
Type Inference for Linear Algebra with Units of

Measurement

P.R. Griffioen

March 5, 2013

Abstract

Refining types of numerical data with units of measurement has the potential
to increase safety of programming languages but is restricted to homogeneous
units when checked statically with parametric polymorphism. We lift units to
vectors and show how type inference of linear algebra expressions can statically
determine safety for data with heterogeneous units. The typing is based on
the dyadic product of units that is found in linear transformations and the
corresponding vector spaces. Since it is a refinement of Kennedy’s types for
units we automatically obtain a unification algorithm, which gives principal
types for linear algebra. The extension of unit-unification to numerical data with
heterogeneous units makes the safety of statically checked numerical expressions
available to a significantly larger set of use-cases.

Contents

1 Introduction 2

2 An Experimental Unit-based Matrix Language 6

2.1 Bill of Material Case . 8

3 Units and Types 12

3.1 Preliminaries . 13
3.2 Units of Measurement . 13
3.3 Types and Unification . 14

4 Units in Matrices 16

4.1 Preliminaries . 16
4.2 Matrices with Units . 17
4.3 Dimensional Inverse and the Structure of Units 18
4.4 Types for Linear Algebra . 18
4.5 Multi-linear algebra . 19

5 Typed Linear Algebra 21

5.1 Language . 21
5.2 Surface Syntax . 22
5.3 Type Inference . 23
5.4 Projections and Conversions . 24
5.5 Runtime support . 25

6 Examples 26

6.1 Commodities Case . 26

7 Conclusion 28

1

Chapter 1

Introduction

Correct computation with units of measurement can be statically guaranteed
with parametric polymorphism, as was demonstrated by Andrew Kennedy in
[Ken94, Ken96]. A polymorphic type like [a] denotes the real numbers with
unit a. Examples of typed numbers are the following declarations of quantities
mass and acceleration

mass :: [kg];

acceleration :: [m/s^2];

Inhabitants of type [kg] are real number with unit kilogram. This unit is one of
the seven base units of the International Standard of Units [dPeM]. Other units
can be derived from the base units by algebraic expressions. Type [m/s^2] is
for example derived from base units m (metre) and s (second).

Amazingly, unit types have a most general unifier. The type system infers
a principal type for any numerical expression if and only if the expression is
unit correct. To start, types are assigned to primitives like the usual sum and
product functions:

+ :: forall a: [a] x [a] -> [a]

* :: forall a,b: [a] x [b] -> [a*b]

The first rule expresses that only numbers with the same unit can be summed.
The second rule states that the unit of a product is the product of the arguments’
units. The rules enable the correct type to be inferred, for example for the
definition of force as the product of mass and acceleration. User input is
indicated by prompt > and the system responds with the inferred type:

> define force = mass * acceleration

force :: [kg*m/s^2];

Standard Damas-Milner type inference [DM82, Pie02] is syntactical and does
not allow such a semantic expression in types. This ability to semantically infer
the proper units provides extremely powerful support for numerical expressions.

However, a shortcoming of polymorphic types is that they cannot express
types for data with heterogeneous units. Consider the recipe for apple pie
from Figure 1.1. It is a miniature example of the “explosion” and “netting”
problem in requirements planning from operations research [Elm63]. Such a

2

Product Product BoM

butter pastry 360.00 g/kg

flour pastry 550.00 g/kg

pastry apple pie 0.40 kg

apples apple pie 700.00 g

sugar apple pie 225.00 g

butter apple pie 115.00 g

apple pie piece of pie 0.12

Figure 1.1: The bill of material from a recipe for apple pie. Each entry is the
amount of a product going directly into one unit of a containing product. The
heterogeneous units are problematic for a parametric polymorphic type, which
is homogeneous by nature.

bill of material is a numerical relation between products that is conveniently
represented by a matrix. The units in the entries are an essential part of a bill
of material but problematic for polymorphic types. It is impossible to type all
matrix entries statically when the data is dynamic and unknown at compile time,
and any polymorphic matrix type Matrix([a]) is homogeneous and therefore
insufficient to express the units.

Using named vectors of units we exploit the mathematical structure of units
in a matrix to obtain a matrix type that statically guarantees unit-correct matrix
operations. We extend Milner’s polymorphic type with a dedicated syntax for
matrices with units. In this scheme the bill of material could be typed as follows.

BoM :: [Product!bom_unit per Product!bom_unit]

The brackets indicate the matrix type. The expression before the ‘per’ spec-
ifies the matrix’ row dimension and the part after the ‘per’ the column di-
mension (see Figure 1.3 for some examples). The bom unit part in the term
Product!bom unit names a vector of units that is indexed by elements from
index set Product. The exclamation mark is a token that separates the index
set name and the name of the unit vector and thus provides a simple naming
scheme. In this case the vector of units is column bom unit from Figure 1.2.
In this column product butter for example has unit gram and product pastry
has unit kg, and therefore the first entry in Figure 1.1 has unit g/kg. The ad-
vantage of this scheme is that using names like bom unit we can reason about
the units in a matrix without knowing the individual units in each entry. The
extra indirection from the vector names solves the problem with heterogeneous
units, and because units in matrices are always a dyadic (outer) product of two
vectors [Har, Har95], the type is sufficient to type any matrix.

Thanks to the semantic nature of units the matrix type allows typing of
matrix operations. The most general matrix type in our syntax is

forall a,P,u,Q,v: [a * P!u per Q!v]

For any matrix A of this type it means that matrix entry Aij is a number with
units a·(P!u)i/(Q!v)j . The singleton factor a is not only convenient to factor out
common units, but also allows typing of singleton numbers with a 1× 1 matrix.
Variables P and Q refer to index sets and can be substituted with identifiers

3

Product trade unit bom unit pur price sal price sales

butter pound gram 2.00 $/lb - -

flour kilogram gram 2.50 $/kg - -

apples kilogram gram 0.90 $/kg 5.00 $/kg 2.00 kg

sugar kilogram gram 0.80 $/kg - -

pastry kilogram kilogram - - -

apple pie - - - 20.00 $ 25.00

piece of pie - - - 2.50 $ 100.00

Figure 1.2: A table for index set Product containing unit columns trade unit

and bom unit and various columns with numerical quantities. Column sales is
the sales amount and has units trade unit. Columns pur price and sal price

have units dollar per trade unit. Unit column bom unit is used in the bill of
material from Figure 1.1.

like Product above. Variables u and v refer to vectors of units for P and Q

as explained above. They are semantic, as is a, meaning unit expressions are
allowed. For example when all entries are squared in the above type the result
will be

forall a,P,u,Q,v: [a^2 * P!u^2 per Q!v^2]

This shows that operations on the units in the matrix type are allowed, just as
Kennedy’s polymorphic number type allows operations at the type level. We
present types for the basic linear algebra operators with this syntax.

