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S N M Ruijsenaars*
Centre for Mathematics and Computer Science, PO Box 94079, 1090 GB Amsterdam. The
Netherlands

Received 19 Angust 1998

Abstract. 'We study a class of eigenfunctions of an analytic difference operator generalizing
the special Lamé operator —d*/dx” + 2g (x), paying particular attention to quantum-mechanical
aspects. We show that in a suitable scaling limit the pertinent eigenfunctions lead to the
eigenfunctions of the operator —d?/dx? + 2¢8(x) in a finite volume. We establish various
orthogonality and non-orthogonality results by direct calculations. generalize the ‘one-gap picture”
associated with the above Lamé operator, and obtain duality properties for the hyperbolic.

trigonometric and rational specializations.
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1. Introduction

In two recent papers [1,2] we introduced and studied eigenfunctions of an analytic difference
operator that generalizes the Lamé operator
d 2
Hu(g)=—773 +g(g — Dpx) (L1
where g is the Weierstrass g function. This analytic difference operator (hereafter abbreviated

to AAQO) reads

, . 12
o —if)\"" Eﬁ{_’“._‘f’ﬁf_)) + (i i) 2
He(g) = (W’) T o(x)
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where o is the Weierstrass o function, and where T, denotes translation over «:
(Tuy Hx) = flx —a) xeC. (1.3)

The subscripts ‘nr’ and ‘rel” in these formulae stand for ‘non-relativistic’ and ‘relativistic’.
Indeed. one clearly has the limiting relation

He(g) = 2+ B> Hor(g) + O(BY) g — 0. (1.4)

Accordingly, the parameter 8 may be viewed as 1/¢, with ¢ the speed of light. Admittedly, this
interpretation may seem unconvincing without further explanation, but it is beyond the scope
of this paper to supply the necessary background. Instead, we refer the reader to our survey [3]
and lecture notes [4] concerning non-relativistic N -particle Calogero-Moser systems and their
relativistic generalizations. (The operators (1.1) and (1.2) are the (reduced) N = 2 versions
of the quantum dynamics defining these integrable systems.)

The present paper is concerned with the special choice g = 2 in the above operators and
their hyperbolic, trigonometric, and rational specializations. Though the g = 2 case is covered
by previous papers, both in the elliptic regime [1] and in the hyperbolic and trigonometric
regimes [2}, it has special features allowing a simpler and more explicit treatment. Indeed,
this paper is largely self-contained.

On the other hand, it is illuminating to compare a number of formulae and results with their
general counterparts in [1] and [2]. (We refer to equations in the latter papers through prefixes
Iand II, respectively.) In particular, our focusing on functions that are not only eigenfunctions
of He1(2) (1.2), but also of a second independent AAO commuting with Hi;(2), might appear
unmotivated without some acquaintance with the symmetries exhibited by this AAO pair in
the general case (cf equation I(1.12)).

Apart from its transparency and accessibility, an important reason for a separate study
of the g = 2 case is its remarkable connection to the (reduced) two-particle sector of the
quantized nonlinear Schrodinger model, also known as the delta-function gas. In [3] we
already mentioned that the g = 2 hyperbolic relativistic eigenfunction transforms lead to the
eigenfunction transform of the delta-function boson gas on the line in a certain scaling limit.
Here, we not only supply the details of this assertion, but also prove that the relation persists
at the elliptic level. Specifically, the finire elliptic real period corresponds to the finite-volume
Lieb-Liniger eigenfunctions [5].

A second reason for zooming in on the g = 2 case is that the ‘one-gap picture’ associated
with the differential operator H(2) (1.1) admits a rather complete generalization to our
analytic difference operator Hye1(2) (1.2). (The ‘band problem’ was not addressed in I, since the
constraint system for the general case only yields explicit information concerning eigenvalues
and eigenfunctions in the unbounded spectral interval.)

Last but not least, the surprising duality properties of the eigenfunctions can be more
readily understood for g = 2. More precisely, these properties emerge in the hyperbolic,
trigonometric and rational regimes. Thus far, no useful elliptic generalization of these
symmetries has been found. The N = 2, g = 2 setting studied here might provide the
simplest starting point for a search.

Before sketching the organization of this paper, we summarize some notation, conventions
and operator pairs that play a crucial role below. First of all, we do not work with the Weierstrass
o function occurring in (1.2), but rather with its close relative

T ia
s(roa.z) = a(z: > -:)-) exp(—nzzr/n'). (1.5)
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(Compare with Whittaker and Watson [6] for the elliptic notation and results used here and
below.) Various salient features of s(z) can be read off from the two product representations:
S

shimz/a) ¢ (1 —exp[—2n’k/ar + 2nz/a))(z — —2)
I1

L@ 7) = exp(—rz’ o

5. a:2) = expl—ra /)= 11 (1 — exp{—27%k/ar])? o
. - -~ _ — . M ~” - —

a2y = 0D 1 (1 — exp[—2kar +2irz])(z - —2) (1D

T (1 — exp[—2kar))?

In particular, one reads off that s(z) is an entire odd function with simple zeros in the
elliptic lattice points Zn /r + iZa. Moreover, it is clear from these formulae that one has the
limiting relations

sh rz/a

lims(r.a:z) = (uniformly on compacts) (1.8)
r=0 n/a

lim s(r.a:2) = s (uniformly on compacts). (1.9)
o= 0%

{These limits enable us to pass from the elliptic to the hyperbolic and trigonomem.c levels
without the need for renormalizations.) Finally, from (1.7) one sees that _s(z) is mfr-
antiperiodic, and from ( 1.6) one infers that s(z) obeys the analytic difference equation (hereafter
abbreviated to AAE)

S(:+1‘a/2) = —exp(—2ir?). (1.10)
s(z—1a/2)

The iterated version of this AAE, viz.,
S(r,a;z+iLa) =(——)Lexp(arLz—-2ifLZ) LGZ (l.]l)

s(r,a;z)
will frequently be used below.
Though this is not necessary for some of our rcs.ults,
humbers r and a satisfy r € [0, 00), a € (0, 00]. SimllaFly, we t
conventions in force, our starting-point elliptic Hamiltonian

. 12
—2iB) 1/2 5(x+21ﬁ) : —-i) (1.12)
H. = exp(=26) (s(xy(x)‘f_) T (W +(i— =)

and its various specializations are formally self-ajoint.

In view of (1.5), the Hamiltonian H-. is a positive multipl
chosen in H_ and in the second Hamiltonian

H, = exp(2Br — 2ar)(Tiy + T=ia)

guarantees certain invariance properties that will emerge
(more precisely, b = 2a,) specializations of the commu oo T I respectively: the
that we prefix equations from our previous papers [1] and mf d):e resen{ paper.) The H--
PeTAmeters a._, a, employed there equal the L arameters 7. ‘ :vcll asd it is this extra property
g e ctions studied below arein fct F,-cigetind B2 af[siande,m H_—elgenfunc(ions. (We

that singles them out from the infinite number of lingaﬂy inde he end of subscction 2.1.)
Feturn to this crucial uniqueness property in the main text, see

we assume from now on that the
ake B € (0, 00). With these

¢ of He(2) (1.2). The prefactor

(1.13)

below. These AAOs are the g = 2
ting AAO pair H; I(1.12). (Recall

We proceed by introducing the auxiliary weight function (1.14)
W(x) = 1/s(x +if)s(x — iB)
and the auxiliary AAOs (1.15)

By =w(x) P Hy)' )t §=+
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Thus we obtain (using (1.11) with L = 1)
_ e_-_,;,rs(x +iB)
- 5(x)

L = _elﬂr—.?ur(e—Zir.\'Tiu + (i — —i)). (1.17)

B Tig+ (i = —i) (1.16)

Note that B_ and B, may be viewed as commuting operators on the space of meromorphic
functions. Below, we exhibit meromorphic (in fact, entire) joint Bs-eigenfunctions H(=%x),
giving rise to joint Hj-eigenfunctions w(x)'/>H(%x).

We mention at the outset that there exists one representation of the eigenfunctions and
their specializations that is common to all cases considered: we always have

H(x) = s(x +z)e*T (1.18)

where z and T are complex numbers, related in general via a transcendental constraint. As
will become clear, this structure is deceptively simple, inasmuch as in several instances a
considerable effort appears inevitable in arriving at the desired results. In particular, the
duality features to be uncovered in the hyperbolic, trigonometric and rational cases are very
far from obvious when the representation (1.18) is employed.

We continue by sketching the plan of the paper and some of its results. Section 2 is
concerned with the elliptic case r € (0, 00),a € (0, 00), section 3 with the hyperbolic case
r =0, a € (0, 0o0), section 4 with the trigonometric case r € (0, o0), a = o0, and section 5
with the rational case r = 0, ¢ = 00. In section 6 we study the non-relativistic limit 8 | O.
We have isolated various distinct features of the elliptic eigenfunctions in several subsections.

Subsection 2.1 deals with algebraic (as opposed to functional-analytic/quantum-
mechanical) aspects of the pertinent joint eigenfunctions. The choices

28 € aN* (1.19)

give rise to an AAO H_ (1.12) with x-independent coefficients (just as H.), so they can be
quite easily handled. For the S-intervals

2Bealk, k+1) keN (1.20)
we view (1.18) as an ansatz for a B._-eigenfunc::on, which yields the constraint

s(z —iB) . cziﬂz

s(z+ip)

We study this constraint in considerable detail, establishing in particular that some
properties of the eigenfunctions and associated eigenvalues depend on the choice of interval
(1.20). We also analyse the limits as 8 approaches the upper and lower boundary points. As
it turns out, the limits 8 + Ma and 8 | Ma, M € N*, do not coincide, which reveals that a
continuous interpolation to arbitrary 8 € (0, o) does not exist without further restrictions. (To
understand why such interpolation ambiguities may occur a priori, it is crucial to be aware of
the occurrence of infinite-dimensional joint eigenspaces whenever 8/a is a rational number.)

