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Abstract. We study a class of eigenfunctions of an analytic difference operator generalizing 
the special Lame operator -d2 /dx2 + 2p (x ). paying particular attention to quantum-mechanical 
aspects. We show that in a suitable scaling limit the pertinent eigenfunctions lead to 1he 
eigenfunctions of the operator -d2 /dx 2 + 2co(x) in a finite volume. We establish various 
orthogonality and non-orthogonality results by direc1 calculations. generalize the 'one-gap picture· 
associated with the above Lame operator, and obtain duality properties for the hyperbolic. 
trigonometric and rational specializations. 
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In two recent papers [I, 2] we introduced and studied eigenfunctions of an analytic difference 

operator that generalizes the Lame operator 

Hnr(g) = - d~2 + g(g - I )p (x) (I. I) 

where lfJ is the Weierstrass lfJ function. This analytic difference operator (hereafter abbreviated 

to A~O) reads 

IP ( 'R ))1/2 _ ((J(X - ifJg)) "'[; a(x + ivg + (i-> -i) (1.2) 
Hre1(g) - a(x) '~ o(x) 
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where a is the Weierstrass a function, and where Tei denotes translation over a: 

ot Et:. (1.3) 

The subscripts 'nr' and 'rcr in these formulae stand for 'non-relativistic" and 'relativistic'. 
Indeed. one clearly has the limiting relation 

/3 -4 0. (1.4) 

Accordingly. the parameter f3 may be viewed as l/c. with c the speed of light. Admittedly, this 
interpretation may seem unconvincing without further explanation, but it is beyond the scope 
of this paper to supply the necessary background. Instead. we refer the reader to our survey [3] 
and lecture notes [4] concerning non-relativistic N-particle Calogero-Moser systems and their 
relativistic generalizations. (The operators (I. I) and ( 1.2) are the (reduced) N = 2 versions 
of the quantum dynamics defining these integrable systems.) 

The present paper is concerned with the special choice g = 2 in the above operators and 
their hyperbolic, trigonometric. and rational specializations. Though the g = 2 case is covered 
by previous papers, both in the elliptic regime [I] and in the hyperbolic and trigonometric 
regimes [2], it has special features allowing a simpler and more explicit treatment Indeed, 
this paper is largely self-contained. 

On the other hand, it is illuminating to compare a number of formulae and results with their 
general counterparts in [ l] and [2]. (We refer to equations in the latter papers through prefixes 
I and II, respectively.) In particular. our focusing on functions that are not only eigenfunctions 
of Hre1 (2) ( 1.2), but also of a second independent A.t.0 commuting with Hre1(2), might appear 
unmotivated without some acquaintance with the symmetries exhibited by this Afl.0 pair in 
the general cas.e (cf equation I( 1.12)). 

Apart from its transparency and accessibility, an important reason for a separate study 
of the g = 2 case is its remarkable connection to the (reduced) two-particle sector of the 
quantized nonlinear Schrodinger model, also known as the delta-function gas. In [3] we 
already mentioned that the g = 2 hyperbolic relativistic eigenfunction transforms lead to the 
eigenfunction transform of the delta-function boson gas on the line in a certain scaling limit. 
Here, we not only supply the details of this assertion, but also prove that the relation persists 
at the elliptic level. Specifically, the finite elliptic real period corresponds to the finite-volume 
Lieb-Liniger eigenfunctions [5}. 

A second reason for zooming in on the g = 2 case is that the 'one-gap picture' associated 
with the differential operator Hnr(2) (1.1) admits a rather complete generalization to our 
analytic difference operator Hre1 (2} ( 1.2). (The 'band problem' was not addressed in I, since the 
constraint system for the general case only yields explicit information concerning eigenvalues 
and eigenfunctions in the unbounded spectral interval.) 

Last but not least, the surprising duality properties of the eigenfunctions can be more 
readily understood for g = 2. More precisely, these properties emerge in the hyperbolic, 
trigonometric and rational regimes. Thus far, no useful elliptic generalization of these 
symmetries has been found. The N = 2, g = 2 setting studied here might provide the 
simplest starting point for a search. 

Before sketching the organization of this paper, we summarize some notation, conventions 
and operator pairs that play a crucial role below. First of all, we do not work with the Weierstrass 
a function occurring in ( 1.2), but rather with its close relative 

( 
7f ){l) , 

s(r, a:;:) = u z; Zr. 2 exp(-11z-r /rr). ( 1.5) 
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(Compare with Whittaker and Watson [6] for the elliptic notation and results used here and 
below.) Various salient features of s(::) can be read off from the two product representations: 

( ) ( , I sh(ir :::/a> n'- (I - exp(-27T2k/ar + 2Jt.:/aJ)(z --+ -:::) s r, a::: =exp -r::- a) (1.6) rr/a k=I (I - exp[-2n2kjar])l 

( . - - sin(r::) n"X: (1 - exp{-2kar + 2ir::])(::--+ -z) sr,a._) _ --
r k=l (I - exp[-2kar])2 · 

( 1.7) 

In particular. one reads off that s(::) is an entire odd function with simple zeros in the 
elliptic lattice points Zn /r + iZa. Moreover, it is clear from these formulae that one has the 
limiting relations 

. sh 'f{;:;/a 
hm s(r. a; z) = ---
·-o ir/a 

(uniformly on compacts) 

I. sin r.:: ·~ 1 ts) 1m s(r. a:;::)= -- (um1orm yon compac . 
,,_rc r 

(1.8) 

(1.9) 

(These limits enable us to pass from the elliptic to the hyperbolic and trigonometric levels 
without the need for renormalizations.) Finally, from (1.7) one sees that s(z) is rr/r­
antiperiodic, and from ( J .6) one infers that s(z) obeys the analytic difference equation (hereafter 
abbreviated to AAE) 

s(;:; + 1:1/2) . 
---- = -exp(-21r.:-). 
s(:: - ia/2) 

The iterated version of this AAE, viz., 

s(r.a;z+iLa) = (-lexp(arL 2 -2irLz) 
s(r, a; z) 

(l.10) 

(1.1 l) 

will frequently be used below. 
Though this is not necessary for t;ome of our results, we asrnme from now on.that the 

numbers rand a satisfy r E [O, oo). a E (0, ooJ. Similarly, we take f3 E (0, oo). With these 
conventions in force, our starting-point elliptic Hamiltonian 

- (s(x - 2i/3)) I/2 7i (s(x + 2if3)) 1/2 + (i --;. -i) ( 1.12) 
H_ = exp(-2/3r) s(x) 1/i s(x) 

and its various specializations are formally self-aJjoint. Th f t 
In view of ( 1.5), the Hamiltonian H_ is a po5>itive multiple of Hre1(2) (l.l). e pre ac or 

chosen in H_ and in the second Hamiltonian 
( l.13) 

H+ = exp(2/3r - 2ar)(1ia + L;a) 2 . . . . . be! w These A6.0s are the g = guarantees certain invanance properties that will emerge . 0 · . H I( l.12). (Recall 
(more precise!" b - 2a ) specializations of the commuting A/J.O prur a · I . the n J• - + d [2] b I and II respecuve Y· t at we prefix equations from our previous papers [I l an Y ' ) Th H -
P 11. of the present paper. e -~ameters a_, a+ employed there equal the parameters a,,., d. · th' extra property 
e10- "' • • f' t" ns as well an 1t 1s is cen1unctions studied below are in fact H+-eigen unc 10. ' H functions. (We 
that singles them out from the infinite number of linearly independent d _f-e1gben ction 2 I ) ret · . · t see the en o su sc · · urn to this crucial uniqueness property rn the main tex ·. 

We proceed by introducing the auxiliary weight function (1.14) 
w(x) = l/s(x + i{J)s(x - i{J) 

and the auxiliary A6.0s ( 1.15) 
Bo=: w(x)-112 H6 w(x) 1n 8 ::::+. -. 
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Thus we obtain (using (I. I I) with L = I) 

B -~"rS(X+l/3)7'. c· - = e ,., .tip+ I -+ -i) 
s(x) 

( l.l6) 

( 1.17) 

Note that 8_ and B+ may be viewed as commuting operators on the space of rr:eromorphic 
functions. Below, we exhibit meromorphic (in fact, entire) joint 8 8-eigenfunctions h'.(±x), 

giving rise to joint H/j-eigenfunctions w(x) 112Jt(±x). 
We mention at the outset that there exists one representation of the eigenfunctions and 

their specializations that is common to all cases considered: we always have 

H(x)=s(x+z)exl: (l.18) 

where z and :E are complex numbers, related in general via a transcendental constraint. As 
will become clear, this structure is deceptively simple, inasmuch as in several instances a 
considerable effort appears inevitable in arriving at the desired results. In particular, the 
duality features to be uncovered in the hyperbolic, trigonometric and rational cases are very 
far from obvious when the representation (1.18) is employed. 

We continue by sketching the plan of the paper and some of its results. Section 2 is 
concerned with the elliptic case r E (0, oo), a E (0, oo), section 3 with the hyperbolic case 
r = O. a E (0, oo), section 4 with the trigonometric case r E (0, oo), a = oo, and section 5 
with the rational case r = 0, l! = oo. In section 6 we study the non-relativistic limit f3 .J., 0. 
We have isolated various distinct features of the elliptic eigenfunctions in several subsections. 

Subsection 2.1 deals with algebraic (as opposed to functional-analytic/quantum­
mechanical) aspects of the pertinent joint eigenfunctions. The choices 

2{3 E aN* (1.19) 

give rise to an A.6.0 H_ (1.12) with x-independent coefficients (just as H+). so they can be 
quite easily handled. For the ,8-intervals 

2{3 E a(k, k + l) k EN (1.20) 

we view ( 1. 18) as an ansatz for a B_ -eigenfunc: ! ui1, which yields the constraint 

s(z - i/3) 2i.BE 
----=e . 
s(z. + i/3) 

{l.21) 

We study this constraint in considerable detail, establishing in particular that some 
properties of the eigenfunctions and associated eigenvalues depend on the choice of interval 
( 1.20). We also analyse the limits as /3 approaches the upper and lower boundary points. As 
it turns out, the limits f3 t Ma and f3 .l- Ma, M EN*, do not coincide, which reveals that a 
continuous interpolation to arbitrary f3 E (0, oo) does not exist without further restrictions. (To 
understand why such interpolation ambiguities may occur a priori, it is crucial to be aware of 
the occurrence of infinite-dimensional joint eigenspaces whenever f3 /a is a rational number.) 

Subsection 2.2 is devoted to orthogonality properties of the odd linear combination 
h'.(x) - h'.(-x) for suitably discretized :E,z. E i(O,oo). Here, orthogonality refers to the 
Hilbert space 

Hu,= L 2((0,rr/r), w(x)d.x). ( 1.22) 

Not surprisingly, the 'free' cases ( 1.19) are easily seen to give rise to orthogonal bases for Hu.. 
but orthogonality is violated in the strongest possible way when fJ satisfies ( l .20) with k > 1. 
We demonstrate orthogonality fork = 0, I, but we have no proof that the pertinent functions 
arc complete in h'.U;. (We conjecture that this is the case.) 
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A hig~ligh~ of _this _paper is subsection 2.3, where we show how the Lieb-Liniger 
delta-funcllon e1gcnfunc11ons emerge by fixing c > 0 (the repulsive delta-function coupling 
constant), choosing 

fl{c. a)= a - a2c/JT (l.23) 

and letting a t 0. (Thus f3 converges to the upper limit of the k = l interval ( 1.20).) As 
will be seen. the constraint ( 1.21) gives rise to the Bethe ansatz constraint occurring for the 
(finite-volume. N = 2) delta-function eigenfunctions [5]. 

Of course. che obvious conjecture is that the relation will continue to hold for N > 2. In 
the absence of suitable results on the elliptic relativistic N > 2 case, this conjecture cannot 
be tested, however. On the other hand, it may point the way towards finding at least the 
g = 2 elliptic relativistic N > 2 eigenfunctions. In particular, one may expect that the Bethe 
ansatz equations from [5] are mirrored in more general constraint equations for the elliptic 
eigenfunctions. This scenario is also plausible in view of the N > 2 results on the elliptic 
non-relativistic integer g eigenfunctions obtained by Dittrich and Inozemtsev [7, 8), and by 
Felder and Varchenko [9, IOJ. 

In subsection 2.4 we go a long way towards extending the 'one-gap picture' associated 
with Hnr(2) (I. I) to our relativistic generalization Hrcl (2) (1.2). To put the results in context, 
let us begin by recalling that the orthogonality results obtained in subsection 2.2 have a bearing 
on the problem of turning the A6.0s Ha into bonafide self-adjoint operators on the Hilbert 
space 

1t L .., 0 d (l.24) = -c< . 7t/r), x). 
Taking the ordinary differential operator Hnr(2) as a paradigm, this re-interpretation consists 
in viewing Hnr(2) as an operator that is essentially self-adjoin! on the dense subspace 
CQ'((O. ](jr)) of 1t. But this is not the only way to associate self-adjoint operators on '.f 
to Hnr(2): we may shiftx over ia/2, so as to obtain aSchrOdingeroperatorwith ar~al-analytic 
JC I r-periodic potential 2~ (x + ia /2). This leads in a well known way to the constderatmn of 
Floquet/Bloch eigenfunctions, whose rr / r-multipliers exp(i8), 8 E. (-rr, rr ], ~ay be_fixed.to 
obtain Orthogonal bases for 1{, see, e.g .. [I I, section XIII.16 ]. In t~1s ca~e one is deal mg with 
a one-gap potential (and actually with essentially the only one having this prope~y). 