The key to the expressiveness of the matrix type is that an index set unit
combination like Product!bom unit more or less names a vector space. Practi-
cally, the index sets map nicely on database tables or other relational settings,
and the units provide much added value at run-time, but the most powerful
feature is the static safety provided by type inference. To illustrate this point
consider how the type inference algorithm computes a type for the commutator
from Lie algebras. The dot in the definition denotes matrix multiplication.

> define commutator(x,y) = x.y - y.x

commutator :: forall u2, u1, E0, u0:

[u1 * E0!u0 per E0!u0] x

[u2 * E0!u0 per E0!u0]

-> [u1*u2 * E0!u0 per E0!u0]

In all three matrices the index sets are E0 in the row and column direction
and the units are E0!u0 in the row and column direction. This shows we must
be working with square matrices. The example also illustrates dimensional
parallelism, which will be defined in Chapter 4. We expect the operator to be
closed with respect to the vector spaces, but the inferred type is more general
than intended. Not only should the matrices be square, but also should u1

= u2 = 1 hold. The inferred type is more general and correctly also includes
the dimensionally parallel cases. The example shows that the type provides
much interesting feedback without actual concrete index sets and units. In our
experience, more than signaling errors the type system turns out to be extremely

4

[a] scalar

[I!] dimensionless column vector

[I!u] dimensioned column vector

[a·I!] homogeneous dimensioned column vector

[1 per J!v] dimensioned row vector

[I! per J!] dimensionless rectangular matrix

[I!u per I!v] square matrix

[I!u per I!u] even more square matrix

Figure 1.3: Examples of matrix types. The brackets indicate the matrix type.
The expression before the ‘per’ specifies the matrix’ row dimension and the part
after the ‘per’ the column dimension. The exclamation mark is a token that
separates an index set name and the name of and unit vector. Scalars are 1×1
matrices and vectors are n×1 or 1×n matrices.

helpful in providing insight into transformations between vector spaces and other
vector manipulations.

We generalize the type to the multi-linear case via matricized tensors. Uni-
fication for the matrix type is a direct decomposition to unification of its parts.
The two index set names can be directly unified with standard unification,
whereas the three unit parts can be unified with Kennedy’s unit unification.
With tensors there are not always exactly five parts because the number of in-
dices varies. This difficulty is solved by matricization of tensors. Multiple indices
are replaced by two compound matrix indices, which makes matrix unification
applicable again.

The research results documented in this report are i) an extension of Mil-
ner’s parametric polymorphic type system with a matrix type based on units
of measurement that has principal types, and ii) a generalization of the matrix
type to tensors for the multi-linear case, and iii) types for basic primitive lin-
ear algebra operators, and iv) an experimental language design as a proof of
concept. The small experimental matrix language is presented in chapter 2 to
further introduce the concepts of the matrix type. In the form of a user inter-
action the bill of material case is explored. After this extended introduction the
work of Kennedy and other related literature is discussed in chapter 3. This
chapter gives background information on units of measurement and its use in a
type system. The underlying mathematics is very basic and briefly explained.
chapter 4 reviews how units are lifted to vectors and how this refines vector
spaces. We discuss all work from [Har, Har95] that is relevant for out matrix
type and explain the generalization to the multi-linear case. In chapter 5 the
reviewed material is combined into a polymorphic type system based on Milner
and Damas. We show that the statically typed operators for vectors and matri-
ces supports principal types. We conclude with some example applications and
a conclusion.

5

Chapter 2

An Experimental

Unit-based Matrix

Language

As an experiment we designed and implemented a matrix language with the
matrix type described in the introduction. The language was applied to various
use-cases to test the feasibility of language support for numbers with hetero-
geneous units. Specific questions from the language perspective concerned the
capabilities of the type system. Could the linear algebra operators be given use-
ful types? And could the language handle numerical data with heterogeneous
units like the bill of material? Is the type useful for library functions where the
type typically has type variables?

The language consists of some syntactic sugar on top of the lambda calculus
and has linear algebra operators as primitive functions. Matrices are the only
values and types of expressions are inferred.

The most distinguishing features of the language are the indexing of matrices
by any index set rather than by the customary natural numbers and the way
this is incorporated into the matrix type. This choice is not only made to have a
practical naming scheme but also to prevent errors with matrix sizes. The role
of index set names like P and Q is the same as the roles of the numbers m and n
in the R

m×n notation from mathematics. This notation is a form of typing and
prevents errors with matrix sizes. Matrix multiplication is for example typed by
R

m×k×R
k×n → R

m×n. With our matrix type we assume two matrices have the
same size if and only if they have the same index set name. The matrix type
further extends this with units and prevents invalid operations on them, but
errors with sizes are prevented by the index set names and they are therefore
crucial for the matrix type.

The matrix type allows the expression of size constraints and units con-
straints. A square matrix with different units in the row and column dimen-
sion is written as [P!u per P!v] and a square matrix with equal units as
[P!u per P!u]. A dimension-less matrix is [P per Q]. Special index set name
1 indicates the absence of a row or column dimension and is always dimension-
less. A column vector is written as [P!u per 1], a row vector as [1 per P!u]

and a singleton matrix as [1 per 1]. This shows how index set names allow

6

dot :: forall a,I,u,K,v,b,J,w:

[a·I!u per K!v] x [b·K!v per J!w] -> [a·b·I!u per J!w]

sum :: forall a,I,u,J,v:

[a·I!u per J!v] x [a·I!u per J!v] -> [a·I!u per J!v]

mult :: forall a,I,u,J,v,b,w,z:

[a·I!u per J!v] x [b·I!w per J!z] -> [a·b·I!u·I!w per J!z·J!v]

scale :: forall a,b,I,u,J,v: [a] x [b·I!u per J!v] -> [a·b·I!u per J!v]

power :: forall I,u: [I!u per I!u] x [1] -> [I!u per I!u]

expt :: forall I,J: [I! per J!] x [1] -> [I! per J!]

negative :: forall a,I,u,J,v: [a·I!u per J!v] -> [a·I!u per J!v]

reciprocal :: forall a,I,u,J,v: [a·I!u per J!v] -> [1/I!u per a/J!v]

transpose :: forall a,I,u,J,v: [a·I!u per J!v] -> [a/J!v per 1/I!u]

dim_inv :: forall a,I,u,J,v: [a·I!u per J!v] -> [J!v per a·I!u]

left_ident :: forall a,P,u,Q,v: [a·P!u per Q!v] -> [P!u per P!u]

right_ident :: forall a,P,u,Q,v: [a·P!u per Q!v] -> [Q!v per Q!v]

solve :: forall a,b,P,u,Q,v,R,w:

[a·P!u per Q!v] x [b·P!u per R!w] -> [b·Q!v per a·R!w]

Figure 2.1: Types for basic primitive linear algebra functions. The first three are
used for the implementation of the binary operators ‘.’, ‘+’, ‘*’. Function mult

is elementwise matrix multiplication. Different use cases would require different
additions to this list of primitives. Functions left ident, right ident and
solve are used in the bill of material case from section 2.1. The details of the
matrix type syntax is given in section 5.2

7

expression of constraints in the row and column dimensions. See Figure 1.3 for
some examples.