Subsection 2.2 is devoted to orthogonality properties of the odd linear combination

H(x) — H(—x) for suitably discretized X, z € i(0,c0). Here, orthogonality refers to the
Hilbert space

(1.21)

Hy = L2((0, 7t/r), W(x) dx). (1.22)

Not surprisingly, the *free’ cases (1.19) are easily seen to give rise to orthogonal bases for Hz.,
but orthogonality is violated in the strongest possible way when g satisfies (1.20) with k& > 1.
We demonstrate orthogonality for k = 0, 1, but we have no proof that the pertinent functions
are complete in Hy,. (We conjecture that this is the case.)
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A highlight of this paper is subsection 2.3, where we show how the Lieb—Liniger
delta-function eigenfunctions emerge by fixing ¢ > 0 (the repulsive delta-function coupling
constant), choosing

Ble.ay=a - a’c/w (1.23)

and letting a | 0. (Thus B converges to the upper limit of the k = 1 interval (1.20).) As
will be seen. the constraint (1.21) gives rise to the Bethe ansatz constraint occurring for the
(finite-volume, N = 2) delta-function eigenfunctions [5].

Of course. the obvious conjecture is that the relation will continue to hold for N > 2. In
the absence of suitable results on the elliptic relativistic N > 2 case, this conjecture cannot
be tested, however. On the other hand, it may point the way towards finding at least the
8 = 2 elliptic relativistic N > 2 eigenfunctions. In particular, one may expect that the Bethe
ansalz equations from [5] are mirrored in more general constraint equations for the elliptic
eigenfunctions. This scenario is also plausible in view of the N > 2 results on the elliptic
non-relativistic integer g eigenfunctions obtained by Dittrich and Inozemtsev [7, 8], and by
Felder and Varchenko [9, 10]. ‘ ) ]

In subsection 2.4 we go a long way towards extending the ‘one-gap picture ?ssoc1aled
with Hor(2) (1.1) 1o our relativistic generalization Hy(2) (1.2). To put the results in context,
let us begin by recal ling that the orthogonality results obtained in subsection 2.2 have a beﬁnﬂg
on the problem of turning the AAOs Hj into bona fide self-adjoint operators on the Hilbert
space

H = L*(0, /r), dx). (1.24)

Taking the ordinary differential operator Hy(2) as a paradigm, this re-interpretation cgnsusts
in viewing Hy,(2) as an operator that is essentially self-adjoint on‘tl.ae dense su SPa;:
C3°((0, /r)) of H. But this is not the only way to associate self-adjoint operators °l“ !
10 Hy (2): we may shift x over ia/2, so as to obtain a Schrodinger operator witha “‘:gl-a?i: l).’t(l:;
T/r-periodic potential 2 (x +ia/2). This leads ina well known way to the const bZ";‘ixe o
Floquet/Bloch eigenfunctions, whose 7/ r-multipliers exp(i6), 8 € (~7.7], “_‘aﬁ ling with
obtain orthogonal bases for , see, e.g., [11, section XI11.16]. In ll?ns case one 1srt e;t g
4 one-gap potential (and actually with essentially the only one having this prope : ({) ) 00) over

In subsection 2.4 we similarly shift the H;-eigenfunctions with I, 2 S whe'(hel’ these
ia/2 and fix their rr/ r-multiplier exp(i§). Then the first question to answexzz) each pertinent
functions are once more orthogonal in . We prove that for b GO (0’.‘;{ X > 0 it is non-
pair of eigenfunctions is orthogonal, whereas for f satisfying (1.2 ).v;: S e i(—rr] and
Orthogonal. Moreover, there exists a unique extra elge.nf}mcuo(;x W;: s e E.
¢=7/2r € i(~a/2,a/2), which has the relevant multiplier an :’.(.S oihogonal to all of
In spectral bands. The additional eigenfunction also belongs to 74, and it}

E tions tol ﬁ € 0 a 2 . Just as i“ SubSCC[lon 2.2, we Callnol pXOVC [ha[
( £l / ) (

the pertinent eigenfunctions are complete in H, but we o expec heory exists for AAOs with
Completeness follows from Floquet theory, of [11], but nosuch t eoryintegration' picture of
Periodic coefficients at the present time. Conceivably, the ﬁ_mte-ga?th ¢ paper by Krichever
the integer ¢ eigenfunctions can be used to shed light on this 1ssue, ¢ P
and Zabrodin [12] where this picture is expounded.) lue, the parameters
In section 3 we study the l!:yperbolic (r=0) specxahzafmﬂ(i_g[rf:;e ;:O[ing w:cn s(x) is
¢ and X in the constraint (1.21) still seem to be on a quite &1 entially (i.e.. up to scaling)
*eplaced by sh(srx fa). But in fact the hyperbolic constraint Is ?ssgs to the main novel feature
Symmetric under interchange of z and . This property qmc%dy f-zathe (suitably renormalized)
of the hyperbolic regime (as compared with the elliptic ,-egnm‘e)- .ral variable p. Moreover.
€igenfunctions are symmetric under interchange of x and a Spec



1742 S N M Ruijsenaars

the Bs-eigenvalues take the quite simple form 2 ch(mp/a) and 2ch(mp/B) for § = — and +,
respectively. (As suggested by the latter result, the hyperbolic regime is also symmetric under
a <+ f—a property that does remain intact for the elliptic generalization, see our previous
papers I and II. Since we are fixing g, the latter symmetry is not visible in the present paper,
however.)

Physically speaking, the shift x — x+ia/2 in the hyperbolic setting amounts to changing
one of the two particles into an antiparticle: the repulsive interaction turns into an attractive one.
The band eigenfunctions from subsection 2.4 all converge to the unique particle—antiparticle
bound state occurring for g = 2. It is an amazing fact that the repulsive (Bose) delta-function
potential eigenfunctions on the line can be obtained not only as a scaling limit of the particle-
particle eigenfunctions (this amounts to the specialization of subsection 2.3), but also in two
distinct ways from the particle—antiparticle eigenfunctions. This state of affairs is detailed at
the end of secticn 3.

The trigonometric (¢ = oc) specialization studied in section 4 leads in particular to
orthogonal polynomials that are basically g-Gegenbauer polynomials, cf II. This regime
is related by analytic continuation to the hyperbolic one, so that duality properties can be
easily obtained from the x <> p symmetry of the latter regime. In particular, the three-term
recurrence of the polynomials may be viewed as a consequence of the fact that the trigonometric
eigenfunctions are also eigenfunctions of an AAO acting on the spectral variable.

Section 5 contains the specialization to the rational case r = 0,a = co. The
duality property now consists in the pertinent eigenfunctions being also eigenfunctions of
the Schrodinger operator Hy, (2) (1.1), acting on the spectral variable and with g (x) replaced
by ﬁz/ shz(ﬂx). This result can also be obtained from a consideration of the non-relativistic
limit, the subject of section 6.

Section 6 gives rise to operators and eigenfunctions that have been known and studied
for a very long time. Nevertheless, the novel perspective on these quantities provided by their
generalizations in sections 2—4 is illuminating, and accordingly we spell out the relevant 8 | 0
limits in some detail.

2. The elliptic case

2.1. Eigenfunctions: algebraic aspects

It is readily verified that a function H(x) of the form (1.18) is an eigenfunction of the AAO B,
(1.17), irrespective of the choice of 8, z and X.. Indeed, it follows from the s-AAE (1.11) that

H(x) is an eigenfunction of each of the two (commuting) summands of B,. (Take L = —]
and L = 1 in (1.11), respectively.) By the same token, for the special 8-values
B =Ma M e N* 2.1

all functions of the form (1.18) are B_-eigenfunctions (with B_ given by (1.16)).
For the B8-values
B=(M+1/2)a MeN (2.2)

this is no longer true, however. Nevertheless, they are also easily understood. (Note that
just as for the B-values (2.1) the Hamtiltonian H_ (1.12) amounts to an AAO with constant
coefficients.) In view of (1.14), an obvious choice to obtain joint eigenfunctions of the form
(1.18)istotake - = if and £ € C. But this is not the only choice: using (1.11), one sees that

I=n/2r +1y E =2ry/a (2.3)

yields a joint eigenfunction, too. (The z-parametrization used here may seem strange, but it
will be convenient shortly.)
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Letus nextrequire that 3 belong to one of the g-intervals (1.20). (This amounts to choosing
parameters in the set D of 1, see [(3.33)-1(3.35).) Consider now the quotient (B_H)(x)/H(x).
It reads

e e co L BT L Yo
;—(—X—)S—(t—:_;‘_; (.S(.\ + lﬁ)S(X - lﬁ +2)e + (1 — —])) = E(x) (2.4)

Clearly, the function E(x) is not x-independent in general. However, it is elliptic with
periods 7 /r, ia, so it reduces to a constant whenever it has no poles. Choosing z not congruent
10 0 (modulo the period lattice). each of the two terms has simple poles at x = 0and x = —z.
But the residues can be made to cancel by imposing the constraint (1.21): whenever it is
fulfilled, we obtain a joint B;-eigenfunction.

As a matter of fact. it is expedient to write T as

T =2ir +iy (2.35)
and work with the spectral parameter y. Accordingly, we introduce the joint eigenfunctions

Hx) = s(x + :)eZir.t+i.¥)' (2.6)
where z and y are related by

s(z—if) = a-Br=2By 2.7

s(z+iB)
Since we may take x = i8 in (2.4), the associated Bj-eigenvalues can now be written

- s(218)  s(z) oBr 2.8

s(iB) s(z+iB)

E, = eZﬂr(elizrwy g g~ lizr—dar—avy 2.9)

Next, we observe that equations (2.7)~(2.9) are invariant under the transformation group
generated by

ey 2.10)
2 T Z:;
L,y > z+mw/ry.

Clearly, H(x) (2.6) transforms as (2.13)
H(x) — —exp(ar — 2zrH(x) (2.14)
H(x) = —H(-x) (2.19)
Hix) — —H(x) interested in real ¥, since this gives

under (2.10)(2.12), respectively. Now we are primarily
Tise to real eigenvalues and turns out to suffice for the
Subsections 2.2-2.4. As we shall now detail, for any r¢
linearly independent joint eigenfunctions H(x) (2.6), cOrTes
incongruent (modulo the period lattice). o sponding ‘band

~ The first case arises bgechoosing z € x/2r +iR salistyng @7 );; iﬁlfizlo:;esfgsectifn 24)
eigenfunctions’ play no role in subsections 2.2 and 2.3, but they ar 0 a number 2 of the form

ore generally, we assert that for a given ¥ € R and all B > rt in addition that such a
T/2r +iy,y € R, exists such that the constraint (2.7) holds; we 455

solution is uniquely determined.

Hilbert space aspects dealt with in
al v there aré always (at least) two
'ponding 10 choices of z that are
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In order to prove this, we begin by noting that the product representation (1.7) entails

a7/ ik = ch('rk) ﬁ +exp(—4kar) + 2cxp(~2kar)ch(2r)»).