In subsection 2.4 we similarly shift the Hreigenfunctions with :E, z .E i(O, oo) over · /2 fi f to answer is whether these ia and fix their rr / r-multiplier exp(i8). Then the rst ques ion . f · th i P. E (0 a/2) each pertment unctions are once more orthogonal in 1-i. We prove at or ,., ' . . 
P · f · f3 · f · (l 20) with k > 0 1t 1s non-air o eigenfunctions is orthogonal, whereas for sails ymg · . . ] d 
orthogonal. Moreover there exists a unique extra eigenfunction with .:E E i(-r,Er a£n • I · r d real eigenvalues - , + Z - n/2r E i(-a/2 a/2) which has the relevant mu tip ier an 1 all f . , , . be! . t 1-i and it is orthogona to o m spectral bands. The additional eigenfunction also ongs 0 ' that th . . bsection 2 2 we cannot prove e previous eigenfunctions for ,B E (0, a/2). Just as m su · '. . (For El (2) the · . v b t do expect that this 1s true. nr pertinent eigenfunctions are comp/ere m n, u we . . ~ Ati.Os with 
completeness follows from Floquet theory, cf [ 11 ], but no such. theory .ex1stsat~:n' picture of 
periodic coefficients at the present time. Conceivably, the 'finlte-gap mtegr 1 b K.richever 
the integer g eigenfunctions can be used to shed light on this issue, cf the paper y 
and Zabrodin [ 12] where this picture is expounded.) A , alue the parameters In · b 1· ( 0) pecialization t 1ace v · section 3 we study the hyper o 1c r = 5 • d'ffi t footing when s(x) is 
z and :E in the constraint (l.21) still seem to be on a q~it~ 1 eret~ 11 (i e up to scaling) 
replaced by sh(.TCX /a). But in fact the hyperbolic constra1_nt is elssdentta 1:e ~;i·n novel feature symm t . Th. perty quickly ea s o 
0 e nc und~r interchange of z and :E. . ts pro . . ime): the (suitably renonnalized) 
~the hyperbohc regime (as compared with the elliptic reg 1 ·able p Moreover, e1ge f · f and a spectra vari · n unct1ons are symmetric under interchange 0 x 
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the B.1-eigenvalues take the quite simple form 2 ch(;rp/a} and 2ch(;rp/ /3) for 8 = - and+, 
respectively. (As suggested by the latter result. the hyperbolic regime is also symmetric under 
a ++ f3-a property that does remain intact for the elliptic generalization. see our previous 
papers I and II. Since we are fixing g, the latter symmetry is not visible in the present paper. 
however.) 

Physically speaking, the shift x --+- x + ia /2 in the hyperbolic setting amounts to changing 
one of the two particles into an antiparticle: the repulsive interaction turns into an attractive one. 
The band eigenfunctions from subsection 2.4 all converge to the unique particle-antiparticle 
bound state occurring for g = 2. It is an amazing fact that the repulsive (Bose) delta-function 
potential eigenfunctions on the line can be obtained not only as a scaling limit of the particle­
particle eigenfunctions (this amounts to the specialization of subsection 2.3), but also in two 
distinct ways from the particle-antiparticle eigenfunctions. This state of affairs is detailed at 
the end of section 3. 

The trigonometric (a = oc) specialization studied in section 4 leads in particular to 
orthogonal polynomials that are basically q-Gegenbauer polynomials, cf II. This regime 
is related by analytic continuation to the hyperbolic one, so that duality properties can be 
easily obtained from the x ++ p symmetry of the latter regime. In particular, the three-term 
recurrence of the polynomials may be viewed as a consequence of the fact that the trigonometric 
eigenfunctions are also eigenfunctions of an A.6.0 acting on the spectral variable. 

Section 5 contains the specialization to the rational case r = 0, a = oo. The 
duality property now consists in the pertinent eigenfunctions being also eigenfunctions of 
the SchrOdinger operator H0 ,(2) (I.I), acting on the spectral variable and with ~(x) replaced 
by {32 / sh2 (,8x). This result can also be obtained from a consideration of the non-relativistic 
limit. the subject of section 6. 

Section 6 gives rise to operators and eigenfunctions that have been known and studied 
for a very long time. Nevertheless, the novel perspective on these quantities provided by their 
generalizations in sections 2-4 is illuminating, and accordingly we spell out the relevant f3 ,J.. 0 
limits in some detail. 

2. The elliptic case 

2. I. Eigenfunctions: algebraic aspects 

It is readily verified that a function 1t(x) of the form ( 1.18) is an eigenfunction of the A.6.0 B+ 
( 1.17 ), irrespective of the choice of p, z and ::E. Indeed, it follows from the s-A~E ( 1.11) that 
11.(x) is an eigenfunction of each of the two (commuting) summands of B+· (Take L = - I 
and L = I in (I .11 ), respectively.) By the same token, for the special .B-values 

f3 = Ma M E N* (2. l) 

all functions of the form ( 1.18) are B_-eigenfunctions {with B_ given by (1.16)). 
For the P-values 

{J = (M + l/2)a MEN (2.2) 

this is no longer true, however. Nevertheless, they are also easily understood. (Note that 
just as for the /3-values (2.1) the Hamiltonian H_ (l.12) amounts to an A.6.0 with constant 
coefficients.) In view of ( 1.14), an obvious choice to obtain joint eigenfunctions of the form 
( 1.18) is to take.: = ifj and I: E C. But this is not the only choice: using (I .11 ). one sees that 

:: = rr/2r + iy :E = 2iry/a (2.3) 

yields a joint eigenfunction, too. (The z-parametrization used here may seem strange. but it 
will be convenient shortly.) 
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Let us next require that~ he long to one of the tl-intervals ( 1.20). (This amounts to choosing 
parameters in the set T> of I. sec 1<3.33 )-1(3.35).) Consider now the quotient (B_ rt)(x)/7-l(x ). 
It reads 

c-~fl• . 
- (s(x + if')s(x - if3 +z)e-•/Jl: + (i-+ -il) = E(x). (2.4) 
s(x)s(x + .::) 

Clearly, the function E(x) is not x-independent in general. However, it is elliptic with 
periods re/ r, ia, so it reduces to a constant whenever it ha.~ no poles. Choosing z not congruent 
to 0 (modulo the period lattice). each of the two tenns has simple poles at x = 0 andx = -:. 
But the residues can be made to cancel by imposing the constraint (1.21): whenever it is 
fulfilled, we obtain a joint B&-eigenfunction. 

As a matter of fact. it is expedient to write :E as 

:E = 2ir + iy (2.5) 

and work with the spectral parameter y. Accordingly, we intrcx.luce the joint eigenfunctions 

7t(x) = s(x + .:)e2in+i.r)· (2.6) 

where ;: and y are related by 

.!'(Z - i/3) = e-4/lr-'lh. (2.7) 
s(z + i{3) 

Since we may take x = i{3 in (2.4 ), the associated Breigenvalues can now be written 

E_ = s(2ifil s{z~ efir (2.8) 
s(if3) s(z + 1{3) 

E '>"r( ?1"•r+u,· -'i·r-~r-d\') 
+ = e·"' e- - · + e - - · . 

(2.9) 

. 9 · · t der the transformation group Next, we observe that equations (2.7)-(2. ) are mvanan un 
generated by 

z. y - z + ia, y + 2r 

z. y - -z. -y - 4r 

z. y - z + 7r /r, y. 

Clearly, 1l(x) (2.6) transforms as 

1l(x) -+ - exp(ar - 2izr)1t(x) 

Jt(x)-+ -1l(-x) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
7t(x)-+ -1l(x) . . 

. . . terested in real ,., since this gives 
~nder (2.10)-(2.12), respectively. Now we are pnmanly m_Ibert space as~cts dealt with in 
nse to real eigenvalues and turns out to suffice for the Hi th e always (at lea~t) two 
subsections 2.2-2.4. As we shall now detail, for any real Y edr~ art ·hoi'ces of ~ that arc r . . (2 6) ·orrespon mg 0 c ~ :nearly independent joint eigenfunctions ?t(.x) · • c 
incongruent (modulo the period lattice). . . . (2 ?). (The corresponding 'band 
. The first case arises by choosing z E 1'{ /2r+iR.sausfym~ · e crucial in subsection 2.4.) 

eigenfunctions' play no role in subsections 2.2 and 2·3· butt ey ar 0 number - of the fonn 
M · , Randall/3> a ~ ore generally. we assert that for a given Y E . . rt in addition that such a 
11' /2r + iy, y E IR, exists such that the constraint <2· ?) holds, we asse 
solution is uniquely detennined. 
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In order tn prove this, we begin by noting that the product representation ( 1.7) entails 

. 7 _ . _ch(d.)TI-x: !+exp(-4kar)+2exp(-2kar)ch(2d.) (2. 16) 
s(r.a.n/-1+1A.)- 1 ( 2k ))' · r k=I ( - exp - ar -

From this we r-ead off first of all that the right-hand side is an even function of A., which is 
positive for real J.... To exploit this, we choose z = n /2r + iy. y E IR, in the constraint (2.7). 
Then the left-hand side is positive. so we ,)btain a uniquely determined y = f (y) E IR. Now 
for 2fi j a integer we can use ( 1.11) to deduce 

f(y) = 2r(y/a - l) f3 = ka/2 k EN". (2.17) 

(Note this amounts to (2.3) for k odd.) Thus, for these special .B-values f : R -+ lR is 
monotonically increasing and onto R 

More generally. from (2.16) one readily infers that for all f3 > 0 the function 

m/J: R-+ (0,cx:) ·v'r-'>-s(n:/2r+iy-i{3)/s(Jr/2r+iy+if3) (2.18) 

is monotonically decreasing. (Consider dy In m .B ( y) to verify this.) Therefore, the function 
f(y) is monotonically increasing, and in view of (2.10) it maps IR onto R Hence f(y) has 
a single-valued real-analytic inverse y(y) mapping IR onto IR for all f3 > 0, and so the above 
existence and uniqueness assertions follow. 

Next. we observe that the transformation property (2. I 3) entails that we may as well 
restrict attention toy E [-a/2, a/2], with the endpoints giving rise to the same function 1-{(x) 

(2.6). Clearly. we have 

f (-a/2) = -3r /(0) = -2r f (a/2) = -r (2. l 9) 

so that y varies over [-3r, -r]. Accordingly, we define the joint eigenfunctions 

rl""(x. y) = s(x +T(/2r + iy(y))e2irx+ixy y E [-3r, -r]. (2.20) 

(Here, the superscript b stands for 'band', cf subsection 2.4.) For later use we record the 
.B-independent functions 

H 1 (x) = 1-{h(x. -2r) = s(x + rr /2r) (2.21) 

71.2(x) = 1-{h(x. -3r) = 'Hh(x, -r) = s(x + rr/2r + ia/2)eir' (2.22) 

which correspond to (2.19). 
We postpone a study of the eigenvalues E_ (2.8) and E+ (2.9) associated with 1-{h(x, y} 

(2.20) to subsection 2.4, and proceed with the second case: it arises by taking suitable 
:: E i(O, oc). This choice is not a~ easily understood as the 'band choice' z E n/2r + iJR 
just treated. It will occupy us for the remainder of this subsection. 

Let us begin by insisting once again on the {3-restriction ( l .20). It entails that for real J 
near oo the constraint (2.7) can be solved by a unique z(y) near i{3, located on the imaginary 
axis above/below i/3 fork even/odd. (Observe that for x E i!R the function s(r, a; x )/ sh(rr x /a) 
is positive. cf equation ( 1.6).) The question now arises whether z(y) extends to a single-valued 
real-analytic solution for arbitrary y E JR. 

As will become clear shortly, this is a quite delicate matter, which depends on the choice 
of ,B-interval. In our prevwus paper I, w~ restricted y to an interval (K. oo), with K satisfying 
a number of restrictions, including real-analyticity of z(y) on (K, oo). Thus we could view 
11.(x) (2.6) (and its g =I= 2 generalizations) as a well-defined real-analytic function J{(x, y) 
on ( K, :>0 ). Here, we shall analyse the more general choice y E lR, indicating once more the 
y-dependence explicitly. As will transpire, however, this may give rise to multi-valuedness 
both for 1-{(x. y) and for E8(y). (This feature depends on the choice of {J.) 
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We arc also aiming to clarify what happens with the eigenfunctions and eigenvalues 
as (3 converges to the endpoints of the intervals ( l.20). The obvious choice of joint B0-

eigenfundions 'H(x. y> for these endpoints reads 

'H.(x. y) = s(x + i,B)e2irx+i.1y 2{3 E aN* (2.23) 

cf the beginning of this section. (This choice is not only natural for continuity reasons, but also 
for quantum-mechanical purposes, cf subsection 2.2.) Using the Al'l.E ( 1.11 ), the associated 
eigenvalues Ei (y) are readily detem1ined. (Note that the right-hand side of (2.8) is ill defined 
for 2{3/a integer and::: = i/3.) 

