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For the GI/G/l queueing model with traffic load a< 1, service time 
distribution B(t) and interarrival time distribution A(t), whenever for 
t ....... oo 

and 

1 

1- B(t)"' (t/{J)v + O(e -St), c > 0, 1 < v < 2, 5 > O, 

00 

j tµdA(t) < oo forµ> v, 

0 

(1 - a) 11 - lw converges in distribution for aTl. Here w is distributed as the 

stationary waiting time distribution. The L.-S. transform of the limiting 
distribution is derived and an asymptotic series for its tail probabilities is 
obtained. The theorem actually proved in the text concerns a slightly 
more general asymptotic behavior of 1 - B(t), t ....... oo, than mentioned 
above. 

Key words: GI/G/l Model, Pareto-Type Service Time Distribution, 
Heavy-Traffic Theorem, Tail Asymptotics. 

AMS subject classifications: 90B22, 60K25. 

1. Introduction 

For the GI/G/l queue, denote by A(t) and B(t) the inlerarrival time distribution 
and service time distribution, respectively, and by a the lraffic load, with a< 1. 

The distribution B( t) is said to l1ave a Pare lo-type tail if: for t-.>oo, 
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l<v<2, (3:= /'
0

tdB(t)), c>O, 6>0, 

0 

en 2: 0, vn > v, Na finite integer ~ 1. 

(Ll) 

w shall denote a stochastic variable with distribution W( t), the stationary distribu­
tion of the actual waiting time of the GI/G/l model. 

Write 
l 

A. -[1-a f(!J)sin(v-1)11"]'-' -l. 
u. - a C1l" ' 

(1.2) 

here r(.) is the gamma function and x°', a real, is defined by its principal value, i.e., 
it is positive for x positive. 

Theorem: When B(t) has a Pareto-type tail as specified in (1.1) and when 

00 

j tµdA(t) < oo for a µ > v, 

0 

1 
then the stochastic variable (1 - a)11 - lw / (3 converges for ajl in distribution, and 

(1.3) 

lim E{ e - pt.w'f (3} = 1 , Rep ~ O; (1.4) 
aTl 1 +Pu -1 

the right-hand side of (1.4) is the Laplace-Stieltjes transform of a true probability dis­
tribu1.ion R" _ 1(t) with support (O,oo); and for t--+oo and every finite HE {l, 2, ... }, 

l-R (t)=lf(-l)n-1r(n(v-l))sinn(v-l)1l"+O{t-(H+l)(u-1)}. (1.5) 
v-1 1l"n=l tn(t-1) 

For a special class of Pareto-type tailed service time distributions, the theorem 
has been derived for the M/G/1 model in [2]. The distribution Rv_ 1(t) is called the 
Kovalenko distribution, cf. [9]. For v = q we have, cf. [l], 

with 
00 

Erfc(x)= J e-u2du. 
x 

(1.6) 

The proof of the theorem is given in the next section; it uses an idea of the proof 
of Theorem l, [7], vol. I, p. 467. 

The theorem stated above is a heavy traffic result. The classical heavy traffic 
theorem for the Gl/G/1 model, cf. [:I], Section lll.7.2, requires the finiteness of the 
second moment of A(t) and thal of B(t). In a forthcoming paper by O.J. Boxma and 
the present author, gcnera\ization8 uf the theorem above will be discussed. 



A Theorem 

2. Proof of the Theorem 

We cons:der first the case with all en= 0, n = L .. , N., 
(Ll) that we may write: fort 2'. /3, 

1 it is seen from 

1 - = + 

with 

c1.1nvergen:; for Rep > - 6. > . 

With 

= Rep~ 0. (2.3 

we have: for Rep ~ 0, 

1-
-~-= 

(2.4) 

~ - pt '''t)dt 
~ ~·\,13• 

and 
;3 oc 

1 J ,, Btt'}dt ' I = il - \ ) /3 T 

0 8 

It follows Lhat: for Rep 2'. 01 

00 

1 - 1 - ;3(p) -
p;3 - -J -pt c dt 

e 't/:Ji/J 7, 
\ i ;.; ; iJ 

(2.5) 

t3 
with 

By us:ng (2.2) it is readily seen that g1 is a regu'.ar function of p for Rep > - li. 

