
Volume 11 (2&3) 1998, pp. 249 { 272

Chaotic Iteration for Polynomial Constraints

Eric Monfroy

CWI

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

email: eric@cwi.nl

In this paper we argue for an alternative way of designing solvers based on

interval arithmetic. We achieve constraint propagation over real numbers using

chaotic iteration, a general and basic technique used for computing limits of

iterations of �nite sets of functions. This is carried out in two steps: �rst

involving computationally \cheap" functions for reducing constraint satisfaction

problems followed by computationally \expensive" functions for enforcing a local

consistency property. This technique improves the global performance of the

propagation mechanism in a simple way.

1. Introduction

During the last twenty years, many techniques were studied for solving Con-
straint Satisfaction Problems (CSP). Constraint propagation (one of the most
important techniques for solving CSPs) consists in reducing a CSP into an-
other one that is equivalent, but simpler. Since solving a CSP is in general
computationally intractable, the algorithms for constraint propagation do not
enforce global consistency, but local consistency (such as arc-consistency [15])
that \approximates" the global property.

For solving polynomial constraints over real numbers, several consistency
methods have been designed [20]. In the scheme of interval constraints [13,
5, 3, 6, 21, 11, 14] propagation algorithms consist in enforcing a local consis-
tency property during the whole reduction of CSPs (i.e., box-consistency [5]
in [23, 22], B-consistency in [13]): domains of variables are reduced to obtain
a local property (using a single constraint or a sub-set of constraints) and the
modi�cations are propagated till reaching a �x-point. B-consistency requires
preliminary transformations of CSPs that increase the number of constraints
and variables and consequently lead to weaker reductions of CSPs. In an other

249

hand, box-consistency (a restriction of arc-consistency to boundaries of inter-
vals that is parametrized by an interval extension of the constraints) is costly
as it requires a recursive local splitting of a domain at each reduction step.

Constraint propagation algorithms are instances of more general algorithms
dealing with chaotic iteration [2], a basic technique used for computing limits
of iterations of �nite sets of functions. Local consistency (such as B or box-
consistency) is generally described as a common �xed-point of domain reduc-
tion functions. Hence, by \feeding" these functions into a chaotic iteration
algorithm, we generate an algorithm that achieves local consistency.

In this paper, we present constraint propagation over real numbers using
chaotic iteration. We also propose to add weaker but cheaper domain reduction
functions to preliminary reduce CSPs before enforcing box-consistency with
expensive domain reduction functions: this mechanism does not modify the
property but increases the global performances of the algorithm.

Due to space limitation, we restrict this paper to box-consistency with dis-
tributed interval extension and we present only four types of domain reduction
functions (based on a single technique i.e., the interval Newton method [19])
that are from the weakest to the strongest: 1) a single application of Newton,
2) an idempotent version of Newton, 3) a function that limit the local splitting
inherent to box-consistency, and 4) a function that achieves box-consistency [5].

Several strategies can be introduced in the chaotic iteration algorithm: the
choice of the set of domain reduction functions, the selection of a function
for reducing a domain, and the update of the current set of functions. A
prototype validated the feasibility of our approach and enabled us comparing
various combinations of strategies. Some experimental results showed that
feeding the algorithm with weaker functions not only speeds up box-consistency
computation, but also reduces the required amount of memory. Moreover,
some extra reduction functions can be naturally added for treating particular
constraints (such as linear or quadratic constraints, . . .).

The paper is organized as follows. Section 2 introduces interval arithmetic,
and interval extensions of constraints. Section 3 presents chaotic iteration
for constraint propagation. In Section 4 we describe some domain reduction
functions for solving constraints over real numbers. Section 5 presents the pro-
totype for reducing CSPs over the real numbers, some comparisons of various
strategies and some experimental results. Finally, comparisons with previous
systems, conclusions and future works are discussed in Section 6.

2. Interval constraints

2.1. Intervals

Although some earlier works could be cited, interval mathematics really begun
with R.E. Moore's book in 1966 [19].

We consider R1 the set of real numbers extended with the two in�nity
symbols �1 and 1. We also consider the natural extension of the relation <

250

to R1. We consider F a subset of R containing �1, 1 and 0 1.

Definition 2.1 (Interval) An interval I = [a; b] consists of the set fx 2
Rja � x � bg of real numbers where a 2 F and b 2 F . The set of intervals I

is denoted by I and is ordered by set inclusion.

We denote by ~I the box of intervals I1 � � � � � In. IL (respectively IR)
denotes the left (respectively right) endpoint of an interval. Thus, if I = [a; b]
then a = IL and b = IR. Two intervals I1 = [a; b] and I2 = [c; d] are equal if
and only if a = c and b = d.

With respect to the de�nition, an interval is a set. Thus, we can associate
some usual set operators to intervals. The intersection of two intervals is de�ned
by:

I \ J =

�
; if IL > JR or IR < JL

[max(IL; JL);min(IR; JR)] otherwise

If the intersection of two intervals I and J is non-empty, their union is the
interval:

I [J = [min(IL; JL);max(IR; JR)]

The union of two intervals that have an empty intersection is not an interval.
In this case, we de�ne the interval hull of two intervals I and J by:

I] J = [min(IL; JL);max(IR; JR)]

These operations can be extended to boxes. Let ~I = I1 � � � � � In and
~J = J1 � � � � � Jn be two boxes. Then:

~I \ ~J = (I1 \ J1)� : : :� (In \ Jn)

and

~I] ~J = (I1] J1)� : : :� (In] Jn)

Let x be a number of F . We denote by x+ the smallest number of F greater
than x, and by x�, the largest number of F smaller than x.

Since an interval [a; b] can be the result of a computation on a computer, we
have to use outward rounding. This process consists in rounding a (respectively
b) to the largest (respectively smallest) element of F which is less (respectively
greater) than or equal to a (respectively b). In order to perform outward
rounding, we have to do directed rounding. This is de�ned in the IEEE standard
for oating point arithmetic [12], such an algorithm can also be found in [1]. In
the following, bxc represents the greatest element of F smaller than or equal to

1 In practice, F denotes the ordered set of oating point numbers; 1 (respectively �1)
represents the largest (respectively the smallest) oating point number with respect to the
implementation.

251

the real number x, and dxe represents the smallest element of F greater than
or equal to x. We denote by x the interval [bxc; dxe].

Let I be a given interval. We de�ne its center or midpoint by m(I) =
b(IL + IR)=2c. The width of I is w(I) = dIR � ILe. The width of an interval
will be the measure to compare di�erent computations with the same input.
When we say that the precision is increased (or the accuracy is better), this
means that the width of the result is smaller than the result computed with
another method.

