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For the GI/G/1 queueing model with traffic load a <1, service time
distribution B(t) and interarrival time distribution A(¢), whenever for

100
1—B(t)~z70?+0(e”5‘), c>0,1<v<2,6>0,
and
(=]
/ tHdA(t) < co for g > v,
0

1

(1—a)¥~Tw converges in distribution for atl. Here w is distributed as the
stationary waiting time distribution. The L.-S. transform of the limiting
distribution is derived and an asymptotic series for its tail probabilities is
obtained. The theorem actually proved in the text concerns a slightly
more general asymptotic behavior of 1 - B(t), t—oo, than mentioned
above.
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1. Introduction

For the GI/G/1 queue, denote by A(l) and B(t) the interarrival time distribution
and service time distribution, respeclively, and by a the traffic load, with a < L.
The distribution B(t) is said to have a Parelo-type tailif: for t—oo,
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1<v<?, ﬁ::/ tdB(1)), ¢>0, 6>0, (11)
0

c,20, v,>v, N afiniteinteger > 1.
w shall denote a stochastic variable with distribution W(t), the stationary distribu-

tion of the actual waiting time of the GI/G/1 model.
Write

A = [1 —a I(v)sin(v — 1),,].-,-1:;

CT

(1.2)

here T'( - ) is the gamma function and z®, « real, is defined by its principal value, i.e.,
it is positive for z positive.

Theorem: When B(t) has a Pareto-type tail as specified in (1.1) and when

00

/ tHdA(t) < oo fora u> v, (1.3)
0

1 .
then the stochastic variable (1 —a)¥ ~1w/f3 converges for afl in distribution, and

. - pAw/f = 1 > 0 1.4
R 0

the right-hand side of (1.4) is the Laplace-Stieltjes transform of a true probability dis-
iribution R, _I(t) with support (0,00); and for t—oo and every finite H € {1,2,...},

=R, () =13 (- .~ e Tl E L ()
n=1

For a special class of Pareto-type tailed service time distributions, the theorem

has been derived for the M/G/1 model in (2]. The distribution R, _(t) is called the
Kovalenko distribution, cf. [9]. For v = 11 we have, cf. [1],

-2 . 1/2 1.6)
1/2(1t \/_. e'Brfc(t'/?), t>0, (1.
with
(=2

Erfe(z) = ] e~ "zdu.

4

The proof of the theorem is given in the next section; it uses an idea of the proof
of Theorem 1, 7], vol. 1, p. 467.

The theoremn stated above is a heavy traffic result. The classical heavy traffic
theorem for the GI/G/1 model, cf. [3], Section 111.7.2, requires the finiteness of the
second moment of A(t) and that of B(t). In a forthcoming paper by O.J. Boxma and
the present author, generalizations of the theorem above will be discussed.
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2. Proof of the Theorem

We consider first the case with all ¢, =0, n=1,...,N. Consequently, it is seen {rom
(1.1) that we may write: for t > 8,

1 - B(t) = &= + F(t 2.1
()= p = FO) (21)
with
o0
/ e ~PtF(t)dt convergent for Rep > ~ 6, §> 0. (2.2)
8
With
o0
B(p): =/ e~ P'dB(t), Rep>0, (2.3)
0 -
we have: for Rep >0,
o0

1=8)_ [ .- d
—5 { e~ ?(1- BU)S

(2.4)
B ES
= e—p‘{l—B(t)}di e ”t %——r— e""tl"(il)-cié
ferient it o
and
8 oo )
/{1-3(:\} o % / F(t)%—t-.
0
It follows that: for Rep > 0,
with 5 ? \
9,(pB): = / (1—e'P‘)LZEB—(‘i)<1:+/ (t/fs)"g;? / {1-—e”"}f‘(t%— (2.6)
0 8 5

By using (2.2) it is readily seen that g,(p8) is a regular function of p for Rep > — 8.
For the integral in (2.5) we have by partial integration: for Rep >0,

o

e[ emP(5) e = - aytos) +enl (o8 7, )
with g '
¢ 1-v
9,(p3): %fl""”*%/ c*P‘(-é) dt. (2.8)
0

