces to e¥) = Ne(—1 j > 1. However, if M # 0, then both N and
M play arole in the rate of convergence. We consider the first few iteration errors taking
the structure of the matrices M and N into account. From (5.9a) and (5.11) it can be
seen that N has a 3-by-3 block lower triangular structure. It follows from the nilpotent
structure of M (5.13), and the fact that the product of a lower triangular matrix and a
lower triangular nilpotent matrix maintains the same nilpotent structure (independent
of the order of multiplication), that all matrix products in (5.14) containing three or
more factors M vanish, so that

eD) = (M + N)eO,

e® = (M? + MN + NM + N*)e(0),

e® = (M®N + MNM + MN? + NM? + NMN + N*M + N%)e©,

e® = (M?N? + (MN)? + MN>M + NM?N + (NM)? + N2M? + O(N*))e©,

€D = O(NT2e® 5 > 5. (5.14')

74 Chapter 5

where the notation O(N*) is used for terms containing at least i factors N. We sum-
marize the preceding derivations in the following theorem:

Theorem 5.3.1 In the error recursion (5.11), let the function ® satisfy () = Ke +
O(e?), and let N := hLK. Then the first-order approzimation to the error recursion
(5.12) is given by

el) = Nel™h), j>1
if A* = A (modified Newton), or by
e = (M + NYe®, j=1,2; e = O(N-2)e®, j >3

if A* is defined by (5.9a).

Thus, if A* is defined by (5.9a), then after at most two iterations the rate of convergence
is comparable with that of modified Newton, for all values of ¢, and ¢;. However, in
the transformed EBDF case with ¢; = by, this is already achieved after one iteration,
because for this choice M assumes the form (see (5.13))

0
M=1|x 0 .
x 00
Both NM and MN have this same structure; hence, all matrix products in (5.14')
containing two or more factors M vanish. It follows that
e = (M+N)EO®, D) =O(N)e®, j>2.

Thus, we have proved:

Theorem 5.3.2 Let the conditions of Theorem 5.3.1 be satisfied, and let ¢, = b, in
(5.9a). Then, for all ¢, the first-order approzimation to the error recursion (5.12)
associated with transformed EBDF {(5.9a),(5.9b),(5.10)} is given by

{eW = (M + N)e®; 9 = O(NI)e@j > 2}.

5.3.2 Amplification factors

Theorems 5.3.1 and 5.3.2 show that transformed and diagonal EBDF may converge
slower than Newton in the first iteration and the first two iterations, respectively. The
reason is that the magnitude of M is expected to be much greater than that of N. We

Parallel Iteration of the Extended Backward Differentiation Formulas 75

shall consider the effect of the amplification matrix (M + N) ~ M7 on the initial error
€. Although M has only zero eigenvalues, the magnitude of M is not necessarily
small. Let us expand £© with respect to the vectors a ® v, where v is an eigenvector
of the Jacobian matrix J, ;. Since '

Mi(a®v)=(Z(2) ® I)(a ®v),

where Z(2) := 2(I — zA*)"}(A — A*) and z := hA(Jp1), we are interested in the size
of || Z7(2)||ec- It follows from (5.9a) that

0 0 0
a1bo(1 — bo2) 0 0

)= P
(1 = boz)(1 — bo2) (e1 +coda)boz — 1 (b1 —c2)(1 —Boz) 0

Assuming that the eigenvalues A(J,1;) are in the left halfplane, then ||Z7(2)||oo is
maximal along the imaginary axis, so that we set z = iy. Since ¢; and ¢, do not
appear in the second row of Z, we can do no better than choosing these parameters
such that the third row is inferior to the second in determining the infinity-norm. We
verified that this is the case, both for diagonal Newton where ¢; = ¢; = 0 and for
transformed Newton with ¢; = 0 and ¢; = ;. For these cases we find

’|

Z(i9) e = a1boy| 1220l = arbolby — colly)
120l = e 2= i A

showing that ||Z(iy)||« monotonically increases from 0 to a@; and || Z2(iy)|| monoton-
ically increases from 0 to @, |b; — c,|bg . Since @; > 1 (see Table 5.2), we should expect
that the stiff components in the iteration error are amplified in the first iteration.
However, in the second iteration, transformed EBDF already has a zero amplification
factor and diagonal EBDF has quite a small amplification factor because & b, |bg "' < 1.
Figure 5.1 illustrates the behavior of ||Z(iy)|lc and ||Z%(iy)|le as given by (5.15) for
the 6th-order diagonal EBDF method (k = 5) used in the numerical experiments.

(5.15)

5.4 Numerical experiments

In this section, we compare the accuracy obtained with a sixth order (k = 5) sequential
MEBDF method and the transformed (¢; = 0, ¢a = b;) and diagonal (¢; = ¢ =
0) EBDF methods. Our selection of the sixth order method was motivated by the
development of a four-stage, sixth order L-stable method by Psihoyios and Cash [13],
the parallelization of which we discuss in a companion article [5] and compare with the
three-stage methods of this one. In a full implementation one would of course desire
a mechanism for varying the stepsize. However, since at this point we are primarily
interested in the algorithmic properties, we will consider only fized stepsizes in order to
separate the strategy effects. Some possibilities for variable stepsize implementations
use backward difference arrays [3, 7] or Nordsieck vectors (7].

76 Chapter 5

i Wzl
b 2 B & ow

o ¢
o ©
T T

y

FIGURE 5.1: The amplification factors (5.15) for the 6th-order, iterated EBDF method (k = 5).

In all of the experiments, we computed the initial iterates by taking the most recent
approximation available at each time level or, if not yet available (in the case of the ‘fu-
ture’ value uy,42), by (k+ 1)-point extrapolation of already computed approximations.
The experiments include results obtained by the three methods, where the Jacobian
matrix Jy, 1 is evaluated in each step using the future-point-approximation to 41 from
the preceding step. Moreover, we included results obtained by diagonal EBDF using
two Jacobians Jy,4) and Jp 2, where the y-argument in J;,,. is determined by extrap-
olation of already computed y-values (these two Jacobians can of course be evaluated
in parallel). This version will be denoted by EBDF(2). In a realistic implementation,
one would only update the Jacobian when necessary to improve convergence.

The starting values were computed either from the exact solution if available or by
applying the 5th-order Radau ITA method with a 5 times smaller stepsize. We took
two well-known test problems from the literature having no transient phase, which
allows us to use fixed stepsizes; viz. a problem posed by Kaps[10].

d d
S = —1002, + 100043, 22 =y - (1 +3), 1(0) =1(0) =1, 0t <5,
(5.16)
with exact solution y; = e %, 5, = €%, and the problem
HIRES on [5,321.8122], (5.17)

where the initial conditions at ¢ = 5 were obtained by integrating the HIRES problem
given in ([8), p. 157) on [0,5). It turns out that these problems are relatively easy in

Parallel Iteration of the Extended Backward Differentiation Formulas 77

the sense that the three methods converge within one or two iterations. Therefore, we
also used the more difficult problem

¥i = —1000(y;y; ~ cos’(t) sin®(z)) — sin(2), n(0)=1,
Y2 = —1000(y5y; — sin®(t) sin’(t)) + cos(t), %(0)=0, 0<t<1 (5.18)
v5 = —1000(y1y; — cos”(t) sin®(t)) + cos(2), ws(0) =0,

with exact solution y; = cos(t) and y, = y; = sin(t). Because of its strong nonlinearity
it is a more suitable test problem for showing the differences in rate of convergence of
the three methods. Finally, we tested the problem

¥ = —0.04y; + 10*ypy; — 0.96e 7, 1 (0) =1,
Yo = 0.04y; — 10%y,95 — 107(y2)2 — 0.04e™, 4,(0) =0, 0<t<teq, (5.19)
Y3 =3107(32)* + €7, ¥3(0) =0,

with exact solution 33 = €, y = 0, y3 = 1 — e~t. This problem has the same
highly stiff Jacobian matrix as the famous Robertson problem[14], but it is modified
by adding nonhomogeneous terms, so that it possesses for the given initial values
a solution without transient phase. System (5.19) resembles the original Robertson
problem more as t increases. Note that the numerical integration process will become
unstable if negative approximations to y,(t) are generated.

In our numerical experiments, we denoted the number of steps by N, the number
of iterations in each iteration process by m , and the total number of iterations by
M (not including the iterations needed to compute the starting values). Note that
for fixed values of m and N, sequential MEBDF requires three times more sequential
righthand side evaluations and forward-backward substitutions than the transformed
and diagonal EBDF-type methods, because sequential MEBDF solves three subsystems
per step. Hence, for sequential MEBDF the value of M is three times greater. The
accuracy is given by the number of significant correct digits scd; that is, we write the
maximal absolute end point error in the form 107, In the tables of results, we shall
indicate negative scd-values by *.

5.4.1 Fixed numbers of iterations

We start by applying the three methods with a prescribed number of iterations m. In
the case of the HIRES problem (5.17) where no exact solution is available, the starting
values were provided by the Radau ITA method using 10 iterations. Tables 5.3 and
5.4 list for given values of m and NV the resulting scd-values for the problems (5.16)
and (5.17). These results show that in almost all cases sequential MEBDF finds the
solution in one iteration per subsystem, whereas transformed or diagonal EBDF needs
two iterations for the whole system (note that transformed and diagonal EBDF show a
comparable convergence behavior). Diagonal EBDF(2) behaves poorly for the HIRES

78 Chapter 5

problem (5.17) due to the relatively large timesteps which destroy the quality of the
Jacobian Jy, 12 (recall that the argument in J;, ., is based on extrapolation of preceding
y-values). Only for the smallest stepsize in Table 5.4 (i.e. h ~ 7.9) does the diagonal
EBDF(2) method converge. As to the order behavior, for the Kaps problem the order
p = 6 of the methods is reproduced, but for the HIRES problem the stepsize is too
large to observe asymptotic convergence.

TABLE 5.3: Values of sed for problem (5.16).

N Method m=1 m=2 m=3 m=20
10 Sequential MEBDF 4.7 4.7
Transformed EBDF * 4.5 4.5
Diagonal EBDF * 4.7 4.5 45
Diagonal EBDF(2) * 4.7 4.5 4.5
20 Sequential MEBDF 6.5 6.5
Transformed EBDF * 6.3 6.3
Diagonal EBDF * 6.4 6.3 6.3
Diagonal EBDF(2) * 6.4 6.3 6.3
40 Sequential MEBDF 83 8.3
Transformed EBDF * 8.1 8.1
Diagonal EBDF * 8.2 8.1 8.1

Diagonal EBDF(2) * 82 81 81

In order to see more clearly the differences in convergence rates, we now integrate the
highly nonlinear problem (5.18). Surprisingly, the numbers of iterations to reach the
converged solution is more or less comparable for all methods and differ by at most
one iteration. Furthermore, in this example, the additional Jacobian J,,s used in
diagonal EBDF(2) improves the initial rate of convergence considerably. The N = 20
and N = 40 results indicate that again only the stage order s = 5 is shown (since the
experiments were run with 14 decimals precision, the N = 80 results did not reach the
expected value scd = 14.3). Finally, we integrate the highly stiff modified Robertson
problem (5.19) with ¢, = 1. Here, the performance is similar to that for the Kaps
problem (5.16). Apparently, the methods are able to compute positive approximations
to the second component y(t).

5.4.2 Variable number of iterations

If the number of iterations is adjusted to each nonlinear system (or subsystem in the
case of sequential MEBDF) to be solved, then the efficiency is obviously improved,

Parallel Iteration of the Extended Backward Differentiation Formulas

TABLE 5.4: Values of sed for problem (5.17).

79

N Method m=1 m=2 m=3 m=4 m=20
10 Sequential MEBDF 2.2 2.7 2.8 2.7 2.7
Transformed EBDF * 3.1 2.6 2.7 2.7
Diagonal EBDF * 2.8 2.5 2.7 2.7
Diagonal EBDF(2) * * 24 0.6 *
20 Sequential MEBDF 3.4 33 3.3
Transformed EBDF * 3.3 3.3
Diagonal EBDF 3.6 34 3.3 3.3
Diagonal EBDF(2) 3.2 31 33 *
40 Sequential MEBDF 4.3 4.2 4.2
Transformed EBDF * 4.3 43
Diagonal EBDF * 44 4.3 43
Diagonal EBDF(2) * 4.3 4.3
TABLE 5.5: Values of scd for problem (5.18).
N Method m=1 m=2 m=3 m=4 m=5 m=6 m=20
20 Seq. MEBDF 5.3 9.3 10.3 10.9 10.8 10.9 10.9
Transf. EBDF 7.6 11.2 114 11.3 11.3
Diag. EBDF * 5.0 9.8 10.5 10.9 11.4 11.3
Diag. EBDF(2) * 114 113 11.3
40 Seq. MEBDF 11.7 123 12.4 12.5 12.4 124
Transf. EBDF * 12.9 12.8 12.8
Diag. EBDF * 11.3 12.3 12.9 12.8 12.8
Diag. EBDF(2) * 131 128 12.8
80 Seq. MEBDF 13.5 13.9 13.8 13.8
Transf. EBDF * 13.8 13.8
Diag. EBDF 13.5 13.8 13.8
Diag. EBDF(2) * 13.8 13.8

because we avoid the situation where the (sub)system solutions have quite different
accuracies. Moreover, in such a dynamic approach, sequential MEBDF can take ad-
vantage of the fact that it solves the subsystems successively instead of simultaneously
as done in the transformed and diagonal EBDF methods. Hence, we also obtain a more

80 Chapter 5

TABLE 5.6: Values of sed for problem (5.19) with feng = 1.