. (2.16)
(1 — exp(—2kar))*

k=1
From this we rzad off first of all that the right-hand side is an even function of A, which is
positive for real A. To exploit this, we choose z = 7/2r + iy, y € R, in the constraint (2.7).
Then the left-hand side is positive, so we obtain a uniquely determined y = f(y) € R. Now
for 28/a integer we can use (1.11) to deduce

fy=2r(yfa—-1) B=ka/2 keN". (2.17)

(Note this amounts to (2.3) for k odd.) Thus, for these special B-values f : R — R is
monotonically increasing and onto R.
More generally, from (2.16) one readily infers that for all 8 > 0 the function

mpg 1 R— (0, cc) v s()2r +iy —iB)Y/s(m/2r +iy +iB) (2.18)

is monotonically decreasing. (Consider 3, Inmg(y) to verify this.) Therefore, the function
f(y) is monotonically increasing, and in view of (2.10) it maps R onto R. Hence f(y) has
a single-valued real-analytic inverse y (y) mapping R onto R for all 8 > 0, and so the above
existence and uniqueness assertions follow.

Next. we observe that the transformation property (2.13) entails that we may as well

restrict attention to y € [—a/2, a/2], with the endpoints giving rise to the same function H(x)
(2.6). Clearly. we have

f(—a/2) = =3r f(0)y = —2r flaj2) = —r (2.19)
so that ¥ varies over [—3r, —r]. Accordingly, we define the joint eigenfunctions
HP(x, y) = s(x +7/2r +iy(y))e? y € [~3r, —r]. (2.20)

{Here, the superscript b stands for ‘band’, cf subsection 2.4.) For later use we record the
B-independent functions

Hy(x) = H'(x, —=2r) = s(x + 7 /2r) (2.21)

Ha(x) = HP(x. =3r) = HP(x, —r) = s(x + 7/2r +ia/2)e™ (2.22)
which correspond to (2.19).

We postpone a study of the eigenvalues E_ (2.8) and E, (2.9) associated with H”(x, y)
(2.20) to subsection 2.4, and proceed with the second case: it arises by taking suitable
z € i(0, 0c). This choice is not as easily understood as the ‘band choice’ z € n/2r +iR
just treated. It will occupy us for the remainder of this subsection.

Let us begin by insisting once again on the B-restriction (1.20). It entails that for real y
near oo the constraint (2.7) can be solved by a unique z(y) near i8, located on the imaginary
axis above/below i8 for k even/odd. (Observe that for x € iR the function s(r, a; x)/ sh(rx/a)
is positive. cfequation (1.6).) The question now arises whether z(y) extends to a single-valued
real-analytic solution for arbitrary y € R.

As will become clear shortly, this is a quite delicate matter, which depends on the choice
of B-interval. In our previous paper I, w restricted ¥ 10 an interval (K, 00), with K satisfying
a number of restrictions, including real-analyticity of z(y) on (K, co). Thus we could view
H(x) (2.6) (and its g # 2 generalizations) as a well-defined real-analytic function H(x. y)
on (K, 20). Here, we shall analyse the more general choice y € R, indicating once more the
y-dependence explicitly. As will transpire, however, this may give rise to multi-valuedness
both for H(x. y} and for E5(y). (This feature depends on the choice of B.)
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We are also aiming to clarify what happens with the eigenfunctions and eigenvalues
as § converges 1o the endpoints of the intervals (1.20). The obvious choice of joint Bj-
eigenfunctions H(x, v} for these endpoints reads

H(x, ¥) = s(x +if)ery 28 € aN* (2.23)

cf the beginning of this section. (This choice is not only natural for continuity reasons, but also
for quantum-mechanical purposes, cf subsection 2.2.) Using the AAE (1.11), the associated
eigenvalues E;(y) are readily determined. (Note that the right-hand side of (2.8) is ill defined
for 28/a integer and : = iB.)

Returning to 8-values in the intervals (1.20), we begin our analysis by studying the function

l s(s. - lﬁ)

()=-2r ——=In{—— (2.24)
Y=o “(s(:+iﬁ))

resulting from (2.7). Taking k even and letting z ascend the imaginat)'r axis from if Fo

i(k + 1)a — i8, we read off that y(z) varies from oo to —o0; halfway the z-interval we obtain

vk + Da/2) = —r +kr (k even). (2.25)

Similarly, taking & odd and letting z descend the imaginary axis from ip to ika — ip, the
function y(z) varies from oo to —o0, with

y(ka/2) = =2r +kr (k odd).

For later use we note that both (2.25) and (2.26) yield a joint eigenfunction proportional t0

(2.26)

Hi(x) = s(x +ia/2)e"™. .27
Writing the eigenvalues (2.8)—(2.9) in the more informative form
172
E. = ()} is(2if3)e-zﬂr (______1___,_) (2.28)
) s(iB)? 0@ — p(B)
(2.29)

E, = 2e2P7=2 ch(2izr +ay(2) +2ar)

we read off invariance under z — —z +i(k + 1) for k evenand 2 = s T);I;?ef:; :(0:(;:;
Atthe symmetry points (2.25)/(2.26) the functions H{x, y @) and #(_Jl( ' .‘f~b inspection of
linearly independent, whereas they are independent othcr:wnse. (This fol mfvs[er):;alﬁ
zeros.) Thus we may and will restrict attention to  varying over the open InteTval

I = i(B. (k+1)a/2) k even
Iy = itka/2, B) k odd

¢l also the paragraph containing (2.10).
From (2.28) we now read off that £. decreases
;alue when z goes from i to the other endpoint of - -
e drawn; it is only evident that E, increases (0 00 s 2 80¢ .
. ! e $ MO
Vanishes at the other endpoint (2.25)/(2.26). To establish whether E. 13
We clearly need more information on y(2)- e ~ase analysis
As it turns out, the behaviour of y(z) depends on k aqd the re§Ul;1 f;i('t?;e iz{/;rse function
on which we now embark will also enable us to derive mfofmz;lclz(;Z . cf equation (1.20).
2(y) and on the state of affairs for the limiting ﬁ-va]ugs 4/2. a.b ” ofl ('0 a). Using (1.5) we
Taking first k = 0, the interval between z —if and 2+ ifp 15 a SUS '
Infer

(2.30)
(2.31)

monotonically from o< 10 a-mmxmum
But from (2.29) this conclusion cannot
s to ip and that the ch argument
notonic on Ii. to0.

(232)
32 In(s(z)) = —p(2) — 20r/7
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s0 we may write
Sc—if) S+ /:""‘
S(z=if)  s(z+iB) T o

Now forz € i(0. a)theintegrand hasa minimumat/ = ia/2, and via the product representation
(1.6) one can obtain the identity

i« 7 ia 2nr oo™ 1
-— —_— e — —_———— = 4 = . 2.34
p( 2 2r 2 b4 ’ Z sh nar ( )

=28y =

dt (—p (1) — 2nr/m) (k= 0). (2.33)

n=1
(Compare with. e.g., [ 13, equations (2.93)—(2.98)] for details.) Therefore, the integrand is
positive, and so y(z) does not vanish for ¢ between i and ia —if.

As a consequence, both ¥(z) and iz decrease as z goes from iB to ia/2, so that E, (2.29)
is monotonic on fy. Moreover, the inverse function z(y) is well defined and real-analytic for
real y.

Now for the g = 2 case at issue, the parameter K used in our previous paper I may
be defined as the smallest number for which three requirements hold true: (i) the function
z(y) is real-analytic or. (K, o0); (ii) the eigenvalues Es(y) separate points on (K, 00);
(iit) the functions H(x, y) and H(—=x, y) are linearly independent on (K, co). Now linear
independence holds true for y > —r, but not for y = —r (cf the paragraph containing (2.10));
also. as we have just seen, the eizcnvalues Es(y) are monotonic on (—r, 00). Thus we have

=-r B €(0,a/2). (2.35)

Next, we choose k = 1 in (1.20). For z € 1, (2.31) we now have z — i € i(—a, 0) and
z+1B € i(a, 2a), so that (2.33) can no longer be used. But from (1.10) we deduce
s'(z+ia/f2)  s'(z—ia/2)
s(z+1ia/2) - s(z —1a/f2)
SO we may write

= —2ir (2.36)

z-ip

—-28y'(z) = f dr (—p (t) — 2nr/m) + 4ir k=1). (237
2+if~2ia

In view of (2.34), the integral yields a number in i(0, 00), so that y’(z) # O for z between i

and ia — iB. Thus, z(y) is well defined and real-analytic on R, and so we have

K=-r B € (a/2,a). (2.38)

In this case. however, y(z) decreases and iz increases as z goes from if8 to ia/2, so that it is
not clear from (2.29) whether £, is monotonic on I;.

This is actually true, however. Indeed, using (2.37) the pertinent derivative can be written

. ) a [
2ir+ay () = ——
Zﬂ 2HB =2

Since § € (4/2, a). the term in square brackets yields a number in i(—oc, 0), just as the first
term on the right-hand side. Thus the derivative is non-zero, so E, decreases as z goes from
i toia/2.

Next, we determine what happens when B converges to the excluded values @/2 and a.

Fixing y € Rand letting  — «/2. it is clear from the above that z(y) — ia/2. The resulting
limit functions

dt (—g (1) — 2nr/m) + [2ir - 2iar/B) (k=1). (239

H(a/2; x, y) = s(x +ia/2)elre+xy yeR (2.40)
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coincide with the functions (2.23) for 8 = a/2. They are obviously joint eigenfunctions of
B_and B, with eigenvalues

E_ = 2e™412 cha(y +r)/2) E,=2e""cha(y +r). (2.41)
Note also that

By =B —2¢7" B=a/2 (242)

We now fix y € [0, co) and let 8 1 a. Then we deduce from (2.7) that z(y) converges to
ia. The limit functions

Hia; x, y) = s(x +ia)e™™  y e [0, 00) (2.43)
coincide with (2.23) for 8 = a and yield eigenvalues

E_=E,=2chay y € [0, 00) (2.44)
in agreement with

B_=B,=—e" (T, + (i — —i)) B=a. (2.45)
Next, we fix y € (—oo, —2r), yielding z(y) § 0 for p 1 a. Hence we get limit functions

Ha:x, y) = s()e™™™  y e (00, -] (246)

which are different from (2.23), with eigenvalue

E_=E, =2cha(y+2r) ¥ € (=00, ~2r]. @
Finally, equation (2.7) entails
y €(=2r,0), Bta=z— ia+iay/2r (2.48)
yielding limit functions
M(a; x, ¥) = s(x +ia + iay/2r)e™™ y€ (=20 (249)
with eigenvalue
(2.50)

E.=E, =2 y € (=2r,0).