For the integral in ( 2.5) we have by partial integration: for Rep 2'. 0, 

+er(! - v)(ppt- 1, {2.7) 

with 

. 3) c - p3 g,\p. : = --1 e + 
... !I -

(2.8) 

Obviously g~(p!3) is an entire function of p for al! p; note lhal 0 < v -1 < I. 
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From cf. [8], p. 3, 

and with 
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f(,.\)f(l - .\) = ~' ,.\not an integer, 
sm 7f"' 

g(p/3): = 91 (p/3) + 92(Pf3), 

we have from (2.5), .. ., (2.10): for Rep 2: 0, 

1 - {J(p) _ ( r.l) -1- C'll' ( /J)u - l. 1- PP -g PP , f(1.1)sin(1.1-l)7r p 

(2.9) 

(2.10) 

(2.11) 

From (2.6), (2.8) and (2.10), it is seen that g(pf3) is also a regular function of p for 
Rep> - o. From (2.11) it follows that g(O)::: 0. Hence since g(p/3), Rep> - 8 is a 
regular function we have: for Rep> - 5, Ip i -+O, 

with 1 a finite constant. 
Write 

g(p/3) = 'YP/3 + O((p,8)2), 

00 

a(-p): = J eP1dA(t), Rep=O, 
0 

(2.12) 

(2.13) 

so that a( - p) is the characteristic function of the distribution A(t). From (1.1), 
(1.3) a.nd the series expansion of a characteristic function, cf. (10], p. 199, we have: 
for Rep::: 0, Ip 1->0, 

a:( - P) = i + ap + o( I P I µ), 

00 

a:= j tdA(t)=/3/a. 
0 

(2.14) 

Let i be the idle period, i.e., the difference of a. busy cycle and the busy period 
contained in this busy cycle. The relation between the distributions of w and i is 
given by, cf. [4], p. 21, or [3], p. 371: for Rep::: 0, 

E{ e - pw} :::: 1 - E{ ePi} [1 - /3(p )ll'.( - P )]- 1. 
- pE{i} (/3 - a: )p ' (2.15) 

note that 

E{i} =(et - {J)E{n}, (2.16) 

with n the number of customers served in a busy cycle. 
With 

A : :::: C'lf 
" f(v)sin (v - l)rr' (2.17) 
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we have from (2.11): for Rep= 01 

1- f3(p)et( - p) 
({3-et)p 

= f3 ~ Ct[l - ~~ - p) + {1- g(p,B)}et( - p)-Av(Pf3t- 1a( - p)J. 

Set, cf. (1.3), 
er: =min(l,µ-1)>0. 

251 

(2.18) 

(2.19) 

By using (2.12) and (2.14) it follows from (2.18) since µ > v, cf. (1.3), that: for 
Rep= 01 IP 1-+0, 

l -,B(p)a( - P) =-,e-[- ~+ l-A (p,et- 1 +o( Ip I"")] (2.20) 
(,B - a)p ,8 - a ,8 v 

Write for Re r 2: 0, cf. (1.2), 

With Rep :5 0, a< 1, 

1 

p = [1 ~aA;1J11-lr/,8 = D.r/{3. 

w(p): = E{e-Pw}, 
1-E{e-Pi} 

x(p ): = pE{i} 

we have from (2.15), (2.20) and (2.21): for 0 < 1- a<<l and Rer = 0, 

(i) 
[ ]

-1 1-v+cr 

w(rD./,8)=x(-rD./,8)l+r11 - 1+ruO((l-a)) 11 -l), 

(ii) w(rD./(J) and x(r!:!../(3) are both regular for Rer > 0, continuous for 
Rer 2: 01 

(iii) I w(rD./,8) I :51, I x(rt./(3) I :::; 1, Rer 2: 0, w(O) = 1, x(O) = 1. 

(2.21) 

(2.22) 

(2.23) 

The conditions (2.23) formulate for w(rD./ ,8) and x( - rt./ (J) a boundary value 
problem of a type discussed in [6]. It is not difficult to verify that the conditions 
(26)i, ... 1 iv of (6] are fulfilled for the present boundary value problem with 
0 < 1- a<<l. Hence from (31) of [6] its solution reads: for 0 < 1- a<<l, 

w(rD./,8) = eH(rA//3), Rer > 01 

x(-r!:!../f3)=eH(r6./f3), Rer<O, 
(2.24) 

with 

ioo [ l _ 11 + O' ] d 
H(rt./(J): =~ j log 1 +7121 - 1 +1tO((l-a) v-1 ) r T/ • 

27r1 ( 77 - r )TJ 
-ioo 
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This integral is a principal value, singular Cauchy integral, cf. [5], Section 1.1.5 and 
(6]. The integral is absolutely convergent and it follows readily by contour integra­
tion in the right half-plane that 

ioo 

limH(r!::..//3) =-21· J log{l+77v-l} ( rdT)) 
afl 1Tl 77 - r T) 

(2.25) 