Additionally the matrix type has a scalar unit factor for singletons and
homogeneous matrices. The basic matrix type from the previous paragraph
only allows unit-less singletons. To make it an extension of single numbers it
requires a scalar unit factor. Say a is a single unit then the general form of the
matrix type is [a * P!u per Q!v]. The scalar factor also allows homogeneous
vectors and matrices by multiplying a unit-less basic matrix type with a scalar
unit. For example a homogeneous column vector with elements from index set
P each having unit a is [a * P per 1]. As a special case we write [a] for
singleton [a * 1 per 1].

An overview of primitive functions is shown in Figure 2.1. A justification
for these types is given in section 4.4 when units in matrices are discussed. The
arithmetic operators +, -, * and / desugar into element-wise sum, multiply,
negative and reciprocal. Function product is the matrix product and written
as infix dot. Function scale scales a matrix by a number. Function transpose

is written as postfix operator ^T and function reciprocal is written as postfix
operator ^R. Function solve computes a solution to A ·x = B. Its type follows
from product’s type. The identity functions gives the left and right identity of
a given matrix. Their types also follow from product’s type.

Examples are shown in the form of a user interaction. Input is indicated by
prompt >. For definitions the system responds with a type assignment using
the :: syntax. For expressions the response is a value. Type declarations for
used quantities and functions will be given in the text when needed.

2.1 Bill of Material Case

The bill of material case was chosen because it is a challenging real-world prob-
lem involving units, with a well-known linear algebra solution. It highlights
some specific issues from linear algebra that we hoped to address.

1. The explosion of the bill of material requires a matrix inverse. Will the
correct types be inferred without annotations?

2. Volumes and prices are dual notions. Can this distinction be expressed
and will units be handled correctly?

3. The data in Figure 1.2 is in trade units while the bill of material is in
bom units. Can units errors be prevented?

The type system handled these and other issues satisfactory. The remainder
of this chapter explores the bill of material case and demonstrates important
language features.

We assume that the following types are declared for the quantities from
Figure 1.2.

BoM :: [Product!bom_unit per Product!bom_unit]

sales :: [Product!trade_unit]

pur_price :: [usd per Product!trade_unit]

sal_price :: [usd per Product!trade_unit]

8

For example, the unit of pur price is read as the amount of dollar per product
trade unit. It is easily verified that the numerical data in the table satisfies
these types.

Product prices and volume are dual notions that can be multiplied to give
total sales. Vector sal price is a row vector with Product!trade unit in the
column direction. Vector sales is not a row vector, but a column vector with
Product!trade unit in the row direction. The fact that prices are row vectors
and that volume is a column vectors shows that prices and volumes are dual
notions. Their types allow them to be multiplied.

> define revenue = sal_price . sales

revenue :: [dollar]

> revenue

760 $

If the details are required instead of the total then an element-wise product
can be used but it requires some care with the dimensions. An element-wise
product between the prices and the sales yields the sales per product, but be-
cause of the duality this requires a transpose on the volume. The type system
will complain if the transpose is forgotten.

> define revenue_details = sal_price * sales

Error while unifying matrices

[u107 per Product!u103]

and

[Product!trade_unit]

index sets do not match: 1 and Product

The error message correctly complains that an attempt is made to multiply a
row vector with a column vector. With the transpose we get the expected result.

> define revenue_details = sal_price * sales^T

revenue_details :: [dollar per Product]

> revenue_details

Product | Value

---------------+------------

Apples | 10.00 $

Apple Pie | 500.00 $

Piece of Pie | 250.00 $

This time expression gives the correct output. A sketch of its type derivation
in abstract form is

v: [a per P!u]

w: [P!u]

w^T: [1 per P!u^-1]

v * w^T: [a per P]

To compute the expenses we have to overcome the difference of units in the
bill of material and the trade units in the prices. We assume that conversion
matrix conv exists with the following type declaration.

9

conv :: Product!trade_unit per Product!bom_unit

In this case the conversion is well defined but this needs not always be the case.
The existence of the conversion between bom units and trade units depends on
run-time data and will fail if columns bom unit and trade unit from Figure 1.2
contain incompatible units. In general the existence of conversion can never be
guaranteed if it depends on run-time data. For that reason we didn’t add a
construction for conversion to the language expressions but instead introduced
a special declaration. Conversions are the only language construction that may
fail at run-time.

Converting the bill of material requires a multiplication from the left and
from the right. It is convenient to create a function to do that.

> define convert(x) = conv . x . conv^R^T

convert :: forall u:

[u * Product!bom_unit per Product!bom_unit]

-> [u * Product!trade_unit per Product!trade_unit]

The combination ^R^T of the reciprocal and the transpose is called the dimen-
sional inverse. It has a prominent role in dimensioned matrices as we shall
see in section 4.3. The function’s type shows the correct inferred type. Unit
variable u indicates that any type scaled by a single unit is also an acceptable
argument. This correctly shows that function convert is slightly more general
than a conversion from bom unit to trade unit.

With the converted matrix the bill of material can be “exploded”. An elegant
solution is the use of Leontief matrices A + A2 + A3 + . . . [Elm63, Str88].
This series computes what could be called a numerical transitive closure of the
numerical relation in the bill of material. The series can be computed with the
inverse of (I − A) so we need the inverse function in our language. Function
inverse can be defined using the solve and left ident primitives.

> define inverse(x) = solve(x, left_ident(x))

inverse :: forall a,P,u,Q,v:

[a * P!u per Q!v] -> [a^-1 * Q!v per P!u]

> define leontief(x) =

let I = left_ident(x) in

inverse(I - x) - I

leontief :: forall P,u:

[P!u per P!u] -> [P!u per P!u]

Function leontief computes the needed series. The series are only defined for
square matrices and the system infers that correctly. Together with the convert
function it allows the netting problem to be solved.

> eBoM = leontief(convert(BoM))

eBoM :: [Product!trade_unit per Product!trade_unit]

> eBoM

Product | Product | Value

---------------+---------------+------------

10

Sugar | Piece of pie | 0.02700 kg

Sugar | Apple pie | 0.22500 kg

Apple pie | Piece of pie | 0.12000

Apples | Piece of pie | 0.00060 kg

Apples | Apple pie | 0.00500 kg

Pastry | Piece of pie | 0.04800 kg

Pastry | Apple pie | 0.40000 kg

Flour | Piece of pie | 0.02640 kg

Flour | Apple pie | 0.22000 kg

Flour | Pastry | 0.55000

Butter | Piece of pie | 0.06852 lb

Butter | Apple pie | 0.57100 lb

Butter | Pastry | 0.79366 lb/kg

The result is the complete transitive part-of relation in trade units.
Multiplying the exploded BoM with the sales volume gives the input volume

of the ingredients. Both are in trade units and can safely be multiplied. From
the types can also be seen that the sales volume has to be multiplied from the
right.