N Method m=1 m=2 m=20
10 Sequential MEBDF 7.9 7.9
Transformed EBDF 7.9 7.9
Diagonal EBDF 7.8 7.9 7.9
Diagonal EBDF(2) 7.9 79
20 Sequential MEBDF 9.6 9.6
Transformed EBDF 6.4 9.6 9.6
Diagonal EBDF * 96 . 96
Diagonal EBDF(2) 4.9 9.6 9.6
40 Sequential MEBDF 11.3 11.3
Transformed EBDF * 11.3 11.3
Diagonal EBDF * 11.3 11.3

Diagonal EBDF(2) * 11.3 11.3

honest comparison.

In our dynamic iteration strategy, we used the stopping strategy described in ([8], p.
130). This stopping strategy depends on a given tolerance parameter Tol, because it
presupposes the use of automatic stepsize selection based on keeping the local trun-
cation error LTE close to Tol. Since we focus on convergence aspects we want to use
fixed stepsizes, so that we have to replace Tol by some estimate of LTE. In our case,
the difference u,, — y, from the preceding step provides us with a free estimate of LTE.
We define the damping parameter 8, and the accumulated damping parameter 7,:

AR G M
™= YD) =m0 = Vad

)08, = Om ,m>1, (5.20a)
1-0p

where 7014 equals the 7, from the preceding step (bounded below by the machine pre-

cision). Then, the stopping criterion described in [8] yields for the number of iterations

m the condition

ﬂm”Y(m) - Y(m-l)”oo < llu, — Ynlloo- (5.21b)

Here, « is a control parameter. The implicit relations are solved more accurately as & is
smaller. For the problems (5.16), (5.17), (5.18) and (5.19), we performed experiments
where the number of steps was chosen such that a prescribed scd-value was obtained.
For these problems, the marimal number of iterations in the subsequent iteration
processes was prescribed, viz. m = 5, m = 10, m = 20 and m = 10, respectively.
In problem (5.17), where no exact solution is available, we used the Radau starting

Parallel Iteration of the Extended Backward Differentiation Formulas 81

method with m = 10. Tables 5.7-5.11 list the total number of iterations M needed
to obtain a given scd-value. Since transformed and diagonal EBDF exhibit a similar
convergence behaviour, we only listed scd-values for the easier implementable diagonal
EBDF methods. From these results we may conclude that the total number of iterations
is always less for the diagonal EBDF methods. Furthermore, diagonal EBDF(2) is now
performing quite well for the HIRES problem, because the stepsize is adjusted to the
required accuracy. On the basis of the above results, we can derive theoretical speedup
factors for the efficiency of the iteration part of the methods. Table 5.12 presents such
efficiency speedup factors by comparing M-values (averaged over the scd-values) for
sequential MEBDF and diagonal EBDF(2).

TABLE 5.7: Values of M for problem (5.16) with x = 0.1.

Method sed=5 scd=6 sed=7 scd=8 scd=9 scd=10
Sequential MEBDF 29 49 79 123 187 282
Diagonal EBDF 20 32 59 106 160 244
Diagonal EBDF(2) 20 32 62 97 153 235

TABLE 5.8: Values of M for problem (5.17) with x = 0.1.

Method secd=4 scd=5 scd=6 scd=7
Sequential MEBDF 126 210 305 406
Diagonal EBDF 83 133 189 241
Diagonal EBDF(2) 72 122 177 234

TABLE 5.9: Values of M for problem (5.18) with x = 0.1.

Method scd=10 scd=11 sed=12 sed=13
Sequential MEBDF 103 118 157 231
Diagonal EBDF 131 125 121 140
Diagonal EBDF(2) 32 38 67 105

5.4.3 Code timings

Finally we will give an indication of how our formulation of the diagonal EBDF method
compares with the sequential MEBDF method of Cash when implemented on a parallel
shared memory machine, in this case a Cray C916. Parallel speedups in this section

82 Chapter 5

TABLE 5.10: Values of M for problem (5.19) with fend =1 and s =0.1.

Method scd=8 scd=9 scd=10 scd=11 scd=12 scd=13
Sequential MEBDF 21 39 66 107 168 260
Diagonal EBDF 9 17 29 49 74 114
Diagonal EBDF(2) 8 17 30 48 74 115

TABLE 5.11: Values of M for problem (5.19) with fo,ng = 10 and « = 0.1.

Method scd=3 scd=4 s8cd=5 scd=6 scd=7 scd=8
Sequential MEBDF 31 60 101 163 255 392
Diagonal EBDF 19 37 47 75 119 184
Diagonal EBDF(2) 18 26 47 76 119 184

TABLE 5.12: Theoretical iteration speedup of diagonal EBDF(2).

Problem Speedup

(5.16) 13
(5.17) 1.7
(5.18) 2.7
(5.19) 2.2

were obtained using the Autotasking Expert analysis tool [4] available on Cray com-
puter systems, which estimates the speedup that would be obtained by a program run
on a dedicated multiprocessor system, based on the observed performance on an arbi-
trarily loaded system. Since the ATExpert tool measures speedup with respect to the
same code run on a single processor, it is important for obtaining meaningful results
that no redundant work be performed within parallel sections of the code. The tests in
this section were run with a fized number of Newton iterations per timestep to clearly
distinguish the parallel performance in the absence of iteration strategies. We have
taken many more time steps in the experiments of this section to reduce the effects of
initialization costs such as memory allocation and startup procedure.

There is, of course, a certain amount of parallelism available in sequential MEBDF.
For each of the three relations in {(5.3a),(5.3¢)}, a nonlinear system must be solved
with a (modified) Newton method, in which the following tasks have varying degrees
of parallelism:

1. Evaluation of the Jacobian J, ;.

Parallel Iteration of the Extended Backward Differentiation Formulas 83

2. Evaluation of the righthand side.
3. Update of the solution vector.
4. Computation of an LU-decomposition of the system matfix I — bohdpyr.

5. Execution of a forward-backward substitution.

These tasks all contain a number of independent operations which is proportional to
the problem dimension d (parallelism across the space, in the classification of Gear|6])
and are present in sequential MEBDF, as well as in the diagonal EBDF methods.
However we are interested in an additional, coarser grained parallelism, orthogonal
to these parallelizations, such as the concurrent computation of LU-decompositions
and forward-backward substitutions for the three subsystems (parallelism across the
method). This kind of parallelism is not available if the subsystems are solved succes-
sively as in sequential MEBDF. However, by solving the subsystems simultaneously as
in diagonal EBDF, all of items 1 through 5 above can be computed in parallel for the
three subsystems. In the following subsections we present timings concerning the effect
of concurrent computation of the various tasks in diagonal EBDF.

LU-decompositions.

Since the computation of LU-decompositions are generally considered to be expensive,
we first discuss the effect on the CPU time of computing the LU decomposition of the
matrices I — bohJnpy1 and I — bohJ, > needed in diagonal EBDF concurrently. Since
the Jacobians are factored only once per time step, the effect of factoring them con-
currently becomes less important as more iterations are needed. Table 5.13 shows for
N = 1280 time steps the speedup figures obtained from a two-processor implemen-
tation of diagonal EBDF in which only the two LU-decompositions are computed in
parallel. Apparently, for the problems (5.16)—(5.19), the parallel computation of the
LU decompositions does not lead to a substantial speedup, even for the 8-dimensional
HIRES problem (5.17). Of course, for higher-dimensional problems, the speedup will
increase. On the other hand, a more sophisticated implementation, where the Jaco-
bian is only updated every few steps, will decrease the speedup attained by concurrent
decomposition of Jacobians. Therefore, a substantial speedup of a parallel implemen-
tation of diagonal EBDF should not be expected from the parallel computation of the
LU-decompositions alone.

Overhead costs.

The diagonal EBDF approach incurs a small increase in cost due to the fact that the
most recently computed function evaluations f (ug’;ll)) and f (uf,’;;)) must be updated
in the second and third components of the residue in (5.8), whereas these are constant

84 Chapter 5

TABLE 5.13: Speedups attained by concurrent decomposition of Jacobians in diagonal EBDF.

Problem m=2 m=3 m=4 m=5
(5.16) 097 097 100 1.00
(617) 118 114 111 110
(5.18) 103 102 102 102
(519) 104 103 103 1.02

components of the residue functions if the subsystems are solved in sequence. Hence,
these additional costs have to be considered as overhead costs. In order to estimate
these costs, we compared diagonal EBDF with sequential EBDF. The latter method is
understood to be the method obtained if the EBDF subsystems in {(5.3a),(5.3b)} are
solved sequentially. An indication of the significance of this overhead is provided in
Table 5.14, in which the ratio of serial CPU times for sequential EBDF and diagonal
EBDF is compared for N = 1280 time steps. These figures show that the increase in
sequential overhead is quite modest.

TABLE 5.14: Ratio of serial CPU times for sequential and diagonal Newton.

Problem m=2 m=3 m=4 m=5
(5.16) 094 091 0.89 0.89
(5.17) 098 097 097 0.96
(5.18) 1.01 0.99 0.97 0.97
(5.19) 098 096 0.95 0.94

Overall speedup factors.

Table 5.15 shows the ATExpert observed speedup of the diagonal EBDF approach on
three processors over sequential MEBDF on one processor for N = 1280 time steps
and m = 5 iterations. It is noteworthy that this speedup is essentially independent
of the number of Newton iterations. In the table we have also listed the dimension
of each system (the nonautonomous terms of problems (5.18) and (5.19) have been
implemented as an extra dimension). The attainable speedup is highest for the HIRES
problem, which has dimension 8, and lowest for the Kaps problem of dimension 2. As
observed in Section 5.4.1, we suffer only a slight loss in convergence rate when chang-
ing from sequential MEBDF to diagonal EBDF. Hence, we may expect comparable
accuracies for equal numbers of steps N and iterations m, so that the CPU speedup
factors in Table 5.15 are also an indication of the speedup of efficiency (that is, CPU
speedup under the condition of equal accuracies).

References . 85

TABLE 5.15: Speedup of diagonal EBDF on 3 processors.

Problem d m=5

(516) 2 18
(6.17) 8 23
(5.18) 4 20
(5.19) 4 20

Acknowledgements

The authors are very grateful for the comments and suggestions of the referees.

References

[1] P.N. Brown, A.C. Hindmarsh, and G.D. Byrne. VODE: A variable coefficient
ODE solver. Available at http://www.netlib.org./ode/vode.f, 1992.

[2] J.R. Cash. On the integration of stiff ODEs using extended backward differentia-
tion formulae. Numer. Math., 34:235-246, 1980.

[3] J.R. Cash. The integration of stiff initial value problems in ODEs using modified
extended backward differentiation formulae. Comput. Math. Appl., 5:645-657,
1983. Software available at http://www.ma.ic.ac.uk/~jcash/IVP_software/
finaldae/readme.html.

[4] Cray Research Inc. CF77 Commands and directives, SR-3771, 6.0 edition, 1994.

[5} J.E. Frank and P.J. van der Houwen. Diagonalizable extended backward different;i-
ation formulas. Technical Report MAS-R9917, CWI1, Amsterdam, 1999. Submitted
for publication.

[6] C.W. Gear. Massive parallelism across time in ODEs. Appl. Numer. Math.,
11:27-44, 1993. Proceedings of the International Conference on Parallel Methods
for Ordinary Differential Equations, Grado (It), Sept. 10-13, 1991.

[7] E. Hairer, S.P. Norsett, and G. Wanner. Solving Ordinary Differential Equations,
I Nonstiff Problems. Springer-Verlag, Berlin, second edition, 1993.

|8} E. Hairer and G. Wanner. Solving Ordinary Differential Equations, II. Stiff and
Differential-Algebraic Problems. Springer-Verlag, Berlin, second edition, 1996.