Returning to ft-values in the intervals ( l .20), we begin our analysis by studying the fondion 

I (s(z: - i/3)) v(z:) = -2r - - Jn . · 2/3 s(;: + 1{3) 
(2.24) 

resulting from (2.71. Taking k even and letting z ascend the imaginary axis from i/3 to 
i(k + l )a - ifi, we read off that r(;:) varies from oo to -oo; halfway the z-intervaI we obtain 

y(i(k + l)a/2) = -r +kr (k even). (2.25) 

Similarly, taking k odd and letting z descend the imaginary axis from i{3 to ika - i/3. the 
function y(;:) varies from oo to -oo. with 

y(ika/2) = -2r + kr (k odd). (2.26) 

For later use we note that both (2.25) and (2.26) yield a joint eigenfunction proportional to 

Writing the eigenvalues (2.8}-(2.9) in the more informative form 
1/2 

E = - k is(2if3) e-2/Jr ( I . ) 
- ( ) s(if3)2 p(z) - p(1fJ) 

E+ = 2e2ffr-2"' ch(2izr + ay(z) + 2ar) 

(2.27) 

(2.28) 

(2.29) 

. I ~ k ·en and ., - -z + ika fork odd. we read off invariance under z ~ -z + 1(k + )a 10r e\ ~ · I 
( )) d H(-x y(-)) are no onger 

At the symmetry points (2.25)/(2.26) the functions H(x • J Z an . ' · ~b · t·on of . . . h · , (This follows y mspec 1 linearly independent whereas they are independent ot erwist.:. · . 1 · . · over the open mterva s zeros.) Thus we may and will restrict attention to z varying 
(2.30) 

h::: i(,B. (k +I )a/2) k even 
(2.31) 

h = i(ka/2. {J) k odd 

cfalso the paragraph containing (2.10). . . II from oz to a minimum 
F . . E d ses monntomca Y rom (2.28) we now read off that - ecrea f (2 ? 9) this conclusion cannot 

value when z goes from if3 to the other endpoint of ft. But rom . ~- d th.at the eh argument 
b d · - goes to 11, an 
e rawn; it is only evident that E+ increases to 00 ~ '- h h E i. monotonic on h. too. 

vanishes at the other endpoint (2.25)/(2.26). To establish w et er + s 

We clearly need more information on y(z). d h ·ulting case by case analysis 
A . d ds on k an t e res . s Il tum~ out, the behaviour of y(z) epen . ' . f t·on on the inverse funcuon 

o h" t denve in orma I n w 1ch we now embark will also enable us 0 3 12 cf equation ( 1.20). 
( ) · · · f3 alues a/2 a. a · · · ·· z Y and on the state of affairs for the hm1tmg -v . . · b t of i(O. a). Using ( 1.5) we 

'T' k' ·{3 d ~ + 1f3 1s a su se ia 1ng first k = 0, the interval between z - 1 an ~ 
infer 

(2.32) 
a; ln(s(z)) = -p(z) - 2.,,r/JT. 
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so we may write 

s'(- - i,8) s'(- + ifi) 1:.-iP 
-2fiy'<::.>= ~ . - ~ . = dt(-f>(t)-2w/:rr) 

.>(::. - 1fj) s(::. + 1{J) :+i/J 
(k = 0). (2.33) 

Now fort E i(O. a) the integrand has a minimumatt = ia/2, and via the product representation 
( l .6) one can obtain the identity 

_ (ia; ~. ia)- 2T]r = 4r 2 ~_n_. 
s:> 2 2r 2 11 f;r sh nar 

(2.34) 

(Compare with. e.g., [ 13.equations (2.93)-(2.98)] for details.) Therefore, the integrand is 
positive. and soy'(::) does not vanish for z between i/3 and ia - i{3. 

As a consequence. both y(z) and iz decrease as z goes from i{J to ia/2, so that E+ (2.29) 
is monotonic on /0• Moreover, the inverse function z(y) is well defined and real-analytic for 
realy. 

Now for the g = 2 case at issue, the parameter K used in our previous paper I may 
be defined as the smallt:st number for which three requirements hold true: (i) the function 
z(y) is real-analytic or. (K, oo); (ii) the eigenvalues E6 (y) separate points on (K. oo); 
(iii) the functions rt(x. y) and 1-{(-x, y) are linearly independent on (K, oo). Now linear 
independence holds true for y > -r, but not for y = -r (cfthe paragraph containing (2.10)); 
also. as we have just seen, the eigenvalues E6(y) are monotonic on (-r, oo). Thus we have 

K=-r f3 E (0, a/2). (2.35! 

Next. we choose k = I in ( 1.20). For z E / 1 (2.31) we now have z - i{3 E i(-a, 0) and 
z + i/J E i(a, 2a), so that (2.33) can no longer be used. But from (1.10) we deduce 

s'(z + ia/2) s'(z - ia/2) . (2.36) 
----- =-21r 
s(z + ia/2) s(z - ia/2) 

so we may write 

-2/3/(z) = 1=-iP dt(-,p(t)-2W/JT)+4ir 
:+i{J-2i<1 

(k = I). (2.37) 

In view of (2.34 ), the integral yields a number in i(O, oo), so that y'(z) =fa O for z between if3 
and ia - i/3. Thus. z(y) is well defined and real-analytic on R., and so we have 

K =-r f3 E (a/2, a). (2.38) 

In this case, however, y(z) decreases and iz increases as z goes from i{J to ia/2, so that it is 
not clear from (2.29) whether E+ is monotonic on 11• 

This is actually true, however. Indeed, using (2.37) the pertinent derivative can be written 

ll 1:-i/I 
2ir+ay'(z)=--2 dt(-s:>(t)-217r/:rr)+[2ir-2iar/f3] (k=I). (2.39) 

f3 :+i/l-2icl 

Since f3 E (a /2. a). the term in square brackets yields a number in i(-oo, 0), just as the first 
term on the right-hand side. Thus the derivative is non-zero, so E+ decreases as z goes from 
if3 to ia/2. 

Next. we determine what happens when f3 converges to the excluded values a/2 and a. 
Fixing y E JR. and letting /3-+ t1/2. it is clear from the above that z(y)-+- ia/2. The resulting 
limit functions 

1t(a/2; X. )') = s(x + ia/2)e2ir.<+ixy y E IR (2.40) 



coincide with the functions (2.23) for fJ = a/2. They are obviously joint eigenfunctions of 

B_ and B+ with eigenvalues 
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Note also thac 
E_ =2e-ar/2 ch(a(y+r)/2) E+=2e-"'cha(y+r). (2.41) 

fJ::::: a/2. (2.42) 

We now fix y E fO. oo) and let fJ ta. Then we deduce from (2.7) that z(y) converges to 

ia. The limit functions 

1i(a; x' y) = s(x + ia}e2irx+ixy y E [0, oo) 

coincide with (2.23) for fJ = a and yield eigenvalues 

E_ = E+ = 2chay 

in agreement with 

y E [0, oo) 

(2.43) 

(2.44) 

B_ = B+ = -e-ur (e-2irx1ia + (i ....,,_ -i)) fJ ::::: a. (2.45) 

Next, we fix y E (-oo, -2r J, yielding z(y) ,i O for fJ ta. Hence we get limit functions 

1i(a; x, y) = s(x)e2irx+ixy y E (-oo, -2r] (2.46) 

which are different from (2.23), with eigenvalue 

E_ = E+ = 2cha(y+2r) y E (-oo, -2r]. 

Finally, equation (2.7) entails 

y E (-2r, 0), f3 ta=> z-+ ia+iay/2r 

Yielding limit functions 

. . /Z ) 2irx+i.n 
1i(a; x, y) = s(x + 1a + iay r e · 

With eigenvalue 

E_ = E+ = 2 y E (-2r, 0). 

y E (-2r, 0) 

(217) 

(2.48) 

(2.49) 

(2.50) 

After this study of the /3-mterval (0, a , we c~n . 
. . J tinue by choosing fJ E (a. 3a/Z). 

Proceeding as before (cf equation (2.37)), we once again obtam 

Jz-i{J ) 2 /:rr) + 4ir (k = 2). (2.5}) 

-2/Jy'(z) = dt(-p(t - Y)T 

·+i/J-0 ia 
I 

- - . - h. h can be made as small as we p ease 

But now the integral yields a number m 1(-00, 0), w ic h h d the 7-derivative of the 

b h 
3· /2 O the ot er an • ... 

Y c oosing fJ close to a and z near Ja · n ·' ~) has a unique zero zo in 

right-hand side is positive on Ii (2.30), so we deduce that J_ «. ·(~) decreases from oo to 

I · · . A . dingly the function ) ... . 

2, provided f3 is sufficiently close to a. ccor ; nds the imaginary axis from 1/J 10 

Y(zo) :::: r - d0 , do > O, and then increases tor as '- asce 

3iaf2. 
I analytic monotonic function 

A . . ( ')extends to area - . l 

s a consequence, the mverse function z J . / d ;: ·tion on R. namely, trip e-

o ( 
. t a multt-va ue iunc I eel 

n r - do, oo). More generally, it contmues 0 . · ts r ±do single-va u 

valued .for y E (r _do, r +do). double-valu~d for the ~~.n:~gf:.~.nE (r _do'. oo) isreadily 

Otherwise. Now linear independence of'Jt(x.)) and 'H.( • 

checked (from a compa.-ison of zeros), so we ha>e 
(2.52) 

K = r _do p E (a, 3a/2). 
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Taking {3 i a. one readily obtains do ---+ rand three overlapping y-intervals with limits 

y E [0. oc) : h'.1(X, y) = s(x + ia)e2irx+ixy E+ = E_ = 2chay (2.53) 

y E (0. 2r) : 1t2(x, y) = s(x + ia + iay/2r)e2ir.r+i.ty E+ = £_ = 2 (2.54) 

Y E (-00, 2r) : h'.3(X. )') = s(x + 2ia)e2irx+ix~· E+ = £_ = 2cha(y - 2r). (2.55) 

These limits should be compared with the {3 t a limits (2.43H2.50). Specifically, it should 
be noted that the function 1l(a;x,y) equals 111(x,y) (2.53) for y E [0,oo), whereas for 
y e (-2r. 0) and y E (-oo, -2r) it equals a multiple of 1i2(x. y + 2r) and 1i3(x, y + 4r), 
respectively. 

Taking next {:J sufficiently close to 3a /2, it is clear from (2.51) that no zeros occur. Thus 
the function .::(y) is a (single-valued) real-analytic function on R., and we deduce 

do =0 {:J e [{:Jo, 3a/2) f3o E (a, 3a/2). (2.56) 

The derivative (2.39) is easily seen to be non-zero for all {3 E (a, 3a/2), so that E+ (2.29) 
is monotonic on Ii. just as£_ (2.28). Noting z(y) --+ 3ia/2 as f3 t 3a/2, we obtain limit 
functions 

11(3a/2; x, y) = s(x + 3ia/2)e2irx+ixy (2.57) 

coinciding with (2.23) for {3 = 3a/2, with eigenvalues 

£_ = 2e3"'/2 ch(3a(y - r)/2) E+ = 2ear eh a(y - r). (2.58) 

Proceeding with the choice f3 e (3a/2, 2a), we obtain z - if3 e ia(-1, 0) and 
z + i{:J E ia(3, 4), so we have 

-2f3y'(z)= r-ifl dt(-,p(t)-217r/:r)+6ir (k=3). (2.59) 
lz+iP-4ia 

Thus y'(z) is non-zero on /3 (2.31) and z(y) is well defined and real-analytic on JR. 
Correspondingly. we obtain 

K = r f3 e (3a/2, 2a). (2.60) 

In contrast to previous cases, E+ is readily seen not to be monotonic on h when f3 is close to 
2a. (The derivative 2ir + ay' (z) changes sign near z = 3ia/2.) 

Fixing y E R, we now let f3 t 2a. Then we obtain limit functions 

'H.(2a: x. y) = e2irx+ixy • s(x + ia + iay/2r) l s(x + 2ia) 

s(x +ia) 

with eigenvalues 

l eh 2a(y - 2r) 
E_ = 2e-lur · l 

ch2ay 

cha(y-2r) 

I 
chay 

)' E (2r, oo) 
y E (0, 2r) 

y E (-oo, 0] 

y E (2r, 00) 

J E (0, 2r) 

y E (-oo. OJ 

)' E [2r, 00) 

y E (0,2r) 

y E (-oo, OJ. 

(2.61) 

{2.62) 

(2.63) 

It will be clear by now how this analysis can be extended to {3 e (2a, oo). so we omit 
further details. In particular, defining 

BM = a(M, M + 1/2) U a(M + 1/2, M + 1) Me N (2.64) 
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and fixing {J E !3M. one readily deduces that z(y) extends to a monotonic real-analytic function 
on ( (2M - l )r, oo ), entailing 

K ~ (2M - l }r {3 E BM. (2.65) 

This information suffices for the orthogonality analysis on which we embark shortly. 
Before doing so, we conclude this subsection by commenting on the ambiguities revealed 

above. They show by example that there exists no joint B,i-eigenfunction 1-f.(x, y) that is 
single-valued and real-analytic for all f3 > 0 and y E JR. (By contrast, for the hyperbolic case 
such functions do exist, cf section 3.) 

In this connection it is important to recall the uniqueness result obtained in appendix B 
ofl. It says that for /31 a irrational and y E (L, oo) (with L ~ K), the joint B0-eigenspace 
corresponding to eigenvalues E8 (y) is spanned by the functions ?t(x, y) and 1{(-x, y). (Here, 
the AllOs B0 are viewed as operators on the space of meromorphic functions.) Since such 
,8-values are dense, continuous interpolations arc uniquely determined. 

2.2. Eigenfunctions: orthogonality for real x 

In this subsection we study the orthogonality properties of suitable linear combinations of the 
joint H~-eigenfunctions 

F(±x,y)=w(x)1121{(±x,y) xE(O,rr/r) yElR (2.66) 

in the Hilbert space 1t (I .24 ). Here, we take the positive square root, so we may as well work 
with H(±x, y) and the Hilbert space Hu, ( 1.22). 
. First of all, it should be emphasized that we need no restriction on y to ensure square­
mtegrability. Indeed, for f3 satisfying (I .20) the functions .'.F(±x, y) clearly ext~nd to real­
analytic functions on JR.; for the {:I-values ( 1.19) one readily verifies (using equations (2.23), 
(l.14) and (I.I I)) that 

F(x, y) = ik expix(y + 2r -k) x E (0,"Jr/r) y E lR ,8 = ka/2 k EN" (2.67) 

so square-integrability is plain, too. · 
Since the A6.0s H.s are formally self-adjoint, with real eigenvalues ~~ the ~.ncti~ns 

F(±x, y), one might be inclined to expect that the standard boundary condtuons givmg nse 
to orthogonal bases for the free cases (2.67) will also give rise to orthogonal bases when f3 
satisfies ( 1.20). As we will see, this expectation is not bome out b~ ~e facts, howev~r. . 