2.2. Interval arithmetic

Assume that F = R
1. Let +;�; �; =, and ^ be the usual operations of ad-

dition, subtraction, multiplication, division and exponentiation over the real
numbers. Let op 2 f+;�; �; =; ĝ denote one of these operations. Then, opint,
the extension of op to the arithmetic of interval numbers, is de�ned by:

I opint J = fx op y : x 2 I; y 2 Jg

where I and J are intervals of real numbers.

If we consider outward rounding, we obtain extensions that have the fol-
lowing weaker property:

I opint J � fx op y : x 2 I; y 2 Jg

Let assume outward rounding. We now give the rules (as there are given
in [8]) for computing the endpoints of I opint J with I = [a; b] and J = [c; d].
Since no confusion is possible, we denote operators over F , and their extensions
by the same symbol.

{ addition:

I + J = [ba+ cc; db+ de]

{ subtraction:

I � J = [ba� dc; db� ce]

{ multiplication:

I � J = [bmin(a � c; a � d; b � c; b � d)c; dmax(a � c; a � d; b � c; b � d)e]

The extension of � can be re�ned using a case analysis:

252

I � J =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

[ba � cc; db � de] if a � 0 and c � 0
[bb � cc; db � de] if a � 0 and c < 0 < d

[bb � cc; da � de] if a � 0 and d � 0
[ba � dc; db � ce] if a < 0 < b and c � 0
[bb � dc; da � de] if a < 0 < b and d � 0
[ba � dc; db � ce] if b � 0 and c � 0
[ba � dc; da � ce] if b � 0 and c < 0 < d

[bb � dc; da � ce] if b � 0 and d � 0
[bmin(b � c; a � d)c; if a < 0 < b and c < 0 < d

dmax(a � c; b � d)e]

{ division:

1=J = [b1=dc; d1=ce] if 0 62 J

and

I=J = I � (1=J) if 0 62 J

However, these rules can be re�ned with extended interval arithmetic in
order to take into account division by 0:

I=J =

8>>>>>>>><
>>>>>>>>:

[bb=cc;1] if b � 0 and d = 0 (1)
[�1; db=de] [[bb=cc;1] if b � 0 and c < 0 < d (2)
[�1; db=de] if b � 0 and c = 0 (3)
[�1;1] if a < 0 < b (4)
[�1; da=ce] if a � 0 and d = 0 (5)
[�1; da=ce] [[ba=dc;1] if a � 0 and c < 0 < d (6)
[ba=dc;1] if a � 0 and c = 0 (7)

Since we do not want to use rules of extended interval arithmetic that yield
sequences of intervals, rules (2) and (6) are replaced by rules (20) and (60) as
de�ned below. So the union of intervals ([) is replaced here by the interval
hull (]).

[�1;1] if b � 0 and c < 0 < d (20)
[�1;1] if a � 0 and c < 0 < d (60)

However, in Section 4.1, we have to evaluate numerous functions of the
form I � J=K and to intersect the result with an interval L. At this stage,
and only for this special purpose, we use (when the required conditions are
full�lled) the rules (2) and (6) of extended interval arithmetic to compute
J=K. J=K is then subtracted from I using extended interval arithmetic.
Finally, when J=K returns a union of intervals, the intersection of I�J=K

with L is the interval hull of all the intersections of the result of I � J=K

with L. This process aims at increasing the precision of the result: locally,
we consider union of intervals, but globally, we obtain only one interval.

253

{ In�nite or semi-in�nite intervals:

[a; b] + [�1; d] = [�1; b+ d]
[a; b] + [c;1] = [a+ c;1]
[a; b]� [�1;1] = [�1;1]
[a; b]� [�1; d] = [a� d;1]
[a; b]� [c;1] = [�1; b� c]

{ power: Although In could be de�ned by I � : : : � I| {z }
n

, the following rules

increase precision (see the dependency problem in Section 2.4):

In =

8>><
>>:

[1; 1] if n = 0
[banc; dbne] if a � 0 or a � 0 � b and n is odd
[bbnc; dane] if b � 0
[0; dmax(an; bn)e] if a � 0 � b and n is even

2.3. Interval functions and constraints

We now extend interval arithmetic to arbitrary functions. For this purpose, we
need the notion of interval extension.

Definition 2.2 (Interval extension of function) Let f : Rn ! R be a

real-valued function. F : In ! I is an interval extension of f if and only if:

8I1 � � � In 2 I : r1 2 I1; : : : ; rn 2 In) f(r1; � � � ; rn) 2 F (I1; � � � ; In):

Definition 2.3 (Inclusion monotonic) An interval function F is said to

be inclusion monotonic if X1 � Y1; : : : ; Xn � Yn implies F (X1; � � � ; Xn) �
F (Y1; � � � ; Yn).

It follows from the de�nitions of op and opint that interval arithmetic is
inclusion monotonic [1], that is, if opint represents +;�; �; = or ,̂ then X1 � Y1,
and X2 � Y2 implies (X1 opint X2) � (Y1 opint Y2).

We now de�ne what is the extension of a real constraint, i.e. a relation from
R
n to the set of booleans.

Definition 2.4 (Interval extension of constraint) Let c : Rn ! B be

a real constraint. C : In ! B is an interval extension of c if and only if:

8I1 � � � In 2 I [(9r1 2 I1; : : : ; 9rn 2 In c(r1; � � � ; rn))) C(I1; � � � ; In)]:

The interval extension of the equality constraints over reals 2, = can be de�ned
by:

2 To simplify notation, we often use the same symbol for an arithmetic operation or a
constraint and its interval extension.

254

I1 = I2 , I1 \ I2 6= ;

The arithmetic extensions of the previous section are all interval extensions.
It is important to notice that interval extension of a function is not unique.
Thus, di�erent extensions lead to di�erent accuracy of the result (i.e., the
width of the result of an extension is smaller than the width of the result of
another one). However, in general, the more accurate is the extension, the
more complex is the computation. This motivates the next two sections where
the problem of dependencies between variables, and several interval extensions
are described.

2.4. Accuracy and the dependency problem

For simplicity reasons, we assume an unde�ned interval arithmetic (without
rounding). Using the previous rules, the evaluation of I�I gives [IL�IR; IR�
IL] while one would expect 0. In fact, we have computed fx� y : x 2 I; y 2 Ig
(� I � I) and not fx � x : x 2 Ig. Informally, we \lost" the dependency
between the two occurences of I . This problem is known in interval arithmetic
as the dependency problem.