[9] E. Hairer and G. Wanner. RADAU. Available at ftp://ftp.unige.ch/pub/doc/
math/stiff/radau.f, 1998.

86 References

[10] P. Kaps. Rosenbrock-type methods. In G. Dahlquist and R. Jeltsch, editors, Nu-
merical methods for stiff initial value problems, Bericht nr. 9. Inst. fiir Geometrie
und Praktische Mathematik der RWTH Aachen, 1981.

[11] W.M. Lioen and J.J.B. de Swart. Test set for IVP solvers, Release 2.0. Available
at http://www.cwi.nl/cwi/projects/IVPtestset/, 1998.

[12] L.R. Petzold. DASSL: A differential/algebraic system solver. Available at http:
//www.netlib.org/ode/ddassl.f, 1991.

[13] G.-Y. Psihoyios and J.R. Cash. A stability result for general linear methods with
characteristic function having real poles only. BIT, 38:612-617, 1998.

[14] H.H. Robertson. The solution of a set of reaction rate equations. In J. Walsh,
editor, Numerical Analysis, an Introduction, pages 178-182. Academ. Press, 1966.

87

Chapter 6

Diagonalizable Extended Backward
Differentiation Formulas

Abstract. We generalize the extended backward differentiation formulas (EBDF)
introduced by Cash and by Psihoyios and Cash so that the system matrix in the
modified Newton process can be block-diagonalized, enabling an efficient parallel
implementation. The purpose of this paper is to justify the use of diagonalizable
EBDFs on parallel computers and to offer a starting point for the development
of a variable stepsize-variable order method. We construct methods which are L-
stable up to order p = 6 and which have the same computational complexity per
processor as the conventional BDF methods. Numerical experiments with the
order 6 method show that a speedup factor of between 2 and 4 on four processors
can be expected.

6.1 Introduction

In [7] we discussed the parallel implementation of the extended backward differentiation
formulas (EBDFs) introduced by Cash in [2] and [3] for the numerical solution of initial
value problems for stiff differential equations of the form

‘% =1(t,y), y,f €R?, t > t,. (6.1)
The parallel approach described in [7] is based on block-diagonalization of the system
matrix in the modified Newton process used for solving the implicit EBDF relations.
The system matrix is of the form I — (A ® hJ), where h is the stepsize, I is the
identity matrix, the matrix A is determined by the EBDF method coefficients, and J
is an approximation to the Jacobian matrix of/dy. Since ezact block-diagonalization
is not possible due to defectiveness of the matrix A4, we applied approztmate block-
diagonalization. The resulting block system for the stages can then be efficiently solved
in parallel on a number of processors equal to the number of stages. Although the rate
of convergence is less than that of true modified Newton, the experiments in [7] show
a speedup on a three-processor configuration of between 2 and 3.

The same parallel approach can be applied to the more general EBDF methods which
have recently been proposed by Psihoyios and Cash [15]. These more general EBDF
methods also lead to defective coefficient matrices A in the modified Newton process,
but have the property that they can be made L-stable up to order p = 6 (the original

88 Chapter 6

EBDFs are L-stable up to order p = 4). However, approximate block diagonalization
is now much less accurate than in the case of the original EBDF methods. The aim
of this paper is to construct methods which are L-stable up to order p = 6 with a
nondefective matrix A, so that exact block-diagonalization is possible.

The code MEBDFDAE developed by Cash and Considine [4], is a variable stepsize,
variable order implementation of the MEBDF method [3] suitable for integrating dif-
ferential algebraic equations. This code performed quite well in a comparison with a
number of other solvers in [14]. The extension of the results of this paper to differential
algebraic equations is the subject of future research.

In Section 6.2, we define a family of EBDF-type methods which generalizes the Cash
and Psihoyios-Cash methods. The order conditions, the global error for the Prothero-
Robinson test equation, and stability conditions are derived. Section 6.3 discusses
the sequential and parallel implementation of these methods and in Section 6.4 we
derive L-stable, nondefective EBDF methods of order up to p = 6. Per processor, the
computational complexity of these methods is comparable to that of the conventional
BDF methods. Finally, Section 6.5 reports numerical experiments for the sixth-order
method. These experiments indicate that a speedup factor in the range of 2 to 4 on
four processors can be expected.

6.2 EBDF-type methods

The generalizations of the EBDF methods to be discussed in this paper are of the form

(B® I)Y 1 — h(C ® I)F(etn + ch, Yoi1) = (E ®)V,

6.2
Vo= (yZ'_’_H’ KR yg;)T' ()

Here, ® denotes the Kronecker product, h is the stepsize t,,.1 — t,, € and c are r-
dimensional vectors, e = (1,...,1)7, ¢ = (¢1,...,¢)7 with ¢, = 1. I is the d by d
identity matrix, B and C are r by r lower triangular matrices and E is an r by s matrix.
The unknown stage vector Y,,; contains r stages Yn+.; of dimension d, representing
numerical approximations at the points %, + ¢;h, and F(et, + ch, Y,4,) contains the
r righthand side values f(t, + ¢;h, Yn+c;)- Since B and C are lower triangular, the first
r — 1 stage equations -may be considered to be implicit predictor formulas providing
the internal stage values y,4(,, ¢ =1,...,7 —1, needed in the last stage equation. This
last stage equation will be referred to as the corrector equation defining the output or
step point value Ynic, = Yn+1.

We shall call (6.2) an EBDF-type method, because it can be viewed as a generalization
of the original three-stage EBDF and MEBDF methods of Cash and the four-stage
version recently discussed by Psihoyios and Cash. Note that the one-stage versions
with ¢; = 1 assume the form of the conventional BDF methods.

Diagonalizable Extended Backward Differentiation Formulas 89

6.2.1 Nonstiff order of accuracy

Given the abscissa vector ¢ = (¢;), the matrices B, C and E can be determined such
that the ith stage equation in (6.2) is consistent of order p; provided that p; + 1 free
coefficients are available for that equation. To formulate the consistency conditions, we
first write (6.1) in autonomous form by adding the equation dyy;/dt = 1, so that (6.2)
also becomes autonomous. Next, we introduce the abscissa vector for the back-values
b := (1-s,2—s,...,0)T, and the component-wise notation g(v) associated with a scalar
function g : R — R to denote the vector with components g(v;), where v = (v;). Upon
substitution of the exact solution into (6.2), that is, we set Y1 = exp(chd/dt)®y(t)|s,
and V,, = exp(bhd/dt) ® y(t)s,, it is easily seen that the ith stage equation in (6.2)
is consistent of order p; if

el ((B — hC) exp(ch) — Eexp(bh)) = O(h?**1),i=1,...,r, (6.3)
where e; is the ith unit vector. The conditions (6.3) lead to the order equations
elEWY = el (B! — jCI™Y), j=0,...,p, i=1,...,1, (6.4)

where we define 0° = 1. If (6.4) is satisfied, then the stage order of (6.2) is defined by
P = min{p;}. In general, the output value y, .. = yn41 has nonstiff order of accuracy
p = p. However, if the first 7 — 1 entries of the last row of the matrix B in (6.2) vanish
(as will be the case for the methods of Section 6.4) and if p, = p+1 (as will henceforth
be assumed), then the nonstiff order of accuracy is equal to p + 1. The stiff order of
accuracy is discussed in the following section.

6.2.2 Stiff order of accuracy

We study the global error of the EBDF-type method (6.2) when applied to the Prothero-
Robinson equation dy(t)/dt = Ay(t) + ¢(t), where ¢ is a given function. By means of
this test equation we can obtain insight into the behavior of the error components in
the integration of the general ODE system (6.1) by interpreting A as an eigenvalue of
the matrix J, where J denotes the Jacobian of the ODE system. For general linear
methods, Hundsdorfer [12] has derived an upper bound for the global error, so that by
rewriting (6.2) as a general linear method, we can use his results. However, the rather
special form of (6.2) makes it easier to derive such error bounds directly.

Applying (6.2) to the Prothero-Robinson equation yields the EBDF solution
Yn1 =€ Yy u1 =€l (B — 2C)" (hCo(et, + ch) + EV,), z:= h). (6.5)

Furthermore, upon substitution of the exact solution y(t) into (6.5) we define the local
error 8,41 by the relation

Y(tns1) = €7 (B — 20)! (hoqs(et,, +ch) + E\?,.) + G,

/ 6.6)
Vo= (y(tn—u+l)! teey y(tﬂ))T .

20 Chapter 6

By subtracting (6.5) from (6.6) and defining the global errors &, = y(t,) — yn, We
obtain

€nt1 = €1 (B — 2C) ' E(En—st1s- 1) + bni1. . (6.7)
From this global error recursion we derive the following result:

Theorem 6.2.1 Let p be the stage order of the EBDF-type method (6.2). Then, the
global error of the Prothero-Robinson equation behaves according to en1 = O(271hPH1)
as h— 0 and z = hA — oo.

Proof. First an explicit expression for the global error ¢y, in terms of the local errors
d; is derived. In this derivation, it is convenient to rewrite the multistep difference
equation (6.7) in one-step form. Let us define the s-dimensional vector function u(z),
the s-dimensional local error vector 4,.;, and the s-dimensional global error vector
Ent1 by

ul(2) .= el (B-2C)'E, 841 :=bpp1€,, Ent1 1= (Encst2---1Ens1)” - (6.8)

Then, assuming that &, = 0, we obtain

: n
Enp1 = REq + 0,4 = Z Riéniri,
i:o
1

R=R(2) :=
1
ui2) ua(2) us(2) oo w(2)

Applying partial summation (see [9], p. 242), we arrive at the expression

a1 = € (I - Ry7N(I - R™*")e,dy + e Y (I — R)'(I — R™' e, (8111 — &),
i=1
(6.9)
provided that I — R is nonsingular.

Next, we express £4,4; in terms of the derivatives of the exact solution y(¢). Using the
relation ¢(£) = y’(t) — Ay(2), it follows from (6.6) that dp4y has the Taylor expansion
21 _—
b1 =Y ﬁ%‘(z)h’ y9(tn),

J=0
Y(2) ==1— €l (B - 2C)~}(Ee — zCe), (6.10)

¥i(z) =1 — €T (B — 20)" (B + jC&! — 20¢%), j > 1.

Diagonalizable Extended Backward Differentiation Formulas 91

From (6.4) we see that Eb/ = B¢ — jCci™! for j = 0,...,5, p being the stage
order, so that the first 5+ 1 terms in the Taylor expansion vanish. Since (6.8) implies
u”(2) = —z"'eTC~'E + O(2™2), it follows from the structure of the matrix R(z) that
R(z)" vanishes as z — oo for n > s. Hence, we conclude from (6.9) and (6.10) that

Ent1 = €1 (I — R(2))e,0,(2) + O(hP*?)

1 })
= T U~ RO M ey 1,) + (124

as z = oo for n > s. The theorem now follows from the fact that (I — R(z))™! is

bounded as z — oo and that v5,1(2) = 1 — elc#*t + O(z7) = O(z7Y). O

If the stiff order of accuracy is defined by the order of £,,, in h as z = oo, then
we conclude from this theorem that the stiff order of EBDF-type methods is p + 1.
In [14] the MEBDFDAE code of Cash and Considide [4] is compared with a number
of codes based on standard BDF methods—for which the stiff order is equal to the
nonstiff order {9}, but which are less stable than EBDF-type methods—and Radau ITA
methods—for which the nonstiff order of an s stage method is 25 — 1, but for which the
stiff order is only s+1 [9]. The discussion of this section assumes only the general form
(6.2) of EBDF-type methods, and thus applies directly to MEBDF; we think the high
accuracy in the presence of stiffness helps to explain the good relative performance of
MEBDFDAE observed in [14].

6.2.3 Stability

From the linear difference equation (6.5) it follows that, with respect to the stability
test equation ' = Ay (i.e. ¢ = 0), EBDF-type methods are stable if the characteristic
equation associated with (6.5) has roots only on the unit disk. Using the identity
_ det(P + qp”)
Tp-1, _ _
PPa=—m b

which holds for any nonsingular m by m matrix P and any two m-dimensional vectors
p and q, we find that (6.5) can be written as

det(B ~ 2C + EV,e])

—eT(B — 20)! = 1. 6.5’
Yn+1 er (B Z) Ev det(B _ ZC) ()
Hence, the characteristic equation is given by
det(B — zC + ET'(()el) _2 ae\T
S = Tl ~ = e 8 . 6.

First of all, we require that (6.2) is zero-stable; that is, we require that for z = 0 the
characteristic equation (6.11) has one simple root at 1 and s — 1 roots on the unit disk
with only simple roots on the unit circle.