. Taking the differential operator Hnr(2) ( 1.1) as a lead, we recall it is_already essentially se~­
adJoint on ego ( (0, re I r) )· its eigenfunctions are generically not square-integrable over (0, JT I ) 
and ' · · h t ish at x - 0 and at x == rr I r one must restrict attention to linear combtnatJons t a van -. . 
(Dirichlet conditions). But the well-developed self-adjointness theory for diffe_renttal ope~tors 
h d t ' a pragmatic approach. we as no analog for analytic difference operators, an so we op ior . 
impose Dirichlet conditions in the relativistic case, too, and prove that orthogonality hol~s true 
~0'. k = 0, I in ( l .20), and that it breaks down fork > I. At the end of this subsecuon we 
nefty return to other boundary conditions. . . . . rthogonality 

C . . . . . h' bsectton is to mvesugate o orrespondmgly, our pnnc1pal aim m t 1s su 
properties of the functions 

. ., -i(11+2Jr.t 
if;11 (x) = s(x +z11 )e1<n+->rx +s(x - Zn)e 

:;11 = ::(nr) (2.68) 

Where we take 
(2.69) 

f1 E BM n E N n ;;:: 2M . 
( . I /2) ·f equation (2 65 )). m ihe s? that Zn is a well-defined number between if3 and t(M + a. c · 
Hilbert space 1t,;, ( 1.22). 



To hegi11 wi1h. we read off from ( 2.68 l thai we h::ivc 

/r - X) = (-)~ (2.701 

whereas 11•(.r l is dearly invariant under x --+ - x. Thus we deduce that the inner product 

1rrfr ifr,,(x)¥J..,(.t) d 
(l/t,,. "'"') = --·--·-- x 

0 s(x + 
(2.7! 

vanishes when n - m is odd. independently of the choice of fJ. 
More generally, we are going 10 prove 

(1/1~. )=0 (2.72) 

whereas 

f3 E BM M > 0 n > m ~ 2M n - m even. (2.73l 

We es1ablish these results by direct calculation (as opposed to our arguments in section 4 of I. 
where we expL>ited the eigenfunction property). 

To prove (2.72). we need to calculate the integral 

-1"'' s(x + c)s(x - d) ,2iln 11(b. c, d) = d.x . . e 
o s(x + 1b)s(x - 1b) 

f E Z c,d EC (2.74) 

with b E Bo. Denoting the integrand by F(x), one easily checks F(x + ia) = µF(x), where 
the multiplier reads 

µ = exp(-2ir[c -- d - ifoj). (2.75) 

Moreover, F(x) is :;r I r-periodic, so we can evaluate the integral via an elementary contour 
integration. This yields 

2in I . , 
lr(b.c.d) = -(,.,.b - 1--[s(ib+c)s(ib-d)e-2lhr 

s ... 1 ) ( - µ) 

- JLs(ib - c)s(ib + d)e11b'} (2.76) 

forµ =f. I, whereas forµ = I one obtains theµ -4 I limit of the right-hand side. (Note the term 

in square brackets vanishes when 1.1. (2.75) equals I, as should be the case, of course. Observe 

also that (2.74) is manifestly invariant under b -;. -b. whereas the (analytic continuation of 
the) right-hand side of (2.76) is not an even function of b.) 

Since (2.72) holds true for n - m odd, we fix a pair n =f. m with n - m even. Then, using 
(2.71 }, (2.68) and (2.74), we obtain 

('/Jn, J/!,.} = 2Uim-n1;2(f~. Zm, Zn) + l2+•m+n).dfJ, z,,,, -.::n)). (2.77) 

Substituting (2.76) and (2.75), and using 

s(i{J - z. 1)/s(i{J + Zj) = -e-l(j+llflr (2.78) 

one now verifies the announced pairwise onhogonality (2.72). 

Before turning to the proof of (2.73), we obtain an explicit norm formula for {J E f3o. 
Indeed. taking l = 0 and letting d ........ c in (2.76) and (2.75). one arrives at 

1C 

lo(b. c. c) = - 2.b [2irs(ib - c)s(ib + c) + s(ib + c)s'(ib - c) 
rs( I ) 

+s(ih-c)s'(ib+c)] bEBo 

and using this result one readily deduces 
2:;r 

{ljl,., t/111) = rs(2i{J)[.1·(i,8+.::,,)s'(i,8-z,.}+s(i{J--z,,)s'(itJ+z,,)] 

(2.79) 

f3 E Bo 11 ~ 0. 

(2.80) 
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(Note this converges to 2.1l' / r for n -+ oo.J 
In order to prove (2.73). we first observe that the integral (2.74) with b e BM is well 

defined. and can be reduced to the ca~e M = 0 by exploiting ( 1.11 ). Specifically, a routine 
calculation yields 

2i1r I _ . . , 
I1(b, c. d) = s(2ib) (I _ µ) (µ. M s(1b + c)s(1b - d)e-2/hr - µM+I s(ib - c)s(ib + d)e211") 

(2.81) 

where b E EM. (Note this entails that analytic continuation of (2.76) yields a wrong answer. 
just as it does for negative b.) Now (2.77) follows for M > 0, too, so we can invoke (2.81) to 
obtain (also using (2.78)) 

( ,1, .i. ) 4i11' ·13 ) (./3 -<n+m+4JtJrD 
'I'll• 'f'm = s(2i/3) S(l + Zn S I + Zm)e nm 

where 

Dnm = QM(t+) - QM(L) 

with 

t± = i(Zm ± Zn)/a +(I +m/2) ±(I+ n/2) 

QM(t) = sh((2M + l)art)/sh(art). 

{2.82) 

(2.83) 

(2.8-t) 

It is not difficult to see that this implies (2.73). Indeed, it is straightforward to verify that 
QM(t) is increasing on (0, oo), so the uifference Dnm can only vanish when t+ equals 1- or 
-:L This yields Zn = i(I + n/2)a or Zm = i(l +m/2)a, respectively. But since Zj• j ~ 2M. 
is a number between i/3 and i(M + I /2)a, it cannot equal i( I+ j /2)a, and so (2.73) follows. 

Let us now consider the special ,B-values ka/2, k E N*. Choosing k == I, we can use 
(2.23) to obtain 

l/ln(a/2; x) = s(x + ia/2)ei!n+2)rx + s(x - ia/2)e-i(n+2Jr.r 

= 2is(x +ia/2)eir.t sin(n + l)rx n EN n ~ 0. (2.85) 

Obviously, these functions give rise to an orthogonal base for the Hilbert space 

fi.112 == l 2((0, 1't / r), u,112(.x) dx) u,112 (.x) = I /s(x + ia/2)s(x - ia/2) (2.86) 

cf equation (l.l4). . . 
Choosing next p = (M + l/2)a, MEN*. the function w(x) (1.14) reduces to a positive 

multiple of w1f'!.· Moreover, we have (cf equation (2.23)) 
,1, . , • J '") ) -i(n+2)r.t 
'l'n((M + l/2)a; x) = s(x + i(M + l/2)a)e1<n+-Jrx +s(x - 1(M + , .. a e 

= CMl/ln-2M(a/2; x) 11 EN n ~ 2M 
(2.87) 

so that these functions yield an orthogonal base for 7-li,: as well. . 
Similarly, the choices f3 =Ma yield orthogonal b,!ses (cf equauon (2.23)) 

,,, (M ) ·< +?> x 'M ) -i!11+2>rx 
'l'n a;x =s(x+iMa)e'" _r +s(x-1 ae 

= dMs(x)cos(n - 2M + 2)rx n EN n ;;i!: 2M - 2 
(2.88) 

for the Hilbert space (2.89) 
71.o = L2((0,Jr/r),s(x)-2d.x). u (112)-

0f . d od i terms of the At:i,.Os 1:11 • 
course, these special cases are easily un ersto . n . t define associated 

<I.1 3): they reduce to 'free' A~Os and the sine- and cosine-bases serve 0 

self-adjoint operators on the Hilbert space 1i (1.24). arty results for fJ e Bo do 
By contrast, it should be mentioned that the.above o~ogo~(;)112y,,,(x) correspond to 

not suffice to rigorously conclude that the H.J-e1genfunctions · 
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commuting self-adjoint operators H0 on 1i.. This is because we have not proved that the 
functions { l{I,, }~0 are complete in 1i.,;,. Note also that in view of our non-orthogonality results, 
the formal self-adjointness of the At!..Os Ha is quite misleading. For further information on 
this circle of problems we refer to section 4 of I and to [ 4, subsection 4.1 ] . 

We conclude this subsection by ruling out orthogonality for other choices of boundary 
conditions and all f3 satisfying ( l .20). First, consider the even functions 

e,,(x) = w(x) 1' 2[1i.(x. nr) + 1t(-x. nr)] 

with (2.69) in effect. (They correspond to Neumann conditions.) We have 

en(lf/r -x) = (-)"+1e,,(x) 

(2.90) 

(2.91) 

so e,, and em are orthogonal as vectors in 7t whenever n - m is odd. For n - m even, however, 
the above calculations are easily modified to yield 

(e11 , e,,,) = 4i~ s(i/3 + z,,)s(if3 + z,,,)e-<"+m+4)flr (-QM(t+) - QM(L)) 
s (21{3) 

cf equations (2.82H2.84 ). Thus we conclude 

(2.92) 

f3 E EM M ~ 0 n > m ~ 2M n - m even. (2.93) 

By contrast. for f3 > 0 satisfying the complementary restriction ( 1. I 9), the vectors e,, give 
rise to orthogonal bases for 1-i. (One need only modify (2.85H2.88) in an obvious fashion to 
check this.) Likewise, we can construct orthogonal bases {F{x, y)} for 1-i by taking all Jin 
the set r8 /Jr + 2rZ with 8 E (-lf, n ], cf equation (2.67). Since we have F(x, y) e 1t for all 
f3 > 0 and y E R., and since H0 takes real eigenvalues on F(x, y), one might guess that the 
same boundary conditions give rise to orthogonality at least for f3 e (0, a/2). 

With the above integrals at our disposal, it is quite easy to see that this is not the case. 
Indeed, for f3 E Bo (2.64) we may fix y E lR and I E Z to obtain 

(F(·. y), F(., y + 2/r)) = 11(/J, z(y + 2/r), z(y)). (2.94) 

Now we have lz(J + 2lr) - z(y)I < a, so thatµ. (2.75) is a positive number not equal to 1 for 
l =I= 0. From (2.76) we then have 

-r 21 2iJr s(i/3 + z(y + 2/r))s(i/J - z:(y)) 
(F(·. y). J""(-, y + r)) = -(2. ') I d1(y) 

S I/> - µ. 
l E 'Ji..* (2.95) 

I (41/3 )s(i/3 - z(y + 2/r)) s(i,6 + z{y)) 
d1(J) = - µexp r -----

s(i/3 + z(y + 2/r)) :;(if3 - z(y))° 
(2.96) 

But using the constraint (2.7) one obtains d1(y) = 1 - µ,so that 

(F( ·• y), :F(·, y + 2/r)) =I= 0 l E 'll.,* fJ E Bo (2.97) 

as announced. 
Likewise. one may study f3 E BM• M > 0, taking y > (2M - l)r and I E N* (say) 

to avoid eventual multi-valuedness. Then (2.94) is still valid, and now one can use (2.81) to 
deduce that the pertinent vectors are not orthogonal in 1-i. Thus the 'Floquet/Bloch' boundary 
conditions to hand violate orthogonality for all fJ satisfying ( 1.20) when we insist on keeping 
x real, as we have done throughout this subsection. Letting x - ia/2 e (0. n/ r), however, the 
state of affairs is different, cf subsection 2.4. 
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2.3. The relatio11 to the delta-function gas infinite volume 

As announced in the introduction, the above eigenfunctions can be tied in with the well known 
eigenfunctions of the (N = 2, centre-of-mass, finite-volume) repulsive delta-function Bose 
gas. We proceed by supplying the details of the pertinent limiting transition. To this end we 
fix c > 0 (the delta-function coupling constant), and introduce the functions [5] 

( 
"k )If? • C +1 n - · . 

Dn(X) = 1 --. - elrk. +c.c. 
C -lkn 

Here. kn E (0. cc) is the unique solution of the equation 

2r 
(11 + l)r = k,, + -Arctg(kn/c) 

rr 

n EN. (2.98) 

(2.99) 

and the square-root sign is fixed by requiring continuity for c E (0, oo) and convergence to I 
for c -"" oo. It is straightforward to verify that these functions are pairwise orthogonal in 1t 
( 1.24 ), with norms given by 

1Jr/r 2rr 4c 
dx !Dn(x)l2 = - + --:;--k' o r c-+ ii 

n EN. (2.100) 

Next, choosing a < rr /2c from now on, we define ,B(c, a) by (1.23), so that 2t3 E (a, 2a). 
Then the functions 

<t>n(a; X) = [ s(r. a; x + if3)s(r, a; x - i,8) r 112 iftn(a, _13; x) n EN (2.IOI) 

(with .B = {J(c, a)) are pairwise orthogonal in rt, as we have proved above. ~n the following 
theorem we state the relevant limit for the functions <I>n (a; x ), but we find it convenient to 

prove a more general result. 

Theorem 2.1. Fixing n E N, one has 

<I>n(a;x) = Dn(X)+O(a) a i O x E (0,rr/r) 

where the bound is uniform on compact subsets of (0, rr I r ). 

(2.102) 

Proof. Since we have 2{3(c, a) E (a, 2a), the numbers z(nr) in the definition (2.6B)thofl/t;(x) 
1. 11 e have shown above at 1or a ie on the line segment between i R and ia/2. More genera y, w . 1 fi ,., . ( p )') on the Ime segmen xed Y E lR the equation (2.7) can be solved by a unique z = z a, ' 
between ip and ia - i[:J ( cf the paragraph containing (2.37) ). 

We now fix y E lR and prove 

s(x+.z) e2irx+ixy=·(c+ik) 11\ixk+O(a) xE(O,rr/r) aio. (2-'°3) 
!s(x+1f:J)I 1 c-ik · 
H JR · th ique solution of the equation 

ere, we have z = z(a, {3, y) and p = f:J(c, a), andk E is e un 
2r {21™) 

y = -r + k + - Arctg(k/c). 
rr . (Clearly the assertion of the theorem 

Moreover, the bound is unifonn on compacts m (0, rr I r ). ' 
is a consequence of this more general result.) . 

In order to prove (2.103 ), it is expedient to reparametnze z as (2.105) 
z = i/3 - iaf. 