> purchases = eBoM . sales

purchases :: [Product!trade_unit]

Dually the exploded bom can be multiplied from the left to aggregate the
purchase prices. This again shows that volumes and prices are dual notions.

> cost = pur_price . eBoM

cost :: [dollar per Product!trade_unit]

Multiplying prices from the right would give a type error.
Finally we can compute the complete expenses on ingredients in two different

ways. Using the input and the purchase prices or the sales and the product cost.

> pur_price . purchases

243.21 $

> cost . sales

243.21 $

11

Chapter 3

Units and Types

Units of measurement have a long history in physics that leads back via Maxwel
to Fourier and even further. Birkhof is a classic reference for a mathematical
treatment of units [Bir60]. According to him Fourier was the first to note that
there are certain fundamental units of which every physical quantity has certain
“dimensions”, to be written as exponents [Fou22].

An international standard of units has been defined, called Le Système in-
ternational d’unités [dPeM], and is maintained by Le Bureau International des
Poids et Mesures. Internationally this is known as The International System of
Units, or SI. The document describes all aspects of the SI. For precise definitions
the text refers to the International vocabulary of metrology [BIP]. We follow
the international standard of units (SI) for the core concepts regarding systems
of units and explain them briefly in the next section.

Andrew Kennedy created parametric polymorphic types with units and
demonstrated how unit unification computes principal types. His PhD thesis
is the most rigorous work on units in programming languages [Ken96] and re-
cently his ideas were added to the F# programming language. A good overview
of his work and a nice hands-on introduction to units in F# is in [Ken09]. We’ll
summarize his main results and describe his unification algorithm.

Extending language syntax or typing rules with units of measurement is
a common approach to unit safety for software. Recent related work is the
MetaGen extension of Java that statically checks units of measure [ACL04].
Dimensions and units can be formulated in a nominally typed object-oriented
language through the use of statically typed meta-classes. This enables both
parametric and inheritance polymorphism for dimensions and units. MetaGen
is an extension of Java’s MixGen with a meta-class that provides the algebraic
properties necessary to model dimensions and units accurately.

Another recent development is the Osprey tool [SJ06]. This tool extends the
C programming language with type annotations that can be statically checked
for errors in units of measurement. The standard type checking algorithms
are extended with techniques like constraint solving and Gaussian Elimination
to provide the required algebraic properties. The prototype was extensively
validated on mature code bases of significant size and discovered many errors.

As far as we know there is no language that support type inference for
matrices or similar structures. MetaGen and Osprey do not provide explicit
support for data with heterogeneous units of measurement, or other support for

12

matrices or linear algebra in general.

3.1 Preliminaries

A group is a triple (S, ∗, e) with S a set, ∗ an associative binary operator on S,
and e an identity element such that e ∗ a = a ∗ e = a and for each a ∈ S some
a′ ∈ S exists satisfying a ∗ a′ = a′ ∗ a = e. This inverse a′ is unique so it is a
well-defined operation. A group is abelian or commutative when the operator
commutes.

A subset of the elements of an abelian group forms a basis if any element
from the group can be uniquely written as a linear combination of the basis’
elements. An abelian group with a basis is called free.

A field (S,+, 0, ·, 1) is the combination of an abelian group (S,+, 0) and an
abelian group (S, ·, 1) satisfying a · (b + c) = (a · b) + (a · c). Convention is to
write the additive inverse as −a and the multiplicative inverse as a−1.

3.2 Units of Measurement

A quantity is a property of a phenomenon, body or substance, where the prop-
erty has a unique magnitude that can be expressed as a number and a reference.
The value of a quantity is the product of a number and a unit. The unit is a
particular example of the quantity concerned. A prefix is a scaling factor of a
unit. A unit has at most one prefix. The prefix together with the unit forms a
new unit with its own identity.

Quantities are organized in a system of dimensions. As a matter of conve-
nience some quantities are called base quantities and all other quantities are
derived from them. Typical base quantities are length, mass, time, etc. Each
base quantity is its own dimension, and each derived quantity’s dimension fol-
lows from the derivation [dPeM, BIP].

Kennedy [Ken96] provides syntax to derive new dimensions from base di-
mensions and new units from base and units. Both cases are very similar so
only units are discussed. Units are derived from given base units like metre,
gram, second, etc. Let’s write µ for units. The syntax is

µ ::= u unit variables

| U base units

| R+ positive numbers

| µµ product

| µ−1 inverse

A system of units is a set of base units and derived units together with their
prefixes, defined in accordance with given rules, for a given system of quantities.

Mathematically the units of measurement are a free abelian group. We will
use symbol U to denote this group.

13

UnifyUnits(µ0, µ1) = UnitUnify(µ0 · µ
−1
1)

UnitUnify(µ) =

let nf(µ) = ux1

1 · · ·uxm

m · Uy1

1 · · · Uyn

n

where |x1| ≤ · · · ≤ |xm|

in

if m = 0 and n 6= 0 then fail

else if m = 1 and x1|yi for all i then

{u1 7→ U
−y1/x1

1 · · · U−yn/x1

n }

else if m = 1 otherwise then fail

else S ◦ U where

U = {u1 7→ u1 · u
−⌊x2/x1⌋
2 · · ·u−⌊xm/x1⌋

m ·

· U
−⌊y1/x1⌋
1 · · · U−⌊yn/x1⌋

n }

S = UnitUnify(U(µ))

Figure 3.1: Andrew Kennedy’s unification algorithm for units. It is based on
Knuth’s adaptation of Euclid’s greatest common divisor algorithm. For two
elements from the free abelian group of units it computes the most general
unifier.

3.3 Types and Unification

Let R be the field of real numbers and let U be the abelian group of units.
Maxwell’s idea to treat a quantity as a product of a number [Roc98] and a unit
means a quantity is from product space R×U. Such a combination of a number
and a unit is called a dimensioned scalar. A pairs like (r, u) is used to denote
a dimensioned scalar with magnitude r ∈ R and unit u ∈ U. When u = 1 we
call the quantity dimension-less. Lifting the operators from R and U defines the
common arithmetic operators on this combined space R×U. Although addition
is absent for units, equal units can be added via the addition of R. Kennedy
gave polymorphic types for the common arithmetic operators. The ∀u syntax
introduces quantified units variable u. This syntax is also used in this paper
and defined later on.

