
Best of Both Worlds – Relational Databases and Statistics

Hannes Mühleisen
Database Architectures Group

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

hannes@cwi.nl

Thomas Lumley
Department of Statistics
University of Auckland

Auckland, New Zealand
t.lumley@auckland.ac.nz

ABSTRACT
Statistics software packages and relational database systems possess
considerable overlap in the area of data loading, handling, and
transformation. However, only databases are mainly optimized
towards high performance in this area. In this paper, we present
our approach on bringing the best of these two worlds together.
We integrate the analytics-optimized database MonetDB and the R
environment for statistical computing in a non-obtrusive, transparent
and compatible way.

1. INTRODUCTION
We live in a world where many decisions both in the commercial as
well as in the political context are driven by insights gathered from
analyzing raw data. Decision makers rely on accurate statistics and
visualizations of their environment to be informed. However, the
amount of raw data to be analyzed is constantly growing and has
long overwhelmed either the capabilities of standard data analysis
tools or the patience of their users waiting for results. For large-scale
data analysis (or “business intelligence”, as some like to call it), a
multitude of different solutions has been proposed, for example
specialized “data warehouse” systems and their corresponding user
front-ends. However, these solutions require statisticians to part
with their standard analysis tools and – unfortunately – often also
require them to adapt their questions to the capabilities of the large-
scale analysis system. To improve this undesirable situation, we
propose a tight but unobtrusive integration of these two worlds –
statistical tools and relational databases. One of the increasingly
popular tools to create derived information from raw data is GNU
R. R is “a language and environment for statistical computing and
graphics” [11]. Most prominently, R features a collection of tools
for data analysis and the corresponding facilities for data handling
and graphics creation. Moreover, the CRAN collection contains
thousands of user-contributed packages for R, which can be easily
installed and greatly expand R’s capabilities [10].

The typical work flow for data analysis in R is to first load the
raw data from a file, then to select and transform raw data into a
form suitable for statistics calculation, and then apply a statistical
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algorithm and visualization. However, the amount of data that can
be analyzed using this process is limited by the amount of avail-
able memory on the system on which R is run, which are typically
desktop computers. A logical next step to mend this problem is
to store the raw data in a relational database system, similar to the
process standard IT applications went through long ago. The stan-
dard process is now modified by not loading the raw data into R,
but instead to load it into a database. Then, one can “outsource” the
selection of data relevant to the analysis as well as basic calcula-
tions and aggregations to the database system. For example, the
RPostgreSQL and ROracle CRAN packages allow R to load
data from PostgreSQL and Oracle databases, respectively [2, 8].
However, in order to tell the database which data is to be transferred
to R, a user still is required to write queries in the standardized
Structured Query Language (SQL), which breaks work flows and
increases training requirements.

This unsatisfactory current situation brings us to our research ques-
tion: Can R make use of the powerful selection and transformation
features of relational databases in a non-disruptive, transparent and
compatible way? As a methodology, we have chosen to attempt
this integration and verify its usefulness with a real-world statistics
issue, survey analysis. The dataset being used for our experiments is
the American Community Survey (ACS) [12]. The three-year ACS
dataset consists of nine million rows and is too large to be loaded
into R in reasonable time on typical desktop computers. While the R
database interface (DBI [9]) provides a generic way of communicat-
ing with a relational database from R, not all relational databases are
equally well suited to support R. In the described common scenario,
few queries touching a large part of the stored data are sent to the
database. Also, transformation procedures and simple calculations
make recommending a database optimized for “On-line analytical
processing” (OLAP) rather obvious. Furthermore, R handles tabular
data as a list of columns, and calculations are typically performed
column-wise, and – in the case of ACS and in most others – only
a fraction of columns is actually analyzed at a given time. These
factors together suggest a column-oriented database design. For our
proposed approach, we have chosen MonetDB [3], an open-source
column-oriented database system. We aim at pushing all reasonably
supported operations into the database, as this will have the highest
chance of substantially reducing the amount of data that has to be
transferred between processes.

In the remainder of this paper, we describe our approach to integrat-
ing R and MonetDB in Section 2. In Section 3, we introduce our
use case, survey analysis. In Section 4, we present our experiments
on the ACS dataset. Section 5 describes related work, and Section 6
concludes this paper and gives an outlook on future work.



2. MARRYING MONETDB AND R
Before we can discuss the user experience when dealing with data
stored in the database from the R environment, we have to en-
able communication with the database itself. As mentioned, the R
package DBI provides a generic interface to send SQL queries to
relational databases and retrieve the query result table as a R object,
the data.frame. DBI can best be compared to JDBC, which is
the generic database interface for Java.