After this study of the B-interval (0, a], we col .
Proceeding as before (cf equation (2.37)), we once again obtain

z—iff

ntinue by choosing B € (a.3a/2).

dt (—p (t) ~ 2nr/70) +4ir (k=12). (2510

an be made as small as we please

~28y'(2) = /

z+f—~2ia

But now the integral yields a number in i(—00, 0), which ¢ Sl e P e
by choosing B floseyto a and z near 3ia/2. On the other ha?dh ;inc;u:ie;:;at;m i
fight-hand side is positive on I, (2.30), so we deduce that y (2) S e arenes from o0 0
b, provided 8 is sufficiently close to a. Accordingly. the function y{2

zo) = r — dy, dy > 0, and then increases to 7 a5 & ascend
3ia/2.

As a consequence, the inverse function z(y)€ oo
on (r - dp, 00). More generally, it continues to 3 mudti-vatueé
valued for y € (r — dy. r + dp). double-valued for the turmrlgfgrov il
otherwise, Now linear independence of H(x, ) and H(—x. ) 107
checked (from a comparison of zeros), so we have 252

K=r—dy, pefa3a/2.

s the imaginary axis from if 0

xtendsto a real-analytic monotonic fum?ulon
4 function on R. namely, triple-
ints r  do. single-valugd
do, 00) is readily
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Taking B | a. one readily obtains dy — r and three overlapping y-intervals with limits
v e[0.00) 1 Hilx,y) = s(x + iq)er~Hivy E,=E_=2chay (2.53)
v € (0.2r) : Halx.y) = s(x +ia + iay /2r)e? e E,=E_=2 (2.54)
y € (—00,2r] : Ha(x,y) = s(x +2ig)e®r~+y E.=E_=2cha(y —2r). (2.55)

These limits should be compared with the 8 4 a limits (2.43)+2.50). Specifically, it should
be noted that the function H(a; x, y) equals H,(x, y) (2.53) for y € [0, 00), whereas for
y € (—2r,0) and y € (—o0, —2r] it equals a multiple of Ha(x, y + 2r) and Hi(x, y +4r),
respectively.

Taking next 8 sufficiently close to 3a/2, it is clear from (2.51) that no zeros occur. Thus
the function z(y) is a (single-valued) real-analytic function on R, and we deduce

dy=0  Belpo3a/2) Bo € (a, 3a/2). (2.56)

The derivative (2.39) is easily seen to be non-zero for all 8 € (a, 3a/2), so that E, (2.29)
is monotonic on I, just as E_ (2.28). Noting z(y) — 3ia/2 as 8 4 3a/2, we obtain limit
functions

H(3a/2; x, y) = s(x + 3ig/2)e?r*+xy yeR .57
coinciding with (2.23) for 8 = 3a/2, with eigenvalues
E_ =2e""?ch(3a(y —r)/2) +=2e cha(y —r). (2.58)

Proceeding with the choice 8 € (3a/2,2a), we obtain z — i € ia(—1,0) and
z+1iB €ia(3, 4), so we have
z-if
-2By'(2) = f dt (—p(t) — 2nr/m) + 6ir k = 3). (2.59)
2+ f—~4iu

Thus y'(z) is non-zero on I3 (2.31) and z(y) is well defined and real-analytic on R.
Correspondingly. we obtain
K=r B € (3a/2,2a). (2.60)
In contrast to previous cases, E. is readily seen not to be monotonic on I; when 8 is close to
2a. (The derivative 2ir + ay'(z) changes sign near z = 3ia/2.)
Fixing y € R, we now let 8 4 24. Then we obtain limit functions

s(x +2ia) ¥y € [2r, 00)
H(2a: x, y) = eBreiy { s(x +ia +iay/2r) y € (0,2r) (2.61)
s(x +1a) ¥y € (—00,0]
with eigenvalues
ch2a(y —2r) y € [2r, 00)
E_ =2e™ . [ 1 y € (0,2r) (2.62)
ch 2ay ¥ € (=00, 0]
cha(y —2r) y € [2r, 00)
E,=2% -1 1 ¥ €(0,2r) (2.63)
chay ¥ € (—00,0].

It will be clear by now how this analysis can be extended to B € (2a, 00), so we omit
further details. In particular, defining

By=aM,M+1/)Ua(M+1/2, M+ 1) MeN (2.64)
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and fixing 8 € By, one readily deduces that z(y) extends to a monotonic real-analytic function
on ((2M — 1)r, co), entailing

K<Q@M -1 B eBy. (2.65)

This information suffices for the orthogonality analysis on which we embark shortly.

Before doing so, we conclude this subsection by commenting on the ambiguities revealed
above. They show by example that there exists no joint Bs-eigenfunction H(x, y) that is
single-valued and real-analytic for all 8 > 0 and y € R. (By contrast, for the hyperbolic case
such functions do exist, cf section 3.)

In this connection it is important to recall the uniqueness result obtained in appendix B
of I It says that for 8/a irrational and y € (L, 00) (with L > K), the joint Bs-eigenspace
corresponding to eigenvalues E;(y) is spanned by the functions H(x. y) and H(—x, y). (Here,
the AAOs Bj are viewed as operators on the space of meromorphic functions.) Since such
B-values are dense, continuous interpolations are uniquely determined.

2.2. Eigenfunctions: orthogonality for real x

In this subsection we study the orthogonality properties of suitable linear combinations of the
Joint Hs-eigenfunctions

Fldx, y) = 600 PHEx,y)  xe@mn/r) yeR (2.66)

in the Hilbert space H (1.24). Here, we take the positive square root, so we may as well work
with H(+x, y) and the Hilbert space H (1.22).

First of all, it should be emphasized that we need no restriction on y fo ensure square-
integrability. Indeed, for B satisfying (1.20) the functions F(x, y) clearly extend to real-
analytic functions on R; for the B-values (1.19) one readily verifies (using equations (2.23),
(1.14) and (1.11)) that

Fy)=itexpix(y+2r —k)  xe(@u/r) y€eR p=ka2 keN (26D

$0 square-integrability is plain, too.

Since the AAOs Hj are formally sel .
F(£x, y), one might be inclined to expect that the standard poundary conditions g e p
to orthogonal bases for the free cases (2.67) will also give rise t0 orthogonal bases when
satisfies (1.20). As we will see, this expectation is not borne out b}'l %he facts, howe\:iearl.l wlf

Taking the differential operator Hy(2) (1.1)asalead, werecallit IS_ﬂread{)sti!;r (O)’” /r)
adjoint on C5°((0, 7/ r)); its eigenfunctions are generically not sguare-mtegfa ed " n/r
and one must restrict attention to linear combinations that vanish at x = 0an 'all); —rators
(Dirichlet conditions). But the well-developed self-adjointness theory fordlffe'rentlam:ﬁh. we
has no analog for analytic difference operators, and so we opt for a pragmatic :;;:p holds.true
impose Dirichlet conditions in the relativistic case, too, and prove that orlhogql‘la lgsection we
fork = 0,1 in (1.20), and that it breaks down for k > I. At the end of this su

briefly return to other boundary conditions. '
Correspondingly, our principal aim in this su
Properties of the functions (2.68)

iy ~idrk20ry 2y = 2(nr)
VYnlx) = s(x + In)el(n.,.—)rx +s(x— e "

Wwhere we take

f-adjoint, with real cigenvalues on the functio_ns
iving rise

bsection is to investigate orthogonality

(2.69)

P
B € By neN n>»2M ion (2.65)). in the

(S? that z, is a well-defined number between if and i(M + 1/2)a. ¢f equat
Hilbert space Hy (1.22).
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To begin with, we read off from (2.68) that we have

Yol /r — x) = (=) ¥nlx) (2.70)
whereas w{x) is clearly invariant under x — 7/r —x. Thus we deduce that the inner product
Tir NRTIEY
(¥n. ¥m) = [ W”M dx (2.71)
o sx+if)six —18)

vanishes when n — m is odd. independently of the choice of 3.
More gencrally, we are going to prove
(Un ¥m) =0 Beby n>m20 2.72)
whereas
(Yn. ¥m) # 0 BeBy M>0 n>m22M n-—m even. (2.73)

We establish these results by direct calculation (as opposed to our arguments in section 4 of L,
where we exploited the eigenfunction property).
To prove (2.72), we need to calculate the integral

L. c.d) = [ s{x +'c)s(x - ‘,1) aiirx
o s(x +1b)s(x — ib)
with b € By. Denoting the integrand by F(x), one easily checks F(x + ia) = uF (x), where
the multiplier reads
u = exp(=2ir[c —d — ila)). (2.75)

Moreover, F(x) is w/r-periodic, so we can evaluate the integral via an elementary contour
integration. This yields

wir

1eZ c,deC (274)

2im 1
Iith.c.d) = s ib — dye=2r
i{b.c.d) @b _#)[S(lb+c)s(1b d)e
— us(ib — ¢)s{ib + d)ey"'] beB (2.76)

for u 5 1, whereas for u = | one obtainsthe 4 — 1 limit of the right-hand side. (Note the term
in square brackets vanishes when y (2.75) equals 1, as should be the case, of course. Observe
also that (2.74) is manifestly invariant under b — —b, whercas the (analytic continuation of
the) right-hand side of (2.76) is not an even function of b.)

Since (2.72) holds true for n — m odd, we fix a pair n # m with n — m even. Then, using
(2.71), (2.68) and (2.74), we obtain

(‘!’n» wm} = 2(1(m-n]/2(ﬁ* Zm Zn) + 12+.m+n)/2(ﬁ‘ Zots -.:n)). (2.77)
Substituting (2.76) and (2.75), and using
SUB ~ 2;)/s(iB + 7)) = —e 2+28r (2.78)

one now ven'ﬁcs. the announced pairwise orthogonality (2.72).
Beforc‘ turning to the prpof of (2.73), we obtain an explicit norm formula for 8 € Bo-
Indeed, taking / = O and letting d — ¢ in (2.76) and (2.75), one arrives at

Iob. c.c) = ——[2irs(i :
blb- €. ) = =iy (2rs(ib = b +.) + b +.c1s (b = )

+5(ib - ¢)s'(ib +c)] be B, 2.79)
and using this result one readily deduces

2r . ..
QB [s(lﬁ IS B — 2p) + 5318 ~ z,, )s'(iB + z,,)] geBy nz0
(2.80)

(‘l’m Yn) =
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(Note this converges to 2z /r forn — 0.)