+ : ∀u.u× u → u addition

∗ : ∀u.∀v.u× v → uv multiplication

− : ∀u.u → u negation

()−1 : ∀u.u → u−1 reciprocal

These type rules accurately capture compatible operations with units.
Units have most general unifier with a unification algorithm because it is

a free abelian group. Algebraically a free abelian group is a Z-module, which
means it is isomorphic with the functions to Z. For the free multiplicative
abelian group of units this means that any units can be written as a power

14

product Πi : Uxi

i where Ui is one of the base units and xi ∈ Z is its power.
The powers xi represent a map U → Z that completely describes the unit. The
property that any element of a free abelian group has a unique representation
in the base elements is a crucial condition for unit unification.

Unification is based on normal form nf(µ), which is a power product that also
takes unit variables into account. Let µ be a unit with unit variables ui and base
units Ui. The normal form nf(µ) is the power product ux1

1 · · ·uxm

m · Uy1

1 · · · Uyn

n

with xi, yi ∈ Z and |x1| ≤ · · · ≤ |xm|. Kennedy’s unification algorithm uses the
normal in the computation of the most general unifier for two units. The algo-
rithm, shown in Figure 3.1, is based on Knuth’s adaptation of Euclid’s greatest
common divisor algorithm. This sound and complete semantic unification algo-
rithm computes the most general unifier given two units, or it fails if no such
unifier exists.

The development of the matrix type depends on the property that the base
units in U can have additional structure as long as the group remains free. Base
elements can be compound structures, for example the combination of a prefix
and a base-unit, but crucial is that variables only identify such a compound,
not an operator or any substructure in the compound. For example a kilogram
is an entity on its own and for the unification algorithm it doesn’t matter that
it is a pair, as long as equality is defined. For the matrix type the set of base
units U will be extended with the names of dimension vectors and with tuples
〈x0, . . . , xn〉 with each xi the name of a dimension vector. These changes have
no effect on the unification algorithm. There is a still a unique representation
in the base elements, the group remains free and the unification algorithm can
be applied.

15

Chapter 4

Units in Matrices

This chapter describes the structure units of measurement in matrices. It in-
volves a generalization from dimensioned scalars from R × U to dimensioned
matrices from (R×U)m×n. A dimensioned vector coincides with a (R×U)n×1

matrix and a dimensioned co-vector with (R × U)1×n. The principle that only
numbers with the same unit can be summed affects most matrix and vector
operations since it directly restricts linear combinations and the dot product.

All results are from [Har, Har95]. Just as in the discussion of unit unification
we summarize the material from the unit perspective instead of the dimension
perspective used by Hart. However, we follow Harts’ naming conventions and
treat dimension as synonymous for unit.

4.1 Preliminaries

Vectors are written in boldface, matrices are written in bold uppercase and
scalars in regular font.

A vector space over a field of scalars (F,+, 0, ·, 1) is an abelian group (V,+, 0)
extended with scalar multiplication · satisfying for all scalars a, b ∈ F and for
all vectors v,w ∈ V

a · (v +w) = a · v + a ·w distributivity over vector addition

(a+ b) · v = a · v + b · v distributivity over field addition

a · (b · v) = (a · b) · v compatibility of multiplication

1 · v = v identity of multiplication

Further we use the following products.

〈v,w〉 = vT ·w inner product

v ◦w = v ·wT outer product

(A⊗B)(ip+k)(jq+l) = Aij ·Bkl Kronecker product

The element-wise (or Hadamard) product is written asA∗B and the element-
wise reciprocal (not the inverse!) as A−1.

Multi-linear algebra generalizes a matrix to a tensor. A matrix has exactly
one co-variant and one contra-variant index, whereas a tensor can have any num-
ber of co-variant and contra-variant indices. Convention is to write co-variant

16

indices in an super-script position and contra-variant in sub-script position like
X i1...ik

j1...jl
. A tensor with one upper and one lower index like X j

i is a matrix, X i is
a column vector and Xj a row vector.

4.2 Matrices with Units

A dimensioned vector is an n-tuple in which each entry is a dimensioned scalar.
Any dimensioned vector belongs to a complete dimensioned vector space defined
as the set of all vectors with the same units in the corresponding components.
A subspace of a vector space is a subset that is closed under addition and under
scalar product by a dimension-less scalar. A dimensioned vector space is a
subspace of a complete dimensioned vector space.

For our purpose it is convenient to separate the magnitudes from the units
and switch from space (R×U)m×n to the isomorphic space Rm×n ×U

m×n. Let
(R,U) be a dimensioned matrix with magnitudes R and units U. The units are
called the dimensional form of the matrix and can be extracted with function
dim.

Definition 1. For any dimensioned matrix A = (R,U)

dim(A) = U dimensional form

Using the dimensional form Hart defines two natural equivalence relations
on dimensional matrices. Since we use units instead of dimensions these equiv-
alences are stricter in our case, but from a technical point of view this makes
no difference.

Definition 2. For all matrices A and B

A ∼ B ⇔ dim(A) = dim(B) dimensional similarity

Definition 3. For all matrices A and B

A ≈ B ⇔ ∃c : A ∼ cB dimensional parallelism

The equivalence relations are used to define the vector space to which a given
vector belongs.

Definition 4. Let v be a dimensioned vector. The complete dimensioned vector
space of type v is the set of all w such that v ∼ w.

Definition 5. A dimensioned vector space of type v is a subset of a complete
dimensioned vector space which is closed under addition and scalar multiplica-
tion by dimensionless scalars. A dimensioned vector space of type v is called a
v-space.

Such v-spaces correspond to the index set unit combinations from the matrix
type. An index set unit combination P!u in the matrix type names a complete
dimensioned vector space. We will call this the P!u-space

17

4.3 Dimensional Inverse and the Structure of

Units

When a matrix is regarded simply as a rectangular data structure it can contain
any units, but when it is restricted to valid linear transformations then the units
are restricted as well. The intuition behind the matrix type [P!u per P!v] is
that the matrix transforms vectors from the P!v-space to vectors from the P!u-
space. Before this can be made precise we need the concept of the dimensional
inverse. This concept is central to the theory and explains how to read the per
in the matrix type.

Definition 6. The dimensional inverse A∼ of a matrix is defined by

A∼
ij ·Aji ∼ 1

The intuition is that it combines a reciprocal and a transpose. We can also
write the dimensional inverse as (A−1)T or (AT)−1.

Hart’s main results about the units in valid linear transformations use the
dimensional inverse. A matrix is called multipliable when the structure of its
units allow unit-correct linear transformations. The main results are:

Theorem 1. For any matrix A

A is multipliable ⇔ ∃v,w : A ∼ v ·w∼

Theorem 2. Any matrix of a linear transformation from a v-space to aw-space
has the form w ·v∼

The form of the units in the last theorem is used in the matrix type. The
form v · w∼ is written as v per w. Reformulated with this per notation the
theorem states that any linear transformation from a Q!v-space to a P!u-space
has the form [P!u per Q!v].