92 Chapter 6

Theorem 6.2.2 Let B be nonsingular and let the row vectors of the mairiz B E be
denoted by wl. The EBDF-type method (6.2) is zero-stable if the equation ¢* = wIT(()
has one simple root ; =1 and s —1 roots (;, i = 2,...,8 — 1, on the unit disk with
only simple roots on the unit circle. '

Proof. For z =0, the characteristic equation (6.11) simplifies to

s _ det(B + ET({)e])
¢'= det B B

1=det(I + BT*ET({)el) — 1.

The matrix B~*ET'(¢)eX has zero columns, except for its last column which has entries
wiT((),i=1,...,r. Hence, (6.5') reduces to (* = wZT'{(), which proves the assertion
of the theorem. O

Note that this theorem holds for any general linear method of the form (6.2) such that
the output (step point) value is given by one of the stages, regardless of the structures
of the matrices B, C and E.

Secondly, the stability region of (6.2) is defined by the points in the z-plane where the
zeros of (6.11) are on the unit disk. Setting (= exp(if), the boundary of this region
is defined by the boundary locus equation

(6 + 1) det(B — 2C) — det(B — 2C + ET(e*)el) = 0, 0 < 0 < 2. (6.12)

This equation can be used for plotting stability regions.

Finally, we remark that an A(a)-stable method is automatically L(c)-stable, because
the characteristic equation (6.11) reduces to {* = 0 as z = oo.

6.3 Sequential and parallél iteration

The solution of (6.2) can be obtained by successively solving r subsystems, each of
dimension d (recall that B and C are assumed to be lower triangular). If a (modified)
Newton method is applied, then the iteration scheme for the ith stage y,+¢ of Yyt
assumes the form

(I — hCyJ) (y,(.’lc.. - Yr(f:;)) = _y"i;cli) + hCiif (tnte;s y,(,’:;)
i-1 s
+ h Cikf(tn+cp yn+cg) + Z Eik)'n—n+k1 j = 1: ooy T, (613)
k=1 k=1

where C and Ej;, denote the entries of the matrices B-'C and B~'E, respectively, J
is an approximation to the Jacobian matrix of the righthand side function in (6.1) at
th41, and ys’lc‘. is an initial approximation to y,4.,. This amounts to the solution of mr

Diagonalizable Extended Backward Differentiation Formulas 93

linear systems per step, where m denotes the (average) number of Newton iterations
needed in the r subsystems. This approach will be called sequential iteration.

If, however, a parallel computer system is available, then one may attempt to solve
the r stages more efficiently in parallel on 7 processors. In [7] we developed for the
original EBDF and MEBDF methods of Cash a highly parallel iterative method for
solving the implicit relations in (6.2). This parallel approach can also be applied to
methods of the form (6.2) with more general matrices B, C and E. It is based on the
approximate block-diagonalization of the modified Newton method applied to the full
(block) system (6.2). Let us define the residue function

R.(Y):=Y - h(B'C® I)F(et, +ch,Y) - (B'EQ) V,. (6.14)
Then, solving (6.2) by m modified Newton iterations amounts to
(I-B'Cohl)(YD, —-Yi D) = R, (YYD, j=1,...,m. (6.15)

The MEBDF methods were developed in [3] to avoid factoring two Jacobians by forcing
the diagonal of B—1C to be a constant. In parallel the extra factorizations come for free,
and a constant diagonal is actually undesirable: if we use an abscissa vector of the form
c=(1,2,...,7r—1,1)T and assume the same zero structure of the matrices B, C and
E as in the original EBDF and MEBDF methods, then the matrix B~!C is defective,
so that we cannot directly diagonalize (6.13) by applying a similarity transformation.
One option is to replace the matrix B~C in (6.15) by a diagonalizable approximation
A*, for example, by A* = diag(B~1C). The rate of convergence will be less than that
of the modified Newton method, however. In the case of the three-stage EBDF and
MEBDF methods, the loss in rate of convergence is modest (see the experiments in
[7]) because the diagonalizable approximation is quite accurate. In fact, even with the
simple choice A* = diag(B~!C), we obtained surprisingly fast convergence. However,
for higher-stage methods, where diagonalizable approximations are less accurate, the
rate of convergence is expected to decrease significantly.

6.3.1 Nondefective methods

Rather than applying approximate block-diagonalization, we follow an alternative ap-
proach in which the abscissa vector is changed to the form ¢ = (¢;,2,3,...,7 — 1,1)T
and in which we choose ¢; # 1 such that B~!C is no longer a defective matrix (except
for the degenerate case s < r — 2). We shall call such EBDF methods nondefective
EBDF methods. Nondefective EBDF methods can directly be diagonalized by the
transformation YU = (Q~1 ® I)Y(), where Q is such that Q=}(B~'C)Q = D with D
diagonal. This yields the transformed iteration method

(I-DehJ)(YY -YU = _(Q'®)R, ((Q® I)?U'l)) ,ji=1,...,m,

Yo =(Q®@ Y™
(6.16)

94 Chapter 6

and will be called parallel iteration. We emphasize that (6.16) is algebraically equiva-
lent to (6.15).

The introduction of the free parameter c, in the abscissa vector ¢ = (cy,2,...,r—1,1)7
preserves the attractive property that all stage values, except for the first one, can be
reused in the initial approximation Y®) needed in the succeeding time step. The first
stage can in turn be approximated by interpolating between the abundant history and
stage values. In fact, setting ¢; = 1 has no additional advantages, because it ‘duphcates
the output value at ...

6.3.2 Convergence condition

Defining the iteration error e0) := YU —Y,,,, we derive for (6.15) the error recursion

5(1) hK®(EYY), j=1,...,m,
==(I-B'CQhJ)" (B7lCe®I),
<I>(e) =F(et, +ch, Y 1 +€) —F(etn+ch, You)~ (I & J)e
Let ®(¢) have at £ = 0 a Lipschitz constant Lg with respect to the Euclidean norm
and let the problem be dissipative, i.e. ps[J] < 0, where y,[-] denotes the logarithmic

norm associated with the Euclidean norm. Then, by applying the matrix version of
von Neumann’s theorem (see [9], p. 356), we conclude that for dissipative problems

e 2 < hLaLilleYVlla, Ly = max{||(I — 2B~ 1C) 'B~'Cllz : Re(z) < 0}.
(6.17)

Hence, for dissipative problems, a sufficient condition for convergence is

1
< .
hs LyLg

Thus, difference in convergence of two EBDF-type methods is mainly determined by
differences in the upper bound Lg.

6.3.3 Analysis of computational expenses

Finally, the computational expenses of (6.13) when implemented on one processor
(sequential iteration of the subsystems) are compared with those of (6.16) implemented
on r processors (parallel iteration). In (6.13) we define /m := r~(m;+---+m,) and we
denote the number of distinct diagonal entries of C by r4. Table 6.1 lists the numbers
of floating point operations to advance the solution one time step using a fixed stepsize.
In this table, C; and C; respectively denote the average numbers of operations needed
to compute a component of f and an entry of J.

Diagonalizable Extended Backward Differentiation Formulas 95

TABLE 6.1: Operation costs per processor to advance the solution one time step.

Sequential iteration Parallel iteration
Once per Jacobian update]
Jacobian evaluation C;d? 1c,d?
System matrix Tod d
LUD of system matrix 2rod® 28
Once per time step
Righthand side (Cs+2s+1)rd — (C; +2)d (2s-1)d
Per Newlon iteration
Forward/backward 2rd? 242
Updates r(Cy + 5)d (Cs+r+4)d
Transformations - 2rd

For a linear problem, only one Newton iteration is needed. Hence, assuming that the
costs of building and factoring the Jacobian are negligible, it follows from Table 6.1
that the parallel speedup can be estimated by

(2-r1)Cr+2d+2s+6—2r1
Ci+2d+25+3r+3

S=r
At the other extreme, assume a very stiff nonlinear problem such that the Jacobian

must be evaluated once per step. Then, we obtain

_ m(2d+ Cy+5) + (Cr+ 25 +1) +77HCsd — Cp — 2) + ror (1 + 2d?)
- m(2d+ Cs +3r + 4) + (25 — 1) + 7 1Csd + (1 + 2P)

y

from which the following observations can be made:

o If the evaluation of the Jacobian dominates the computation, then S & r.
e If factoring the Jacobian dominates the computation, then‘S & Tg.

o If the iterations dominate the computation, then S ~ rinm™?.

6.4 Construction of nondefective EBDF methods

We shall construct nondefective versions of the original three-stage and four-stage
EBDF-type methods given in [2] and [15].

96 Chapter 6

6.4.1 Three-stage methods

We consider methods of the form (6.2) with r = 3 and

(&} 1 00 Cu 0 0
c=12 N B= B21 10) C= 0 022 0 s
1 0 01 Csi C Cy

Ey Ey --- Ey
E=|0 Ep - B,]J.
Esy Esz -+ Ej,

(6.18)

Given the abscissa ¢, and one of the parameters Cj;, the remaining entries in the
arrays in (6.18) can be computed by means of the order conditions (6.4) such that
P1=p2 = s and p3 = s+ 1. Hence, the order of accuracy (both stiff and nonstiff) is
p =5+ 1. The cases {¢; = 1,C3 = 0} and {¢; = 1,Cs3 = C1; = Cn} respectively
define the original EBDF and MEBDF methods. For future reference, Table 6.2 lists for
p=3,...,6the MEBDF values of the angle of unconditional stability o; the parameters
D, and D, determining the rectangle {z : —D; < ®(2) < 0,—-D; < S(2) < Dq}
containing the region of instability in the left half-plane; and the maximal modulus of
the characteristic roots ¢ in this region of instability. For larger values of p, the angle o
quickly decreases, so that the resulting integration methods are less useful for solving
general stiff problems.

TABLE 6.2: Three—stage MEBDF methods of Cash with =]., Css = Cn = Cn.

P 3 4 5 6

o 90° 90° 88.4° 83.1°
(D1,Dy) (0,0) (0,0) (0.040,1.8) (0.246, 2.6)
[Clmax 1 1 1.029 1.121

As we already observed, the MEBDF methods of Table 6.2 are defective, so that direct
diagonalization is not possible. Therefore, we used the two free parameters ¢; and
Cs1 to construct a nondefective, zero-stable and L(a)-stable EBDF method with (i)
a relatively large o and (ii) a well-conditioned transformation matrix Q. Requiring
that @ be lower triangular with unit diagonal entries, we found by a straightforward
numerical search the results listed in Table 6.3 (for the L-stable third- and fourth-
order methods, the generating matrices B~!C, B~'E, D and Q needed in (6.16) are
given in the Appendix to this paper). We mention only that there is a lot of freedom in
choosing the parameters c, and C3; to determine L-stable 3-stage methods satisfying
(i) and (ii). For the 4-stage methods of the next section, the L-stable parameter space
is much more restricted.

Diagonalizable Extended Backward Differentiation Formulas 97

TABLE 6.3: Three-stage, nondefective EBDF methods of the form (6.18).

) 3 4 5 6
& 5/4 5/4 5/4 5/4
Ca 0 0 2/7 3/13
Qe 61 79 6.6 8.3
a 90° 90° 88.5° 83.9°
(D1,D;) (0,0) (0,0) (0.04,2.1) (0.24,3.9)
|¢ lmax 1 1 1.029 1.121

6.4.2 Higher-stage methods

The original EBDF and MEBDF methods have ¢ = (1,2,1)T, so that there is one
‘future point’ at ¢, + 2h. This method can be interpreted as the successive application
of the s-step BDF formula at ¢, +h and £, + 2h for predicting the future point value at
tp +2h needed in the (s+1)-step (M)EBDF corrector formula. More generally, we may
introduce further future points by using ¢ = (1,2,3,...,7—1,1)7. Considering only the
stability of the corrector formula (last stage equation), we verified experimentally that
up to order 18 the maximal order of L-stable formulas increases by 2 and the maximal
order of L(a)-stable formulas increases by 3 with each additional future point. Of
course, the use of BDF predictors will reduce the stability of the overall method, but
we may still hope for improvement: Psihoyios and Cash [15] have shown that there
exist L-stable 4-stage methods of order 6. However, just as in the case of the three-stage
EBDF, choosing ¢ = (1,2,3,...,r — 1,1)7 yields defective matrices B-'C. Therefore,
we shall consider abscissae vectors of the form

c=(c1,2,3,...,7r—1,1)7, (6.19a)

where ¢; is a free parameter. According to the structure of the original (M)EBDF
methods, we impose the following sparsity pattern on the matrices B, C and E:

1 * * * *
B:= ,C:= ,E= H

* 1 * *

0 01 * * *x * * *

(6.19b)

The entries in the matrices B, C and E can be determined such that the first r — 1
stage equations in (6.19b) are consistent of order s. The last stage equation contains
T + s free parameters, so that it can be made consistent of order » + s — 1. Since
the order of accuracy of (6.19a,6.19b) cannot exceed s + 1, we shall choose the entries
in the corrector equation such that it is consistent of order s + 1, leaving r — 2 free
parameters. Together with the free parameter ¢;, we obtain an (r — 1)-parameter
family of EBDF-type methods with stage order § = s and order of accuracy p = s+ 1.