In order to prove (2.73), we first observe that the integral (2.74) with b € By, is well
defined. and can be reduced to the case M = 0 by exploiting (1.11). Specifically, a routinc
calculation yields

2im 1

Iib,c.d) =
whed) = U=

(/L”Ms(ib +¢)s(ib — d)e"z"" — /,LM“s(ib - c)s(ib +d)e3””)
(2.81)

where b € By. (Note this entails that analytic continuation of (2.76) yields a wrong answer,
Just as it does for negative b.) Now (2.77) follows for M > 0, too, so we can invoke (2.81) to
obtain (also using (2.78))

W Ym) = il-:"Ls(iﬁ +2,)5(i + Zm)e " D, (2.82)
5(2iB)
where
Dum = Qu(t:) — Qu(2-) ty =i(gm £za)a+ (1 +m/2) £ (1 +n/2) (2.83)
with
Oum (@) = sh(2M + 1)art)/sh(art). (2.84)

It is not difficult to see that this implies (2.73). Indeed, it is straightforward to verify that
Qu(2) is increasing on (0, 00), so the difference Dy can only vanish whgn I equaills 1_or
~t_. This yields z, = i(l +1/2)a or 2, = i(1 +m/2)a, respectively. Butsince 2, j > 2M.
is 2 number between i8 and i(M + 1/2)a, it cannot equal i(1 + j/2)a, and s0 (2.73) follows.

Let us now consider the special B-values ka/2, k € N*. Choosing k = 1, we can use
(2.23) to obtain

Yala/2; x) = s(x +ia/2)e/ ™2™ +5(x —ia/2)e

=2is(x +ia /2)e"* sin(n + 1)rx neN

Obviously, these functions give rise to an orthogonal base for the Hilbert space
Hip = L*((0. 7 /r), )/2(x) dx) yp(x) = 1/s(x +ia/Dsx ~ia/2)

of equation (1.14).
Choosing next 8 = (M + 1/2)a, M € N*
multiple of ), />. Moreover, we have (cf equation 2.23)

~i(n+2)rx

(2.86)

the function w(x) (1.14) reduces to a positive

) B ; —i(n4+2)rx
WH((M + l/2)a; X) — S(X +i(M + lllz)a)el(n+2)r.\' +5x — l(M + 1 :2)(1)3 (2 87
=CMYn-2m(a/2; x) neN n22M
N 11.
s0 that these functions yield an orthogonal base for 7, : a8 Well. 23
Similarly, the choices § = Ma yield orthogonal buses (cf equation (2.23)
. . —i(n+2)rx
Un(Ma; x) = 5(x +iMa)e™? +s(x — iMa)e™" (2.88)

—2
=dys(x)cos(n —2M + 2)rx neN n>z2M

for the Hilbert space (2.89)

Ho = LA((0, x/r), s00)™ dx)- e ABOS H (112K
Of course, these special cases are easily understood in erms ch to define associated
(1.13y. they reduce to ‘free’ AAOs and the sine- and cosine-bases
self-adjoint operators on the Hilbert space H (1.24).
By contrast, it should be mentioned that the.abo
fot suffice to rigorously conclude that the Hs-eigenfun

ults for B € Bp do

ality res!
ve orthogonality (x) correspon d 1o

NUENT;
ctions W(x)*¥n
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commuting self-adjoint operators Hs on H. This is because we have not proved that the
functions {,,}7, are complete in H ;. Note also that in view of our non-orthogonality results,
the formal self-adjointness of the AAOs Hj is quite misleading. For further information on
this circle of problems we refer to section 4 of I and to [4, subsection 4.1].

We conclude this subsection by ruling out orthogonality for other choices of boundary
conditions and all 8 satisfying (1.20). First, consider the even functions

en(X) = W) 2 [H(x, nr) + H(—x, nr)] (2.90)
with (2.69) in effect. (They correspond to Neumann conditions.) We have
en(m/r —x) = (=)"ey(x) (2.91)

so e, and e, are orthogonal as vectors in H whenever n — m is odd. For n — m even, however,
the above calculations are easily modified to yield

(en.en) = o ﬁ)s(lﬁ +2,)S(iB + 2w )e T TIE (— 040 (1) — O (1)) (2.92)

cf equations (2.82)—(2.84). Thus we conclude
(en.em) # 0 BeEBy MZ>=20 n>m>=22M n—m even. (2.93)

By contrast. for 8 > 0 satisfying the complementary restriction (1.19), the vectors e, give
rise to orthogonal bases for H. (One need only modify (2.85)—(2.88) in an obvious fashion to
check this.) Likewise, we can construct orthogonal bases {F(x, y)} for H by taking all y in
the set r8/m + 2rZ with 6 € (—=, 7}, cf equation (2.67). Since we have F(x, y) € H for all
B > Oand y € R, and since Hj takes real eigenvalues on F(x, y). one might guess that the
same boundary conditions give rise to orthogonality at least for 8 € (0, a/2).

With the above integrals at our disposal, it is quite easy to see that this is not the case.
Indeed, for 8 € By (2.64) we may fix y € R and ! € Z to obtain

(FCoy) FCoy+2r)) = LB, z(y + 2r), z2(y)). (2.94)

Now we have |z(y +2Ir) — z(y)| < a, so that & (2.75) is a positive number not equal to 1 for
1 # 0. From (2.76) we then have

(FCoy). FOoy +20r)) = 2ir s(if+z(y +2Ir))s@if — z()))

o 2 O leZ  (295)

S(B —z(y +2Ir)) sGB + z(y))

d = | — pexp(4ifr)— . 2.96

1) = ke T v 2y 5B = 2() (299)
But using the constraint (2.7) one obtains d;(y) == 1 — u, so that

(FCoy)WF(,x+2lr) #£0 leZ" BehB (2.97)

as announced.

Likewise, one may study 8 € By, M > 0, taking y > (2M — 1)r and ! € N* (say)
to avoid eventual multi-valuedness. Then (2.94) is still valid, and now one can use (2.81) to
deduce that the pertinent vectors are not orthogonal in H. Thus the ‘Floquet/Bloch’ boundary
conditions to hand violate orthogonality for all 8 satisfying (1.20) when we insist on keeping
x real, as we have done throughout this subsection. Letting x —ia/2 € (0. /r), however, the
state of affairs is different, cf subsection 2.4.
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2.3. The relation to the delta-function gas in finite volume

As announced in the introduction, the above eigenfunctions can be tied in with the well known
eigenfunctions of the (N = 2, centre-of-mass, finite-volume) repulsive delta-function Bose
gas. We proceed by supplying the details of the pertinent limiting transition. To this end we
fix ¢ > O (the delia-function coupling constant), and introduce the functions [5]

[ c+ik, ' . "
D,(x)=1i - e e neN. (2.98)
¢ — ik,

Here. k, € (0. oc) is the unique solution of the equation
2
o+ 1)r = ko + }r— Arctg(k,/c)  neN (2.99)

and the square-root sign is fixed by requiring continuity for ¢ € (0, 00) and convergence to 1
for ¢ — oo. It is straightforward to verify that these functions are pairwise orthogonal in H
(1.24), with norms given by

xfr 27 4¢
,_ 2 neN. (2.100)
’/0 XmDn(X)! r +62+k,%

Next, choosing a < 7/2¢ from now on, we define 8(c, @) by (1.23), sothat 28 € (a. 2a).
Then the functions
S,(a; x) = [s(r.a: x+ip)s(r.a; x — iﬁ)]_m‘b"(a’ B x)

(with 8 = B(c, a)) are pairwise orthogonal in H, as we have p
theorem we state the relevant limit for the functions ®5(a; x),
prove a more general result.

neN (2.101)

roved above. In the following
but we find it convenient 10

Theorem 2.1. Fixing n € N, one has
®,(a; x) = Dp(x)+0(a) al0 xeOxn/r)

where the bound is uniform on compact subsets of (0, 7/)-
i ition (2.68) of ¥a(x)
bers z(nr) in the definition (2.68) of Y
e o : we have shown above that for a
(a, B, y) on the line segment

(2.102)

Proof. Since we have 28(c, a) € (a,2a),

lie on the line segment between i8 and ia/2. More ge.nerally,

fixed y € R the equation (2.7) can be solved by a unique 2 =Z

between i8 and ia — i B (cf the paragraph containing (2.37).
We now fix y € R and prove

Meﬁu%-ix_\- =i c+ik)”? e +0(a) xe(0,x/r) a +0. (2.103)
Is(x +ig)] T \c—ik -
Here, we have z = z(a, 8. y)and 8 = Blc,a), and k € R is the unique SO

ution of the equation

2 (2.104)
y=—r+k+ ;Arctg(k/c)- f the theorem
rtion of the theore
Moreover, the bound is uniform on compactsin (0, @ /r). (Clearly, the assel

isa consequence of this more general result.)
In order to prove (2.103), it is expedient to 1€

= lﬁ —_ laf
Thus we have (cf equation (2.24))

1 ji’:_’“_fl_)
Y=k - gl (s(Ziﬁ Ziaf)

arametrize Z as
P (2.105)

(2.106)



1754 S N M Ruijsenaars

and as v varies over R, f varies over (0. 1 — 2ac/m). Now we may view the right-hand side
of (2.106) as a function F(a, f) defined fora € (0.7 /2¢) and f € (0.1 — 2ac/m). Doing
s0. we assert that we have

Fl(a. f) = F(0, f) +O(a) alo. (2.107)
Here we have introduced
F(O. f) = =2rf +ccol(n f) fe@ (2.108)

and the bound is uniform on compacts in (0, 1).
Taking the assertion just made for granted, we obtain a function F(a, f) that is jointly
continuous fora € [0. 7/2¢), f € (0, | — 2ac/m). Moreover, we have

(3 F)a. f) <O ae{0,nf2c) fe(0,1-=2ac/m) (2.109)

see also the paragraph containing (2.37). From this it readily follows that for a given y € R
the equation y = F(a, f) has a unique solution f = f(a, y), which is continuous in a for
a € 10.m/2c).