Assume now three equivalent functions f1 = x2 � x, f2 = x(x � 1), and
f3 = (x�1=2)2�1=4, and some interval extensions F1 = X2�X , F2 = X(X�1),
and F3 = (X�1=2)2�1=4, of f1, f2, and f3 respectively. Consider the following
evaluations with X = [0; 2]:

F1([0; 2]) = [0; 2]2 � [0; 2] = [0; 4]� [0; 2] = [�2; 4]

F2([0; 2]) = [0; 2] � ([0; 2]� [1; 1]) = [0; 2] � [�1; 1] = [�2; 2]

F3([0; 2]) = ([0; 2]� [1=2; 1=2])2 � [1=4; 1=4] = [�1=2; 3=2]2� [1=4; 1=4]
= [0; 9=4]� [1=4; 1=4] = [�1=4; 2]

We obtain F3([0; 2]) � F2([0; 2]) � F1([0; 2]). Thus, the syntaxic form of
the functions is also important for the accuracy of their extensions [19]. Notice
that in F3, there is no more dependency problem as X occurs only once, and
the result is exact.

2.5. Some interval extensions

In the following, we consider �xed interval arithmetic (as de�ned in [1, 8], and
in Section 2.2). As we have just noticed, the syntaxic form of the function
signi�cantly inuences the interval obtained after its evaluation. However,
functions can be processed before evaluation in order to get more accurate
results.
Natural interval extension This extension is the most simple one. It con-
sists in replacing each element of the function by its direct extension (i.e. a
number a is replaced by a, a real variable x is replaced by an interval variable
X , real arithmetic operations by their corresponding interval extensions, and
constraints by their extensions).

255

For example, let x1 � (x2 + 1:3 + x1) = 4 be a real constraint. Its natural
interval extension is the interval constraint X1 � (X2 + 1:3 +X1) = 4.

With the natural interval extension, constraints maintain the syntaxic form.
Thus, to improve accuracy one can minimize dependencies. This extension is
generally more accurate than the next one. Moreover, we can also consider
factorizing the polynomials (however, this operation is expensive).

Distributed interval extension The distributed interval extension consists in
applying the natural interval extension to the distributed form (i.e., syntactical
form) of a function. Distributing a function consists in giving a particuliar
syntactic form of the function.

Let f be a function, then we say that f is in a distributed form if f is written
as

X
i=1::n

0
@ci Y

ji=1::m

x
eji
ji

1
A

where 8i ci 2 R and 8i; j eji 2 N .
The distributed form of a constraint c(x1; � � � ; xn) is straight forward: re-

placing x1; � � � ; xn by their distributed form is su�cient to obtain the dis-
tributed form of c. Then, the distributed interval extension of c consists in
applying the natural interval extension to the distributed form of c.

Let x1 � (x2 + 1:3 + x1) = 4 be a real constraint. Its distributed form is
x1 � x2 + 1:3 � x1 + x21 = 4, and its distributed natural extension is X1 �X2 +
1:3 �X1 +X2

1 = 4.
Due to lost of dependencies (see Section 2.4 for examples), the distributed

interval is less accurate than some other extensions (in particular the natural
interval extension) [19]. However, the distributed form enables us to perform
an easier form of pre-evaluation (see Section 5.1). Thus, computations are more
e�cient when using several times a function, and more especially when some
of the parameters are �xed as inside a reduction phase (see Section 4).

Taylor interval extension Taylor interval extension is a particuliar case of
centered form [19]. This extension requires that the constraint is an equality of
the form f(x1; � � � ; xn) = 0. It is also assumed that f has continuous derivatives
of any necessary order with respect to each variable xi. Informally, a Taylor
expansion of f is applied around the center of the box I1; � � � ; In. The rest of
the series is bound using I1; � � � ; In.

More precisely, let c be a constraint f(x1; � � � ; xn) = 0 such that f is a
function with continuous partial derivatives in x1; � � � ; xn. The Taylor interval
extension of c over the box (I1; � � � ; In) is the interval constraint:

F (m(I1); : : : ;m(In)) +
X
i=1::n

�F

�Xi

(I1; � � � ; In)(Xi �m(Ii)) = 0

256

where m(I) denotes the center of the interval I . This extension gives sharper
interval bounds than the natural and distributed extension. However, it is
also more complex and it leads to additional computing. Thus, the solution
consists in using Taylor interval extension when more accurate intervals are
really required, i.e., when endpoints of intervals are close to solutions of the
constraint system.

Note that arithmetic interval extension as de�ned in [1, 8] and in Section 2.2
is inclusion monotonic, and consequently, natural, distributed and Taylor in-
terval extensions are also inclusion monotonic.

3. Chaotic iteration and CSP

We now consider constraint propagation, one of the most important techniques
used for solving Constraint Satisfaction Problems (CSP).Informally, constraint
propagation consists in reducing a CSP into another one that is equivalent, but
simpler.

3.1. Chaotic iteration

Constraint propagation algorithms are instances of more general algorithms
dealing with chaotic iteration [2], a basic technique used for computing limits
of iterations of �nite sets of functions.

Definition 3.1 (Chaotic iteration) Consider a set D, an element d 2 D,

and a set of functions F = ff1; � � � ; fkg on D.

{ a run of the functions f1; � � � ; fk is an in�nite sequence of numbers from

[1; k],

{ a run i1; i2; : : : is fair if every i 2 [1; k] appears in it in�nitely often,

{ an iteration of F associated with a run i1; i2; : : : and starting with d is an

in�nite sequence of values d0; d1; d2; : : : de�ned as follows: d0 = d, and

dj = fij (dj�1).

{ an iteration of F is chaotic if it is associated with a fair run.

3.2. CSP

A domain membership is a relation of the form x1 2 Dx1 . As no ambiguity is
possible, we reduce this notation to D1.

A scheme on n is a sequence of di�erent elements from [1; n]. We say that C
is a constraint on D = D1; � � � ; Dn with scheme i1; � � � ; il if C � Di1�� � ��Dil.

A CSP hD; Ci is de�ned by a sequence of domains D together with a se-
quence of constraints C on D.

Given a n-tuple d = d1; � � � ; dn, and a scheme s = i1; � � � ; il on n, we denote
by d[s] the l-tuple di1; � � � ; dil. A solution to a CSP hD1; � � � ; Dn; Ci is a n-tuple
d 2 D1 � � � � �Dn such that for each C in C with scheme s, d[s] 2 C. We say
that two CSPs are equivalent if they have the same set of solutions.