98 Chapter 6

From this family, we want nondefective, L-stable methods, again under the condition
of zero-stability and a well-conditioned transformation matrix Q.

Let us consider the case of four stages (r = 4) with three free parameters. As already
mentioned, Psihoyios and Cash have considered the defective case ¢; = 1 and shown
that L-stable, sixth-order methods exist for a particular choice of the remaining two
free parameters. For example, they verified that the parameters Cy; = 1/10 and
Cs3 = 1/20 generate an L-stable method with p = s + 1 = 6. This motivated us to
search for nondefective, L- and zero-stable methods by choosing ¢; # 1. A numerical
search produced for p = s +1 = 5 the values ¢; = 3/2, Cy = 3/10, Cy3 = 7/50 giving
[|Qlloo = 31.5 and for p = s + 1 = 6 the values ¢; = 6/5, Cy = 11/100, Cy3 = 1/20,
giving [|Q|lc = 167.5. The corresponding generating matrices B~'C, B~'E, D and Q
needed in (6.16) are given in the Appendix.

Together with the conventional BDF methods of order p = 1 and p = 2, and the three-
stage nondefective EBDF methods of order p = 3 and p = 4 derived in the preceding
section, we now have L-stable methods up to order six, all having a comparable effective
computational complexity per step, provided that we employ three processors for p =
3,4 and four processors for p = 5, 6.

6.5 Numerical experiments

Preliminary numerical experiments have been conducted using a constant stepsize im-
plementation in Matlab. Due to the difficulty of determining the free coefficients for
optimal stability, a variable stepsize implementation should be based on interpolation
of back-values to maintained evenly-spaced data. One could also recompute the co-
effients at each timestep for fixed values of the free parameters, but this is likely to
lead to a loss of L-stability at high order. In fact, this paper is meant as a starting
point for the development of a variable stepsize-variable order code.

In the numerical experiments we compare two methods from the three-parameter fam-
ily of four-stage, 6th-order EBDF-type methods of the form (6.19a,6.19b) with free
parameters ¢;, Cy and Cy3. The first method is due to Psihoyios and Cash and is
defined by ¢; = 1, Cy = 0.10, Cy3 = 0.05. It is L-stable, but defective, so that se-
quential iteration has to be applied (see Section 2.4). The second method is defined
by ¢ = 1.2, Cy = 0.11, Cy3 = 0.05. It also is L-stable, but nondefective, so that the
parallel iteration method (6.16) can be applied. In the following, we call these meth-
ods the Defective and Nondefective EBDF methods, respectively. The values of the
parameter Ly in (6.17) are Ly = 1.88 for the Defective EBDF method and Ly ~ 1.68
for the Nondefective EBDF method, so we would expect the methods to have similar
convergence behaviors. In addition to these methods, we reproduced the results from
[7] obtained for the original three-stage, 6th-order EBDF method of Cash when iter-
ated by the diagonal iteration method (6.14) with A* = diag(B~1C), to be referred to

Diagonalizable Extended Backward Differentiation Formulas 99

as Diagonal EBDF. By mutual comparison of the three methods we can see what we
have gained by the introduction of nondefective EBDF methods.

Following (7] the initial iterates for the iteration processes are obtained by taking
the most recent approximation available or, if not yet available (in the case of the
future value at ¢p,,—y and at ¢,), by 6-point extrapolation of already computed
approximations. The Jacobian matrix J is evaluated in each step using the future-
point-approximation to y,; from the preceding step. The starting values were obtained
either from the exact solution (if available) or by applying the 5th-order Radau IIA
method with a 5 times smaller stepsize and using 10 Newton iterations per step.

Three of the test problems are the same as in [7], viz. the Kaps problem [13]

% = —1002y, + 100042,
d
o -

%1(0) = 3(0) =1,0<t < 5;
the eight-dimensional ‘High Irradiance RESponse’ problem given in ([9], p. 157):
HIRES on the interval [5,321.8122], (6.21)

where the initial conditions at ¢ = 5 were obtained by applying the RADAU 5 code
[10] on [0,5]; and the non-autonomous Robertson problem, modified to remove the
transient phase and make the problem suitable for fixed stepsize integration:

¥y = —0.04y; + 10%y,y; — 0.96e 7, n(0) =1,
Y3 = 0.043: — 10%95y5 — 107(1)* — 0.04¢™", 15(0) =0, 0<t<1. (6.22)
yh = 3 x 107(32)? + e, v(0) =0,

The fourth test problem is the 15-dimensional circuit analysis problem due to Horneber
(11} and extensively discussed in [6] and [8]. In our implementation, we used the
specification given in {14]:

Ring modulator on the interval [0, 1073 with C, = 107°. (6.23)

In our numerical experiments, we denoted the number of steps by N, the number of
iterations in each iteration process by m, and the total number of iterations by M
(not including the iterations needed to compute the starting values). Note that for
fixed values of m and N, a serial implementation of Defective EBDF requires—per
processor—four times as many righthand side evaluations and forward-backward sub-
stitutions as a 4-processor parallel implementation of the Nondefective EBDF method,
because Defective EBDF solves four subsystems per step. Hence, we would expect
the value of M to be four times greater for Defective EBDF. The accuracy is given
by the number of significant correct digits scd; that is, we write the maximal absolute

100 Chapter 6

end point error in the form 107**. In the tables of results, we shall indicate negative
scd-values by *.

As a basis for comparison of parallel performance, we list here the rough speedup
results obtained by two other parallel ODE solvers. Bendtsen [1] reports speedups of
between 3 and 5 on a 9-processor implementation of an eighth order multiple implicit
Runge-Kutta methods. In [5], de Swart reports speedups of between 2 and 4 from a
4-processor implementation of the fifth order Radau IIA method.

6.5.1 Fixed numbers of iterations

The Tables 6.4, 6.5 and 6.6 list for given values of m and N the resulting scd-values
for the first three problems (6.20)—(6.22). These results show that the three methods
converge to solutions with comparable accuracy. Furthermore, the convergence rate is
for Diagonal EBDF slightly less than for the other two methods.

TABLE 6.4: Values of scd for the Kaps problem (6.20).

N Method m=1 m=2 ... m=00
10 Defective EBDF 5.0 5.0
Nondefective EBDF 5.2 5.2
Diagonal EBDF * 4.7 - 45
20 Defective EBDF 6.8 . 6.8
Nondefective EBDF 6.9 ces 6.9
Diagonal EBDF * 6.4 e 6.3
40 Defective EBDF 8.5 e 8.5
Nondefective EBDF 8.8 8.8
Diagonal EBDF * 8.2 .. 8.1

TABLE 6.5: Values of scd for the HIRES problem (6.21).

N Method m=1 m=2 m=3 m=4 ... m=o
10 Defective EBDF 3.1 3.0 2.0 3.2 ... 31
Nondefective EBDF 3.4 3.0 2.0 2.9 e 2.8
Diagonal EBDF ¥ 2.8 2.5 2.7 ees 2.7
20 Defective EBDF 2.6 3.7 3.9 39 ... 3.8
Nondefective EBDF 3.6 3.7 3.6 36 ee- 3.6
Diagonal EBDF * 3.6 34 33 ee 33
40 Defective EBDF 5.0 4.8 4.9 ... 4.9
Nondefective EBDF 4.4 4.7 4.8 48

Diagonal EBDF * 44 4.3 . 43

Diagonalizable Extended Backward Differentiation Formulas 101

TABLE 6.6: Values of scd for the Robertson problem (6.22).

N Method m=1 m=2 ... m=o
10 Defective EBDF 7.6 . . 16
Nondefective EBDF 7.7 ... 7.7
Diagonal EBDF 7.8 7.9 ... 7.9
20 Defective EBDF 9.3 e 9.3
Nondefective EBDF 9.3 e 9.3
Diagonal EBDF * 9.6 .. 9.6
40 Defective EBDF 11.0 - 11.0
Nondefective EBDF 11.0 - 11.0
Diagonal EBDF * 113 ... 113

6.5.2 Variable number of iterations

For our dynamic iteration strategy, we used the stopping criterion described in ([9], p.
130), replacing the tolerance parameter Tol with an estimate of the local truncation
error LTE (see [7] for details on this modification). At the timestep (n+1), LTE was
defined to be the difference between the order p approximation to y,, from the last stage
of Y,, and—in the case of Defective EBDF—the order p — 1 approximation from the
first stage of Y,, or—in the Nondefective EBDF case—the order p — 1 approximation
from the second stage of Y,,_;. All further iteration strategy parameters are the same
as in [7].

For the three most difficult problems (6.21), (6.22) and (6.23), we performed experi-
ments in which the number of steps was chosen such that a prescribed scd-value was
obtained. For these problems, the mazimal number of Newton iterations in the subse-
quent iteration processes was limited to 10. The Tables 6.7, 6.8 and 6.9 list the total
number of iterations M needed to obtain a given scd-value. From these values, we may
conclude that the two parallel methods Nondefective EBDF and Diagonal EBDF need
about two to four times fewer iterations then the sequential method Defective EBDF.

TABLE 6.7: Values of M for the HIRES problem (6.21).

Method scd=4 scd=5 scd=6 sed=7

Defective EBDF 96 168 573 928

Nondefective EBDF 73 102 195 343

Diagonal EBDF 83 133 189 241
Acknowledgements

The authors are grateful to Jeff Cash for his interest and his comments on this work,
and for drawing our attention to [15].

102 Chapter 6

TABLE 6.8: Values of M for the Robertson problem (6.22).

Method scd=8 38cd=9 s8cd=10 scd=11 scd=12 sed=13
Defective EBDF 36 63 107 169 . 265 415
Nondefective EBDF 10 18 29 47 74 123
Diagonal EBDF 9 17 29 49 74 114

TABLE 6.9: Values of M for the Ring modulator (6.23).
Method scd=6 scd=7 scd=38
Defective EBDF 49900 72400 104500
Nondefective EBDF 14800 22300 33800
Diagonal EBDF 20000 29700 42800

Appendix: Coefficients of some nondefective EBDF methods

For reference we provide the coefficient matrices of the L-stable nondefective EBDF
methods considered in this paper. For each method we give the matrices B-'C, B~'E
and ¢ needed for parallel implementation of (6.16). Obviously, the diagonal matrix D
needed for the implementation of 6.16 is given by D = diag(B~'C). The coefficients
listed are exact, expressed in fractional form, and were determined by Maple.

The 3-stage L-stable method of order p = 3 is defined by ¢; = 5/4, C3; = 0. The
method coeflicients and transformation matrix are given by

45 25 81
% 0 O ~5% 56
72 6 40 117
Blc=|2= ,B'E=|-—_- —|,
¢ 77 11 0 77 77
0 _4 22 _i @
23 23 23 23 (6.24)
1 0 0
192
o= % ' °
43008 E 1
10441 26

A 3-stage L-stable method of order p = 4 is defined by ¢; = 5/4, C3; = 0. The method

Diagonalizable Extended Backward Differentiation Formulas

103
coefficients and transformation matrix are given by
585 0 0 2025 4225 13689
908 7264 3632 7264
BC = 332_ E 0 |, BE= 1080 _4204 6075 ’
227 13 2051 2951 2951
_ 18 150 17 99 279
197 197 197 197 197 (6.25)
1 1 0 0
|
3328 0
Q=1 g

18130944 39
5022215 128

A 4-stage L-stable method of order p = 5 is defined by ¢; = 3/2, Cy = 3/10, Cy3 =

315
315 0 \
496 0 0
864 12
ez 37w 90
BC= ,
2768 32 4
3441 37 9
i _ 3059487 Z_ 5279163
\ 10 4001600 50 4001600
(_1225 6075 _11907 11025 \
3968 3968 3968 3968
_ 420 2043 _ 3884 3408
1147 1147 1147 1147
BlE= ,
_12110 2118 _3907 91382
30969 1147 1147 30969
| 2153579 3413921 4631823 3640463)

24009600 8003200

8003200 4801920

7/50. The method coefficients and transformation matrix are given by

(6.26)

104

Chapter 6

1 0

1 0
4608 1
1901
24616704 _36
1617751 5
_38599642812960 145802607
45767552496101 81838795

5042016
/

" 31506067

A 4-stage L-stable method of order p = 6 is defined by ¢; = 6/5, Cyy = 11/100,
Cy3 = 1/20. The method coefficients and transformation matrix are given by

B'C=

\

16016
32525 0 0 o)
40625 15
49438 38 0 0
39040625 30375 180 0 ’
41626796 31996 421
11 120153318 1 1497086157)
100 388515625 20 1554062500
50184 10469888 9018009 12710616 32064032 \
1065625 12196875 4065625 4065625 12196875
5775 _ 101768 82350 105400 227750
24719 74157 24719 24719 74157
5549775 46526500 70906923 42611025 90894625
20813398 31220007 20813398 10406699 31220097
_ 211339877 930457771 168763034 333046763 19629003023
\~ 6216250000 1662187500 388515625 1554062500 18648750000/

References 105

(1 0 0 0\
1015625
120733 1 -0 0
Q= 7376452890625 405) 0
53619698494 14
475587595010650768146875 241922892409 32713015625

" 51052091899348840572958 78349451754 350542022097 1/()
6.27

References

[1} C. Bendtsen. A parallel stiff ODE solver based on MIRKs. Adv. in Comp. Math.,
7:27-36, 1997.