To allow this interaction with MonetDB, we have implemented a
new MonetDB-specific driver [7]. This driver is written in native R
code for high compatibility with existing environments and ease of
installation. The driver uses R’s socket facilities to connect to the
database, which is listening on a TCP port, and supports MonetDB’s
MAPI protocol, which is used to send queries and receive their
results.

However, as discussed in the introduction, the ability to send SQL
queries to a relational database from the R environment only takes
us part of the way. Users are still required to “think database” when
interacting with the data stored there. To solve this issue, another
layer of connectivity is required, which we describe in the following
section.

2.1 Virtual Data Object
One of the most widely used data types in R is the data.frame,
which consists of a named list of individually typed columns. Once
constructed, this type supports various operations, such as selecting
a subset of rows or columns, arithmetical operations on numeric
columns, comparisons with constants and many more. Many of the
contributed packages are able to operate directly on data.frame
objects, for example, the ggplot2 graph plotting library can take
a data.frame as data source. Obviously, this type is very close
to data stored in relational tables or general query results from a
relational database system. For example, the DBI database ab-
straction layer specifies data.frame objects to be returned by
data-retrieving functions such as dbGetQuery.

A fully functional method to manipulate database tables in R would
now be to use DBI to load a database table into a data.frame,
and use R’s built-in operators to select, reshape, and generally ma-
nipulate the data. However, this is of course very unpractical for
large datasets, as the entire table has to be transferred from the
database into R. A more sensible solution is a virtual data object, or
proxy object. This object lives in the R environment, and behaves
almost exactly like a materialized data.frame. All the calls that
the database in the background supports are translated there, and
only when the database is out of its depth the potentially much
smaller and already aggregated data is transferred into R, where the
user can now run more complex calculations.

Since R allows overloading of functions and operators through its
class system, such a solution was implemented in monet.frame.
This object is initialized with a database table. Rather than reading
the data, it will only determine the names and types of the columns
in the table and its size. In the case of MonetDB as well in many
other database systems, this information comes from the database
catalog, which is independent of the amount of data that is actually
in the table. The user can now manipulate this object the very same
way as a local object. In contrast however, her actions do not trigger
actual data transfer, but rather a reformulation of the SQL query that
backs the virtual data object. For example, consider the example R
interaction in Listing 1:

Listing 1: Interaction with virtual data object
c <− dbConnect ( MonetDB .R ( ) ,

" monetdb : / / l o c a l h o s t / db1 " )
mf <− monet . frame ( c , " t 1 " )
mean ( s u b s e t ( mf , c1 > 42) $ c2 )

We can see how the monet.frame object is constructed with a
connection and the name of the database table to be wrapped. Now,
a prototypical R interaction is performed on the object: First, the
subset method is used to select a subset of the data based on a
comparison. Then, the $ operator is used to select a single column
from the result. Finally, a statistical aggregate is calculated, which
is then typically used as the basis of more complex analyses. While
no SQL statements are visible to the user, they are still being created
in the background. In particular, through overloading subset, $
and mean, the query was rewritten over several steps as seen in
Listing 2, with only the last query being executed:

Listing 2: Generated SQL Query – Rewriting steps
SELECT ∗ FROM t 1
SELECT ∗ FROM t 1 WHERE ( c1 >42)
SELECT c2 FROM t 1 WHERE ( c1 >42)
SELECT AVG( c2 ) FROM t 1 WHERE ( c1 >42)

To clarify this translation process, R allows the definition of new
classes of objects. Many R-internal operations are defined as so-
called generics, which means that they will not directly call an
implementation, but rather search the space of defined methods
for one matching the class name. Per convention, the specific
implementation of a generic is named with the generic function
name appended with the name of the class. For example, the
length method for our virtual data object is defined with the
name length.monet.frame and will be called if a user ap-
plies the length method to a monet.frame object. In this case,
the function returns a simple scalar value. However, there are also
methods which return a new monet.frame object such as the $
operator. Here, the wrapped SQL query is changed internally, as
seen in Listing 2 (Lines 2 to 3).

Since it is possible for the user to inspect the intermediate result at ev-
ery step, this allows exploratory usage of data stored in the database
from potentially very large tables without big performance penalties.
Furthermore, these objects can now also be transparently used by
extension packages that provide specialized calculations, without
them being required to support database operations explicitly. Often,
we can simulate calculations not provided by the database through a
combination of other functions. For example, acosh can be calcu-
lated as x+

√
x2 − 1, which is supported. However, there are other

calculations such as the factorial or gamma functions that have to
be executed within R. To support this, the monet.frame contains
explicit operators that materialize the wrapped database objects into
the R environment.