-ioo 

- log{ 1 + rv - 1} for Re r 2: 0, 

=0 forRer::=;O; 

note that the logarithm of the integrand is regular for Re T/ > O, continuous for 
ReT) 2: 0 and zero for T) = 0, cf. further (5], Section 1.1.5. Hence from (2.24) and 
(2.25): for Re r ?:: 0, 

limw(r.6./,B)=limE{e-rD.w//3}= 1 , 
all ap 1 + rv - 1 

lim x(rD..//3) = 1. 
aTl 

(2.26) 

By using Feller's continuity theorem for L.-S. transforms of probability distributions, 
it follows that D..w / f3 con verges m distribution for af 1, with limiting distribution 

Rv _ 1(t) given by 

(2.27) 

It remains to prove (1.5). From (2.27) we obtain: for Re r 2: 0, 

00 

J -rt 1 1 rv - 2 
e {1-Rv_ 1(l)}dt=,,.{l- v-i}= v-1' 

l+r l+r 
(2.28) 

a 

Because 1 < 11 < 2, the right-hand side can be continued analytically out from 
Rer 2: 0, into {r: 1 arg r I ::::; 1,b,~71' < 1/; < 7r}. With D the contour defined by: for a 
r0 > O, 

it is readily shown by starting from the inversion integral for the Laplace transform 
that 

(2.30) 

with the direction on D such that on r = r 0ei<P it is counterclockwise with respect to 
the origin. For r = I r 0 I < l we have 

v-'2 oo ( 
r -l "°' (- l)n-1n1.1-l) 

i-r.L.., r · 
1 + rv - n = D 

(2.31) 
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We now apply a theorem of Doetsch [7], vol. II, p. 159 to derive a.n a.sympf.otic 
series for 1 - R11 _1 ( t), t->oo. It is not difficult to show that this theorem ma.y be 
applied here. It uses the relation 

2~i J erir>.d..\ = r( :_ >.)t - >.- l, ..\ 'I- 0, 1, 2, ... , 
D 

and it states that: for t->oo and every finite HE {1,2, ... }, 

H -n(v-1) ( 
1-R (t)- '"'(-l)n-l t +O(t- H+l)(v-l)) (2.32) 

i;-l -nL;:I f(l-n(11-l)) ' 

By using the relation (2.9), the relation (1.5) follows, and the theorem has been 
proved for the case en= O, n = 1, ... , N. 

To complete the proof for c11 > 0, it suffices to take c1 > 0, c2 = ... = c N = 0, 
since it is readily seen that the general case proceeds a.long the same lines. However, 
we have to distinguish the case that 111( > 11) is not an integer and that of v1 i.s an 
integer ~ 2. 

First, we consider the case c1 > 0, i.;1 noninteger. Instead of (2.1) we write: for 
t ?. (3, 

c cl 
1- B(t) = (t/t:i)LI +-:-:--:i:r:+ F(t), 

I-' (t/ry) 1 
(2.33) 

with F( t) a.gain satisfying (2.2). By repeated partial integration, it is readily shown, 
cf. [7), vol. II, p. 468, a.nd (2.7), that: for Rep?. 0, 

with g2(pf3) an entire function of p. 
The relation (2.11) is now replaced by: for Rep~ 0, 

1_1-,B(p) = ( f3)+ cir ( /3)1.1-1 
f3p g p r(v)sin(v-1)11" p 

Cl?!" ( (3)111 -1 

+ r(v1 )sin (111 - 1 )7r p ' 

(2.35) 

with g(p,8) again a. regular function for Rep > - 6 which satisfies g(O) = 0 a.nd 
(2.12). Proceeding with the analysis above with (2.11) replaced by (2.35) leads a.gain 
to {2.20) since 111 > v, cf. (l.l). The remaining pa.rt of the proof with c1 > 0 does not 
differ from that with c1 = 0, and so the theorem has been proved for c,.. > 0 and 11,.. 

not an integer. 
Finally we have to consider the case 111 = k ~ 2, with k an integer. We have, cf. 

[7], vol. I, p. 468, 

00 k J -st 1 dt_ ( B) (-1) ( r.1)k-1J ( (3) 
cl e (t/{3)kp--Y2P +c1(k-l)!p..., ogp' 

{3 
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a.gain with g2(pf3) a regular function, and the relation (2.11) is now replaced by: for 
Rep~ 0, 

l-f3(p) C7r(pf3t-l (-l)k-1 k-1 
l- p/3 =g(p,8)+r(v)sin(v-l)7r+c1 f(k-1) (pfj) Iog(p{J), 

where g(pf3) is again an entire function for Rep > - 6, which satisfies g(O) == 0 and 
(2.12). The last term is o((p,Bt- 1) since k > v. With this it is readily verified that 
the second equality sign in (2.20) also applies for the present ca.se, and so the remain­
ing part of the proof is similar to that with c1 == 0. Hence the theorem has been 
proved. 
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