[2] J.R. Cash. On the integration of stiff ODEs using extended backward differentia-
tion formulae. Numer. Math., 34:235-246, 1980.

[3] J.R. Cash. The integration of stiff initial value problems in ODEs using modified
extended backward differentiation formulae. Comput. Math. Appl., 5:645-657,
1983.

[4] J.R. Cash and S. Considine. An MEBDF code for stiff initial value problems.
ACM Transactions on Mathematical Software, 18:142-155, 1992. Code available
at http://www.ma.ic.ac.uk/"jcash/IVP_software/finaldae/readme.html.

[5] J. de Swart. Parallel Software for Implicit Differential Equations. PhD thesis,
Universirt of Amsterdam, 1997.

[6] G. Denk and P. Rentrop. Mathematical models in electric circuit simulation and
their numerical treatment. In Proc. of the Conference ‘Numerical Treatment of
Differential Equations’, Halle (DDR). Teubner, 1989.

[7] J.E. Frank and P.J. van der Houwen. Parallel iteration of backward differentiation
formulas. Submitted for publication, 1999.

[8] E. Hairer, C. Lubich, and M. Roche. The numerical solution of differential-
algebraic systems by Runge-Kutta methods. Lecture Notes in Mathematics, 1409.
Springer-Verlag, 1989.

[9] E. Hairer and G. Wanner. Solving ordinary differential equations, II. Stiff and
differential-algebraic problems. Springer-Verlag, Berlin, 1991.

106 References

(10] E. Hairer and G. Wanner. Radau. Available at ftp://ftp.unige.ch/pub/doc/
math/stiff/radau.f, 1998.

[11] E.H. Horneber. Analysis of of nonlinear RCLU circuits by means of mized potential
Junctions and a systematic representation of nonlinear dynamic circuit analysis
(German). PhD thesis, University of Kaiserslautern, 1976.

(12] W. Hundsdorfer. On the error of general linear methods for stiff dissipative dif-
ferential equations. IMA J. Numer. Anal., 14:363-379, 1994.

[13] P. Kaps. Rosenbrock-type methods. In G. Dahlquist and R. Jeltsch, editors, Nu-
merical methods for stiff initial value problems, Bericht nr. 9. Inst. fiir Geometrie
und Praktische Mathematik der RWTH Aachen, 1981.

(14] W.M. Lioen and J.J.B. de Swart. Test set for IVP solvers, Release 2.0. Available
at http://www.cwi.nl/cwi/projects/IVPtestset/, 1998.

[15] G.-Y. Psihoyios and J.R. Cash. A stability result for general linear methods with
characteristic function having real poles only. BIT, 38:612-617, 1998.

107

Appendix A |
The parallel/multiblock structure of DeFT

Abstract. In this appendix we review the relevant concepts from domain de-
composition theory, and derive the methods used in DeF'T. We also describe the
rationale behind the parallel model and multiblock structure as implemented in
the software.

A.1 Domain decomposition methods

Domain decomposition methods are iterative methods for solving large, domain-based
problems by breaking them down into a number of simpler subproblems. As a software
design choice, the use of domain decomposition methods can have several motivations:

e Complex geometries can be decomposed into simpler ones. This was historically
the motivation for domain decomposition methods.

e Interface problems. For problems involving two or more media sharing common
interfaces, domain decomposition methods provide a framework for combining
special solvers for each medium. In fluid dynamics, for example, one could use
an Euler solver in inviscid regions and a Navier-Stokes code in the boundary
layer.

e Local grid refinement can be accomplished using patches.

o Memory limitations. For very large discretizations, domain decomposition to-
gether with distributed computing may provide a solution to single processor
memory limitations.

e Parallel computing. Domain decomposition methods can be used as parallel pre-
conditioners for solving more general linear systems on parallel computers.

The general coordinate discretization used in DeFT assumes the domain to be topo-
logically similar to a rectangle. To be able to handle more complex regions, domain
decomposition was introduced.

Domain decomposition methods often have a great deal of inherent coarse-grained
parallelism. The speedup of porting a sequential domain decomposition method to a
parallel computer may be quite high: we have observed parallel efficiencies of 80% or
better.

108 Appendix A

There are two standard approaches to domain decomposition methods, namely Schur
complement methods and Schwarz methods, and much work has been done to unify
these. As a result, there are number of cases in which the two approaches are shown
to be equivalent. Schur complement methods, or sterative substructuring methods, are
algebraic methods based on eliminating the unknowns in the subdomain interiors, re-
ducing the problem to a computation of interface unknowns. Schwarz methods are
grid-motivated methods based on iteratively correcting the error on the various sub-
domains.

A.1.1 Notation and conventions

At the heart of any software for solving partial differential equations is a linear system
solver (or more likely, a whole arsenal of solvers) for systems of the form

Au={, (A1)

where A is a d X d matrix and u and f are d-vectors. In DeFT, the matrix A rep-
resents the discrete momentum equations, pressure correction or transport equations
and is very sparse; f represents any forcing terms and boundary conditions; and u is
the solution to the given equation. We will take (A.1) as the starting point for our
discussion.

A.1.1.1 Reorderings

Let P be a row- or column-wise permutation of the identity matrix. Define the re-
ordering of the system (A.1) according to P by

Ai=f, A=PTAP, 4= Py, f=PT§.

In general we will freely use reorderings without explicitly mentioning the permutation
matrix. (We will assume the equations and unknowns were written down in the right
order to begin with!)

A.1.1.2 Decompositions

Assume that the linear system (A.1) results from discretization of a partial differential
equation defined on a domain {2 using a finite volume method. Let 2 be decomposed
into a set of m subdomains Q; C Q, i =1,...,m such that Q@ C |J, Q;. Initially, we
will also assume that the subdomains do not overlap, i.e. that Q; NQ; =0, for i # j.
A two-subdomain example is shown in Figure A.1.

The parallel/multiblock structure of DeFT 109

i=1 N 2N

N

¢
j=1

FIGURE A.1: A domain {2 composed of two non-overlapping subdomains.

A.1.1.8 Duplicated boundary unknowns

With a non-overlapping domain decomposition, if a cell-centered discretization is used,
it is possible to reorder the system (A.1), grouping together all unknowns that share a
common subdomain, to obtain the block system

An - Aim Uy f 1
oo N N (A2)
A-ml ves Amm Um fm

For vertex- or edge-based discretizations (or staggered-), there is an ambiguity with
unknowns located on the inter-subdomain boundary itself. In this case we will dupli-
cate the unknowns on the boundary, including a copy within each set of subdomain
unknowns to obtain an augmented system. For example, consider a decomposition into
two subdomains, using an edge-based discretization. Denote the unknowns strictly in
the first and second subdomains by subscripts 1 and 2, and denote the unknowns on
the interface boundary with a subscript B. The block system becomes

[Ay Aig A Uy f 1
Ap1 Ass Ape ug = fs
| A1 A A Ug fa

Augmenting this system with duplicate interface unknowns gives

[An Az 0 Ap uy h
Apt Ass 0 Am ug | _| fs
Apt 0 Aps Ap ug s |’

| Azn 0 A Ay Uy Ja

where ug = uj; if Agg is nonsingular. This system can now be written as a 2 x 2 block
system (A.2) with blocks corresponding to the partitioning @; = (43) and i, = (¥8).
We will assume that this is done whenever necessary.

110 Appendix A

A.1.1.4 Interface unknowns

Let a;; denote the element of A in row ¢ and column j. If a;; # 0, we say unknown i
is coupled to unknown j. Similarly if block A;; # 0 in (A.2), we say subdomain i is
coupled to subdomain j. Define the interface unknowns as the set of unknowns in a
given subdomain which are coupled to unknowns in another subdomain.

A.1.2 Schwarz methods
A.1.2.1 Non-overlapping Schwarz iterations

The original Schwarz methods involved alternately solving a series of boundary value
problems on overlapping domains, with the process repeating until convergence.

For matrices the boundary value problems are replaced by block rows. Consider first
the non-overlapping case of the domain in Figure A.1, with block system

An Ay Uy _ h

A21 Agg Uy f2 :
Given an initial guess u(®), we produce a series of iterates u®), k = 1,2, ..., by solving
for ugk) from

Al = f — ApulY, (A.3)
(i.e. using the value of ug‘_l) as a boundary condition) and then similarly solving for
ugk) from

Aggug‘) = f2 - A21ng). (A.4)

This process is referred to as the multiplicative Schwarz iteration. Alternatively, we
can replace u{®) in (A.4) with ug"_l), allowing us to solve for ugk) and ug") concurrently.

The resulting iteration is referred to as the additive Schwarz iteration.

A.1.2.2 OQverlapping Schwarz iterations

More generally, one can consider subdomains with some overlap. Roughly speaking, the
iteration (A.3)-(A.4) may be modified such that the operators A;; and As, represent
the discretizations in the interiors of the overlapping subdomains, and right hand side
operators A;; and Ay represent interpolation operators coupling the solution to the
adjacent subdomain.

Many variations are possible. For example:

The parallel/multiblock structure of DeFT ' .11

o Grids on different subdomains may be non-matching in the overlap region

o The discrete operators A;; and Ay, may result from very different discretization
methods. :

o Artificial boundary conditions may be mixed and nonsymmetric.

The convergence rate may be made independent of grid refinement by using a fixed
overlap in physical units (for example, if the grid resolution is halved, then the number
of cells of overlap must be doubled).

A.1.2.83 Multilevel methods

To achieve & convergence rate that is independent of the number of subdomains, it is
necessary to have global communication of the error. This is accomplished by projecting
the residual onto a global space, typically with a much coarser grid, solving for the error
on that space and interpolating a correction back to the subdomains. This process
can be done recursively, by using several intermediate levels with successively fewer
subdomains, and is related to multigrid methods. There are obviously many challenges
involved in producing an efficient implementation of subspace correction.

A.1.3 Schur complement methods

In this section we assume a non-overlapping decomposition. We apply a reordering to
the system (A.1), grouping all interface unknowns together into ug and all remaining
interior unknowns into uz to obtain

[Azz AIB] (uz)z(fz)
Apr Aps ug fs)’
where it is assumed that unknowns in uz are grouped together according to subdomain

so that Azz is block diagonal.

The matrix A can then be factored as

Al T 0)[4x 0][1 AfAw
AmAzt 1| 0 s|lo T |

with § = Agg -AB:AE}AIB, the Schur complement of the interface unknowns. Solving
for A with this factorization involves solving several systems with the block-diagonal
matrix Azz, which can be done cheaply in parallel. In addition a subsystem

Sv=g (A.5)

must be solved. Schur complement domain decomposition methods are based on the
idea of solving (A.5) in parallel using a Krylov subspace method, for which S is not

112 Appendix A

needed explicitly, but only its action upon ». Each multiplication of S with a vector
requires an additional solve of the block diagonal system with matrix Az7.

It is easy to show in the symmetric case that the spectral condition number of S is no
worse than that of A:
T55z8 T Az . 2T Az

Anin(S) = min =—+ = min min
win() = i TTE emA0iAz 220 g7z

zz7+AzBTE=0 x{,‘a:g - = Amax(4).
An analogous argument shows Aypax(S) < Amax(A), giving the desired result. In practice
the condition number of the Schur complement is much better than this suggests: while
the condition number of A increases as O(h~2) for two dimensional problems, that of
S only increases as O(h™!). The convergence is still usually not satisfactory, however,
and something must be done to precondition the system (A.5).