However, overloading operators is only one side of the equation.
The next question is in which language the calls should be trans-
lated. MonetDB supports multiple front-ends beside SQL, and – as
in many database systems – actual query execution is expressed in
a procedural language, MAL. While we are translating to standard
SQL code for now, which also allows our virtual data object to
co-operate with databases other than MonetDB, we have the possi-
bilities of either translating direct to MAL with potential additional
performance gains, or implement a R-supporting database front-end
to the same purpose.



3. USE CASE: SURVEY ANALYSIS
In order tho show the usefulness of the virtual data object and the
MonetDB – R connection, we have chosen a use case from sur-
vey analysis. The American Community Survey (ACS) [12] is a
yearly survey that is performed in all U.S. states. Data is collected
from around 3.5 million randomly-selected addresses. Among oth-
ers, the survey collects information on income, health, education,
transportation and housing. The main goal of ACS is to provide
authorities with information about their residents. However, it is
difficult to provide information about the entire population of the
U.S. through observation of only a random fraction of people. To
allow statistically valid inferences while still protecting the privacy
of the included people, replication-based estimation is used in ACS.

To correctly estimate for example the average age of the U.S. pop-
ulation from the ACS data, one cannot simply average the corre-
sponding column from the data set. Instead, the overall weight
for the correct value and the replicate weights for correct standard
error estimation have to be considered. To stay in the example, the
average age age is calculated by using the overall weight column
w. To obtain the standard error (SE) for this estimator, one has to
repeat this calculation with all the replicate weight columns. In the
case of ACS, there are 80 replicate weights wr .

age =

∑
(age× w)∑

w
(1)

SE(age) =

√√√√ 4

80

80∑
r=1

(wr − age)2 (2)

Performing both calculations on the ACS data requires a consid-
erable part of the data to be included. However, the mathematical
operators required on the bulk of these values are only basic algebra
and aggregation, which are supported by most relational databases
and of course MonetDB. Therefore, we can take advantage of the
high degree of optimization in these systems to calculate the desired
estimators quickly. Apparently, the average American is 37.1 years
old with a standard error of 9.2× 10−6.

4. EXPERIMENTAL RESULTS
In this section we present two experiments over three differently
sized datasets with three different implementations. The first experi-
ment is based on the simple calculation on a column in the data from
Listing 1. The second experiment is the calculation the weighted
average of people’s ages in ACS and the corresponding standard
error from the preceding Section 3. These experiments were re-
peated for three different scenarios: 1) Plain R, where the R-internal
CSV parser is used to load the data file, and the calculations are
performed on the materialized data.frame, 2) Manual, where
SQL queries are directly sent to the database, and 3) Virtual, where
the virtual data object is used. The implementation of the survey
analysis was realized by the R packages sqlsurvey [5] for the
manual method, survey [6] for the plain R method, and a new
implementation using our virtual data object.

Our general hypothesis is that the Manual method will be the
fastest, since its manually constructed SQL queries will minimize
the amount of round-trips to the database. We also assume that
the virtual method will be close in performance, since no data is
actually being materialized in R until absolutely necessary. Finally,
we expect the Plain R method to show a very poor performance in
comparison, partly due to R’s single-threaded design. We have used
three different datasets based on the ACS data: 1) Small, 142.982

System Exp. Method Dataset
Small Medium Large

Fast

DB Import 1.1 s 35.4 s 702.2 s

Baseline
Plain R 4.5 s 92.5 s –
Manual 0.1 s 0.1 s 0.1 s
Virtual 0.1 s 0.2 s 0.2 s

Survey
Plain R 14.2 s 93.7 s –
Manual 0.1 s 0.9 s 3.6 s
Virtual 0.9 s 1.5 s 4.2 s

Slow

DB Import 3.0 s 180.1 s 2520.3 s

Baseline
Plain R 7.3 s – –
Manual 0.1 s 0.1 s 0.2 s
Virtual 0.3 s 0.4 s 0.5 s

Survey
Plain R 8.2 s – –
Manual 0.3 s 1.1 s 124.5 s
Virtual 14.0 s 15.4 s 80.0 s

Table 1: Experimental Results

tuples in a 91 Megabyte CSV file representing the data from the state
of Alabama, 2) Medium, 1.060.060 tuples in a 690 Megabyte CSV
file representing the data from California, and 3) Large, 9.093.077
tuples in a 6 Gigabyte CSV file with the data from the entire U.S.
Both experiments were run on two standard desktop computers, one
with a quad-core processor and 16 GB of main memory (Fast) and
one with a dual-core processor and 2 GB of memory (Slow).