Thus we have (cf equation (2.24)) 

I ( s(-iaf) ) 
Y = -2r - 2/3 In s{2i/3 - iaf) 

(2.106) 
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and as \" varies over JR. f varies over (0. I - lac /n ). Now we may view the right-hand side 
of (2.106) as a function. F(a, j) defined for a E (0. rr /2c) and f E (0. I - 2ac/Tt). Doing 

so. we assert that we have 

F(a. f) = F(O, /) +O(a) 

Here we have introduced 

F(O. fl = -2rf + ccot(nj) 

and the bound is uniform on compacts in (0, 1 ). 

Cl i 0. (2.107) 

/E(O.l) (2.108) 

Taking the assertion just made for granted, we obtain a function F(a, f) that is jointly 

continuous fora E [O. rr/2c). f E (0. I - 2ac/rr). Moreover, we have 

ea, fl(a. f) < o a E [0, rr/2c) f E (0, I - 2ac/n) (2.109) 

see also the paragraph containing (2.37). From this it readily follows that for a given y E ~ 

the equation .r = F(a, f) has a unique solution f = f (a, y), which is continuous in a for 

a E [O. rr /2c). 
We now prove our assertion (2.107). To this end we exploit the product representation 

( 1.6 ). Recalling ( 1.23 ), it entails 

s(2i.B - iaj) (4 [/3) . f]/ )sh(2:rrif3/a - inf) (1 o( ( 2n2 ))) -----=exp r -+ia a + exp --
s(-iaj) sh(-i:rrf) ar 

= l + 4ra(I - /) + 2ac cot(nj) + O(a2) aio (2.110) 

where the bounds are uniform on compact subsets of the /-interval (0, I). Thus from (2.!06) 
we have 

1 
F(a. f) = -2r + 2a [4ra(l - f) + 2accot(:rrf)] + O(a) a i 0 (2.111) 

so that our assertion (2.107) follows. 
To proceed. we use (1.6) once more to deduce 

s(x + if3 - iaf) 
ls(x + i,B)I = - exp(-2irx - irrj + 2ifrx) + O(a) a,l,O (2.112) 

where the bound is uniform for (x, f) in compact subsets of (0, rr / r) x (0, I). In particular, 
choosing f equal to the above solution f (a, y), we obtain 

s(x + if3 - iaf (a, y)) . . 
ls(x + i/3)l exp(21rx + 1xy) 

= -exp[-ircf(O,y)+2if(O,y)rx+ixy}+O(a) a ,i,o. (2.113) 

H~re, the b~und is unifonn for x in a compact subset of (0, rr/r), and f = f(O, y) is the 
umque solution of 

y = -2rf + ccot(rrf). (2.114) 

To conclude the proof. we now rewrite f as 

I 1 I 
f = ; Arccot(k/c) = 2" - ; Arctg(k/c) k E JR. (2.115) 

Then one easily checks t.hat (2.113) amounts to (2.103), whilst relation (2.114) turns into 
(2.104). D 

It should be pointed out that the limit relation just proved is not strong enough to rigorously 

conclude that <l>,,(a: x) converges to Dn(x) in the Hilbert space 'H. (1.24). Indeed, it does not 
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exclude that l<l>11 (a; .t)I diverges as a t 0 and x i 0 or x t rr /r. To sec that the behaviour at 
the endpoints is a quite subtle matter. notice first of all that <l>n(a; x) vanishes at x = O and 
x = rr/r, since r/!,,(x) (2.68) does. By contrast. D11 (x) is non-zero for x = 0 ~nd x = rr/r, so 
that (2.102) is false for x = 0 and x = rr / r. Similarly, (2.103) is false for x = 0 and x = 7C /r; 
for these x-valucs the left-hand side actually diverges as a t 0. 

As a matter of fact. we do not know whether l<I>n(a; x>I remains bounded on 10. rr/rl 
for a t 0. Even so. it can be seen that <l>,.(a; ·)does converge to D,1(.) in the ft-topology. 
Indeed, a reader familiar with Hilbert space estimates will have little difficulty verifying that 
for L 2--convergence to result from theorem 2.1, it is necessary and sufficient that one have 

17r/r 17r/r 
Jim dt' l<l>11 (a; x)l2 = dx IDn(x)f. 
alO o o 

(2.116) 

Now both integrals are explicitly known from the norm formulae (2.80) and (2.100). A 
third application of the product representation ( 1.6) then shows that (2.116) holds true. As a 
consequence, one deduces Hilbert space convergence of the g = 2 eigenfunctions <fln(a: ·)to 
the delta-function eigenfunctions Dn(-). 

To conclude this subsection, we would like to mention that (in contrast to the functions 
{<l>n(a; ·)}~)the functions {Dn(·)}~0 are known to be complete in ft. Inde~, this foll.ows 
from a paper by Dorl as [ 14 J: he actual Jy proves completeness of the Bethe ansatz e1genfunct1ons 
for arbitrary N. 

2.4. The one-gap picture 

Taking x-. x+ia/2 in the AtlO H_ (l.12) and using theA/lE (1.10), we obtain the formally 
self-adjoint operator 

(2.117) i1_ = (s(x + ia/2 - 2i{3)) 112 Ti (s(x - ia/2 + 2i{J)) 112 + (i-+ -i). 
s(x + ia/2) •P . s(x - ia/2) 

{Of course, the A.6.0 H+ is invariant under x -+ x + ia/2.) Fixing f3 satisfying (l.20~. the 
H--eigenfunctions :F(x, y) (2.66) give rise to iL-eigenfunc~ions by shifting x to x + ia/2· 
Omitting an irrelevant multiplicative constant, they can be wntten 

i"(x,y) = w(x) 112s<x-ia/2+z(y))exp(irx+iy.:c) 
(2.118) 

(2.119) 
w(x) = l/s(x - ia/2 + i{J)s(x + ia/2 -i/3). 

. - "!be ft ( t 24) for all real J. They 
Obv1ously, the functions :F(x, y) belong to the Hi rt space · 

satisfy 

F(x + rr /r, y) = exp(i7t y/r)f:(x, J) 
(2.120) 

. I · 1· p iB by requiring so we obtain eigenfunctions with the same 7t I r-mu lip ier ex 
(2.121) 

y~rfJ/rr+2rZ BE(-11',Jr}. . 
. . . I lued real-analytic functton 

Now we first choose f3 e (0 a/2). Then z(J) is a smg e-va . od 
R. ~ i(/J, a - /3) (as we have sho~n in subsection 2.1 ), so we may mtr uce 

l . E z (2.122) 
<Pi(fJ):=F(·,rfJ/rr+2jr) BE(-7t,1t J . 

. . . (Z llS) and (2.74), we now obtain 
where the nght-hand side is viewed as a vector m 11.. Using · 
the inner product 

(cpi(O), <f>1t.(8)) = l1t.-j(a/2 - p, ia/2- z{rB/n + 2jr), ia/2 - z(rfl/ir + 2kr)). 
(2.123) 
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Taking k =f:. j. nne sees that the quantity 11 (2.75) is not equal to l. Using equations (2.76), 

( 1.1 l) and (2.7). it can then straightforwardly be verified that 

(</>j(R), </>k(B)) = 0 8 E (-rr, ;rr] j =fa k f3 E (0, a/2). (2.124) 

(This result should be compared with (2.94)-(2.97).) 

In words. we have just proved that the H_-eigenvectors </>k(B), k E Z, are pairwise 

orthogonal when f3 E (0, a/2). But as we shall show shortly, they are not complete in H. 

(This is true in spite of the fact that their limits for f3 t a /2 are manifestly complete; recall 

;:(y) -+ ia/2 for f3 -+ a/2.) Before doing so, we study the choices (1.20) with k > 0, 

however. 
Taking first f3 E (a/2. a), the function z(y) is still a single-valued real-analytic function 

JR. -+ i(a - {3. fl). Thus the vectors <Pj (e) (2.122) are again well defined, and we obtain 

(</>j(8). </>k(B)) = h- j(/3 - aJ2, iaJ2 - z(re Jrr + 2jr), ia/2 - z(rf3 Jn + 2kr)). (2.125) 

But when we now use the explicit formula (2.76), we find that the right-hand side is a non-zero 

multiple of 1 - µ 2. Thus we deduce 

8 E (-Jr, rr} j f. k f3 E (a/2, a). (2.126) 

Turning next to the {3-interval (a, 3a/2), we recall that z(y) is not single-valued on R for 

f3 close to a and y E [r - do. r +do}. For j E Z such that re Jn+ 2jr does not belong to this 

interval, we may and shall define</> j (8) by (2.122). For such integers we again obtain (2.125), 

and so we once again deduce non-orthogonality for j i= k. 

Now fixing y E (r - do, r +do). we obtain three distinct z-values, each of which defines 

a distinct vector in H. Their inner products with vectors corresponding to the same 8, but 

y-values outside the critical interval, do not vanish, as can readily be established via the 

above calculation. Likewise, the three vectors are not pairwise orthogonal, the two vectors 

corresponding toy = r - do are not orthogonal, and neither are the two (r + do)-vectors. 

Of course, for fJ close to 3a/2 we have do = 0. Hence equation (2.122) is unambiguously 

defined for arbitrary e E (-rr, 1T] and j E z. yielding pairwise non-orthogonal vectors. 

Similarly, for f3 E (3a/2, 2a) no ambiguity occurs, and we can now use (2.81) with M = I to 
deduce 

(} E (-1T, 1T] j -=j:. k f3 E (3a/2, 2a). (2.127) 

Clearly, this analysis can be extended to larger {3-values. In particular. it is not hard to check 
that one has 

<f:<., y), f:(., y + 2lr>> =fa o fJ E BM M > 0 y > (2M - l)r l E N*. (2.128) 

Thus far, we have only taken the eigenfunctions tt(x, y). y E JR. into account. We 

contin~e by stud yin~ the role of the band functions tth (x, y) (2.20), keeping x real at first. Let 

us begin by comparmg the ranges of the eigenvalues Ea for the two choices of eigenfunctions. 

With ( 1.20) in force, we may use equations (2.28}-(2.29) when v varies over R in 1{(x. y). 

Omitting the positive prefactors, the resulting positive quantities · 

L =: (p(z) - SJ(i{J))-l/Z (2.129) 

E+ = ch(2i::r + ay + 2ar) (2.130) 

vary over ((e.~.- .P(i,B) )- 112 , oo) and [ 1, oo), respectively. 

Next, lett1_ng y vary over [ -3r, -r J in rth(x. y ), we still may use (2.29). But in (2.28) 

w~ should om11 the factor ( - )k when we take the positive square root (as we do throughout 

this paper). Indeed, from (2.8) one reads off that the band energies £_ flip sign as f3 passes 

the numbers (M + l/2)a, M E N. (Recall s(x) > o for x = rrJ2r + iA. with A. real. cf 



Relath·isth· Lwm: 'tmctions: the special case g = 2 1757 

equation (2.16 ). ) Keeping this change in mind, we are again reduced to finding the ranges of 
c and E+ for 

(::;, y) = (TC/2r + iy, j(y)) y E [-a/2, a/2]. (2.131) 

The range of Lis plain: it is given by [(e1 - p(i,BW112, (e2 - p(i/lW112]. For E+ we 
obtain the range of the function 

E+(Y) = -ch(-2yr+af(y)+2ar) (2. J 32) 

with y varying over [-a/2, a/2]. Now we have already seen that f (y) is monotonically 
increasing. Recalling (2.19) and noting that f (y) is not linear in y (since we require (1.20)), 

we obtain a range [-K. -11 for E+. where K > I depends on {3. 
The upshot is that E~(y) varies over an unbounded interval [EY>. oc) for H(x. y) and 

over a band [£ii>. £i21 ] for 7-lh(x, y), with 

0 < E~ > < E~l < E~1 i 

E~ l < E~> < 0 < E~~l 

E(ll < £(2> < 0 < £(3) 
+ + + 

fJEa(l,l+I/2) /EN 

fJ E a(l + 1/2, l + I) l EN 

2{3 E a(k, k +I) k EN. 

(2.133) 

(2.134) 

(2.135) 

Turning to the excluded ,B-values, we can use (2.29) and (2.17) to deduce that the 8 = +band 
shrinks to a point. To be specific, we obtain 

Elll = El2l = -2exp[2r(,B - a)] El3l = 2exp[2r(,8- a)] {3 = ka /2 k E N*. 

(2.136) 

Similarly, for f3 - a /2 an integer multiple of a, we read off from (2.8) that the 8 = - band 
h . 1· . t·E<~l 

s rmks to O; the B_-eigenvalue on 7-f.3(x) (2.27) yields the 1m1t o :_ : 

E~) = E'_!> = 0 E~> = 2 exp[2r,B(,B - a)/a] /3 = (M +I /2)a ME N. 
(2.137) 

Finally. when {3 is an integer multiple of a, we likewise obtain 

E(I) £(2) M l - == _ =2(-) exp[2rfJ(P-a)/a] f3=Ma MEN*. (2.138) 

E~J = 2exp[2r,B(,8 - a)/a] 
. l · F · R E (0 a/2) we 

Having disposed of the algebra we can proceed with ana ysis. mng "' · .' 
recall that we have already proved that the vectors ifoj(8) (2.122) are pairwise orthogonal m 7t 

(l.24), cf equation (2.124). We now show that they do not yield a base for H. 
To this end we define the Ii_-eigenfunctions (cf equations (2.118)-(2· 119)) 

f:"( (. ·,) yE(-3r -r). 
x, y) == w112(x)s(x - ia/2 + Jr /2r + iy(y)) exp 1r x + l).X - ' 

(2.139) 

E (-1!',Jf]. 
Of th . . · h h 7t/r-multiplier exp(i8), e ese there 1s a unique funct10n that as t e 
Specifically, this function reads 

</l(8) =:. f:l'(x, r8/Jt -2r) 8 E (-1?', :ir]. 
(2.140) 

The point is now that we have 
7f, f3 E (0 a/2). (2.141) 

(tph(8), <f>k(8)) = 0 8 E (-7t, 7t] k E . ' ed 
11 k" · e)) e not complete m 'H. as assert · 

a ing this for granted, it is plain thatthe vectors {efik( keZ ar . 
To substantiate (2.141 ), we invoke the integral (2.74) to wnte 

( b . 2 ) ·a/2 - :.(r9/tr + 2kr)). 
<f> (B), </>1.:,(())) = lk+i(a/2 - {3, ia/2 +Jr/2r - iy(rfJ/Jr - r ' 1 (2.142) 
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The quantityµ (2.75) is negative in this case, so we can use equation (2.76) to calculate the right­

hand side. Using equation (2.7). it is now routine to check that it vanishes, proving (2.141 ). 