A.1.4 Convergence theory

Although much can and has been said about the convergence of domain decomposition
methods applied to finite element discretizations, there exists no satisfying general
convergence theory for domain decomposition methods applied to finite volume or
finite difference methods. Chang and Schultz[2] provide convergence results for block
diagonal preconditioners. Tang [5] also discusses convergence theory for certain finite
difference discretizations in one- and two-dimensions.

A.2 Domain decomposition methods used in DeFT

In this section we will describe the two domain decomposition methods implemented
in DeFT, and show that to a certain degree, they are equivalent.

Remark. Within the documentation and source code of DeFT, the Schur complement
and approzimate Schwarz domain decomposition procedures are incorrectly referred to
as the “accurate” and “inaccurate” solution methods, respectively. In the first place,
this is not in agreement with the standard terminology (“ezact” and “approzimate”)
for approzimate subdomain solution methods; and in the second place, it is incorrect
usage of “accuracy,” when what is actually intended is “precision.” Nevertheless, we
will continue to use this nomenclature in this Appendiz for the sake of agreement with
the rest of the documentation.

A.2.1 The Schwarz method with approximate solver (a.k.a. “Inaccurate
solution”)

Notice that the iteration (A.3)-(A.4) is a classical iteration of the form
Ku® = § — (A - K)ut, (A.6)

The parallel/multiblock structure of DeFT 113

where K = K for multiplicative Schwarz, K = K; for additive Schwarz, and

— A11 0 _ Au 0
KG_[Azl Azz]’ K"[0 Azz]

are the block Gauss-Seidel and block Jacobi preconditioners, respectively. When solv-
ing the system (A.6) on a parallel computer, it is clear that K, offers more opportunity
for parallelism than K¢. For this reason, the parallel method used in DeFT is additive
Schwarz, while multiplicative Schwarz is used as the sequential method.

For the more general m-subdomain case of (A.2), the block Jacobi preconditioner
becomes

Ay 0 0
K=l 0 . o0
0 0 Aum

In a real implementation of Schwarz iteration, one would normally solve equation (A.2)
not with the iteration (A.6), but instead using a Krylov subspace methods such as CG
or GMRES, and using K; or K¢ as a preconditioner.

When the block Jacobi preconditioner is used in cooperation with a Krylov subspace
method, a system of the form K ;v = r must be solved in each iteration, i.e. m systems
of the form Ayuv; = r; must be solved (in parallel on m processors, preferably). In
as much as the code already relies on iterative methods, and since in many cases the
blocks A; have a similar sparsity pattern to A, it makes sense to solve the blocks
also using an iterative method. One is immediately confronted with the question
of how accurately to solve the subproblems. Our experience with the block Jacobi
preconditioner in DeFT suggests that the answer is: very approrimately. We have
considered solving the subproblems to fixed tolerances of 10, 102 and 107%, as well as
simply applying a single iteration with a local incomplete factorization preconditioner,
with the result that in most cases the incomplete factorization preconditioner is a good
enough approximation, and is relatively so cheap, that it outperforms any iteration. In
the few cases where iteration is faster, a tolerance of 107! is the winner.

A.2.2 The Schur complement method (a.k.a. “Accurate solution”)

Consider again the two subdomain case of Figure A.1, and the iteration (A.6). Let the
unknowns be re-ordered within each subdomain such that the interface unknowns come
last. Indicating equations corresponding to subdomain i by a parenthesized superseript
1, the system (A.2) can be written as

S8 810 (4
A= |fm fe b B =S | (A7)
0 0 Az Az u(z) f:

z
0 A7 Ag Ag |\ f8

114 Appendix A

where the non-zero structure of A is due to the definition of interface unknowns. The
additive Schwarz preconditioner for this system is

A(l) A(l) 0 0
0 0 A(z) A(Z)
0 0 A(Z) A(z)

Ky=

Rewriting (A.6) in the form u®) = —K7'(A — K;)u*~! 4 K7'f, we find the additive
Schwarz iteration is equivalent to

Ug =S Ajglug —1

= _ - + K , A8
u@ | 7| A agsor s [T *9
N -5 Q)

where S® = A — AD 4D A® from which it is clear that the iteration is inde-
pendent of the unknowns in the subdomain interiors u_f[') Thus the additive Schwarz
iteration is effectively an iteration on the interface unknowns. This is what is done in
the Schur complement method (the so-called “accurate solution” method) of DeFT.
Concentrating only on the effective iteration on interface unknowns, the iteration (A.6)
becomes

w0 P [s 40u@ \ & g g _ 40 407t
u@] T\ _ser 4@,0 T\ some A(z) A(z)- P

To see that in fact this is a Schur complement method as described in Section A.1.3,
reorder (A.7) above, placing all interior nodes first and all interface nodes last, we
obtain the system

(A9)

0 A 0 1(D\ (A
A | 0 A2 o AR WP || A
A(l) 0 A(l) Aglz) ug) .fg)
0 A(z) A(2) Agz)g u(;) fg)

By eliminating the interior unknowns, we arrive at the Schur complement system for
the interface unknowns

Sug = fs,

The parallel/multiblock structure of DeFT 115

with

s AQ (1) . (1)_A(1)_‘A(1) (1)
Sz[o ol w=("8), h=(M5 m)
Ay S Ug o' — A Arglf

Defining

s® o
KS=[0 s(z)]a

it is clear that (A.9) is equivalent to the iteration
u¥) = —K;1(S — Ks)yul ™ + K31, (A.10)

The approach of this section can be related to the discussion of Section A.1.3, in
which it was said that a preconditioner was still needed for good convergence of the
Schur complement system (A.5). With Krylov subspace acceleration of the “accurate”
solution method, the preconditioner used is Kg. The Schur complement system is
explicitly preconditioned in DeFTthrough the use of (A.10).

The equivalence of the two approaches used in DeFT is intentional, see [1]. A conse-
quence of this equivalence is that the convergence of the “accurate” and “inaccurate”
methods in DeFT should be the same when the “inaccurate” method is solved to high
tolerance.

The extension of the discussion of this section to decompositions with more subdomains
or to the multiplicative Schwarz iteration is straightforward.

The equivalence between the Schwarz and Schur approaches breaks down with approx-
imate subdomain solution. This can be attributed to the fact that with approximate
solution of the subdomains, (A.8) will no longer be independent of the unknowns in
the interior of the subdomains.

A.3 Parallel and multiblock substructures

Execution of DeFT on a parallel machine implies using domain decomposition, i.e. the
multiblock functionality of the software. The user is responsible for defining a decom-
position of the domain into blocks, and the blocks will be distributed over available
Processors.

As discussed in the previous section, there are two multiblock methods in DeFT: ac-
curate (i.e. Schur complement) and inaccurate (i.e. Schwarz) methods.

The accurate multiblock method solves the reduced equations for the interface vari-
ables on a designated host process, where the matrix-vector multiplication with the
explicitly-preconditioned Shur complement matrix requires a Schwarz iteration on the

116 Appendix A

subdomains. The subdomain solutions are performed on nodes, referring to the re-
maining processes. The node tasks isndd in this case are “dumb” subdomain solvers.
They simply enter a loop—receiving boundary conditions from the host, solving the
subdomain problem, and returning the interface variables to the host—until told to
stop. All communications are between host and node.

The accurate multiblock method may be unaccelerated or accelerated. Unacceler-
ated means the iteration (A.9) is repeated until convergence, accelerated means this
iteration is performed once per global iteration of GMRESR (isblkgcr), as an explicitly-
preconditioned matrix-vector multiplication (isaccma).

The inaccurate multiblock method performs the iteration (A.6) once per global iteration
of GMRESR (isblkgcr), as a preconditioner (isblkpre). In this case, rather than a host-
node model, all processes are autonomous, virtual data is exchanged with neighbors,
and all processes participate in global operations such as inner products.

The function isdd determines what functions should be called for the desired type of
domain decomposition method. The available algorithms are:

e unaccelerated accurate method (host calls ishplain)
e accurate multiblock method (host calls isblksol)

e inaccurate multiblock method (all processes call isblksol)

Remark. Given the equivalence of the accurate and inaccurate methods shoum in the
preceding section, it is desirable to remove the less efficient accurate method from the
code. However, the unaccelerated accurate method is used by the for multiphase flow
part of the code.

Figure A.2 shows a function call tree of for the multiblock structure. There are actually
many (very many) more functions involved than are indicated in the figure, but we
list only the main ones. The additional functions are called as subroutines by those
discussed here.

A.3.1 Single block solution and virtual cell exchange

A single block domain in DeFT must be topologically rectangular. An extra row
of “virtual” cells outside of the single block grid are used to implement boundary
conditions. In this way, the stencil can be fixed for all unknowns, and values placed
in the virtual cells to effect the desired boundary condition. For multiblock (domain
decomposition) problems, the subdomains use this same structure.

In this case, however, the virtual cells along boundaries interfacing two subdomains
are used to implement the domain decomposition. By copying data from neighboring
subdomains into the corresponding virtual cells, and then solving the local subdomain

The parallel/multiblock structure of DeFT

117

issbstep
(issdd)
isdd
if (exact subdomain solution})
1f (host process)
if (unaccelerated)
ishplain - additive Schwarz iteration
{isreldd)
(ishdd)
{isddrel)
if (accelerated)
(isblksol)
if (node process)
isndd - node side accurate domain decomposition
isrcddnd - receive virtual cell data on node
(issdd)
issnddnd - send interface data to host
if (inaccurate subdomain solution)
(isblksol)

issdd - local Schwarz iteration
islingol - linear system solve with virtual cell data
':isuprhs - eliminate virtual cell data
islsol - linear solve without virtual cell data
ismblk - exchange local virtual cell data

ishdd - host side accurate domain decomposition
issnddhs - send virtual cell data to nodes
E (issdd)
isrcddhs - receive interface data from nodes

isblksol - Krylov subspace acceleration (GCR)
(isreldd/isddrel)
E (issoldd/isddsol)
isblkgcr - actual GCR algorithm
isblkmat - matrix-vector product wrapper
isaccma - accurate matrix-vector product, explicit preconditioning
isreldd - inject interface data into virtual cells
EE (ishdd)
isddrel ~ restrict virtual cells into interface array
isgloma - inaccurate matrix-vector product
- (isddsol)
isblkpre - preconditioner wrapper
isddsol - inject contiguous vector into block interiors
- ismbexch -~ exchange virtual cell data
{issdd)
issoldd - restrict block interiors into contiguous vector

FIGURE A.2: Function call tree for multiblock structure

‘ problem using the single block algorithm, one effectively performs an operation of the
| form (A.3).

118 Appendix A

Consider a linear system of the form

[An A12](§;)=fla

where z, represents the set of unknowns in the local subdomain, z; represents knoun
values in the virtual cells, and f; represents the right hand side for the local subdomain,
already corrected for physical boundary conditions, if applicable. Given this situation,
the function islinsol performs the following operations:

1. Update the right hand side with a linear combination of the virtual cells and
extract the relevant block (A;;) from the matrix.

2. Solve the reduced system: Ay z; = fl.

3. Inject the solution x; back into the original data structure, restoring the original
matrix and right hand side.

This is similar to the operation (A.3) of Section A.1.2.1.

The functions ismblk and ismbexch effect the exchange of data between neighboring
subdomains: ismblk may be used to copy the interior unknowns from an individual
block to the corresponding virtual cells of a neighboring block on the same processor;
ismbexch does this for all blocks on all processors. Additionally, ismbexch may be called
to compute the average of the ambiguous normal fluxes on the subdomain boundaries
after convergence. This has been found necessary for conservation of mass.

A.4 Parallel substructure of DeFT

The parallel substructure of DeF'T is based on a Single Program Multiple Data (SPMD)
model and domain decomposition (see Section A.3 as well). In the SPMD model, all
processes take responsibility for one or more subdomain, and execute the same program.
There are a few tasks requiring deviation from the model—for example, output and
error handling—which are handled by a single process designated as the host.

A4.1 MPI

Communication between processes is achieved using function calls to the MPI library.
A subset of the library is available in DeFT through calls to wrapper functions. In this
way, the parallel option of the code can be disabled with minimal modification of the
source for installations where either MPI is unavailable or where parallel operation is
not desired.

The parallel/multiblock structure of DeFT 119

MPI is the standard library for message passing parallel communication models. Im-
plementations conforming to the standard are available on a variety of architectures,
including workstations, and several good implementations are available for free. The
use of MPI increases portability.

Although MPI allows the definition of communication contexzts, so that processes shar-
ing a communicator can be shielded from those in another communicator, we currently
make use of only the global communicator (MPI_.COMM _WORLD) in DeFT.