257

3.3. Domain reduction

We now focus on the aspects of chaotic iteration that are relevant for constraint
propagation and domain reduction. We use the results developed by K. Apt
in [2].
Consider a CSP hD1; � � � ; Dn; Ci.
DO, the domain associated with hD1; � � � ; Dn; Ci is the set

fX1 � � � � �Xn j Xi � Di for i 2 [1; n]g

Let s = i1; � � � ; il be a scheme. We denote by DOs the set

fX1 � � � � �Xl j Xi � Dji for i 2 [1; l]g

The set inclusion and intersection are extended to elements of DOs. Let
X1 � � � � �Xl and Y1 � � � � � Yl be two elements of DOs. Then:

{ X1 � � � � �Xl � Y1 � � � � � Yl i� Xi � Yi for i 2 [1; l]

{ (X1 � � � � �Xl) \ (Y1 � � � � � Yl) = (X1 \ Y1)� : : :� (Xl \ Yl)

Let hD1; � � � ; Dn; Ci and hD0

1; � � � ; D
0

n; Ci be two CSPs. hD0

1; � � � ; D
0

n; Ci is
smaller than hD1; � � � ; Dn; Ci if D0

i � Di for all i 2 [1; n].

We now consider functions on CSPs: they apply on a \part" of the domain
D to modify some domain memberships of D.

Definition 3.2 (Domain reduction function) Consider a sequence of do-

mains D1; � � � ; Dn, and a constraint C with scheme s on n. A domain reduction

function for C is a function on DOs such that for all D 2 DOs

{ f(D) � D,

{ C \D = C \ f(D).

The �rst condition states that no solution to C is gained (domains associated
with C are reduced), and the second condition ensures that no solution to C

is lost.
Let DO = D1; � � � ; Dn be a sequence of domains and s = i1; � � � ; il be a

scheme on n. Consider a domain reduction function f on DOs and suppose
that f(Di1�� � ��Dil) = D0

i1�� � ��D0
il. f on DOs is extended to a function

f+ on D as follows:

f+(D1 � � � � �Dn) = D00
1 � � � � �D00

n

such that for all i 2 [1; n], D00

i = D0

i if i is an element of s, D00

i = Di otherwise.

Consider a CSP hD1; � � � ; Dn; Ci, a scheme s on n, and a domain reduction
function f for the constraint C of C on DOs. Suppose f+(D1; � � � ; Dn) =
D0

1; � � � ; D0
n. Then, the CSP de�ned by hD0

1; � � � ; D
0

n; Ci is a transforma-
tion of hD1; � � � ; Dn; Ci, is smaller than hD1; � � � ; Dn; Ci, and is equivalent to
hD1; � � � ; Dn; Ci.

Before stating the domain reduction theorem, a de�nition related to domain
reduction function is needed.

258

Definition 3.3 (monotonicity, idempotency) Consider a sequence of do-

mains D, and a domain reduction function f on C with scheme s. The function

f is called:

{ monotonic if: D � D0 implies f(D) � f(D0) for all D;D0 2 DOs,

{ idempotent if: f(f(D)) = f(D) for all D 2 DOs,

Theorem 3.1 (Domain reduction) Consider a CSP hD1; � � � ; Dn; Ci and a

set F = ff1; � � � ; fkg, where each fi is a monotonic domain reduction function

for some C in C. Then,

{ the limit of every chaotic iteration of F+ = ff+1 ; � � � ; f
+

k g exists and is

equal to

1\
j=0

f j(D1 � � � � �Dn);

where f on DO is de�ned by:

f(D) =

k\
i=1

f+i (D);

{ the CSP determined by h
T
1

j=0 f
j(D1�� � ��Dn); Ci is equivalent to the CSP

hD1; � � � ; Dn; Ci.

Informally, this theorem states that the order for applying the domain re-
duction functions has no importance, as long as fairness is kept. Furthermore,
the computed limit is equivalent to the original CSP.

Property 3.4 (termination) Suppose that all the domains Di are �nite.

Then, the limit of every chaotic iteration of F+ equals the largest �xed point

of f with respect to set inclusion.

This property (which is essential for interval arithmetic) also implies that the
CI algorithm (see Figure 1) can be used to compute the limit of chaotic iteration
of the domain reduction theorem. The input of the generic chaotic iteration

algorithm is a CSP hD; Ci together with a set F of functions on CSPs. The
output is a CSP hD0; Ci equivalent to hD; Ci and smaller than hD; Ci.

4. Domain reduction for interval constraints

We now return to the problem of solving CSPs of the type hD; Ci, where:

{ all the constraints C of C are equalities of polynomials,

{ the domains Di are intervals of I, and each Di is associated with a variable
Xi,

259

CI

input hD;Ci : CSP ; F : set of reduction functions
output hD0;Ci : CSP

G := F

while G 6= ;
do

select g in G; suppose g is with scheme s
G := G� fgg
D0[s] := g(D[s])
if D[s] 6= D0[s] then
G := G [ff 2 F jf depends on some i in s s.t. D[i] 6= D0[i]g
D[s] := D0[s]

endif

enddo

Figure 1. Chaotic iteration algorithm

{ I is the ordered set (with respect to set inclusion) of oating point intervals
i.e. intervals of real numbers the bounds of which are elements of the �nite
set F , the ordered set of oating-point numbers.

In the following, we always consider that we are working with a speci�c CSP
hD; Ci, and that each variable is associated with a domain. We are now look-
ing for domain reduction functions, i.e., functions that respects the following
properties:

1: the functions are domain reduction functions for some C 2 C with scheme
s i.e., f(~I) � ~I and C \ ~I = C \ f(~I) for all ~I 2 DOs,

2: the functions are monotonic i.e. ~I � ~I 0 implies f(~I) � f(~I 0) for all ~I; ~I 0 2
DOs.

Remark 4.1. Applications of most of the domain reduction functions that are

presented in the next sections do not depend on the initial domains de�ned by

the CSP. Thus we could replace DOs by Ik (where k is the number of elements

of the scheme s) in the previous requirements. However, some functions can

be applied only when the constraint has some required properties on the initial

domain (for example monotonically increasing). In order to get only one set of

requirements for reduction functions, we keep DOs.

Since some reduction functions only apply to univariate constraints, we use
projections to transform a multivariate constraint into a univariate one.

260

Definition 4.2 (Projection) Let hD; Ci be a CSP with D = D1; � � � ; Dn, C

be a constraint of C. Then CXi
, the projection of C over Xi, is obtained from

C by substituting the variables Xj by the intervals Dj , for all j 6= i.

4.1. The interval Newton method

The interval Newton method [19] is an extension of the Newton method for
�nding roots of univariate functions. Although it was originally de�ned for
univariate functions, we can also use the interval Newton method for multi-
variate functions.

Consider a univariate function f , its natural extension F , and an interval
I 2 I. The interval Newton method applies a function Newton(f; I) that
reduces I to I 0 in such a way that all the zeros of f in I are also in I 0. The
function Newton(f; I) is de�ned as follows:

Newton(f; I) = I \ (a�
F (a)

F 0(I)
)

where

{ a is a point of I 3,

{ F is an interval extension of f ,

{ F 0 an interval extension of the derivative of f .