We would like to point out that the f3 t a/2 limits of the functions rj/'(fJ) exist, but do 

not hclong to J-l. (Indeed. for x E (0. n/r) one has w(x) 112 """'* l/s(x) a<> f3 t a/2. cf 

equation (2.119).) We leave a study of non-orthogonality properties of rJ>"(B) for f3 > a/2 to 

the interested reader. and require f3 E (0, a/2) for the remainder of this subsection. 

We conjecture that the vectors 

() E (-7!'' .7!' I fJ E (0, a/2) (2.143) 

are complete in 11.. and hence give rise to an orthogonal base. Taking this for granted, it 

follows in a well known way (cf [ 11, section XIIl.16]) that we may also view fL as a self­

adjoint operator on L2(1R), with purely absolutely continuous spectrum 

[£~>. £'.!>] U [£~>, oo) £<.!) = i;;i~~; e-2fJ'(ej - p(if:l})-1/ 2 j =I, 2, 3 (2.144) 

of multiplicity two. 
On account of equations (2.21 ), (2.22) and (2.27), the functions at the spectral boundary 

points may be taken to be 

.f1(x) = w(x)'l2s(x+n/2r+ia/2)expirx (2.145) 

.f2(x) = w(x)'12s(x+rr:/2r) 

F3(X) = w(x) 112s(x). 

(2.146) 

(2.147) 

~ote tha~ F1 is a J"( I r-period!c function, whereas F2 and J::.~ are rr: / r-antiperiodic; furthermore, 
F1 and F'!. are even. while :F3 is odd. 

3. The hyperbolic case 

We continue by studying the hyperbolic specialization. Thus s(x) equals ax-1 sh(rr: x /a), cf 

equation ( 1.8). In this case it is convenient to employ the variables a+ and a_ from I instead 
of fJ and a. We also use the notation 

e8(x) =exp(rrx/aa) 8=+,-. 

(3. l) 

To bring out the remarkable self-duality property of this limiting case, we switch to the new 
spectral variable 

p = a+a-y/n. 

Accordingly. B_ (l.16) and B+ (l.17)turn into 

s_(x + ia+) 
B_ = ( ) Iia. + (i __,,. -i) s_ x 

B+ = -CT;,,_ + (i -.. -i)). 

Similarly. takmg first a+ E AM, with 

AM= a_(M. M + 1/2) U a_(M + 1/2, M +I) 

the joint eigenfunction (2.6) becomes 

11.(x) = rr- 1 a_s_(x + z) exp(i1Z' xp /CZ+a-) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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where .::: and p arc related via 

.L(.: - ia+) 
. =e_(-2p). 

.\'_(.:+Itl+) 

This entails 

I '( 'Jr ]f ) p {.:) = -:; cth -(: - ia+) - cth -(z + ia+) 
- (L a_ 

i sin(2Jra+/a_) =---------2s_(z - ia+)L (z + ia+) · 

1759 

(3.7) 

(3.8) 

Hence, p'(:) is non-zero and p(::.) decreases from oo to 0 as z goes from ia+ to i(M + l/2)a_, 
cf also equations (2.10) and (2.11) with r = 0, a =a_. 

In the trigonometric case we will arrive at a relation similar to (3.7). We now digress 
to derive useful consequences of this type of relation, employing a standard form that is not 
cluttered by scale factors and reality restrictions. 

Specifically. we start from a relation of the form 

sh(a - t) __ e-2y a, y,t e !C a, y,t =f. illk/2 k E Z. 
sh(a + t) 

(3.9) 

In this formula a and y appear to play different roles, but in fact (3.9) is equivalent to 

sh(y - I) = e-2a (3.IO) 
sh(y + t) · 

Indeed, writing the left-hand side of (3.9) as (tha eh t-sh t)/(tha eh t+sh t) and solving for 
tha, one obtains 

th a th y = th t. 

Conversely, equation (3.11) entails (3.9) and (by symmetry) (3.10). 

Yet another relation equivalent to (3.9) reads 

2sha cht -ir 
----=l+e . 

(3.11) 

(3.12) 

sh(a + t) 
This will be used to get rid of the parameter z in eigenvalues. To get rid of z in eigenfunctions, 
we use the following consequence of (3.9): 

2sh(71 +C.\') = [sh(y + t) sh(y - t)rl/2(ch(17 + y)e1 - ch(77 - y)e-r) 77 EC. (3.13) 

(This equation can be verified by writing 2 sh(11 +a)= eqea - e-qe-a. and then using <3· 1?> 
t · ::1: • • • bel h t rm in square brackets 1s 
0 Write e a in terms of y and t.) In the apphcat10ns ow t e e 

positive and it is readily verified that the positive square root is needed. . _ _ 
R · h · · fth fonn(39)w1tha=:rr:../a_,y-eturmng now to relation (3.7), we note t at tt is o e · ' . 

JTp/a_ and t = hra+fa_. Invoking (3.13) with Tf = JrX/a-. we can wnte 

2s_(x +z) = [s_(p + ia+)s_(p - ia.+)r1' 2(qc_(x + p) -7fc-<x - p)) 

where we have introduced the phase factor 

q == exp(iJta+/a_). 

(3.14) 

(3.15) 

Combining this with (3.6), it follows that the functions 
(. I a > (3.16) 

K(x.p)s=2[qc_(x+p)-qc_(x-p)]ex:pi:rrxpa+ - . 
a B . · ·c1e with the functions K1(x. p) given by 
re 6-eigenfunctions, too. (These functions comc1 

no .Is).) 
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The function K(.r. p) is manifestly symmetric under x ++ p (self-duality), so it is also an 

eigenfunction of the A~Os 

· L(p + ia+) • . .) 
B_ = T,,,. + (1 --+ -1 

s_ (p) 

B+ = -<i'" + (i --+ -i>l 

where Tu acb on functions of p by 

(Tc,F)(p) = F(p - a) a E <C. 

The four eigenvalues involved can moreover be written 

8 =+,-. 

(3.17) 

(3.18) 

(3. 19) 

(3.20) 

To substantiate the last assertion, we note that by symmetry one need only check 

£ 0 = 2c0 (p). Now for 8 =+this is evident from (3.18) and (3.16), whereas the o = -
result is not immediate. but can be obtained directly from (3.17) and (3.16). A quicker way, 

however. is to note that the elliptic formula (2.8) specializes to 

s_(z) . 
E_ = 2 . c_(ta+)e_(p). 

s_(;: + 1a+) 
(3.21) 

Recalling (3.7) and the equivalence of (3.9) and (3.12), one deduces E_ = e_(p) + e_(-p), 

as asserted. 
With the constraint relation (3.7) eliminated, it is evident from (3.16) that we are free to 

choose a+ E (0, oo). Taking a+ equal to ka_/2, k EN*, from (3.16) we obtain 

K(x, p) = 2cirrkf2[c_(x + p)- (-)kc_(x - p)]exp(irrxp/a+a_) (a+ =ka_/2).(3.22) 

Hence we have 

K(x, p) = cks_(x)s_(p) exp(ixxp/a+a_) 

K(x, p) = ckc_(x)c_(p)exp(ixxp/a+a_) 

Defining the weight functions 

whyp.o(u) = !/s_(u)2 

Whyp.1;2(u) = l/c_(u)2 

(k even) 

(k odd). 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

it is evident that a suitable multiple of K (x, p) yields the kernel of a unitary operator from 

L 2(1R., Whyp_..(p) dp) onto L2 (1R., whyp.s(x) dx), with s = 0 fork even and s = 1/2 fork odd. 
Next, we introduce 

Whyp(u) = l/s_(u + ia+)L(u - ia+). (3.27) 

Then it can be shown that for a+ E Ao (3.5) a suitable multiple of K(x, p) (3.16) yields the 

kernel of a unitary operator from the odd subspace of L2(JR, wh (p) d p) onto the odd subspace 

of L2(1R. whyp(x)dx), whereas isometry is violated on the ev:n subspace; for a+ E AM with 

M > 0 isometry is violated on both subspaces. 

It should be noted that these results tie in with the elliptic orthogonality a,1d non­

orthogonality results obtained in subsection 2.2. The proofs of the assertions in the previous 

paragraph are, however, quite different, and involve some new machinery. This also applies to 

the Hilbert space results paralleling those in subsection 2.4, to which we now turn. (We will 

address these functional-analytic aspects elsewhere.) 
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. Takin~ .x -. x + ia_/2 in the joint B~-eigcnfum:tions K(x, p) (3.16), we obtain joint 
e1genfunct10ns ()f B+ (3.4) and the 'crossed channel' A.D.O 

- c_(x + ia+) . . 
B_ = 7;,, + (1 -+ -1) 

L(X) + (3.28) 

with eigenvalues 2c+(P) and 2c_(p). respectively. Omitting a multiplicative constant, these 
can be written 

K (x. p) = 2[qs_(.x + p) - qs_(.x - p)]exp(irrxp/a+a-). (3.29) 

Introducing 

ti1hyp(X) = l/c_(x + i12+)c_(x - ia+) (3.30) 

we now detail the state of affairs concerning isometry properties. First. we choose a+ e 
(0. a_/2). Then a suitable multiple of K(x, p) yields the kernel of a unitary operator from 
the even subs.pace of L2(R. !Viiyp(p)dp) onto the odd subspace of L2(1It whyp(x)dx). The 
odd subspace of L2(R, whyp(P dp) is mapped isometrically onto the orthocomplement in the 
even subspace of L 2{JR, whyp(x) dx) of the constant functions. (Note that B_ has eigenvalue 
2cos(rca+/a_) on the latter. while B+ has eigenvalue -2.) 

For a+ > a_/2 and a+ ;t:. ka_/2, k E N, these isometry properties break down. Again, 
this is analogous to our elliptic results, cf subsection 2.4. Observe also that the even bound 
state 

K(x) =I (3.31) 

can be viewed as the limit of the band functions 'H.h (x, y) for r .J, 0. More precisely, from the 
product representation ( 1.6) one easily deduces 

~iffl crs(r, a; ;r/2r + x) = I Cr 5 exp(-JT2/4ar)1!/2a (uniformly on compacts). 

(3.32) 

Thus, when the functions 7th (.x, y) (2.20) are multiplied by the renormalizing constant en they 
all converge to 1 as r ..j.. O, uniformly on x-compacts. . . . 

To conclude this section, we consider the relation of the above functtons to t~e mfimte­
volume delta-function potential eigenfunctions. Of course, the formulae in subsection Z.3 are 
easily specialized for r = O, but the somewhat involved reasoning in the proof of theorem 2· 1 

can be bypassed by taking K (x, p) (3.16) as a starting point. 
Indeed, when one substitutes 

a+ - a_ - a:.c/1! 

in the function 

K(x, ka+a-/rr) 
E(x k) = · >I ' - 41s_(x +i12+)s_(ka+a-/JT +ia+ 

then it is quite easy to check directly that one has 

k E JR. 

E(±x, k) == i ~ exp(±ixk) +O(a_) ( ± 'k)l/2 x E (0, oo) a_ ..j.. 0. 
C=f lk 

Furth · ennore, the crossed channel eigenfunction 

- K (x, ka+a-/tr) 
E(x, k) = 41c-(x + ia+)s_(ka+a-/tr + ia+>I 

keR 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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has almost the same limiting behaviour: 

E(±x. k) = ±i ~ exp(±ixk) + O(a_) ( ± "k) 1/2 

c =t= 1k 
x E (0, oc) a_ .j, 0. (3.37) 

There is yet a second. essentially different way to tie in K(x, p) (3.29) with the delta­

function eigenfunctions, however. Specifically, Jet us put 

a+-+ a_/2 - a:.c/2rr (3.38) 

in the function 

K(xa+a-/rr, k) 
F(x,k) = . . I 

4ie-(xa+a-/rr +ia+)s_(k+ia+) 
X E JR. (3.39) 

Then it follows from the same calculation as before that one has 

( c ± ix) 112 
F(x, ±k) = ± --. exp(±ixk) + O(a_) k E (0, oo) tL 1- 0. 

C =t= Lt' 

(3.40) 

As is well known, the odd part of the 'distinguishable particle' delta-function transform 

yields the sine-transform on L2((0, oo)), whereas the even part yields the unitary operator on 

L2((0, oo)) with kernel 

. - ~ (c+ip)112 . 
D(y, p) = 1(2rr) 11- --.- exp(typ) +c.c. 

C-lp 
y. p E (0, 00). (3.41) 

In view of the above limits, one needs the odd transform associated with K and the even 

transforms associated with K to obtain the kernel D in the pertinent limits. It should be 

stressed that for none of these scaling limits there is an operator in sight that has the formal 

limit 

Hdelia = -d2 /dy2 + 2c8(y) (3.42) 

of which D(y, p) is an eigenfunction with eigenvalue p 2• Rather, the existence of the transform 

limits was suggested by considerations from scattering theory, cf (3, section 4C]. 

4. The trigonometric case 

We proceed by studying the trigonometric specialization of the above elliptic results. Thus 

s(x) reduces tor- 1 sinrx, cfequation (1.9). Thea-+ oo limitoftheA.6.0 B+ (l.17) does not 

exist, so we wind up with the A.6.0 B_ ( 1.16). Omitting the prefactor exp(-2{Jr), we obtain 

the trigonometric A.6.0 

sin r(x + i/3) . . 
B = . 'fjp + (1 ~ -1). (4.)) 

smrx 

Instead of (l.20), we now have only one ,6-interval (0, oo), and the equations (2.9), (2.10) and 

(2.13) have no trigonometric counterparts. 