The following table lists the most important MPI functions used in DeFT, the name
of the DeFT wrapper, and a short description of the function. See [4] or the MPI
standard [3] for full definitions of these routines.

MPI function DeFT function | Description

MP! BCAST issync Broadcasts a message from one process to all
other processes

MPI_ALLREDUCE | isglsum Combines values from all processes, returning
the result to all processes

MPILISEND issenmpi Initiates a send, returning control to the
calling procedure

MPI_RECV isrecmpi Waits for and receives a message

MPI also defines a number of parameters. The following table lists the most important
parameters of relevance to DeF'T.

MPI Parameter Description

MPI_COMM WORLD | The top level communicator

MPI_SUCCESS The return value of the error parameter if no error has
occurred

MPIANY SOURCE | Wildcard for receiving a message regardless of the source

MPI_ANY _TAG Wildcard for receiving a message regardless of the message
tag

A.4.2 Parallel common block cisparal

Some important parameters and global variables needed for the parallel implementation
are defined in the common block include file cisparal.

There are three global variables used to define the define the communication network
topology:

¢ iacnodes - the number of active nodes (processes)

e inodenr - the rank of the current node

120 Appendix A

o ISHOST - the rank of the node designated as host

Additionally, we define a number of unique message contexts. These are used as mes-
sage tags in the corresponding communications to eliminate the possibility of a message
being misinterpreted. The message contexts are:

Context name | value | description

ICERROR 99 | Error message context

ICWARN 98 | Warning message context
ICPRINT 97 | Output context

ICEXNODE 96 | Node has exited context

ICFIELD 6 | Field communication context
ICVCDATA 5 | Virtual cell data exchange context
ICVCINFO 4 | Virtual cell info array context
ICSTCR 3 | Steady state criterion check context
ICCORR 2 | Pressure correction context
ICDEFLT 1 | Default context

Finally, we define aliases for the default MPI datatypes, so that these may be changed,
if necessary (due to architecture differences, for example). The types used in DeFT
are:

DeFT type | MPI type

IS_ANY MPI_ANY

ISCHAR MPI_CHARACTER
ISDOUBLE | MPI_DOUBLE_PRECISION
ISINT MPIINTEGER

These datatypes are defined in the function istpar.

A.4.3 Basic send and receive ﬁxodel

The basic send/receive model utilizes non-blocking sends and blocking receives. This
is done to allow some overlapping of computation and communication, where possible,
and to prevent tie-ups in a situation where many processes are exchanging data (such
as in the exchange of boundary information in the domain decomposition method).

A call to issenmpi returns immediately with an MPI request number. It is the pro-
grammer’s responsibility to check that the message has actually been sent—through a
call to iswaitall with the request number—before modifying the data in the send buffer
(array).

A call to isrecmpi will not return until the message has actually been received.

The parallel/multiblock structure of DeFT 121

If the sends were also blocking, then it would be necessary to coordinate sends and
receives, making sure the order of communications was the same on all processes, to
prevent a tie up.

A.4.4 Global communications

MPI defines some common functions involving global communications with a group
of processes. Two of these used in DeFT are the broadcast and global reduction
operations.

The function issync is a wrapper for MPI_.BCAST. This function synchronizes the value
of a scalar or array on all processes. For example, if the data for a computation is only
available on one process, then the result can be distributed to all processes through a
call to this function.

The function isglsum is a wrapper for MPI ALLREDUCE with reduction operation
MPI_SUM. This function performs a vector sum:

14
y= m yncR

i=1

where z; resides on process i. The result y is distributed to all p processes. This
function is primarily used to sum the local contributions to an inner product, in which
case d = 1.

A.4.5 Error handling and printing

For output to be deterministic, it should be performed by only one process, the desig-
nated host. If a node generates conditional output, a mechanism must be implemented
on the host to receive and process such output. A similar problem occurs when there is
an unrecoverable error on a process: the group must be alerted and stopped. Sending
information to the designated host for output and stopping program execution when
an error occurs are complicated in parallel by the fact that that the receiving process
is not expecting the message.

To handle these situations, the receive function isrecmpi checks first for special mes-
sages before handling the requested receive. In this way, processes may be notified of
unexpected actions at the first subsequent call to isrecmpi.

The logic of the error handling system is as follows:

1. If an error originates on a node, it sends a message with context tag ICERROR
to the host.

2. If the host receives notification of an error from a node, or if an error occurs on
the host, a stop signal is sent from the host to all nodes

122 References

3. If a node receives a stop signal, it terminates.

References
[1] E. Brakkee and P. Wilders. Schwarz and Schur: an algebraical note on equivalence
properties. SIAM J. Sci. Comput., 20(6):2297-2303, 1999.

[2] M. Y.-M. Chang and M. H. Schultz. Bounds on block diagonal preconditioning.
Parallel Algorithms and Applications, 1:141-164, 1993.

[3] Massage Passing Interface Forum. MPI: A message-passing interface standard.
International Journal of Supercomputer Applications, 8(3/4), 1994.

[4] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, and J. Dongarra. MPI: The
Complete Reference. MIT Press, 1996.

[5] W.P. Tang. Generalized Schwarz splittings. SIAM J. Sci. Statist. Comput.,
13(2):573-595, 1992.

123

Summary of Efficient Algorithms for the
Numerical Solution of Differential
Equations

The efficiency of a numerical integration method is defined to be the production, mea-~
sured in digits of accuracy or qualitative agreement of the numerical result, divided
by the cost, measured in computational effort or waiting time, of producing the re-
sult. The actual efficiency is often difficult to measure, but relative efficiencies can be
compared in many cases. Three independent techniques yielding efficient methods are
considered: '

1. simplification of implicit relations by using implicit-explicit splittings,
2. exploitation of parallelism across the problem space,

3. exploitation of parallelism across the method parameters.

The advantage of implicit-explicit (IMEX) methods is that problems with both stiff
and nonstiff terms can be integrated with only the stiff terms being treated implicitly.
In some cases this leads to simplified implicit relations, for example, if the stiff terms
are linear whereas the nonstiff terms are nonlinear—the case for the Navier-Stokes
equations. All implicit-explicit linear multistep methods can be seen as the combina-
tion of an implicit multistep methods with an extrapolated explicit counterpart. In
the simplest case of the IMEX Euler method, the stability condition is satisfied if the
eigenvalues of the explicit terms are contained in the stability region of the related ex-
plicit method. This does not hold for general IMEX linear multistep methods, however.
We consider two questions: 1) under what additional restriction on the eigenvalues of
the explicit part does the method remain A-stable for the implicit part, and 2) under
what restriction on the A(a)-stability of the implicit part do we maintain the stability
region of the explicit part.

Parallelism across the problem space is especially accessible when solving partial dif-
ferential equations, for which the coupling is often sparse and localized, allowing for
easy load balancing and a small volume of communication. Since these problems are
also frequently scalable, the resulting methods are suitable for implementation on mas-
sively parallel distributed memory computers. We consider parallel implementation of
a simple block-diagonal preconditioner based on domain decomposition, in which the
blocks are approximately solved using inner iterations. The global iteration method
is GCR, and we discuss alternative orthogonalization methods to reduce the number
of required global communications. Parallel timings are given for a Poisson equation,

124

arising as a result of the pressure correction method, and the Bousinesq equations for
natural convection in a heated cavity.

The degree of parallelism across the method parameters is proportional to the number
of stages, and therefore is especially practical when high order accuracy is required. We
consider a number of approaches to parallelizing the extended backward differentiation
formulas, a class of general linear methods maintaining high accuracy in the presence
of stiffness. We develop, analyze and test 3- and 4-processor implementations for up
to 6th order L-stable methods. The two most promising approaches for parallelizing
the (lower triangular) stage coefficient matrix are: 1) approximation by the diagonal
and 2) staggering of the abscissa to obtain a diagonalizable matrix.

Jason Frank

125

Samenvatting van Efficiente Algoritmen
voor het Numeriek Oplossen van
Differentiaalvergelijkingen

De efficiéntie van een numerieke methode is gedefinieerd als de opbrengst, gemeten in
het aantal cijfers nauwkeurigheid of in een kwalitatieve overeenkomst van de numerieke
oplossing, gedeeld door de kosten, gemeten in rekenwerk of wachttijd, die nodig zijn
om het resultaat te verkrijgen. De werkelijke efficiéntie is vaak moeilijk te meten, maar
in veel gevallen kunnen relatieve efficiénties worden vergeleken. Drie onafhankelijke
technieken, die efficiénte methoden opleveren, zullen aan de orde komen:

o vereenvoudiging van de impliciete relaties door het gebruik van impliciete-expli-
ciete methoden,

e exploitatie van parallellisme in de probleemdimensie,

e exploitatie van parallellisme in de taken van de methode.

Het voordeel van impliciete-expliciete (IMEX) methoden is dat problemen met zowel
stijve als niet-stijve termen geintegreerd kunnen worden met een impliciete behandel-
ing van alleen de stijve termen. Dit leidt tot vereenvoudiging van de impliciete relaties
wanneer de stijve termen lineair zijn terwijl de niet-stijve termen niet-lineair zijn—
zoals het geval is bij de Navier-Stokes vergelijkingen. Alle impliciete-expliciete lineaire
meerstaps methoden kunnen worden gezien als de combinatie van een impliciete meer-
staps methode met een geéxtrapoleerde expliciete tegenhanger. In het eenvoudigste
geval van de IMEX Euler methode, wordt aan de stabiliteitsconditie voldaan wanneer
de eigenwaarden van de expliciete termen binnen het stabiliteitsgebied van de verwante
expliciete methode vallen. Dit geldt echter niet voor algemene IMEX lineaire meer-
staps methoden. We hebben de volgende twee vragen nader beschouwd: 1) onder welke
toegevoegde restricties aan de eigenwaarden van het expliciete deel blijft de methode
A-stabiel voor het impliciete deel en 2) onder welke restricties voor de A(c)-stabiliteit
van het impliciete deel behouden we het stabiliteitsgebied van het expliciete deel.

Parallellisme in de probleemdimensie is met name toegankelijk tijdens het oplossen van
partiéle differentiaalvergelijkingen, waarvoor de koppelingen vaak ijl en lokaal zijn. Dit
zorgt voor een gemakkelijke load-balancing en een kleine hoeveelheid communicatie.
Omdat deze problemen meestal ook schaalbaar zijn, zijn de resulterende methoden
geschikt voor implementatie op massief geparallelliseerd gedistribueerde geheugen com-
puters (massively parallel distributed memory computers). Wij beschouwen parallelle

126

implementatie van een eenvoudige blok-diagonale preconditioner gebaseerd op domein-
decompositie waarin de blokken onnauwkeurig opgelost worden met een sub-iteratie.
De hoofd-iteratie gebruikt de GCR methode, en we bespreken alternatieve orthog-
onalisatie methoden die kunnen leiden tot een vermindering van het aantal globale
communicaties. Parallelle meettijden zijn gegeven voor zowel een Poisson vergelijking
(nodig voor het berekenen van de drukcorrectie methode) als de Boussinesq vergeli-
jkingen voor natuurlijke convectie in een verwarmde ruimte.

De mate van parallellisme in de verschillende taken van de methode is evenredig met het
aantal stages, en dus is vooral toepasbaar wanneer hoge orde van nauwkeurigheid vereist
wordt. We bespreken een aantal benaderingen voor het parallelliseren van de extended
backward differentiation formulas (EBDF), een klasse van algemene lineaire methoden
die een hoge nauwkeurigheid behoudt in de aanwezigheid van stijfheid. We ontwikkelen,
analyseren en testen drie- en vier-processor implementaties voor tot en met zesde orde
L-stabiele methoden. Twee veelbelovende benaderingen voor het parallelliseren van de
(laag-driehoekige) stage-coéfficiént matrix zijn: 1) benadering door de diagonaal en 2)
gebruik van ongelijk verdeelde abscissa waarden om een diagonaliseerbare matrix te
verkrijgen.

Jason Frank

127

Curriculum vitae

The author was born in Hutchinson, Kansas, the United States of America on 21
February 1970. He attended Great Bend High School from 1985 through 1988, and
the University of Kansas from 1988 through 1995, earning a Bachelor of Science in
Aerospace Engineering in 1992 and a Master of Science in Aerospace Engineering in
1994 with honors. In 1995 he came to the Netherlands where he spent six months as
visiting researcher at the National Institute for Mathematics and Computer Science
(CWI) in Amsterdam. Thereafter he received a four-year appointment (1996-99) as a
Ph.D. student (AIO) at Delft University of Technology, during which time the majority
of the research for this dissertation was carried out. Also during this appointment he
again spent 18 months as guest researcher at CWI.