We now consider the case of multivariate functions. Consider a function f

on x1; � � � ; xk, its natural extension F , a domain Dj 2 I for each variable xj ,
j 2 [1; i� 1] [[i + 1; n], and an interval I 2 I. The interval Newton method
applies a function Newton(xi; f; I) to reduce I into I 0, such that all the zeros
of f in D1 � � � � �Di�1 � I �Di+1 � � � � �Dn are also in D1 � � � � �Di�1 �
I 0 �Di+1 � � � � �Dn:

Newton(xi; f; I) = I \ (a� FXi
(a)=F 0Xi

(I))

where

{ a is a point of I ,

{ FXi
is the projection on Xi of an interval extension of f ,

{ F 0Xi
is the projection on Xi of an interval extension of the partial derivative

of f with respect to xi.

Property 4.3. Let hD1; � � � ; Dn; Ci be a CSP, f(~x) = 0 be a constraint of C
with scheme s, and i an element of s. The function Ni de�ned as follows:

Ni(D1 � � � � �Dn) = D1 � � � � �Di�1 �D0

i �Di+1 � � � � �Dn

3 a can be any point of I. However, it is convenient to choose the center of I [8].

261

where D0

i = Newton(xi; f;Di), is a monotonic domain reduction function for

the constraint f(~x) = 0 with scheme s on DOs.

N = fNi for Cjfor all C in C with scheme s; and for all i in sg is a set of mono-

tonic domain reduction functions.

Reduction functions of N are not idempotent. We now consider itera-
tive applications of Newton(xi; f; I), denoted Newton?(xi; f; I). Let I0 = I

be the initial interval, we de�ne step n + 1 with respect to step n: In+1 =
Newton(xi; f; In). Hence, Newton?(xi; f; I) = I 0 where I 0 is a �xed-point of
Newton.

Property 4.4. N?
i de�ned by 4

N?
i (D1 � � � � �Dn) = D1 � � � � �Di�1 �D0

i �Di+1 � � � � �Dn

where D0

i = Newton?(xi; f;Di), is a monotonic idempotent domain reduction

function for the constraint f(~x) = 0 with scheme s on DOs.

N ? = fN?
i for Cjfor all C in C with scheme s; and for all i in sg is a set of

monotonic domain reduction functions.

Remark 4.5. Rules (2) and (6) from extended interval arithmetic for division

are useful for functions of N and N ?, since the expressions to be computed in

the Newton function are of the form I 0 \ (I � J=K).

Some more complex reduction functions that reduce all the variables of a
constraint in one step can be de�ned. However, they allows us for less control
in chaotic iteration.

4.2. Box-consistency

The previously de�ned reduction functions enable to reduce a CSP hD; Ci into
a smaller CSP hD0; Ci. Although the set of solutions is preserved, no property
is ensured: (1) the existence of solution is not guaranteed, and (2) if they are
some solutions, we do not know where they are in the box D0.

Arc-consistency [15] (a notion that gives some global properties to CSPs) is
not well suited for non-linear constraints [5]: it would require splitting up the
original CSP into too many sub-CSPs, one for each solution. Thus, we use the
weaker notion of box-consistency [5].

Definition 4.6 (Box-consistency) Let hD1; � � � ; Dn; Ci be a CSP, and C a

constraint from C with scheme s. Then, C is box-consistent with respect to i of

s and D1; � � � ; Dn i�:

CXi
([DR

i ; D
R
i

+
]) ^ CXi

([DL
i

�

; DL
i])

4 N?
i can also be de�ned by N?

i (DOs) =
T
1

j=1 N
j
i (DOs)

262

where DR
i

+
is the smallest number of F greater than DR

i and DL
i

�

is the largest

number of F smaller than DL
i .

C is box-consistent if it is box-consistent with respect to each i in s. A CSP

hC;Di is box-consistent if each C in C is box-consistent 5.

The idea consists in using Newton to compute the leftmost zero and the
rightmost zero of projections of constraints. For this purpose, we use a splitting
mechanism which is local to the function and does not a�ect the CSP.

i Box Consistency

input f : Rn ! R; D1 � � � � �Dn : In; i : N
output D00

i : I

D0

i=pushleft(f;D1 � � � � �Dn; i)
D00

i =pushright(f;D1 � � � � �Di�1 �D0

i �Di+1 � � � � �Dn; i)

Figure 2. i Box Consistency

The function i Box Consistency (Figure 2) takes as input a function f on
x1; � � � ; xn, a box of intervals D1 � � � � � Dn, and an index i (associated to a
variable), and returns a new interval D0

i such that:

{ D0

i � Di,

{ and f(~x) = 0 is box consistent with respect to i and the sequence of domains
D1; � � � ; Di�1; D

0

i; Di+1; � � � ; Dn.

The function pushleft (Figure 3) takes as input a function f , a box D1 �
� � � �Dn, and an index i, and returns a new interval D0

i s.t. D
0

i � Di and the
leftmost solution (with respect to i-th coordinate) of f(~x) = 0 in D1�� � ��Dn

is also in D1 � � � � �Di�1 � [D0L
i ; D0L

i

+
]�Di+1 � � � � �Dn.

The split function splits an interval [a; b] into two intervals [a; c] and [c; b] 6.
Pushright is analogous to Pushleft and it deals with rightmost solution of

f(~x) = 0.

Property 4.7. Let hD1; � � � ; Dn; Ci be a CSP, f(~x) = 0 a constraint of C with

scheme s, and i an element of s. The function IBCi de�ned as follows

IBCi(D1 � � � � �Dn) = D1 � � � � �Di�1 �D0

i �Di+1 � � � � �Dn

where D0

i = i Box Consistency(f;D1 � � � � � Dn; i), is a monotonic domain

reduction function for the constraint f(~x) = 0.
We put IBC = fIBCi for Cj for all C of the form f(~x) = 0 in C with scheme

s, and for all i in sg is a set of monotonic domain reduction functions.

5 Box-consistency depends on the interval extension (natural, distributed, Taylor, . . .) that
is used.

6 We take c as being the center of [a; b].

263

pushleft

input f : Rn ! R; D1 � � � � �Dn : In; i : N
output D0

i : I

I := Di

if 0 62 FXi
(I)

j then D0

i = ;
j else I 0 = Newton?(xi; f; I)
j if I 0 = ;
j j then D0

i = ;

j j else if 0 2 FXi
([I 0L; I 0L

+
])

j j j then D0

i = I 0

j j j else (I1; I2)=split(I
0)

j j j D = D1 � � � � I1 � � � � �Dn

j j j I 00=pushleft(f;D; i)
j j j if I 00 6= ;
j j j j then D0

i = [I 00L; I 0R]
j j j j else D = D1 � � � � � I2 � � � � �Dn

j j j j D0

i =pushleft(f;D; i)
j j j �

j j �

j �

�

Figure 3. Pushleft function: �nd the �rst leftmost solution

The previous function can be extended to perform box-consistency of a
constraint. Such a function is equivalent to CI when considering one constraint
C and the set of reduction functions fIBCi for Cj for all i in the scheme of
Cg. However, we won't consider it, since we want to keep the most control as
we can within the general CI algorithm.