We now prove our assertion (2.107). To this end we exploit the product representation
(1.6). Recalling (1.23), it entails

s(2iB —iaf) S . sh(2wif/a —inf) 272
e LA 4r[82 _
S(—iah) exp(4r[B* +iafl/a) Sh(—inF) (l +0(exp( o )))

= 1+4ra(l — f)+2accot(rf) + O(a®) alo (2.110)

where the bounds are uniform on compact subsets of the f-interval (0, 1). Thus from (2.106)
we have

Fla, f)=-2r+ 5]‘;[4”1(1 — f)+2accot(nf)]+O(a) al0 (2.111)
so that our assertion (2.107) follows.

To proceed, we use (1.6) once more to deduce

s(x +i1f —iaf) . .

TR riBl = —exp(—2irx —ixf +2ifrx) + O(a) al0 (2.112)
where the bound is uniform for (x, f) in compact subsets of (0, /r) x (0, 1). In particular,
choosing f equal to the above solution f(a, y), we obtain
s(x +if —iaf(a, y))

Is(x +i8)]
= —exp[—inf(0, y) +2if(0, y)rx + ixy] + O(a) alo. (2.113)

Here, the bound is uniform for x in a compact subset of (0, 7/r), and f = £(0, y) is the
unique solution of

exp(2irx +ixy)

y = =2rf +ccoi(xf). 2.114)
To conclude the proof, we now rewrite f as
I 1 1
f = — Arccol(k/c) = 5~ 5 Arctglk/c) keR. 2.115)

3;“;‘(;4‘;“6 easily checks that (2.113) amounts to (2.103), whilst relation (2.114) turns into

Ilt fjhm;!d % poi flted out that the limit relation just proved is not strong enough to rigorously
conclude that &, (a; x) converges to D, (x) in the Hilbert space H (1.24). Indeed, it does not
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exclude that [®, (a: x)| diverges as ¢ | Oand x | O orx 1 /r. To sec that the behaviour al
the endpoints is a quite subtle matter. notice first of all that ®,(a; x) vanishes at x = 0 and
r=m/r,since ¥, (x) (2.68) does. By contrast, D,(x) is non-zero for x = O and x = x/r, s0
that (2.102) is false for x = 0 and x = 7r/r. Similarly, (2.103) is false forx = Qand x = 7/r;
for these x-values the left-hand side actually diverges asa |, 0.

As a matter of fact, we do not know whether |®,(a; x)| remains bounded on [0, 7r/r]
fora | 0. Even so, it can be seen that ®,(a; -) does converge to D,(-) in the H-topology.
Indeed. a reader familiar with Hilbert space estimates will have little difficulty verifying that
for Lz—convergence to result from theorem 2.1, it is necessary and sufficient that one have

w/r , w/r :
lim[ dx|<l>,,(a;x)|“=/ dx |Dn(x)". (2.116)
«10 Jo 0

Now both integrals are explicitly known from the norm formulae (2.80) and (2.100). A
third application of the product representation (1.6) then shows that (2.116) holds true. As a
consequence, one deduces Hilbert space convergence of the g = 2 eigenfunctions ®p(a: ) o
the delta-function eigenfunctions D,(-). ‘

To conclude this subsection, we would like to mention that (in contrast to the .funcnons
{Pa(a; )}, the functions {D, ()}, are known to be complete in H. Indeed, this follows
from a paper by Dorlas [ 14]; he actually proves completeness of the Bethe ansatz eigenfunctions
for arbitrary N.

2.4. The one-gap picture

Taking x — X +ia/2 in the AAO H_ (1.12) and using the AAE (1.10), we obtain the formally
self-adjoint operator

i - (s(x+ia/2—2iﬂ) 172 , (W)m“iﬁ, —i). Q.17
s(x +ia/2) B\ s(x —1ia/2)

+ - x+ia/ ixi sati 20), the
is invari 2/2.) Fixing p satisfyng (1 )
( e, the AAO H, is invariant under x — X +id, " [ Y

H_-eigenfunctions F(x, y) (2.66) give rise to H_-eigenfunctions

Omitting an irrelevant multiplicative constant, they can be written
2.118)

Fx, y) = b(x)2s(x — ia/2 +2(y) explirx +1y%)
@2.119)

W(x) = 1/s(x —ia/2 +iB)s(x +ia/2 —if).

. 1y. The
Obviously, the functions F(x, y) belong to the Hilbert space H (1.24) for all real y y

- (2.120)

Flx+m/r,y) = expliny/r)F(x, ¥)
S0 e obtain eigenfunctions with the same 7 /r-multiplier xp i6 by requiring
ysro/m+2rZ § € (—n, 7]

Now we first choose B € (0,a/2). Then ;(}'
= i(B, a — B) (as we have shown in subsection

- . - iel
$j(0) = F(-,r8/m +2jr) pe(—m ) J 2 74y, we now obtain

Where the right-hand side is viewed as a vector in H. Using (2.118)and (2.79).
the inner product

@140), $4(0)) = I,_;(a/2 — pia/2 — 2r8/m +2jr). 1612

(2.121)
yis a single-valued real-analytic function
2.1), so we may introduce
(2.122)

— 2(r@/m +2kr)). (2.123)
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Taking k 5 j. one sees that the quantity p (2.75) is not equal to 1. Using equations (2.76),
(1.11) and (2.7). it can then straightforwardly be verified that

(9;(A). ¢(6)) =0 Be(—m,m] j#k Be(0,a/2). (2.124)

(This result should be compared with (2.94)—(2.97).)

In words. we have just proved that the H_-cigenvectors ¢x(8),k € Z, are pairwise
orthogonal when 8 € (0, a/2). But as we shall show shortly, they are not complete in H.
(This is true in spite of the fact that their limits for 8 1 a/2 are manifestly complete; recall
2(y) — iaj2 for B — a/2.) Before doing so, we study the choices (1.20) with k£ > 0,
however.

Taking first 8 € (a/2.a), the function z(y) is still a single-valued real-analytic function
R — i(a — B. B). Thus the vectors ¢;(6) (2.122) are again well defined, and we obtain

(@;(8). p(0)) = Li_; (B — a/2.ia/2 — 2(rO/7 +2jr), ia/2 — 2(rb/m +2kr)).  (2.125)

But when we now use the explicit formula (2.76), we find that the right-hand side is a non-zero
multiple of 1 — u?. Thus we deduce

($/0). BN #0  be(—mm) j#k Bel(a/2a) (2.126)

Turning next to the B-interval (a, 3a/2), we recall that z(y) is not single-valued on R for
B closetoa and y € [r — do. r +dq). For j € Z such that r6 /m + 2 jr does not belong to this
interval, we may and shall define ¢;(8) by (2.122). For such integers we again obtain (2.125),
and so we once again deduce non-orthogonality for j # k.

Now fixing y € (r — dy, r + dy), we obtain three distinct z-values, each of which defines
a distinct vector in . Their inner products with vectors corresponding to the same 6, but
y-values outside the critical interval, do not vanish, as can readily be established via the
above calculation. Likewise, the three vectors are not pairwise orthogonal, the two vectors
corresponding to y = r — dj are not orthogonal, and neither are the two (r + dp)-vectors.

Of course, for 8 close to 3a/2 we have dy = 0. Hence equation (2.122) is unambiguously
defined for arbitrary ¢ € (—m, 7] and j € Z, yielding pairwise non-orthogonal vectors.

Similarly, for 8 € (3a/2, 2a) no ambiguity occurs, and we can now use (2.81) with M = 1 0
deduce

(9;0), $:(8)) #0 6e(-n,n] j#k Be(3a/2 2a). (2.127)
Clearly, this analysis can be extended to larger B-values. In particular, it is not hard to check
that one has
(FCo¥), Foy+2r) #£0 BeBy M>0 y>@QM~—1)r IeN-. (2.128)

:I'hus far, we have only taken the eigenfunctions H(x, ¥).y € R, into account. We
continue by studying the role of the band functions H*(x, ¥) (2.20), keeping x real at first. Let
us .begm by gomparing the ranges of the eigenvalues E; for the two choices of eigenfunctions.
With (1.20) in force, we may use equations (2.28)—(2.29) when y varies over R in H(x, ¥)-

Onmitting the positive prefactors, the resulting positive quantities
- =(p@R)—pig)~'? (2.129)
€, = ch(2izr + ay + 2ar) (2.130)
vary over [(ex — p(iB))™/2, 00) and [1, 00), respectively.

Next, letting y vary over [-3r, —r] in H(x, y), we still may use (2.29). But in (2.28)
we should omit the factor (—)* when we take the positive square root (as we do throughout
this paper). Indeed, from (2.8) one reads off that the band energies E_ flip sign as B passes
the numbers (M + 1/2)a, M € N. (Recall s(x) > 0 for x — 7/2r + ik with X real, cf
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equation (2.16).) Keeping this change in mind, we are again reduced to finding the ranges of
¢_ and €, for
(2, y) = /2r +1y, f(y)) y €[—a/2,a/2). (2.131)
The range of e_ is plain: it is given by [(e; — p(i8))™V/2, (e — 9 (iB))~/*]. For €, we
obtain the range of the function
€.(y) = —ch(=2yr +af(y)+2ar) (2.132)

with y varying over [—a/2, a/2]. Now we have already seen that f(y) is monotonically
increasing. Recalling (2.19) and noting that f(y) is not linear in y (since we require (1.20)),
we obtain arange [—«. —1] for €,, where « > 1 depends on 8.

The upshot is that E;(y) varies over an unbounded interval [Eé'” ,o¢) for H(x, y) and

over a band [E;l ), E;z’] for H(x, ¥), with

0<EV" <E® < E® Beal,l+1/2) leN (2.133)
EV<E® «0<E®  Bea(l+1/21+1) leN (2.134)
EV < E®? <0< EP® 28€calk,k+1) keN. {2.135)

Turning to the excluded B-values, we can use (2.29) and (2.17) to deduce that the § = + band

shrinks to a point. To be specific, we obtain

E) = E® = pexpl2r(f—a))  EP =2expl2r(B-a)]  B=ka/2 keN.
(2.136)

Similarly, for 8 — a/2 an integer multiple of a, we read off from (2.(§)) that the § = — band
shrinks to 0; the B_-eigenvalue on H3(x) (2.27) yields the limit of EZV:

EM =@ _g E® —2expl2 - a)/al B=M+1/2)a MeN
- =) =2exp[2rB(f ~ a)/ 2137

Finally, when 8 is an integer multiple of a, we likewise obtain
(1)

ED = E® = 2(—)M exp[2rB(8 — a)/a] } p—Ma MEN. (2.138)

EY < 2expl2rp(B — a)/a]

. s 2). we
' i d with analysis. Fixing B € ©0.a/ '
Having disposed of the algebra, we can proceed W1 122§,are pairwise orthogonal in H

recall that we have already proved that the vectors ¢;(6) .1 for H
(1.24), cf equation (2.124). We now show that they do not yleld a ba;c o2 1 1.9 )
To this end we define the H_-eigenfunctions (cf equations (21182 3 —r]
3 c (_. r,—ri.