Choosing firstz = rr /2r+iy, y E JR. in (the trigonometric specialization of) the constraint 
(2.7), we obtain 

eh r(y - /J) -.J.f:i -?fJ. 
chr(y + {J) = e r - ) (4.2) 

Thus we find a uniquely detennined solution y = f (y) E (-3r, -r). yielding a B­
eigenfuoction 

rt(x. }') = r- 1 cosr(x + iy(y))e2ir.1+ixy }' E (-3r, -r). (4.3) 
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Clearly, we have 

1i1(x) = H"(x, -2r) = r-1 cosrx 

1i2(x) = lr Jim c-ry<.i·) 1ih(.x, y) = 2r lim ery(yJ 1-f."(x, r) == J. 
.\f-r yi-3r • 

Next choosing:: E i(fi, oo), the constraint (2.7) entails 
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(4.4) 

(4.5) 

'( ) r sin(2if3r) y 7 - --: _____ ....:._ ___ _ 

~ - -2/} sin(r(z - if3)) sin(r(z + if3)) · (4.6) 

Co~se~uently, y'(::) is non-zero and y(z) decreases from oo to -r as z goes from if3 to ioo. 
Sw1tchmg to the new parameter 

K = -iz E (/3. oo) 

we obtain the B-eigenfunctions 

1i(x. )') = r- 1 sin r(x + i1C(y))eix(y+2r> y E (-r, 00) 

with K(J) uniquely determined by 

shr(K - /3) = e-2/;lcy+Ir) 

shr(K + ,6) 
)' E (-r, 00). 

(4.7) 

(4.8) 

(4.9) 

Comparing equations (4.9) and (3.9), we obtain equality for a= Kr, y = f3(y + 2r) and 
t:::::: f3r. From (3.13) (with T/ = -irx) it then follows that we may write 

1t(x' J) = i(2r)-1 [ sh f3(y + 3r) sh ,B(y + r) f1 12[ ch(,B(y + 2r) - irx)e.Br 

- ch(.8(y+2r)+irx)e-.8']eixCy+2r)_ (4.10) 

Similarly, specializing (2.8) we deduce from (3.12) that the associated eigenvalue can be 
reWritten 

E = 2 eh fJ(y + 2r). 
(4.11) 

Though we have assumed y E (-r, oo) in deriving (4.IO) and (4.11). it follows from 
(2.11) and (2.14) that we also obtain a B-eigenfunction {4.IO) with eigenvalue (4.11) for 
Y E (-oo, -3r). Moreover, it is not hard to check that for y E (-3r, -r) the function 1f.(x • Y) 
(4.10) amounts to the eigenfunction Jth(x, y) (4.3), so that the B-eigenvalue on 1f.h(x, y) is 
once again given by (4.11 ). 

Next, we consider the eigenfunctions 

i/ln(X) = 1i(x, nr) -1t(-.x, nr) 

in relation to the Hilbert space 

H.;;= L 2((0,Jr/r).r2[sinr(x+if3}sinr(x - ifJ)r'dx). 

Specializing (2.72) and (2.80), one readily obtains 

{ 
0 n=/=m 

(1/tn,l/lm)= 21(/r n=m. 

More is true; the B-eigenfunctions l/Jn are in fact an orthogonal base for 1f.,;,,. 
To prove this, it suffices to show that the functions 

Pn(X) = [ sinr(x + i,B)sinrx sinr(x - i{J)r'l/rn(x) 

are total in the Hilbert space 

L 2((0, rr/r), sinr(x +i,B)sin2 rxsinr(.x - i,B)dx). 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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We switch to the functions Pn(x), since they are polynomials in cosrx of degree n. Taking 
this assertion for granted, it is plain that Po. Pi. ... , span the space (4.16). 

To prove the assertion, we note that Pn(x) is clearly a rational function of the variable 
z = eirx. The poles oftheprefactor in (4.15) at z = ± 1, ±e.Br and ±e-tlr are cancelled by zeros 
of i/ln• so that P,,(x) equals a Laurent polynomial Qn(Z, z- 1 ). Now P,,(x) is even in x, so Q,, 
is invariant under z ~ z-1• Hence Qn may be viewed as a polynomial in z + z-1 = 2 cos r x. 
Taking z ~ oo one sees that the pertinent degree is n, so our assertion follows. 

As a consequence of the orthogonal base property, it follows that the At:..0 B gives rise to 
a self-adjoint operator in the Hilbert space 1tw. It should be stressed that it is the polynomial 
character of the functions Pn(x) that renders completeness obvious in the trigonometric case. 
There is no analog of this feature at the elliptic level, which is why completeness of the functions 
{l/r,,}~0 is left open in that case. 

Specializing the non-orthogonality results for the even eigenfunctions 1t(x, y) + 1t( -x, y) 

with y = nr, n E N, and for the Floquet/Bloch eigenfunctions (cf the end of subsection 2.2), 
we also obtain non-orthogonality in the trigonometric regime. On the other hand, the former 
eigenfunctions are obviously polynomials 'Rk of degree k = n + 3 in cos r x, cf equation ( 4.10). 
Therefore, one might be inclined to believe thatthere exists a weight function W (x) on (0, rr / r) 
that differs from w(x), such that the orthogonal polynomials associated with W(x) yield B­
eigenfunctions coinciding with Rk fork ~ 3. 

This contingency can be ruled out, however. To be sure, for y = -2r the eigenfunction 
1t(x, y) (4.10) reduces to a multiple of cosrx, and omitting the square-root factor one can put 
)' = -3r or y = -r to obtain a constant eigenfunction, cfalso equations (4.4) and (4.5). Thus 
B does admit polynomial eigenfunctions R1: of degrees k = 0, I, 3, 4, .... But we claim that 
B has no degree-two polynomial as an eigenfunction. 

Indeed, a straightforward calculation yields 

B cos2(r x) = 2 ch(,8r)(cos2(r x) - sh2 (,Br)). (4.17) 

Thus, B has a non-trivial Jordan form in the invariant vector space spanned by the two functions 
cos2 r x and l, and so our claim follows. 

We proceed by detailing a connection between the hyperbolic and trigonometric settings, 
which naturally leads to duality properties of the latter. First, we observe that the hyperbolic 
eigenfunction 7t(x) (3.6) gives rise to the trigonometric eigenfunction 1t(x, y) (4.8) via the 
substitutions 

a+ ~ fJ a_ ~ rr /ir np/a_ ~ fJ(y + 2r) 

Comparing equations (3.3) and (4.1), we see that (4.18) entails 

B-~B 

in agreement with (4.11). Similarly, from (3.4) we obtain 

B+~ -Q 

where Q is the quasi-periodicity At:..0 

Z ~ iK. (4.18) 

(4.19) 

(4.20) 

Q = Trcfr + T-7r/r· (4.21) 

Next substituting (4.18) in K(x, p) (3.16) and in the A.6.0s fL (3.17) and B+ (3.18), we 
obtain 

L(x, )') = 2[e-P' ch(ir.x + ,8(y + 2r)) - efir ch(ir .x - ,B(y + 2r))]ei.t<y+2r) (4.22) 

B- sh(fJ(y + 3r)) - sh(,B(y + r)) -
- = T,. + L (4 23) 

sh(,8()' + 2r)) sh(,8()' + 2r)) r · 

B+ = -<'ii"tJJ + Ci -+- -i)) (4.24) 
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where Ta acts on meromorphic functions of y by 

(TaG)(y) = G(r - Q') a EC. 

The eigenvalues of i3- and B+ on L(x, y) read 

iL = 2cosrx E+ = 2ch(rrx/{3). 

Since we clearly have (cf equation (4.10)) 
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(4.25) 

(4.26) 

1t(x. J) = (4ir)-1 [sh(f3(y + 3r)) sh(f3(y + r))i-112 L(x, y) (4.27) 

the function 1t(x, y) is an eigenfunction of the analytic difference operator 

EL= (sh,B(y+3r)) 112 T. (sh,B(y+r)) 112 

sh,B(y+2r) r sh,B(y+2r) 

+ ( sh,B(y+r) )l/2 f_r (shfJ(y+3r))t/2 (4.28) 
sh,B(y+2r) shfJ(y+2r) 

with eigenvalue iL. Hence it follows that (i/ro(x), lft1 (x), ... ) is an improper eigenfunction 
of the discrete difference operator 

D= (sh(n+3)fJr)1;2 s(sh(n+l)(3r)112+h.c. (4.29) 
sh(n + 2)f3r sh(n + 2)(3r 

on the Hilbert space l2(N). Here, Sis the right shift 

{ 
0 n = 0 

(Sf),, = fn-1 n > 0 
(4.30) 

with f = (/0 , / 1 •... ) E /2(N), and h.c. stands for Hennitian conjugate. To be quite precise, 
(r /2n) 1121/! n (x) may be viewed as the kernel of a unitary operator from 11 (N) onto 'Hu., 
(4.13), diagonalizing the bounded self-adjoint operator Das multiplication by 2cosrx, cf 
also theorem IV. I in II. 

5. The rational case 

The rational specialization of the above can be most easily obtained by letting r .l. 0 in the 
trigonometric quantities. To begin with, this yields the rational AAO 

x+i/3 . .) (5.1) 
B = --T;p + (1->- -1 

x 
cf equation (4.1). The (renormalized) band functions (4.3) reduce to_ constant.functions, on 
which B has eigenvalue 2. From equations (4.8) and (4.9) we get B-eigenfunctions 

H(x, y) = (x + iK(y))eixy y E (0, oo) (5.2) 

with K(y) given by 

K - f3 -1/h --=e . 
K + f3 

J E (0, oo). 

Moreover. the B-eigenvalue reads 

E = 2ch(,By) 

cf equation (4.11). 
Taking r .i O in (4.10), we can eliminate K altogether: 

in-1i(x, y) = (x + if3cth (/3y))e ·. 

(5.3) 

(5.4) 

(5.5) 



1766 SN M Ruijsenaars 

Alternatively, this formula follows directly from the constraint (5.3), since the latter amounts 

to 

K(y) = /kth (/3J). (5.6) 

The odd combination 

i{t(x. y) = H(x. y) - H(-x, y) = 2x cos(xy) - 2f3 cth(f3y) sin(xy) (5.7) 

gives rise to an isometry from L 2 ((0, oo), dy) onto L 2((0, oc), (x 2 + {3 2 )- 1 dx) (after 
multiplication by a suitable constant). The even combination has a non-integrable singularity 
as y ,). 0, and so it does not yield an isometry. 

Turning to duality properties, we note first that 1t(x, y) is an eigenfunction of the Af).0 

fl+ = Tirr;p + Ci ~ -i) 

with eigenvalue 

E+ = 2ch(1rx/f3). 

(5.8) 

(5.9) 

It is also easy to verify directly that n(x, y) is an eigenfunction of the differential operator 

fJfOl := _ ~ + ~f32 (5.10) 
dy2 sh-(f:ly) 

with eigenvalue 

f;~l =x2. (5.11) 

This can be understood from H(x, y) (4.8) being an eigenfunction of the A.6..0 fJ_ (4.28) with 
eigenvalue 2 cos rx: writing fr = exp(-rd/dy), subtracting 2 and dividing by -r2 , we obtain 
fJ~0> and £<!!> for r + 0, respectively. 

Of course, fJ~0> amounts to the hyperbolic specialization of the non-relativistic Lame 
operator Hnr (2) ( 1.1 ). This state of affairs can also be understood from a study of the non­
relativistic limit, with which we now proceed. 

6. The non-relativistic limit 

We conclude this paper by studying the non-relativistic limit f3 .J, O. Beginning with the elliptic 
case, we subtract I from the left-hand side and right-hand side of (2.7), divide by f3, and let 
f3 .J, 0 to obtain 

is'(z)/s(z) = y +2r. (6.1) 

Thus the function (2.6) has limit 

'Ho(x) = s(x + z) exp(-xs'(z)/s(z)). 

Clearly, it is an eigenfunction of the f3 .J, O limit 

BiO) = -e-3'"(e-2irx7ia + (i ~ -i)) 

of B+ ( 1.17), with eigenvalue 

(6.2) 

(6.3) 

E (O) 2 -2ar h(2" . I + = e c tzr + ias (z)/s(z)). (6.4) 

~r~ting T;p = exp(-i,Bd/dx) in e21:1r B_, subtracting 2 and dividing by 132, we obtain the f3 i 0 
hm1t 

d ? ,, 

B~> = __ - _ s (x) + 2s'(x) ~ 
dx2 s(x) s(x) dx · 

(6.5) 
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Using equations (2.8) and (2.7) to expand p-2(c2fir E _ 2) ·t d"l f; 11 . 
B~ I-eigenfunction with eigenvalue - , I rea I y o ows that Jto(x) is a 

£ (0) 
- :::::: -p(;:) +417r/n. 

(To verify this directly is not a trivial matter.) 

The weight function w(x) ( l.I4) has limit 

wo(x) = l/s(x)2. 

Setting 

we obtain 
8=+,-

H~Ol = _ d2, _ 2s"(x) + 2 (s'(x))2 

dx- s(x) s(x) 

and also 

ct" 
= -d--:; + 2[,p(x) + 217r/n] 

x-

= Hnr<2) + 4ryr /rr 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

H1°i = e-2ar1ia + (i _,. -i). (6.10) 

. One can easily check that the constraint (6.1) and the eigenvalues (6.4) and (6.6) are 

Invariant under (2.10}-(2. l 2), and that the transfonnation properties (2.13)-(2.15) still hold 

when 1i.(x) is replaced by 'Ho(x). Choosing first z E n/2r + iR, we may use (2.16) to obtain 
Y = fo(y) ER with 

"-o(y) - 2 th ~ exp(-2kar)sh(2ry) 
;1 = - r+r (ry)+4r L., · 

k=I I +exp(-4kar)+2exp(-2kar)ch(2ry) 
(6. I I) 

Hence fo is monotonically increasing and maps R onto JR. It is not hard to see that fo satisfies 

(~.19), so we need only choose y E [-a/2,a/2] and y E [-3r, -r], as before. The band 
eigenfunctions are then again given by 

1t~(x, y) = s(x + rr /2r + iy(y))e2irx+i.ry y E [-3r, -r] (6.12) 

With Y(y) the inverse of fo(y ); also. (2.21) and (2.22) still apply when rt" is replaced by 7t~. 
Letting next z ascend the imaginary axis from Oto ia, it is clear that y varies over R from 

00 to -oo, with y(ia/2) = -r; furthermore, y(z) is monotonically decreasing in view of 

(2.32) and (2.34 ). Denoting the inverse by zo(Y), we get joint BJ0l -eigenfunctions 

1to(X, y) = s(x + zo(y))e2irx+ixy y E R (6. 13) 

As before, we have 

1t3(X) = 71.o(x, -r) == s(x + ia/2)ei" (6.14) 

cf equation (2.27). 