4.3. Limited local splitting

The idea consists in restricting the local splitting when reduction is not suf-
�cient: if box-consistency is computationally expensive for a constraint C

with respect to i in the scheme s, then it may be \cheaper" to try getting
box-consistency with respect to another element of the scheme, or another
constraint. Box-consistency of C with respect to i will then be computed later,
and may become at this stage easier to compute.

To this end, we modify pushleft and pushright (see Figure 4), and add a
stopping criterion based on the ratio between the width 7 of I and the width of

7 The width of I is denoted w(I) and is equal to IR � IL.

264

I 0 the result of Newton?(xi; f; I). If this ratio is less than the minimum ratio

r (a data of the algorithm), then local splitting is stopped.

limited pushleft

input f : Rn ! R; D1 � � � � �Dn : In; r :2 [0; 1]
output D0

i : I

I := Di

if 0 62 FXi
(I)

j then D0

i = ;
j else I 0 = Newton?(xi; f; I)
j if I 0 = ;
j j then D0

i = ;

j j else if 0 2 FXi
([I 0L; I 0L

+
]) or w(I)=w(I 0)� 1 < r

j j j then D0

i = I 0

j j j else (I1; I2)=split(I
0)

j j j D = D1 � � � � I1 � � � � �Dn

j j j I 00=limited pushleft(f;D; i; r)
j j j if I 00 6= ;
j j j j then D0

i = [I 00L; I 0R]
j j j j else D = D1 � � � � � I2 � � � � �Dn

j j j j D0

i =limited pushleft(f;D; i; r)
j j j �

j j �

j �

�

Figure 4. Find the �rst leftmost root if splitting is e�cient

The function limited pushright is obtained similarly.
Limited i Box Consistency is similar to i Box Consistency but makes calls

to limited pushleft and right.

Property 4.8. Let hD1; � � � ; Dn; Ci be a CSP, f(~x) = 0 a constraint of C with

scheme s, and i an element of s. The function LIBCr
i is de�ned as follows:

LIBCr
i (D1 � � � � �Dn) = D1 � � � � �Di�1 �D0

i �Di+1 � � � � �Dn

where D0

i = Limited i Box Consistency(f;Di; i; r). Then, the function LIBC
r
i

is a monotonic domain reduction function for the constraint f(~x) = 0 with

scheme s on DOs. The function LIBCr
i is not idempotent.

We obtain a collection of sets LIBCr of monotonic domain reduction func-
tions depending on r:

LIBCr = fLIBCr
i for Cj for all C in C with scheme s; and for all in sg

265

Limited local splitting reduces the computational complexity inherent to
box-consistency, but does not lead to box-consistent constraints (except when
r = 0; in this case LIBC0

i = IBCi). However, these functions are \stronger"
than the ones based on Newton alone.

When a function LIBCr
i for C is applied afterN?

i for C, then LIBCr
i has no

e�ect: Newton? (which is idempotent) has already reduced the domain, and,
a new application has no e�ect. Hence, the ratio is 0, and the local splitting
is stopped. For this case, we consider the set LIBC0 of functions LIBC 0

r
i

where the splitting (in limited pushleft) is performed before any computation
of Newton?.

4.4. Properties of reduction functions

For a given CSP hD; Ci, we thus have three sets of domain reduction functions
IBC;N , and N ?, plus some other sets of domain reduction functions depending
on r, namely LIBCr. We can compare (with respect to tightening of domain)
elements of these sets. Let C be a constraint with scheme s. Then, for all i of
s, all I 2 DOs, and all r; s 2 [0; 1] such that r < s:

IBCi(I) � LIBCr
i (I) � LIBCs

i (I) � N?
i (I) � Ni(I)

When f(I) � g(I), we say that f is stronger than g (or g is weaker than f). In
our case, the stronger domain reduction functions are, the more computation-
ally complex and expensive are their computation.

The CSPs and the related domain reduction functions are now fed in the
CI algorithm to compute the reduced CSP. Since all the functions previously
described are monotonic, and the domains are �nite, the CI algorithm always
terminates when using (some of) these functions. Only IBC guarantees that
box consistency of the CSP is reached. The other functions do not enforce any
property, but they speed-up the computation by reducing the problem before
computing box-consistency.

5. Experimental results

5.1. Implementation

We have designed a prototype of our solver for real constraints. Since we
were more interested in the design of strategies, and in testing several domain
reduction functions, we used Maple [7] as an implementation language. Hence,
the performance is not really good compared to Numerica [23] and Declic [3],
but we can easily and quickly compare reduction functions, and strategies for
their application.

We tested several domain reduction functions, based on di�erent techniques
(Taylor, Newton, . . .) but we focus here on the functions we presented in
Section 4, and on the problem of getting CSPs that are box-consistent. From
such CSPs, solutions are derived by a branch and prune technique [22]: CSPs

266

are split and box consistency is enforced on each sub-CSPs till domains are
small enough.

Internally, constraints are stored as binary trees. Using commutative prop-
erties of the arithmetic operators, we raise variables as high as possible in the
trees. Hence, when initializing a set of constraints, we can already evaluate all
the sub-terms that do not contain any variables.

Then, when calling a domain reduction function, all remaining variables
except the one whose domain will be reduced (this variable is the highest in
the tree) are replaced by their domains. Once again, sub-terms are evaluated.
We thus obtain a pre-evaluated constraint 8 which is already simpli�ed and will
be used several times inside the reduction function. When reducing a CSP, this
two-level pre-evaluation mechanism improves the computation of 25 percent.
That is one of the reasons that lead us to chose distributed interval extension
instead of natural interval extension (for which pre-evaluation is less e�ective
since we cannot transform the constraints in a single way) although this last
generally gives sharper bounds.

5.2. Strategies

We made some small changes to the selection and update functions of the CI

algorithm (see Section 3).

1- The CII algorithm [2] is a specialized version of the CI algorithm for idem-
potent domain reduction functions. However, we cannot use it since not all
functions are not idempotent. Thus, we specialize the update procedure as
follows: if g is idempotent, g is not added to G after it has been applied.

