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For the GI/G/l queueing model with traffic load a< 1, service time 
distribution B(t) and interarrival time distribution A(t), whenever for 
t ....... oo 

and 

1 

1- B(t)"' (t/{J)v + O(e -St), c > 0, 1 < v < 2, 5 > O, 

00 

j tµdA(t) < oo forµ> v, 

0 

(1 - a) 11 - lw converges in distribution for aTl. Here w is distributed as the 

stationary waiting time distribution. The L.-S. transform of the limiting 
distribution is derived and an asymptotic series for its tail probabilities is 
obtained. The theorem actually proved in the text concerns a slightly 
more general asymptotic behavior of 1 - B(t), t ....... oo, than mentioned 
above. 
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1. Introduction 

For the GI/G/l queue, denote by A(t) and B(t) the inlerarrival time distribution 
and service time distribution, respectively, and by a the lraffic load, with a< 1. 

The distribution B( t) is said to l1ave a Pare lo-type tail if: for t-.>oo, 

1Work carried out under project LHD. 
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l<v<2, (3:= /'
0

tdB(t)), c>O, 6>0, 

0 

en 2: 0, vn > v, Na finite integer ~ 1. 

(Ll) 

w shall denote a stochastic variable with distribution W( t), the stationary distribu
tion of the actual waiting time of the GI/G/l model. 

Write 
l 

A. -[1-a f(!J)sin(v-1)11"]'-' -l. 
u. - a C1l" ' 

(1.2) 

here r(.) is the gamma function and x°', a real, is defined by its principal value, i.e., 
it is positive for x positive. 

Theorem: When B(t) has a Pareto-type tail as specified in (1.1) and when 

00 

j tµdA(t) < oo for a µ > v, 

0 

1 
then the stochastic variable (1 - a)11 - lw / (3 converges for ajl in distribution, and 

(1.3) 

lim E{ e - pt.w'f (3} = 1 , Rep ~ O; (1.4) 
aTl 1 +Pu -1 

the right-hand side of (1.4) is the Laplace-Stieltjes transform of a true probability dis
tribu1.ion R" _ 1(t) with support (O,oo); and for t--+oo and every finite HE {l, 2, ... }, 

l-R (t)=lf(-l)n-1r(n(v-l))sinn(v-l)1l"+O{t-(H+l)(u-1)}. (1.5) 
v-1 1l"n=l tn(t-1) 

For a special class of Pareto-type tailed service time distributions, the theorem 
has been derived for the M/G/1 model in [2]. The distribution Rv_ 1(t) is called the 
Kovalenko distribution, cf. [9]. For v = q we have, cf. [l], 

with 
00 

Erfc(x)= J e-u2du. 
x 

(1.6) 

The proof of the theorem is given in the next section; it uses an idea of the proof 
of Theorem l, [7], vol. I, p. 467. 

The theorem stated above is a heavy traffic result. The classical heavy traffic 
theorem for the Gl/G/1 model, cf. [:I], Section lll.7.2, requires the finiteness of the 
second moment of A(t) and thal of B(t). In a forthcoming paper by O.J. Boxma and 
the present author, gcnera\ization8 uf the theorem above will be discussed. 



A Theorem 

2. Proof of the Theorem 

We cons:der first the case with all en= 0, n = L .. , N., 
(Ll) that we may write: fort 2'. /3, 

1 it is seen from 

1 - = + 

with 

c1.1nvergen:; for Rep > - 6. > . 

With 

= Rep~ 0. (2.3 

we have: for Rep ~ 0, 

1-
-~-= 

(2.4) 

~ - pt '''t)dt 
~ ~·\,13• 

and 
;3 oc 

1 J ,, Btt'}dt ' I = il - \ ) /3 T 

0 8 

It follows Lhat: for Rep 2'. 01 

00 

1 - 1 - ;3(p) -
p;3 - -J -pt c dt 

e 't/:Ji/J 7, 
\ i ;.; ; iJ 

(2.5) 

t3 
with 

By us:ng (2.2) it is readily seen that g1 is a regu'.ar function of p for Rep > - li. 

For the integral in ( 2.5) we have by partial integration: for Rep 2'. 0, 

+er(! - v)(ppt- 1, {2.7) 

with 

. 3) c - p3 g,\p. : = --1 e + 
... !I -

(2.8) 

Obviously g~(p!3) is an entire function of p for al! p; note lhal 0 < v -1 < I. 