. In contrast to the relativistic case. the Hnr(2)-eigenfunctions wo(X) 11271.o(X} arc not square­

~teg~ahle over (0, n I r), since l/s(x )1 has a non-integrable singularity at x == 0 and x = rr /r. 
onsider next the functions 

cf>,i(x)::::: Wo(x) 1' 2f1i.o(x, nr) -1l0 (-x, nr)J 

_ I [ ·c .,> ) -i<11+21rx l - - s(x + z )e1 n+_ r.< + s(x - .,. e 
s(.x) rr -..n 

x E (0, n/r) (6.15) 
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with::,,= ::0(nr) E i(O, a/2) given by 

is'(::,,)/s(.:n) = (11+2)r n EN. (6.16) 

The function in square brackets vanishes at x = 0 and is ;r / r-periodic (antiperiodic) for n 
odd (even). Hence <t>11 (x) does give rise to a vector in the Hilbert space rt (1.24). Note 
that (the analytic continuation of) <I>n (x) is even, as opposed to its relativistic generalization 
w(x) 111ifr11 (X), which is odd for real X. (This parity change can be readily understood by 
comparing the functions x H- x 2 and x H- x(x 2 +E2) 111 , E > 0.) 

It is not hard to see that the differential operator Hnr(2) gives rise to an essentially self­
adjoint operator on the subspace C0 ((0, rr/r)) of rt, and that the vectors <I>,,(.) are in the 
domain of the self-adjoint closure H nr(2). Using the Weyl-Kodaira-Titchmarsh theory we 
expect one can show they are actually an orthogonal base of eigenvectors for H nrC2), but to our 
knowledge the details have not been worked out in the literature. (Of course, only completeness 
is at issue; orthogonality is plain in the differential operator setting.) 

Taking completeness for granted, we can exploit the eigenvectors to associate a sclf-adjoint 

Hamiltonian H~O) with the A6.0 H~0> (6. 10), by setting (cf equation (6.4)) 

H~OJ<f.> 11 = El~~<Pn El~~= 2e-2ar ch(2iznr + (n + 2)ar) n EN (6.17) 

extending linearly. and taking the closure. It should be observed that the A6.0 Hl0> has 
constant coefficients, whereas the eigenfunctions cf.> 11 (x) are not in any sense 'free'. 

To be sure. we have a similar state of affairs at the relativistic level, cf fl_ (1.12) and 
H+ (l.13). In that case, though, the pertinent eigenfunctions w(x) 112ifin(X) of the defining 
A6.0 H _ are singled out in the infinite-dimensional eigenfunction space by requiring that they 
be eigenfunctions of the 'free' A6.0 H+, too. cf the end of subsection 2.1. By contrast. for 
the Schr6dinger operator HnrC2) the eigenfunctions span a two-dimensional space. and self­
adjointness requirements uniquely determine the relevant eigenfunctions. To our knowledge, 
the existence of a self-adjoint, commuting operator H~Ol with a very simple action (namely, 

(0) -by the A6.0 H+ (6.10)) on a core for H nr(2) has not been observed before, neither for the 
elliptic potential 2p(x) nor for its hyperbolic specialization, which we study below. 

Before doing so, we add some remarks concerning the band functions (6.12). First, we 
recall their role in the spectral analysis of the operator 

- d2 
HnrC2) = - dx 2 + 2p (x + ia/2) (6. 18) 

viewed as a self-adjoint operator on L 2 (IR) in the obvious way. The key point is that besides 
the functions Ho(x + ia/2, y), y E JR (cf equation (6.2)), the functions 1-{~(x + ia/2. _r). Y E 
(-3r, -r], are the only eigenfunctions of the differential operator on the right-hand side of 
(6.18) that have a real eigenvalue and a ;r / r-multiplier that is a phase. (This well known 
fact follows from a consideration of the discriminant of the periodic Schrodinger op~rator 
(6.18) at hand, but a quite short proof will be given in a moment.) Thus it follows that Hnr(2) 
has a purely absolutely continuous spectrum [-e1, -e:d U [-e3, ex::) with multiplicity two. cf 
[ 11, section Xm. I 6J and references therein. 

Comparing this state of affairs to our findings in subsection 2.4, the reader will see why 
the completeness conjecture made there is plausible. A suitable gt:neralization of the well 
known lore on periodic Schrodinger operators to ALl.Os with periodic coefficients might settle 
this open problem. 

. ~ith the a~ove fom:mlae at our disposal, it is actually quite simple to demonstrate the key 
pomt JUSt mentioned. First, we note that the eigenvalue -r.> (;:) takes all values in (-oo. oo) 
as z varies over the rectangle with comers O, rr /2r, rr /2r + ia/2 and ia/2 (with the first 
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corner excluded, of course). Thus we need only consider the functions Ho(x)/s(x) (given 
by equation (6.2)) and their complex conjugates for:: on the rectangle. The latter have the 
same eigenvalue -1? (::) and arc linearly independent of the former unless::: equals one of the 
last three comers. (A second eigenfunction E; (x) independent of H.; (x )/s(x). j E {I. 2. 31. 
can be easily constructed via reduction of order, but E; (x + rr / r) does not equal /LE 1 (x) for 
someµ E C.) Hence it suffices to prove that they-value given by (6.1) is not real for:: on the 
horizontal sides of the rectangle. 

Now for:: between ia /2 and ia /2 + rr /2r we may write 

s'(~) f,z 
---::-- = -ir + (-s;>(w) - 2rv/Jr)dw 
S (_) ia/2 

z - ia/2 E (0, rr/2r) (6.19) 

cf equations (2.32) and (2.36). The integral equals 0 for z = ia/2 + Jr /2r and the integrand 
decreases monotonically as w goes from ia/2 to ia/2 + rr /2r. Since -e3 - 217r/rr is positive 
(cf equation (2.34 )), we deduce that the integral yields a positive number for z between ia/2 
and ia/2 + rr /2r. Therefore, the associated y-value has a non-zero imaginary part. 

It also follows from the previous paragraph that -e2 - 2l}T /rr is a negative number. 
A fortiori, -s:;> ( w) - 2w /TC is negative for w E (0, rr /2r j. Now for z between 0 and rr /2r we 
have 

s'(z) f rr/1r 
- = (~(w) +217r/rr)dw 
s(z) z 

zE(0,rr/2r) (6.20) 

so it follows that s' (z) / s(z) is positive. Hence y is not real, and the proof is complete. 
Proceeding with the hyperbolic specialization, we let r ,j, 0 in the above formulae. 

obtaining the operators 

H (O) - '[; + T. + - Ja -w 

(0) d2 7r2 2JT (l!X) d 
B = -- - - + - cth - -- dx2 a2 a a dx 

H<Ol = _ d2 + ~1!' 2 = sh- 1 (rrx/a)B~> sh(nx/a). 
dx 2 a2 sh-(;r x /a) 

The constraint (6. l) becomes 

cth(rrz/a) = -iay/rr 

which amounts to 

y + irr/a 
exp(2;irz/a) = . I -y-ma 

Thus 'Ho(x) (6.2) can be rewritten 

'lio(x. y) ~ ; (a2y2 ~ •'>"' [aysh( ":) + iHCh( •:) ],"' 

and the eigenvalues become 

E~0> = 2 ch(ay) 

A suitable multiple of the odd combination 

1/to(x, J) = Ho(x, y) - 'Ho(-x, y) 

= 2a I [aysh(~)cos(xy)-nch(~;)sin(x)')] 
rr (a2y2+rr2)1/2 a 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 
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yields an isometry from L 2 ((0. oo). dy) onto L 2((0. oo). sh-2 (:rrx/a) dx). The even 
combination does not vanish for x __,. 0. so it does not give rise to an isometry. 

Comparing the above hyperbolic formulae and the rational specialization in section 5, one 
reads off that they are related via the substitutions 

.X ~ )' f3 - TC /a. (6.29) 

From this the pertinent duality property of the joint B1°l-eigenfunction 11.o(x, y) (6.26) is clear: 
it is also an eigenfunction of the Al'>.O 

- (y-2iTC/a) 112 - (y+2in/a) 112 .. H := Tin/a + (l _.,. -1) 
y y 

(6.30) 

with eigenvalue 

E = 2ch(nx/a). (6.31) 

(The arbitrary-g generalization of this non-relativistic-hyperbolic versus relativistic-rational 
duality was first pointed out in [3, subsection 3B2].) 

Just as in section 3, we can also take x - x + ia/2 to get operators 

-(0) d2 Jr 2 27t (1TX) d B =----+-th - -
- dx 2 a2 a a dx 

(6.32) 

- (0) d2 2n2 I - (0) 
H_ = --d ., - 2 ., =eh- (::rx/a)B_ ch(:rrx/a). 

x- a ch-(nx/a) 
(6.33) 

The iJ',?l -eigenfunction 

Ho(x, y) = a 1 [ay eh (rrx) +in sh (TC x)]eixy 
rr (a2y2+rr2)1/2 a a 

(6.34) 

gives rise to an isometry from the even subspace of L 2(JR, dy) onto the odd subspace of 
L 2 (1R, ch-2 (TCx /a) dx), whereas the odd L 2(JR, dy)-subspace is mapped isometrically onto 
the orthocornplement in the even L 2(IR, ch-2(n x /a) dx )-subspace of the constant functions. 
(The bound state energy equals -:rr 2 / a 2, cf equation (6.32).) 

We continue by specializing to the non-relativistic trigonometric regime. This can be done 
in three distinct ways, each of which yields the same results: we can take a t oo in the elliptic 
formulae, perform a suitable analytic continuation in the hyperbolic formulae, or let f3 .!. 0 in 
the formulae of section 4. We now detail the latter option. 

The Al'>.O B ( 4.1) yields the non-relativistic limit 

(0) d2 7 d B =--d 2 +r-+2rcot(rx)- (6.35) 
x dx 

corresponding to the SchrOdinger operator 

<O> d2 2r2 . 
H = --d , + . ., = sm- 1 (rx)B(Ol sin(rx}. 

x- sm-(rx) 
(6.36) 

The constraints (4.2) and (4.9) become 

r th(ry) = y + 2r rcth(rK) = y + 2r (6.37) 

respectively. Eliminating y and K yields the B<O>_eigenfunction 
1 I 

1io(x' y) = ; (y2 + 4ry + 3r 2) 112 [ (y + 2r) sin(r x) + ir cos(r x) ]ei.t(y+2rl (6.38) 

with eigenvalue 

E<O> = (y +2r)2. (6.39) 
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The odd eigenfunctions 

i./J,~0'C:r) = H.o(x. nr) - 11.o(-x, nr) 

give rise to an orthonormal base for the Hilbert space 

L 2 ( (0. re I r), r 3(2Jr sin1(r x) )- 1 dx ). 

n EN 
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(6.40) 

(6.41) 

(Just as .in ~ection : ·~ompleteness follows from the functions sin-3(r x)ip~0l(x} being 
polynom1als m cosr.x ,)1 degree n.) The f3 t 0 limit of(4.17) reads 

s<O' cos2(n} = r 2(cos2(rx) - 2) 

and is readily checked directly from (6.35). 
Using (4.28) one deduces that 11.o(x, y) is an eigenfunction of the dual A.6.0 

_(Ol -(y+ 3,.)112 _ ( y+r )J/2 ( y+r )1/2 _ (y+ 3r)l/2 H_ - -- T, -- + -- T_, --y + 2r y+2r y+2r y+2r 
with eigenvalue 2cosrx. The discrete difference operator 

D<Ol = (n + 3)1/2 S (n +I )l/2 + h.c. 
n+2 n+2 

(6.42) 

(6.43} 

(6.44) 

on l2(N) is then diagonalized as multiplication by 2 cos r x on the Hilbert space (6.41) via the 
unitary with kernel (i/l~oi(x), lfl'i°>(x), ... ). 

Finally, we turn to the rational case. As before, this most degenerate case can be reached 
via various paths, yielding the same results: one gets the operators 

BCOl = -~ + ~~ HCO> = -~ + ~ = ~s<O)x (6.45) 
dx2 x dx dx1 x2 x 

and B<0>-eigenfunctions and -eigenvalues 

'lio(x, y) = (x +; )eixy £(0) = y2. (6.46) 

The HC0l_eigenfunction Jio(X, y)jX is manifestly self-dual (symmetric under X # J). The 
even combination 

cf>COl (x, y) = 2 cos(xy) - 2 sin(xy)/xy (6.47) 
Y.ields the kernel of an isometry on L 2((0, oo)), whereas the odd combination does not give 
nse to a bounded operator on L2((0, oo)). 

N d"' · [ 15] • d that bears out che scenario sketched in ote a ued. After completion of this paper a preprint by Billey · appeare . . . . . be ~ nd the paragraph below ( 1 .., ~) More preci'sely she shows that N > 2 elliptic relat1v1;11c e1genfuncuons can ou · ·~· · · I · · not obvious th:ll her via a suitable (nested) Bethe ansntz.. provided the coupling Ii is an integer. Unfortunate Y· it 15 . . · . - 2 B . , t those of Lieb and L1mgerby appropnate K - ethe ansatz equations and eigenfunctions can be made to convergt.: 0 

substitutions. but we have little doubt that this is feasible. 
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