Fxy) = W2(x)s(x — ia/2 +7/2r +iy(y)) explirx + iyx) (2.139)

Ve : € (-n, ]
Of these there is a unique function that has the /r-multiplier exp(i6),8 € (

Specifically, this function reads 140
#°(0) = F(x,ro/m —2r)  Be(-m7lk
The point is now that we have
@"0). o)) =0  pe(-mml  keZ

. let
Taking this for granted, it is plain that the vectors {gx(6) ez af‘:r?:: comp
To substantiate (2.141), we invoke the integral (2.74) 10 2(r@/m + 2k1))-

. _ a2 —
@ ®). $4(6)) = Ir(aj2 — B ia/2+x/2r —iyrd/x = 2). 18] (2.142)

B e (0.a/2). 14D
¢ in M, as asserted.
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The quantity u (2.75) is negative in this case, so we can use equation (2.76) to calculate the right-
hand side. Using equation (2.7). it is now routine to check that it vanishes, proving (2.141).
We would like to point out that the g 1 «/2 limits of the functions ¢ (6) exist, but do
not belong to H. (Indeed, for x € (0, 7/r) one has w(x)'/* — 1/s(x) as B t a/2, cf
equation (2.119).) We leave a study of non-orthogonality properties of d" () for B> a/2to
the interested reader, and require 8 € (0, a/2) for the remainder of this subsection.
We conjecture that the vectors

{r(Drez 4"(9) 6 € (—m, ) B € 0,a/2) (2.143)

are complete in H. and hence give rise to an orthogonal base. Taking this for granted, it
follows in a well known way (cf {11, section XIII.16]) that we may also view H_ as a self-
adjoint operator on L*(R), with purely absolutely continuous spectrum

is(2iB)

EE_I).E(_z) U E(B). E(I)___
[ JULEZ", 00) - = SGB)

e Fe; —ppn™* j=1,2,3 (2144)
of multiplicity two.

On account of equations (2.21), (2.22) and (2.27), the functions at the spectral boundary
points may be taken to be

Fr(x) = o(x) Ps(x + 7 /2r +ia/2) expirx (2.145)
Falx) = w(x)"s(x +1/2r) (2.146)
Fa(x) = wx) s (x). (2.147)

Note that Fisan/ r-periodic function, whereas Frand Fyare /r-antiperiodic; furthermore,
F1 and F> are even, while F3 is odd.

3. The hyperbolic case

We cgntinue by studying the hyperbolic specialization. Thus s(x) equals am ! sh(rx/a), cf

equation (1.8). In this case it is convenient to employ the variables a4, and a_ from I instead

of B and a. We also use the notation

ss(x) = sh(mx/a;s) cs(x) = ch(rx/as) es(x) = exp(rx/as) 8=+, —.
3.D

To bring out the remarkable self-duality property of this limiting case, we switch to the new
spectral variable

p=aa_y/m. 3-2)
Accordingly, B_ (1.16) and B, (1.17) turn into
s_(x +ia,) . .
e 03
B, = —(Tiu_ +(i — —i)). 34

Similarly, taking first a, € Ay, with

Av=a (M.M+1/Ua_M+1/2,M+1) MeN (33)
the joint eigenfunction (2.6) becomes

H@)y=n""a_s_(x +27) exp(imxp/a.a_) 3.6)
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where ; and p are related via

So{2 = ay) (=2p) .
AL SN
$-(Z +idy) P 3.7

This entails

P =1 (cth Xz ~ia) —cth —(z + ia+))
2 a- a-
isin(2ra,fa_)
T 25 (7-iay)s_(z+iay)
Hence. p'(z) is non-zero and p(z) decreases from co to 0 as z goes from ia, to i(M + 1/2)a-.,
cf also equations (2.10) and (2.11) withr =0, a = a_.

In the trigonometric case we will arrive at a relation similar to (3.7). We now digress
to derive useful consequences of this type of relation, employing a standard form that is not
cluttered by scale factors and reality restrictions.

Specifically. we start from a relation of the form

(3.8)

sh(a - 1) e ap.teC ayt#ink/2 kel (3.9)
sh(a +1)

In this formula & and y appear to play different roles, but in fact (3.9) is equivalent to

Shiy =1) _ o2 (3.10)
sh(y +1) ’ '
Indeed, writing the left-hand side of (3.9) as (tha cht —sh#)/(tha ch t +sh) and solving for

the, one obtains

.11
tha thy =thr. (3.1

Conversely, equation (3.11) entails (3.9) and (by symmetry) (3.10)-
Yet another relation equivalent to (3.9) reads
2shorchr o 512
sh(@+1) :
This will be used to get rid of the parameter z in eigenvalues. Tog
We use the following consequence of (3.9): -
ot .
2h(r+r) = [sh(y + 1) sh(y — 1)]”/2(ch(n + y)e' —ch(n —v)e ) ne C,.
ele® —e~"e?, and then using (3.19)
below the term in square brackets 1S

eded.
witha =nz/a-. ¥y =

et rid of z in eigenfunctions,

(This equation can be verified by writing 2sh(n +a) =
to write e* in terms of y and 1.) In the applications .
Positive and it is readily verified that the positive square root 1S ne °
Returning now to relation (3.7), we note that it is of the form (39), "
Tp/a_andt = irna,/a_. Invoking (3.13) with n = 7x/a-, wecan Wi

25-(c+2) = [5.(p + ia,)s(p — ias)]ge-tx +p) == = ) 14

Where we have introduced the phase factor 515)
q = exp(ima.jfa_).

Combi“ing this with (3.6), it follows that the functions 516
K(x, p) = 2[ge_(x + p) —Ge-(x — P)] exp(inxp/asa-)

; i . p) given by
al\]re Bs-eigenfunctions, too. (These functions coincide with the functions Kj(x, p) g
(L15))
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The function K (x. p) is manifestly symmetric under x < p (self-duality), so it is also an

eigenfunction of the AAOs

R AL SN, 3.17)

s_(p)

B, = —(Tiy +(i—~0) (3.18)
where 7, acts on functions of p by

(ToF)(p)=F(p—a) aeC (3.19)
The four eigenvalues involved can moreover be written

Es = 2c5(p) Es = 2c5(x) §=+,—. (3.20)

To substantiate the last assertion, we note that by symmetry one need only check
Es = 2cs(p). Now for § = + this is evident from (3.18) and (3.16), whereas the § = —
result is not immediate. but can be obtained directly from (3.17) and (3.16). A quicker way,
however, is to note that the elliptic formula (2.8) specializes to
5-(2)

E_= ch‘_(la.,,)e_(p). (3.21)

Recalling (3.7) and the equivalence of (3.9) and (3.12), one deduces E_ = e_(p) + e_(—p)
as asserted.

With the constraint relation (3.7) eliminated, it is evident from (3.16) that we are free to
choose a,. € (0, co). Taking a, equal to ka_/2, k € N*, from (3.16) we obtain
K(x, p) = 2™ [c_(x + p) — (—)*c_(x — p)lexp(inxp/asa_) (as =ka_/2).(3.22)

Hence we have

K(x, p) = cxs_(x)s-(p) exp(irxp/a.a_) (k even) (3.23)

K(x. p) = ae_(x)c_(p)exp(inxp/a.a_) (k odd). (3.24)
Defining the weight functions

hyp.o() = 1/5-(u)* (3.25)

Wyp. 1/2(u) = 1/c_(u)? (3.26)

it is evident that a suitable multiple of K (x, p) yields the kemel of a unitary operator from

L%(R, Whyp.«(p) dp) onto L2(R, Wnyps(x) dx), with s = 0 for k even and s = 1,2 for k odd.
Next, we introduce

Whyp(u) = 1/s_(u +iay)s_(u — ia,). (327

Then it can be shown that for a, € A, (3.5) a suitable multiple of K (x, p) (3.16) yields the
kernel of a unitary operator from the odd subspace of L2(R, Whyp(p) dp) onto the odd subspace
of L*(R. tnyp(x) dx), whereas isometry is violated on the even subspace; for a, € Ay With
M > 0 isometry is violated on both subspaces.

It should be noted that these results tie in with the elliptic orthogonality aad non-
orthogonality results obtained in subsection 2.2. The proofs of the assertions in the previous
paragraph are, however, quite different, and involve some new machinery. This also applies (0

the Hilbert space results paralleling those in subsection 2.4, to which we now turn. (We will
address these functional-analytic aspects elsewhere.)
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Taking x — x +iu_/2 in the joint Bj-cigenfunctions K (x, p) (3.16), we obtain joint
eigenfunctions of B, (3.4) and the ‘crossed channel’ AAO
N (X +1a,) . .
B_= ""(-"‘—Tiu., + (01— ~i) (3.28)
c-(x)
with eigenvalues 2¢,(p) and 2c_(p), respectively. Omitting a multiplicative constant, these
can be written

K (x. P) =2[gs_(x+p)—gs_(x — p)lexp(inxp/a,a_). (3.29)
Introducing
Whyp(x) = 1/c_(x +iay)c_(x —iay) (3.30)

Wwe now detail the state of affairs concerning isometry properties. First, we choose a, €
(0,a_/2). Then a suitable multiple of K (x, p) yields the kernel of a unitary operator from
the even subspace of L(R, Whyp(p) dp) onto the odd subspace of LR, Whyp(x) dx).. The
odd subspace of L(R, tnyp(p dp) is mapped isometrically onto the onhochpleanl in the
even subspace of L(R, Wnyp(x) dx) of the constant functions. (Note that B_ has eigenvalue
2cos(ray /a_) on the latter, while B, has eigenvalue —2.) .