2- Let F = F1 [F2 be a set of domain reduction functions such that each
function of F2 is weaker than a function of F1

9. Then:

CI(CSP; F1 [F2) = CI(CI(CSP; F2); F1)

We use this property in the CI algorithm. First, CI selects the functions in
F2 (the weaker functions). When there are no more functions from F2 in G,
functions of F1 are chosen, and the functions from F2 are not added to G during
updates. This improves the average performance of the algorithm although few
examples were solved faster using the standard selection procedure.

3- When IBC and a set LIBCr are fed into F , we change the condition of the
update procedure. When g 2 LIBCr has been applied to reduce Di into D0

i,
G is updated only if the reduction ratio Di=D

0

i� 1 is greater than r. However,
we replace Di by the new domain D0

i. The result of the CI algorithm remains

8 A pre-evaluated constraint is a uni-variate constraint which is a sum of \products". Each
product is either an interval, a variable, or an interval multiplied by a variable at a given
power.

9 This is always the case when F1 and F2 are elements, or union of elements of
fIBC;LIBCr1 ; : : : ;LIBCrn ;N ?;Ng.

267

unchanged, since the functions in LIBCr are chosen �rst and that there is
always a stronger function in IBC.

4- In the selection procedure, when several functions of the same type are
candidates, we choose the one that reduces the domain of the variable which
occurs most often in C.

5.3. Results

Before stating some generalities, we give some results based on particular ex-
amples (see Appendix A for the descriptions of the examples): Broyden Banded
Function [9] (bb), and interval arithmetic benchmarks [10] (i1, i2, i3, i4).

In Table 5, Var represents the number of variables in the example, Dom is
the initial domain of the variables, and Si represents the set of domain reduction
functions:

S1 = IBC;
S2 = LIBC0:1 [S1;

S3 = LIBC0:01 [S2;

S4 = LIBC0:0001 [S3;

S5 = N ? [LIBC0
0:1

[LIBC0
0:01

[LIBC0
0:0001

[IBC;
S6 = N [S5;

S7 = N [N ? [LIBC0
0:01

[IBC:

For a given example, we compare a strategy (i.e., a set of reduction func-
tions) with the best strategy we obtained: 1 means that it is the best strategy,
and 1.5 means this strategy is 1.5 times slower than the best strategy, and \?"
means that we could not solve the example because we ran out of memory.

Ex. Var Dom S1 S2 S3 S4 S5 S6 S7

i1 10 [-2,2] 1.5 1.58 1.6 1.63 1.05 1.09 1

i2 20 [-1,2] 1.8 1.8 1.82 1.8 1.2 1.1 1

i3 20 [-2,2] 2.2 2.1 2.2 1.3 1.15 1.1 1

i4 10 [-1,1] 1.7 1.2 1.13 1.13 1.15 1.18 1

bb 3 [-108,108] 2.9 1.12 1.2 1.17 1 1 1.3

bb 10 [-108,108] ? 1.02 1.03 1 1.08 1.12 1.04

Figure 5. Comparison of some strategies

We obtained some better strategies than the ones given in the table above.
However, each of them was specialized for a single example, and did not im-
proved the e�ciency for the other examples.

For some examples (such as i1), the CSP is already box-consistent when
using only N [N ?. However, we need the functions of IBC to prove the
box-consistency of the CSP.

Informally speaking, the weaker functions perform an \equitable" reduction
of all the domains. On the other hand, functions of IBC reduce one domain

268

as much as possible (till box-consistency of one constraint with respect to one
variable is reached) before the new domain is propagated. Note some analogies
with depth-�rst and breadth-�rst search.

On a larger set of experiments, we determined that S7 is the strategy that
gives the best results on average: computations with S1 are (on average) 1.7
times longer than computations with S7.

The weaker functions not only improve the e�ciency, but also reduce the
required memory (see bb(10) in Table 5). When we apply the functions from
IBC, the domains are already smaller. Hence, the local splitting is reduced i.e.,
the depth of the recursion in pushleft and right is reduced. Thus, the weaker
functions enabled us solving examples that we could not solve (due to memory
problems) using only IBC.

6. Conclusion

We presented constraint propagation over real numbers using the general frame-
work of chaotic iteration. We also proposed to introduce cheap domain reduc-
tion functions to preliminary reduce CSPs before enforcing box-consistency. A
prototype and some experimental results con�rmed that this method speeds up
box consistency computation and reduces the required memory without adding
any new mathematical machinery.

The main di�erence between our technique and Numerica [23] is that we
use a more general framework and that we reduce CSPs before enforcing box
consistency. Another advantage, is that some specialized functions (for ex-
ample for linear/quadratic equations) can naturally be added to speed up the
computation, without modifying our framework. Numerica was implemented
in C and is much faster than our prototype implementation written in Maple.
We expect that our techniques can increase the e�ciency of Numerica when
implemented in C.

Since no preliminary modi�cation of CSPs is required for our method, it
can be combined with symbolic rewriting [4] or with other solvers [17, 18, 16]
without a�ecting the collaboration.

We plan to add some more specialized reduction functions for speeding up
computation. We also envisage to use several interval extensions as in [22]. We
also plan to re�ne the selection procedure in the chaotic iteration algorithm by
choosing not only the type of function, but also the domain of the variable that
will be reduced. We plan to combine this with the usual techniques of constraint
propagation (such as selecting the variable with the smallest/largest domain).
Finally, we plan to design a distributed version of the algorithm that will enable
simultaneous reductions, storage of domain information computed during the
local splitting in (limited) box-consistency functions, and simultaneous search
of interval boundaries (simultaneous push left and right).

269

References

1. G. Alefeld and J. Herzberger. Introduction to interval computation. Series
in Computer Science and Applied Mathematics. Academic Press, 1983.

2. K. R. Apt. From Chaotic Iteration to Constraint Propagation. In Pro-

ceedings of ICALP '97, volume 1256 of Lecture Notes in Computer Science,
pages 36{55. Springer Verlag, 1997.

3. F. Benhamou, F. Goualard, and L. Granvilliers. Programming with the
Declic Language. In Proceedings of the International Workshop on Interval

Constraints, pages 1{13, Port Je�erson, USA, 1997.
4. F. Benhamou and L. Granvilliers. Combining local consistency, symbolic

rewriting, and interval methods. In Proceedings of AISMC3, Steyr (Aus-
tria), 1996.

5. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(Intervals) re-
visited. In Proceedings of ILPS'94, Ithaca, NY, USA, 1994.

6. F. Benhamou and W. Older. Applying Interval Arithmetic to Real, Integer
and Boolean Constraints. Journal of Logic Programming, 32(1):1{24, July
1997.