4.4 Types for Linear Algebra

With the theory from the previous sections the types from Figure 2.1 can be
justified.

The element-wise sum simply require that the units of its arguments and the
units of its result are the all same. The same applies to function negative.
Functions multiply and reciprocal are base on the following property:

Property 1. For all dimension vectors a, b, c and d:

(a · b∼) ∗ (c · d∼) = (a ∗ c) · (b ∗ d)∼

The type for the matrix product follows from the following property

Property 2. For all matrices A ∼ a · b∼ and B ∼ c · d∼:

1. A ·B is defined iff b ≈ c

2. A ·B ∼ a · d∼ if it is defined

18

If matrices are viewed as linear transformation then this rule states that a
transformation from a d-space to a c-space followed by a transformation from a
b-space to an a-space requires that the intermediate space must agree and that
the result is a transformation from the d-space to the a-space.

The rule for the identity matrices follow directly from the previous property
since identity matrices are trivial linear transformations. The type for solve also
follows from the property. Function solve computes the solution to A · x = B.
The stated type follows from the rule for matrix products.

4.5 Multi-linear algebra

The type system works with matricized tensors for multi-dimensional cases. The
difficulty with tensors is handling its variadic indices. To solve this issue a tensor
is treated as a matrix with compound indices and projection matrices project
the contents for the various indices. The Kronecker product combines indices
and plays a central role in the matricized treatment of multiple dimensions.

The units in a tensor require a generalization of the binary dimensional
inverse to the n-ary case. In the previous section it was explained that the units
in a multipliable matrix are of the form v ·w∼. The matrix product does not
generalize well to tensors so we use identities v · w∼ = v · (w−1)T = v ◦w−1

to change to the dyadic product. This dyadic product is a matrix of rank 1
and higher rank matrices are sums of such dyadic products [Rom08]. Similarly
a tensor is a sum of rank 1 tensors. A matrix has units like v ◦w−1 while for
example a tensor with two co-variant and three contra-variant indices has units
like v ◦w ◦x−1 ◦y−1 ◦ z−1. Any tensor can always be organized so that the
reciprocals are grouped at the end. Thus the units in a tensor are a product
a any number of co-variant vectors “divided” by any number of contra-variant
vectors.

Using the Kronecker product the example tensor can be matricized into
(v⊗w) · (x⊗y⊗ z)∼. Here v⊗w and x⊗y⊗ z are dimension vectors and
the entire result is a matrix. This construction is expressed in the following
proposition.

Property 3. For all u ·v∼ and w · z∼

u ·v∼ ⊗w · z∼ = (u⊗w) ·(v ⊗ z)∼

Proof. (u ·v∼⊗w · z∼)(ip+k)(jq+l) = (u ·v∼)ij · (w · z∼)kl = ui ·v
−1
j ·wk ·z

−1
l =

(u⊗w)(ip+k) · (v ⊗ z)−1
(jq+l) = ((u⊗w) ·(v ⊗ z)∼)(ip+k)(jq+l)

The advantage of the matricized form is that difficult tensors are replaced by
manageable matrices. The type system from the next section supports multiple
dimensions but does not have operators for tensors neither does it allow type
variables in compound indices. Projection matrices on matricized tensors pro-
vide the language primitive needed to do tensor manipulations. This is sufficient
to guarantee the existence of a most general unifier.

The dyadic products of unit vectors from the previous paragraph are a free
abelian group for elementwise multiplication. Multiplication is lifted to binary
dyadic products like

(v ◦w)× (x ◦y) = (v × x) ◦(w × y)

19

and generalized to the n-ary case. Product 1 ◦ 1 ◦ . . . ◦ 1 is the unit, with each 1 of
appropriate size. Basis elements are products with ones everywhere except one
base unit vector. For example product x−1 ◦y3 ◦ z2 is written as (x ◦ 1 ◦ 1)−1 ×
(1 ◦y ◦ 1)3 × (1 ◦ 1 ◦ z)2. Product x ◦ 1 ◦ 1 is an example of a base element. Any
product can be uniquely written in such base elements, making the group free.

The set of all tensor bases is isomorphic to U×N. Pair (u,i) means a product
with u at the i-th position and 1s everywhere else. The base of U is extended
with U × N.

20

Chapter 5

Typed Linear Algebra

The basics of the type system follows Damas-Milner [DM82, Pie02]. First syntax
is provided for expressions and types. Milner’s polymorphic type is extended
with special syntax for matrices. Multi-linear types require some care to ensure
that the conditions for correct unit unification are satisfied. Next type inference
is defined for matrices. The extended type system yields principal types.

5.1 Language

The syntax for expressions e is exactly the same as Damas’ syntax. Lambda
abstraction and function application are the core primitives. As usual the let
binding will provide a mechanism to introduce type variables.

e ::= x variable

| λx.e abstraction

| e e application

| let x = e in e let binding

A type τ is a variable, a function, a pair, or a matrix. The special syntax
for matrices is a dedicated extension for the implementation of the matrix type.

τ ::= t type variable

| τ → τ function

| τ × τ pair/tuple

| Mat〈µ, γ, µ, γ, µ〉 matrix type

Here γ is a list of index set names or a variable.
The matrix type data structure captures the five elements from the most

general matrix type [a * P!u per Q!v]. This type maps to Mat〈a, P, u, Q, v〉.
The first argument is a scalar unit, the second and third an index set with units
for the row direction, and the fourth and the fifth an index set with units for the
column direction. The units are extended with bases as explained in Section 4.5.
The next section explains how the language’s syntax for matrix types maps to
this matrix type data structure.

21

5.2 Surface Syntax

The language’s surface syntax for matrix types is more convenient than the
internal representation from the previous paragraphs. In this syntax units can
be omitted in the dimensionless case and multiple indices for tensors can be
indicated by a comma separated list. A matrix type is [δ per δ] or [δ] where
the syntax for the matrix dimensions δ is as follows.

δ ::= 1 One

| µ scalar unit

| x!y unit vector name

| δN Power

| δ ∗ δ Product

| δ / δ Division

| δ, δ Kronecker product

Here x!y is a pair of identifiers. These can also be type variables.
The surface syntax is mapped to the matrix type from the previous section.

For example the following variation on a matrix type from one of the later
examples in section 6.1, with two co-variant and three contra-variant indices

[Comm!unit^2, Year per a*Year, b*Region, c/Comm!unit]

maps to the following internal representation

Mat〈a−1b−1c−1, 〈Comm, Year〉, 〈unit,0〉2, 〈Year,Region,Comm〉, 〈unit,2〉−1〉

In this representation the five indices are reduced to two compound indices,
each with a compound unit. In general let φ(x) mean the matrix type from
expression x.