Obviously y,(p3) is an entire function of p for all p; note that { < v ~1< 1.
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From cf. (8], p. 3,

L1 =) = E{fﬁ’ A not an integer, (2.9)
and with
9(pB): = g,(pB) + 92(pB), (2.10)
we have from (2.5), ..., (2.10): for Rep >0,
1—1:/;%@—)=9(pﬁ)+r—(ngi-a‘:(”—v:m(pﬁ)”“l- (2.11)

From (2.6), (2.8) and (2.10), it is seen that g(pf) is also a regular function of p for
Rep> —46. From (2.11) it follows that g(0) = 0. Hence since g(p3), Rep> —6is a
regular function we have: for Rep > — 6, |p|—0,

9(pB) = 1pB +0((p8)%), (2.12)

with 7 a finite constant.
Write

o0
o —p) = / e”'dA(t), Rep =0, (2.13)
0
so that a(—p) is the characteristic function of the distribution A(t). From (1.1),

(1.3) and the series expansion of a characteristic function, cf. [10], p. 199, we have:
for Rep =10, |p|—0,

a(=p)=1+ap+0(]p|¥), (2.14)

o0

a::{ tdA(t) = B/a.

Let i be the idle period, i.e., the difference of a busy cycle and the busy period
contained in this busy cycle. The relation between the distributions of w and i is
given by, cf. [4], p. 21, or (3], p. 371: for Rep =0,

—pwy _ L= B{e} [1-B(p)a(=p)] *
E{fe™?™} = - ‘ 2.1
T = [ B-clp | (213)
note that
E{i} = (o= B)E{n}, (2.16)
with n the number of customers served in a busy cycle.
With

Ay =Ml‘(u)sirf?u~ N (2.17)
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we have from (2.11): for Rep =0,

1-B(p)a(~p)
(B—a)p
(- (2.18)
= ﬂ’fa{l 22) 4 (1 oo))el - 0) -—A,,(pm”-la(—p)].
Set, cf. (1.3),
o: =min(l,x-1)>0. (2.19)

By using (2.12) and (2.14) it follows from (2.18) since p > v, cf. (1.3), that: for
Rep =0, | o] —0,

1*(%(@3;”):[,@&[- §H1I-4,0607 7 +0(1p19]  (220)

=14 74 {4,(e8)" " +0(| o] ).

Write for Rer > 0, cf. (1.2),
1

p=159471 T8 = ar/B. (2.21)
With Rep <0, ¢ < 1,
- — i
(o) =B, x(py =) (2.22)
we have from (2.15), (2.20) and (2.21): for 0 <1—a<<1 and Rer =0,
l-vdo |~ 1
(1) w(ra/B)=x(- '”A/ﬂ)[l +rY 7 4701 —a)) v )] ) (2.23)

(i)  w(rA/B) and x(rA/B) are both regular for Rer > 0, continuous for
Rer >0,
(i) |w(ra/B)] <1, [x(rA/F)] <1, Rer 20, w(0) =1, x(0) = 1.

The conditions (2.23) formulate for w(rA/f) and x(~rA/B) a boundary value
problem of a type discussed in [6]. It is not difficult to verify that the conditions
(26)7, ..., v of [6] are fulfilled for the present boundary value problem with
0 < 1—a<<l. Hence from (31) of 6] its solution reads: for 0 <1—a<<l,

w(rA/f) =28 Rer > g,
(2.24)
x(=ra/B) =eHA8)  Rer <,

with .
100

rdn
(n—=r)n

l-v+o
}{(TA/ﬁ)' :-2—%_—1/ 1Og[]+nu—1+nao((l~a) o1 ):l

—ico
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This integral is a principal value, singular Cauchy integral, cf. [5], Section 1.1.5 and
(6]. The integral is absolutely convergent and it follows readily by contour integra-
tion in the right half-plane that .
100
i =1 v—-1y _T4n
lim Hr/8) =gk [ log{1477 )

r)n (2.25)

~ oo
= —~log{l+7“"'} for Rer>0,
=0 for Rer <0

note that the logarithm of the integrand is regular for Ren >0, continuous for

Ren >0 and zero for n =0, cf. further [5], Section 1.1.5. Hence from (2.24) and
(2.25): for Rer >0,

: =1 —raw/py 1 2.26
l;ﬁlw(rA/ﬁ) lallﬁlE{e } T (2.26)

l;ﬁl x(rA/B) =1.