7. K. Geddes, G. Gonnet, and B. Leong. Maple V : Language reference man-

ual. Springer Verlag, New York, Berlin, Paris, 1991.
8. E. Hansen. Global optimization using interval analysis. Number 165 in

Series in Pure and Applied Mathematics. Marcel Dekker, New York - Basel
- Hong Kong, 1992.

9. E. R. Hansen and R. I. Greenberg. An Interval Newton Method. Applied

Mathematical Computing, 12, 1983.
10. H. Hong and V. Stahl. Safe starting regions by �xed points and tightening.

Computing, 53(3-4), 1994.
11. E. Hyv�onen. Constraint reasonning based on interval arithmetic: the tol-

erance propagation approach. Arti�cial Intelligence, 58:71{112, 1992.
12. IEEE. IEEE standard for binary oating-point arithmetic. IEEE Std 754-

1985, 1985. Rea�rmed 1990.
13. O. Lhomme. Consistency Techniques for Numeric CSPs. In R. Bajcsy,

editor, Proceedings of the 13th IJCAI, Chamb�ery, France. IEEE Computer
Society Press, 1993.

14. O. Lhomme and M. Rueher. Application des techniques CSP au raison-
nement sur les intervalles. RIA, 11(3):283{312, 1997.

15. A. Mackworth. Consistency in networks of relations. Arti�cial Intelligence,
8(1):99{118, 1977.

16. P. Marti and M. Rueher. A Distributed Cooperating Constraints Solving
System. International Journal on Arti�cial Intelligence Tools, 4(1&2):93{
113, 1995.

17. E. Monfroy. Collaboration de solveurs pour la programmation logique �a

contraintes. PhD Thesis, Universit�e Henri Poincar�e-Nancy I, 1996. (also
available in english).

18. E. Monfroy, M. Rusinowitch, and R. Schott. Implementing Non-Linear
Constraints with Cooperative Solvers. In Proc. of SAC'96, pages 63{72,

270

Feb. 1996.
19. R. E. Moore. Interval Analysis. Series in Automatic Computation. Prentice

Hall, Englewood Cli�s, N. J., 1966.
20. D. Sam-Haroud and B. Faltings. Consistency techniques for continuous

constraints. Constraints, 1:85{118, 1996.
21. V. Telerman and D. Ushakov. Subde�nite models as a variety of constraint

programming. In Proceedings of ICTAI'96, Toulouse (France), 1996.
22. P. Van Hentenryck, D. McAllester, and D . Kapur. Solving polynomial

systems using a branch and prune approach. SIAM Journal on Numerical

Analysis, 34(2), 1997.
23. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: a modeling lan-

guage for global optimization. The MIT Press, 1997.

A. Description of the examples

1. Broyden Banded Function (bb): it consistes in �nding the zeros of the
functions

fi(x1; � � � ; xn) = xi(2 + 5x2i) + 1�
X
j2Ji

xj(1 + xj) (1 � i � n)

where Ji = fj j j 6= i ^ max(1; i � 5) � j � min(n; i + 1)g, and n, the
number of variables, is a parameter. For each i in [1; n], Dxi = [�108; 108].

2. i1:

x1 � 0:25428722� 0:18324757 x4 x3 x9 = 0
x2 � 0:37842197� 0:16275449 x1 x10 x6 = 0
x3 � 0:27162577� 0:16955071 x1 x2 x10 = 0
x4 � 0:19807914� 0:15585316 x7 x1 x6 = 0
x5 � 0:44166728� 0:19950920 x7 x6 x3 = 0
x6 � 0:14654113� 0:18922793 x8 x5 x10 = 0
x7 � 0:42937161� 0:21180486 x2 x5 x8 = 0
x8 � 0:07056438� 0:17081208 x1 x7 x6 = 0
x9 � 0:34504906� 0:19612740 x10 x6 x8 = 0
x10 � 0:42651102� 0:21466544 x4 x8 x1 = 0

For each i in [1; 10], Dxi = [�2; 2].

271

3. i2:

x1 � 0:24863995� 0:19594124 x7 x10 x16 = 0
x2 � 0:87528587� 0:05612619 x18 x8 x11 = 0
x3 � 0:23939835� 0:20177810 x10 x7 x11 = 0
x4 � 0:47620128� 0:16497518 x12 x15 x1 = 0
x5 � 0:24711044� 0:20198178 x8 x9 x16 = 0
x6 � 0:33565227� 0:15724045 x16 x18 x11 = 0
x7 � 0:13128974� 0:12384342 x12 x13 x15 = 0
x8 � 0:45937304� 0:18180253 x19 x15 x18 = 0
x9 � 0:46896600� 0:21241045 x13 x2 x17 = 0
x10 � 0:57596835� 0:16522613 x12 x9 x13 = 0
x11 � 0:56896263� 0:17221383 x16 x17 x8 = 0
x12 � 0:70561393� 0:23556251 x14 x11 x4 = 0
x13 � 0:59642512� 0:24475135 x7 x16 x20 = 0
x14 � 0:46588640� 0:21790395 x13 x3 x10 = 0
x15 � 0:10607114� 0:20920602 x1 x9 x10 = 0
x16 � 0:26516898� 0:21037773 x4 x19 x9 = 0
x17 � 0:20436664� 0:19838792 x20 x10 x13 = 0
x18 � 0:56003141� 0:18114505 x6 x13 x8 = 0
x19 � 0:92894617� 0:04417537 x7 x13 x16 = 0
x20 � 0:57001682� 0:17949149 x1 x3 x11 = 0

For each i in [1; 20], Dxi = [�1; 2].

4. i3: the constraints of i3 are the same as the ones of i2. Only the initial
domains change: for each i in [1; 20], Dxi = [�2; 2].

5. i4:

x21 � 0:25428722� 0:18324757 x24 x
2
3 x

2
9 = 0

x22 � 0:37842197� 0:16275449 x21 x
2
10 x

2
6 = 0

x23 � 0:27162577� 0:16955071 x21 x
2
2 x

2
10 = 0

x24 � 0:19807914� 0:15585316 x27 x
2
1 x

2
6 = 0

x25 � 0:44166728� 0:19950920 x27 x
2
6 x

2
3 = 0

x26 � 0:14654113� 0:18922793 x28 x
2
5 x

2
10 = 0

x27 � 0:42937161� 0:21180486 x22 x
2
5 x

2
8 = 0

x28 � 0:07056438� 0:17081208 x21 x
2
7 x

2
6 = 0

x29 � 0:34504906� 0:19612740 x210 x
2
6 x

2
8 = 0

x210 � 0:42651102� 0:21466544 x24 x
2
8 x

2
1 = 0

For each i in [1; 20], Dxi = [�1; 1].

272