φ(1) = Mat〈1, 〈〉, 1, 〈〉, 1〉

φ(µ) = Mat〈µ, 〈〉, 1, 〈〉, 1〉

φ(g!) = Mat〈1, 〈g〉, 1, 〈〉, 1〉

φ(g!h) = Mat〈1, 〈g〉, 〈h, 0〉, 〈〉, 1〉

φ(xn) = φ(x)n

φ(x ∗ y) = φ(x) ∗ φ(y)

φ(x, y) = φ(x)⊗ φ(y)

φ(x per y) = φ(x) per φ(y)

where the appropriate operations on matrix types in the last four cases are
assumed. The ‘per’ combines the vectors into a matrix. Note that its arguments
are always scalars or vectors. The fist four cases only create scalars and vectors
because the last arguments are always 〈〉 and 1, and the operators besides ‘per’
don’t create matrices.

22

UnifyMatrices(τ, τ ′) = S5 ◦ S4 ◦ S3 ◦ S2 ◦ S1

with

τ = Mat〈a, P, u,Q, v〉

τ ′ = Mat〈a′, P ′, u′, Q′, v′〉

and

S1 = UnifyUnits(a, a′)

S2 = Unify(P, P ′)

S3 = Unify(S2(Q), S2(Q
′))

S4 = UnifyUnits(u, u′)

S5 = UnifyUnits(S4(v), S4(v
′))

Figure 5.1: Unification for matrices. The unit parts are unified by Kennedy’s
semantic UnifyUnits algorithm, the index set parts by standard syntactic unifi-
cation. The result is the composition of the partial results.

5.3 Type Inference

A type schema introduces quantified variables. Index set variables are added to
the units variables and the normal type variables.

σ ::= τ type

| ∀t.σ type quantification

| ∀u.σ unit quantification

| ∀p.σ index set quantification

A context Γ contains type statements of the form x : σ. Type statement
Γ ⊢ e : τ means expression e has type τ given the types in context Γ. The
following derivation rules are defined.

x :σ ∈ Γ

Γ ⊢ x :σ
(Var)

Γ ∪ {x : τ} ⊢ e : τ ′

Γ ⊢ (λx.e) : τ → τ ′
(Abs)

Γ ⊢ e : τ ′ → τ Γ ⊢ e′ : τ ′

Γ ⊢ (e e′) : τ
(App)

Γ ⊢ e :σ Γ ∪ {x :σ} ⊢ e′ : τ

Γ ⊢ (let x = e in e′) : τ
(Let)

As usual the scope of the type variables is determined by the introduction of
type schemes σ in the let construction. Finally a rule for the index set variables

23

is added to the generalization and instantiation rules for type variables and units
variables.

Γ ⊢ e :σ

Γ ⊢ e :∀t.σ

Γ ⊢ e :σ

Γ ⊢ e :∀u.σ

Γ ⊢ e :σ

Γ ⊢ e : ∀p.σ
(Gen)

Γ ⊢ e : ∀t.σ

Γ ⊢ e :σ[t → τ]

Γ ⊢ e :∀u.σ

Γ ⊢ e :σ[u → µ]

Γ ⊢ e :∀p.σ

Γ ⊢ e :σ[p → ε]
(Inst)

At this point the only deviation from Damas and Milner and Kennedy is the
index set variables. With this in place the unification of the matrix type can be
defined.

Unification is defined component-wise. The three cases with units are unified
with the unification algorithm for units, the other two with Damas-Milner style
unification, as shown in Figure 5.1. The correctness of this matrix type unifica-
tion follows directly from the correctness of unit and standard unification. The
extensions to the syntax have no impact on the properties of the group of units.

Theorem 3. Type inference for the polymorphic type extended with matrix
types is sound and complete.

Proof. Kennedy’s extension to Damas’ type inference algorithm is sound and
complete. Since the changes for the matrix type are confined to the base units
U as explained in section 3.3 the abelian group of units remains free. Since
unification is composable the result follows from each of the five unification
occurrences in Figure 5.1.

5.4 Projections and Conversions

For conversions and projections special constructors are added to the language.
These constructors expect type expressions as arguments and have the following
types:

convert(ε,µ0,µ1) :: [ε!µ0 per ε!µ1]

project(I per I) :: [I per I]

In our experimental language these constructors can be used to declare these
special matrices, but they are not part of the expression language.

Conversions have the following definition.

convert(ε,µ0,µ1)ij =

{

(ε!µ1)i/(ε!µ0)j if i = j

0 otherwise

The existence of a conversion matrix cannot be checked before the units are
known. If this is not before run-time then a run-time error is the only option.
Conversions are the only construction with possible run-time errors.

The construction of projections may also fail, but the validity of projection
matrices can be checked at compile time. Projections are defined as follows.

project(ε0!µ0 per ε1!µ1)ij =

{

1 if i, j in the projection

0 otherwise

24

Details for the construction of projection matrices can be found in [MO11]. The
definition shows that each entry in a projection matrix is dimension-less. If the
type does not agree then the projection does not exist. Since we can do type
inference we can do this check at compile time.

5.5 Runtime support

A unit-aware runtime system is capable of interaction in the proper units, and
detection of operations on incompatible units. Interaction can be with the user
or with external systems. Of every incoming and outgoing number the unit
should be known, either explicitly or implicitly. Detection of incompatible op-
erations means that no computations with mismatching units can be performed
unnoticed. What the runtime system needs to do depends strongly on the lan-
guage and what for example a compiler already can do, but interaction in proper
units and detection of incompatibilities are the two major tasks of a unit-aware
runtime system.

In the previous section it was argued that the non-existence of conversion
matrices is the only possible run-time error. This means that all unit operations
can be checked at compile time, except conversions and communication with the
outside world.

A second issue is efficiency of handling units for numerical data collections.
Efficiency is gained if units are not associated with individual numbers but with
matrices. The separation of units and magnitudes makes it easy to add units
to a matrix data structure. Since the units in a matrix require only two vectors
this storage is efficient. The operators on such run-time types are also efficient,
for example matrix multiplication is just updating some references. Using these
properties it stores less information and makes units easier to handle.

25

Chapter 6

Examples

The following type assertion was deduced by the unification algorithm. It shows
that the function requires and produces square matrices.

> define f(x) = (x + x^R)

f :: forall P,u: [P!u per P!u] -> [P!u per P!u]

Let’s follow the unification manually by letting x be a matrix of type [a * P!u per Q!v].
Then dimensional inverse x^R is a matrix of type [a^-1 Q!v per P!u]. Uni-
fication of the sum requires P = Q, u=v, and a=a^-1. Unification of the units
adds conclusion a=1. This means x is of type [P!u per P!u]. This example
demonstrates the equational reasoning that occurs during unification.