By using Feller’s continuity theorem for L.-S. transforms of probability distributions,
it follows that Aw/@ converges in distribution for afl, with limiting distribution
R, _(t) given by

OO

- =1
'! e ”del(t)_W-_—l, Rer > 0. (2.27)

It remains to prove (1.5). From (2.27) we obtain: for Rer > 0,

o0
_ —1 1 _ U—'2
[ e 1= R, (Mt =Hl- L) = T (2.28)

Because 1<v <2, the right- hand side can be continued analytically out from

Rer >0, into {r: |arg | < 1p, sm <y <7} With D the contour defined by: for a
Ta > 0

D:={rr=rue®¢=+y}u{rir=Re* W R> roh (2.29)

it is readily shown by starting from the inversion integral for the Laplace transform
that

1-R,_ ()= [t 2 4r (2.30)

‘27r1 14r¥—1
D

with the direction on D such that on r = roei‘b it is counterclockwise with respect to
the origin. Forr= |[ry| <1 we have

_1 . 1 nu-—-l
=1 z y= ), (2.31)

u-2
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We now apply a theorem of Doetsch [7], vol. II, p. 158 to derive an asympiotic
series for 1 — R _(t), t—oo. It is not difficult to show that this theorem may be
applied here. It uses the relation

_____ rtA gy —z\—l
/e ridA = /\) , AFED0,12,,

and it states that: for t—oo and every finite H € {1,2,...},

R & nr-t gn-b Lo~ H + 1w -1) 2.39

- p-l(‘)-Z(—) e (t » (2.32)
n=]

By using the relation (2.9), the relation (1.5) follows, and the theorem has been

proved for thecase e, =0, n=1,.., N,

To complete the proof for ¢, >0, it suffices to take ¢, >0, e;=...=cy =0,
since it is readily seen that the general case proceeds along the same lines. However,
we have to distinguish the case that v,{ > v) is not an integer and that of v, is an
integer > 2.

First, we consider the case ¢; > 0, v, noninteger. Instead of (2.1) we write: for
t 2 B,

1-B(t) =55+ +F 2.33
(0 K W (¢), (2.33)
with F(t) again satisfying (2.2). By repeated partial integration, it is readily shown,
cf. [T}, vol. 11, p. 468, and (2.7), that: for Rep >0,

” -pt__1 dt_ _ . _ py =1
‘o l e Rl IR GO T CE

with g,(p3) an entire function of p.
The relation ('7.11) is now replaced by: for Rep >0,

1- ﬁpp)—~ﬂp3)

(B ~1

(z/)sm v—1)7

o (2.35)

647 { 1
N D{v,)sin{v, - l)ﬂ'\‘a'g) !

with ¢(p8) again a regular function for Rep > —§ which satisfies g{0) =0 and
(2.12). Proceeding with the analysis above with (2.11) replaced by (2.35) leads again
to (2.20) since vy > v, cf. (1.1). The remaining part of the proof with ¢, > 0 does not
differ from that with ¢, =0, and so the theorem has been proved for ¢, >0 and v
not an integer.

Finally we have to consider the case v; =k > 2, with k an integer. We have, cf.
[7], vol. I, p. 468,

o0

-st__ 1 dt_ _ 3 4 (—1)k k-1 .
3 g kg Y= - o)+ e {001t~ (o),
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again with g,(pf) a regular function, and the relation (2.11) is now replaced by: for
Rep >0,

_ w1 _1\k-1
! ‘LE%('@ =9(pf) + I‘(i;rifnﬁ()u T T cl(r(kl)- Ty-(08)" ™ Mog(pf),

where g(pf) is again an entire function for Rep > — 6, which satisfies g(0) =0 and
(2.12). The last term is o((pB)" ~ 1) since k > ». With this it is readily verified that
the second equality sign in (2.20) also applies for the present case, and so the remain-

ing part of the proof is similar to that with ¢; = 0. Hence the theorem has been
proved.
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