The measured completion times of all experiments can be seen in Ta-
ble 1. For each combination of System, Experiment and Method the
times for the three datasets are given. Measurements were aborted
(–) if the process did not finish within one hour. In the table, we can
see how the Plain R method consisting of loading the CSV file from
disk into the R process space requires a increasingly long time to
complete. Contrary, the Manual SQL query method is consistent
in its speed. The Virtual method using monet.frame shows very
the expected results as well, a bit more time is spent compared to
manual SQL queries, but far less than plain R operations. We can
also see how the time it takes to load the data into MonetDB is
also considerable. However, this has only to be done once, whereas
this is necessary every time R is started for the native R approach.
Furthermore, the timings are remarkable considering the fact that
MonetDB has not only to read the data from the CSV file, but also
creates the persistent database files on disk.

For the baseline experiment, we can see that the virtual data object
incurs costs only marginally larger than those shown by manually
constructing SQL queries. Furthermore, loading a common CSV
file into MonetDB is faster than a one-time load into the R address
space, even in a situation where enough physical memory is avail-
able. It should be also noted that the Plain R method could me
more competitive at least on small datasets when slow loading is
amortized by a large number of fast calculations. Similar results
can be seen in our results for the survey analysis experiments. Here,
the performance of the Native method was again clearly dominated
by the time it took to load the CSV file. For the Manual method
realized through sqlsurvey we can see outstanding performance,
with only 3.6 seconds taken to analyze the entire dataset with the
help of MonetDB. Comparing the results between the Manual and
Virtual scenario, we only see a increase in time to 4.2 seconds. For
our implementation, this delta can then be regarded as the over-
head incurred by the convenience of using the virtual data object.
Comparing between the two systems the experiments were run on,



we can see how the Slow system, where the data does not fit into
main memory at all, the Plain R method suffers most, with both the
Manual and Virtual methods still being practical. Still, the Slow
system shows a much higher overhead for the virtual data object,
which could be attributed to a higher number of round trips between
R and MonetDB.

5. RELATED WORK
In [4], a method of embedding a R environment inside row-oriented
relational database PostgreSQL is presented. Interestingly, they
already note the potential issue that arises from applying R’s column-
based operations to row-based data in the database. In this approach,
calls to R code have to be defined as user-defined-functions in the
database. This is far from being transparent to the user.

Another embedding method is presented in [1]. They present a
method of embedding R into the MySQL database system. However,
in addition to that, a CORBA interconnect is used to connect the
embedded R environment with the local R environment on the
user’s workstation. This also allows distributed computations, as
the interconnect can be use to attach more than one remote database.
Through modifying R itself (in particular the interpreter for its
internal programming language), they also achieve transparency
of computations and data access. However, this method is rather
intrusive and suffers from similar issues as the previous one due to
the row-based nature of the underlying database.

The most recent and most related approach to the one presented here
is RIOTDB [13]. Here a virtual proxy object is also used to allow
the user to work with data from a relational database (MySQL) from
within R. Each virtual object (there referred to as “strawman”) is
mapped to a database table or view. Operations such as additions
create an additional view. Unfortunately, this approach requires a
modification to the R core, rendering it less practical.

6. CONCLUSION AND OUTLOOK
In this paper, we have described our vision and present our solution
for a non-disruptive, transparent and compatible way to integrate
the R programming environment and the relational column-oriented
database system MonetDB. We have argued that a non-intrusive and
compatible method to access data in relational databases from within
the R environment is very beneficial. We have constructed such a
method with the MonetDB-backed virtual data object. From our
experiments with the rather large ACS dataset, it has become clear
that the performance penalties when compared to hand-written SQL
queries can be justified by the increased simplicity of usage. We will
continue to expand the capabilities of the virtual data object towards
maximal compatibility with existing R packages, without compro-
mising compatibility of our approach with R itself. Modifying the
core of this environment is prohibitive in most environments.

For our future work, we would like to consider four main research
directions: First, as mentioned, is extending the virtual data object.
Second, increasing performance by either providing a R-supporting
front-end to MonetDB or translating directly in the internal query
execution language. Third, further explore the possibilities of em-
bedding an R execution environment inside a relational database as
pioneered in previous work [1, 4]. Fourth, we also would like to
embed a MonetDB database kernel into the R environment, again
without compromising compatibility. A database kernel in this envi-
ronment promises zero-copy operations, but more importantly an
even smoother user experience, who currently still has to manually
install and run MonetDB on her computer.

The described MonetDB–R connector including the virtual data ob-
ject monet.frame is available on CRAN today [7] and is already
in use by the statistics community. For example, the package has
been used to analyze the Medicare Claims Public Use Files (BSA
PUFs) containing 97 Million records. We invite all those interested
to try this powerful combination of the best of both worlds on their
own datasets and push the envelope on what is practical in data
analysis.
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