250 

From cf. [8], p. 3, 

and with 
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f(,.\)f(l - .\) = ~' ,.\not an integer, 
sm 7f"' 

g(p/3): = 91 (p/3) + 92(Pf3), 

we have from (2.5), .. ., (2.10): for Rep 2: 0, 

1 - {J(p) _ ( r.l) -1- C'll' ( /J)u - l. 1- PP -g PP , f(1.1)sin(1.1-l)7r p 

(2.9) 

(2.10) 

(2.11) 

From (2.6), (2.8) and (2.10), it is seen that g(pf3) is also a regular function of p for 
Rep> - o. From (2.11) it follows that g(O)::: 0. Hence since g(p/3), Rep> - 8 is a 
regular function we have: for Rep> - 5, Ip i -+O, 

with 1 a finite constant. 
Write 

g(p/3) = 'YP/3 + O((p,8)2), 

00 

a(-p): = J eP1dA(t), Rep=O, 
0 

(2.12) 

(2.13) 

so that a( - p) is the characteristic function of the distribution A(t). From (1.1), 
(1.3) a.nd the series expansion of a characteristic function, cf. (10], p. 199, we have: 
for Rep::: 0, Ip 1->0, 

a:( - P) = i + ap + o( I P I µ), 

00 

a:= j tdA(t)=/3/a. 
0 

(2.14) 

Let i be the idle period, i.e., the difference of a. busy cycle and the busy period 
contained in this busy cycle. The relation between the distributions of w and i is 
given by, cf. [4], p. 21, or [3], p. 371: for Rep::: 0, 

E{ e - pw} :::: 1 - E{ ePi} [1 - /3(p )ll'.( - P )]- 1. 
- pE{i} (/3 - a: )p ' (2.15) 

note that 

E{i} =(et - {J)E{n}, (2.16) 

with n the number of customers served in a busy cycle. 
With 

A : :::: C'lf 
" f(v)sin (v - l)rr' (2.17) 
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we have from (2.11): for Rep= 01 

1- f3(p)et( - p) 
({3-et)p 

= f3 ~ Ct[l - ~~ - p) + {1- g(p,B)}et( - p)-Av(Pf3t- 1a( - p)J. 

Set, cf. (1.3), 
er: =min(l,µ-1)>0. 
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(2.18) 

(2.19) 

By using (2.12) and (2.14) it follows from (2.18) since µ > v, cf. (1.3), that: for 
Rep= 01 IP 1-+0, 

l -,B(p)a( - P) =-,e-[- ~+ l-A (p,et- 1 +o( Ip I"")] (2.20) 
(,B - a)p ,8 - a ,8 v 

Write for Re r 2: 0, cf. (1.2), 

With Rep :5 0, a< 1, 

1 

p = [1 ~aA;1J11-lr/,8 = D.r/{3. 

w(p): = E{e-Pw}, 
1-E{e-Pi} 

x(p ): = pE{i} 

we have from (2.15), (2.20) and (2.21): for 0 < 1- a<<l and Rer = 0, 

(i) 
[ ]

-1 1-v+cr 

w(rD./,8)=x(-rD./,8)l+r11 - 1+ruO((l-a)) 11 -l), 

(ii) w(rD./(J) and x(r!:!../(3) are both regular for Rer > 0, continuous for 
Rer 2: 01 

(iii) I w(rD./,8) I :51, I x(rt./(3) I :::; 1, Rer 2: 0, w(O) = 1, x(O) = 1. 

(2.21) 

(2.22) 

(2.23) 

The conditions (2.23) formulate for w(rD./ ,8) and x( - rt./ (J) a boundary value 
problem of a type discussed in [6]. It is not difficult to verify that the conditions 
(26)i, ... 1 iv of (6] are fulfilled for the present boundary value problem with 
0 < 1- a<<l. Hence from (31) of [6] its solution reads: for 0 < 1- a<<l, 

w(rD./,8) = eH(rA//3), Rer > 01 

x(-r!:!../f3)=eH(r6./f3), Rer<O, 
(2.24) 

with 

ioo [ l _ 11 + O' ] d 
H(rt./(J): =~ j log 1 +7121 - 1 +1tO((l-a) v-1 ) r T/ • 

27r1 ( 77 - r )TJ 
-ioo 



252 J.W. COHEN 

This integral is a principal value, singular Cauchy integral, cf. [5], Section 1.1.5 and 
(6]. The integral is absolutely convergent and it follows readily by contour integra
tion in the right half-plane that 

ioo 

limH(r!::..//3) =-21· J log{l+77v-l} ( rdT)) 
afl 1Tl 77 - r T) 

(2.25) 