A more meaningful example is the definition of the inner product via the sum
of the element-wise product. Assume function total has type [a * P per Q]

-> [a]. This is an example of a type with homogeneous units. The inner
product can be defined as.

> define inner(x,y) = total(x*y)

inner :: forall a,P,u,Q,v:

[a * P!u per Q!v] x

[b * P!u^-1 per Q!v^-1] -> [a*b]

It is infered that the result is a singleton matrix. We interpret that as a single
number. Note that the arguments do not have to be vectors. They can also be
matrices, as long as their row and column spaces are reciprocal.

This variation on the definition of the norm is also infered as expected:

> define norm(x) = sqrt(total(x*x))

norm :: forall a,P,Q: [a * P per Q] -> [a]

It shows that the norm requires a homogeneous matrix. The derivation is similar
to the previous one for the inner product. It is assumed that sqrt :: [a^2]

-> [a] or sqrt :: [a^2 * P!u^2 per Q!v^2] -> [a * P!u per Q!v].

6.1 Commodities Case

The second example shows the multi-dimensional case. It is an adaptation
of the OLAP example from [MO11] that demonstrates heterogeneous units of
measurement in multi-dimensional numerical data.

26

For the multi-dimensional case we have the following numerical data store

Comm. Year Region sales amount

Oil 1990 North 5,000.00 $ 155.00 bbl

Oil 1990 South 87,000.00 $ 400.00 bbl

Gold 1990 West 64,000.00 $ 150.00 oz

Gold 1990 South 99,000.00 $ 235.00 oz

Gold 1991 North 8,000.00 $ 18.00 oz

Gold 1991 South 7,000.00 $ 16.00 oz

...

The store contains sales data per commodity, year and region. From these three
dimension only commodities have units.

Commodity units ...

Gold ounce

Oil barrel

... ...

The following multi-dimensional types are assumed.

sales :: [dollar per Comm,Year,Region]

amount :: [Comm!unit,Year,Region]

The type system helps with the construction of projections. Say we want
to project commodities from the sales column. A projection matrix has to
match the Comm * Year * Region part of sales’s type and the result has to
be dollar per Comm. Combining this leads to projection matrix P0 and the sales
per commodity can be projected by multiplying with it from the right.

P0 :: [Comm,Year,Region per Comm]

> define sales_per_commodity = sales . P0

sales_per_commodity :: [dollar per Com]

>sales_per_commodity

Commodity | sales

------------+---------------

Oil | 92,000.00 $

Gold | 178,000.00 $

Multiple dimensions can also be projected. Matrix P1 is a correct projection
matrix for years and commodities. The result is of type Year,Comm!unit.

P1 :: [Year,Comm!unit per Comm!unit,Year,Region]

> P1 . amount

Year Commodity | amount

------------------+---------------

1990 Oil | 2,550.00 bbl

1990 Gold | 385.00 oz

1991 Gold | 34.00 oz

27

Chapter 7

Conclusion

The combination of Damas-Milner type inference and Kennedy’s unit inference
applied to Hart’s dimensioned matrices enables inference of principal types for
linear algebra expressions. The static type system’s symbolic reasoning provides
powerful feedback at compile time and guarantees absence of unit errors at
runtime. The only run-time error that can occur is when a conversion matrix
does not exist.

The ability of the matrix type to handle heterogeneous units in addition to
homogeneous units makes static safety of numerical expressions available to a
much larger set of use-cases. The type is applicable in domains ranging from
symbolic algebra to data warehousing. The examples show that even without
concrete units the semantic type system provides powerful symbolic information
about vector spaces. But the type also provides advantages for the implemen-
tation of units of measurement at runtime. The storage of units at runtime can
be more efficient since a dimensioned matrix only requires two vectors of units
that can be kept separate from the magnitudes. Another consequence is that
computations of units can be done separately from the more expensive matrix
computations.

In further research we plan to improve the implementation of the experi-
mental design and apply it to more use-cases. Questions from a language im-
plementation perspective concern the efficiency and performance of numerical
expressions with units. The units require extra administrative work at run-time
but it might also benefit from the improved type information by generating
better compiled code. Computations might for example be distribution over
multiple nodes via block matrices and the type system might provide interest-
ing information to implement this. Finally we hope to gain more insight by
applying the type to various fields. Examples are typed libraries for matrix
languages, typed OLAP and data warehouses, typed services, etc.

28

Bibliography

[ACL04] Eric E. Allen, David Chase, Victor Luchangco, Jan-Willem Maessen,
and Guy L. Steele Jr. Object-oriented units of measurement. In John M.
Vlissides and Douglas C. Schmidt, editors, OOPSLA, pages 384–403. ACM,
2004.

[BIP] BIPM. International vocabulary of metrology - basic and general con-
cepts.

[Bir60] G. Birkhoff. Hydrodynamics: a study in logic, fact, and similitude.
Princeton University Press, 1960.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for functional
programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’82, pages 207–212, New York,
NY, USA, 1982. ACM.

[dPeM] Bureau International des Poids et Mesures. The International System
of Units (SI).

[Elm63] Salah E. Elmaghraby. A note on the ’explosion’ and ’netting’ problems
in the planning of materials requirements. Operations Research, Vol. 11, No.
4, pp. 530-535, 1963.

[Fou22] J.B.J. Fourier. Théorie analytique de la chaleur. Chez Firmin Didot,
père et fils, 1822.

[Har] George W. Hart. The theory of dimensioned matrices.

[Har95] G.W. Hart. Multidimensional analysis: algebras and systems for science
and engineering. Springer-Verlag, 1995.

[Ken94] Andrew Kennedy. Dimension types. In Donald Sannella, editor, ESOP,
volume 788 of Lecture Notes in Computer Science, pages 348–362. Springer,
1994.

[Ken96] Andrew J. Kennedy. Programming Languages and Dimensions. PhD
thesis, University of Cambridge, 1996.

[Ken09] Andrew Kennedy. Types for units-of-measure: Theory and practice. In
Zoltán Horváth, Rinus Plasmeijer, and Viktória Zsók, editors, CEFP, volume
6299 of Lecture Notes in Computer Science, pages 268–305. Springer, 2009.

29

[MO11] H.D. Macedo and J.N. Oliveira. Do the middle letters of “olap” stand
for linear algebra (“la”)?, 2011. Journal paper (submitted July 2011); infor-
mation available from the authors’ websites.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[Roc98] J.J. Roche. The mathematics of measurement: a critical history.
Athlone Press, 1998.

[Rom08] Steven Roman. Advanced Linear Algebra. Springer New York, 3rd
edition, 2008.

[SJ06] Lingxiao Jiang and Zhendong Su Osprey: a practical type system for
validating dimensional unit correctness of c programs. Software Engineering,
International Conference on, 0:262–271, 2006.

[Str88] Gilbert Strang. Linear Algebra and Its Applications. Brooks Cole, Febru-
ary 1988.

30