-ioo 

- log{ 1 + rv - 1} for Re r 2: 0, 

=0 forRer::=;O; 

note that the logarithm of the integrand is regular for Re T/ > O, continuous for 
ReT) 2: 0 and zero for T) = 0, cf. further (5], Section 1.1.5. Hence from (2.24) and 
(2.25): for Re r ?:: 0, 

limw(r.6./,B)=limE{e-rD.w//3}= 1 , 
all ap 1 + rv - 1 

lim x(rD..//3) = 1. 
aTl 

(2.26) 

By using Feller's continuity theorem for L.-S. transforms of probability distributions, 
it follows that D..w / f3 con verges m distribution for af 1, with limiting distribution 

Rv _ 1(t) given by 

(2.27) 

It remains to prove (1.5). From (2.27) we obtain: for Re r 2: 0, 

00 

J -rt 1 1 rv - 2 
e {1-Rv_ 1(l)}dt=,,.{l- v-i}= v-1' 

l+r l+r 
(2.28) 

a 

Because 1 < 11 < 2, the right-hand side can be continued analytically out from 
Rer 2: 0, into {r: 1 arg r I ::::; 1,b,~71' < 1/; < 7r}. With D the contour defined by: for a 
r0 > O, 

it is readily shown by starting from the inversion integral for the Laplace transform 
that 

(2.30) 

with the direction on D such that on r = r 0ei<P it is counterclockwise with respect to 
the origin. For r = I r 0 I < l we have 

v-'2 oo ( 
r -l "°' (- l)n-1n1.1-l) 

i-r.L.., r · 
1 + rv - n = D 

(2.31) 
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We now apply a theorem of Doetsch [7], vol. II, p. 159 to derive a.n a.sympf.otic 
series for 1 - R11 _1 ( t), t->oo. It is not difficult to show that this theorem ma.y be 
applied here. It uses the relation 

2~i J erir>.d..\ = r( :_ >.)t - >.- l, ..\ 'I- 0, 1, 2, ... , 
D 

and it states that: for t->oo and every finite HE {1,2, ... }, 

H -n(v-1) ( 
1-R (t)- '"'(-l)n-l t +O(t- H+l)(v-l)) (2.32) 

i;-l -nL;:I f(l-n(11-l)) ' 

By using the relation (2.9), the relation (1.5) follows, and the theorem has been 
proved for the case en= O, n = 1, ... , N. 

To complete the proof for c11 > 0, it suffices to take c1 > 0, c2 = ... = c N = 0, 
since it is readily seen that the general case proceeds a.long the same lines. However, 
we have to distinguish the case that 111( > 11) is not an integer and that of v1 i.s an 
integer ~ 2. 

First, we consider the case c1 > 0, i.;1 noninteger. Instead of (2.1) we write: for 
t ?. (3, 

c cl 
1- B(t) = (t/t:i)LI +-:-:--:i:r:+ F(t), 

I-' (t/ry) 1 
(2.33) 

with F( t) a.gain satisfying (2.2). By repeated partial integration, it is readily shown, 
cf. [7), vol. II, p. 468, a.nd (2.7), that: for Rep?. 0, 

with g2(pf3) an entire function of p. 
The relation (2.11) is now replaced by: for Rep~ 0, 

1_1-,B(p) = ( f3)+ cir ( /3)1.1-1 
f3p g p r(v)sin(v-1)11" p 

Cl?!" ( (3)111 -1 

+ r(v1 )sin (111 - 1 )7r p ' 

(2.35) 

with g(p,8) again a. regular function for Rep > - 6 which satisfies g(O) = 0 a.nd 
(2.12). Proceeding with the analysis above with (2.11) replaced by (2.35) leads a.gain 
to {2.20) since 111 > v, cf. (l.l). The remaining pa.rt of the proof with c1 > 0 does not 
differ from that with c1 = 0, and so the theorem has been proved for c,.. > 0 and 11,.. 

not an integer. 
Finally we have to consider the case 111 = k ~ 2, with k an integer. We have, cf. 

[7], vol. I, p. 468, 

00 k J -st 1 dt_ ( B) (-1) ( r.1)k-1J ( (3) 
cl e (t/{3)kp--Y2P +c1(k-l)!p..., ogp' 

{3 
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a.gain with g2(pf3) a regular function, and the relation (2.11) is now replaced by: for 
Rep~ 0, 

l-f3(p) C7r(pf3t-l (-l)k-1 k-1 
l- p/3 =g(p,8)+r(v)sin(v-l)7r+c1 f(k-1) (pfj) Iog(p{J), 

where g(pf3) is again an entire function for Rep > - 6, which satisfies g(O) == 0 and 
(2.12). The last term is o((p,Bt- 1) since k > v. With this it is readily verified that 
the second equality sign in (2.20) also applies for the present ca.se, and so the remain
ing part of the proof is similar to that with c1 == 0. Hence the theorem has been 
proved. 
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