Fora, > a_/2 and a, s ka_/2, k € N, these isometry properties break down. Again,
this is analogous to our elliptic results, cf subsection 2.4. Observe also that the even bound
state

Kx) =1 331

can be viewed as the limit of the band functions H*(x, y) for r | 0. More precisely, from the
product representation (1.6) one easily deduces
(uniformly on compacis).

lime, s(r, a; w/2r +x) = 1 ¢, = exp(—n’/4ar)n/2a
rio
(332
Thus, when the functions #* (x, ¥) (2.20) are multiplied by the renormalizing constant ¢, they
all converge to 1 as r { 0, uniformly on x-compacts. P
’ . i finite-
To conclude this section, we consider the relation of the above iungtnorlllsb ;2 ct:;; “ngf‘"ar .
volume delta-function potential eigenfunctions. Of course, the'forr.nu ;18 m:of  theorem 2.
easily specialized for r = 0, but the somewhat involved r;asonmg In the pri
¢an be bypassed by taking K (x, p) (3.16) as a starting point.
Indeed, when one substitutes

2 (3.33)
a, —a_—a.c/w
in the function
E _ K(x, kasa_/m) ' keR (334
00 = T Tians_(kava_ /7 +ias)]
then it i quite easy to check directly that one has
ik\ 2 0. (335
E(dx k) = i (C £ ‘k) exp(ixk) +O(a-) ~ x€ (0,00 a-1
CFik
Ful’thermc,re’ the crossed channel eigenfunction
(3.36)

K(x, ka.a_/7) keR

E(x, k)= Ale_(r 1305 (kasa /7 + ia: )
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has almost the same limiting behaviour:

i /2
E(£x.k) = +i (‘;—j::—%) exp(ixk)+0@.)  x€(0,0c) a |0 (3.37)
1

There is yet a second. essentially different way to tie in K(x, p) (3.29) with the delta-
function eigenfunctions, however. Specifically, let us put
ay — a-[2 —atc/2w (3.38)
in the function
IE’(xa.,a_/Jt, k)

Fix.k) = R. 3.39
(x. £) dlc_(xaza_[m +ias)s- (k +1ia.)| *E ¢

Then it follows from the same calculation as before that one has

Lig\ 172
¢ fx) exp(ixk) +O(@.) ke (0,00 a 0. (3.40)
cFix

F(x,ik):i(

As is well known, the odd part of the ‘distinguishable particle’ delta-function transform
yields the sine-transform on L*((0, oc)), whereas the even part yields the unitary operator on
L2((0, oo)) with kernel

Lo\ 12
. - ¢+ .
D(y, p) =i(2m) 12 (c———-—ltgp) exp(iyp) +c.c. ¥y, p € (0, c0). (341)

In view of the above limits, one needs the odd transform associated with K and the even
transforms associated with K to obtain the kernel D in the pertinent limits. It should be
stressed that for none of these scaling limits there is an operator in sight that has the formal
limit

Hgera = —d2/dy* +2c8(y) (3.42)

of which D(y, p) is an eigenfunction with eigenvalue p?', Rather, the existence of the transform
limits was suggested by considerations from scattering theory, cf [3, section 4C].

4. The trigonometric case

We proceed by studying the trigonometric specialization of the above elliptic results. Thus
S(J.t) reduces lq r-lsinrx, cfequation (1.9). The a — oo limit of the AAO B, (1.17) does not
exist, so we wind up with the AAO B_ (1.16). Omitting the prefactor exp(—28r), we obtain
the trigonometric AAO
_sinr(x +1p)
- sinrx

B Tig + (i — —i). 4.1

Instead of (1.20), we now have only one -interval (0, co), and the equations (2.9), (2.10) and
(2.13) have no trigonometric counterparts.

Choosing_ﬁrst z =7 /2r+iy,y € R, in(the trigonometric specialization of) the constraint
(2.7), we obtain

chr(y — B) .

Y = P) _ -apr-2py

chr(y +B) € : “.2)
Thus we find a uniquely determined solution y = f(y) e (=3r, —r). yielding a B-

eigenfunction

H(x, ) = r" cosr(x + iy (y))edrsHio y € (=37, —r). 4.3
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Clearly, we have

Hi(x) =HP(x, =2r) = rVeosrx (4.4)
Ha(x) =2r l%m e T H(x vy =2r llin; e P(x, vy = 1. 4.5)
yt—~r »-3r

Next choosing z € i(8, 00), the constraint (2.7) entails
r sin(2iBr)
—2Bsin(r(z —iB))sin(r(z +iB8))
Consequently, y(z) is non-zero and y(z) decreases from co to —r as z goes from i to icc.

Switching to the new parameter

{4.6)

Y@=

k= —iz € (B, 00) 4.7)
we obtain the B-eigenfunctions
Hx,yy=r"'sinr(x + i/c(y))e”(-"*z’) y € (—r, 00) 4.8)

with k(y) uniquely determined by
shrik = B) _ ~2pvsan
shr(x + B)

Comparing equations (4.9) and (3.9), we obtain equality for e = «r.y = Bly + 2r) and

t = Br. From (3.13) (with n = —irx) it then follows that we may write

H(x, 3) = i@ [sh By +3r)sh By + 1] [ch(Bly +2r) =~ irx)e®”
—ch(B(y +2r) +irx )e'ﬂ’]ei"‘("*z’).

Similarly, specializing (2.8) we deduce from (3.12) that the associated eigenvalue can be

Tewritten

y € (_r’ w)' (4.9)

(4.10)

@.11)
E = 2¢h B(y +2r).

Though we have assumed y € (-7, 00) in deriving (4.10) and (4.11), it foni"’lslf";“l‘_
(2.11) and (2.14) that we also obtain a B-eigenfunction (4.10) with exgenfvalut? ( H(i ‘?)
¥ € (—00, —3r). Moreover, it is not hard to check that for y € (=3, f”) th:: unﬁl;t_){:(x \'.) }is
(4.10) amounts to the eigenfunction H?(x, y) (4.3), so that the B-eigenvaiue 0 >
Once again given by (4.11).

Next, we consider the eigenfunctions

Yn(x) = H(x,nr) — H(-x,nr)  n€N
in relation to the Hilbert space 1
M = L2((0, w/r). rsinr(x +iB)sinr(x —if)I™ dx)-

4.12)

@.13)

SDCCializing (2.72) and (2.80), one readily obtains
0 n#£m (4.14)
(Vns Ym) = { 2/r n=m.
More is true: the B-eigenfunctions ¥, are in fact an orthogonal base
To prove this, it suffices to show that the functions

. -1
Pu(x) = [sin r(x +ip)sinrxsinr(x — lﬁ)] Yn(x)

for Ha-

(4.15)

are total in the Hilbert space o
L((0, 7t /r), sinr(x +iB) sin? rxsinr(x —iB)dx).
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We switch to the functions P, (x), since they are polynomials in cos rx of degree n. Taking
this assertion for granted, it is plain that Py, Py, ..., span the space (4.16).

To prove the assertion, we note that P,(x) is clearly a rational function of the variable
z = e/"*_ The poles of the prefactor in (4.15) at 7 = =1, +ef" and +e~#" are cancelled by zeros
of ¥y, so that P, (x) equals a Laurent polynomial Q,(z,z™"). Now P,(x) is even in x, s0 @,
is invariant under z < z~!. Hence Q, may be viewed as a polynomial in z + z~! = 2cos rx.
Taking z — o0 one sees that the pertinent degree is n, so our assertion follows.

As a consequence of the orthogonal base property, it follows that the AAO B gives rise to
a self-adjoint operator in the Hilbert space H;;. It should be stressed that it is the polynomial
character of the functions P,(x) that renders completeness obvious in the trigonometric case.
There is no analog of this feature at the elliptic level, which is why completeness of the functions
{¥n )52, is left open in that case.

Specializing the non-orthogonality results for the even eigenfunctions H(x, y)+H(—x, y)
with y = nr, n € N, and for the Floquet/Bloch eigenfunctions (cf the end of subsection 2.2},
we also obtain non-orthogonality in the trigonometric regime. On the other hand, the former
eigenfunctions are obviously polynomials ‘R of degree k = n+3 in cos rx, cf equation (4.10).
Therefore, one might be inclined to believe that there exists a weight function W (x) on (0, /r)
that differs from w(x), such that the orthogonal polynomials associated with W(x) yield B-
eigenfunctions coinciding with R, for k > 3.

This contingency can be ruled out, however. To be sure, for y = —2r the eigenfunction
H(x, y) (4.10) reduces to a multiple of cos r x, and omitting the square-root factor one can put
y = —3r or y = —r to obtain a constant eigenfunction, cf also equations (4.4) and (4.5). Thus
B does admit polynomial eigenfunctions Ry of degreesk = 0,1, 3, 4, ... . But we claim that
B has no degree-two polynomial as an eigenfunction.

Indeed, a straightforward calculation yields

B cos*(rx) = 2 ch(Br)(cos*(rx) — sh?(Br)). 4.17)

Thus, B has a non-trivial Jordan form in the invariant vector space spanned by the two functions

cos? rx and 1, and so our claim follows.

We proceed by detailing a connection between the hyperbolic and trigonometric settings,
which naturally leads to duality properties of the latter. First, we observe that the hyperbolic

eigenfunction H(x) (3.6) gives rise to the trigonometric eigenfunction #(x, y) (4.8) via the
substitutions

a, =~ B a_ — wfir npja_ — B(y+2r) z—> k. (4.18)
Comparing equations (3.3} and (4.1), we see that (4.18) entails

B_— B 4.19)
in agreement with (4.11). Similarly, from (3.4) we obtain

B, —» =0 (4.20)

where Q is the quasi-periodicity AAO
Q=T + T . 4.21)

Next substituting (4.18) in K(x, p) (3.16) and in the AAOs B_ (3.17) and B, (3.18), we
obtain

L(x,y) = 2[e™ chlirx + B(y +2r)) — e ch(irx — B(y + 2r))Je* "+ (4.22)
- sh(ﬁ(}' + 3]‘)) -~ sh(ﬁ(y + r)) _
B_=

sh(B(y+2r)) " * sh(B(y +2r)) T (4.23)

By = ~(Tinyp + (i > i) (4.24)
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where T, acts on meromorphic functions of y by

(T,G)(y) = G(y — &) @ eC. (4.25)

The eigenvalues of B_ and B, on L(x, y) read
E_=2cosrx £, = 2ch(rx/B). (4.26)

Since we clearly have (cf equation (4.10))
H(x, y) = (4ir) 7' [sh(B(y +3r)) sh(B(y + TN/ L(x, y) (4.27)

the function H(x, y) is an eigenfunction of the analytic difference operator

g _ (shﬂ(y+3r))”2i, (shﬂ(y+r))1/2
sh B(y +2r) "\shB(y+2r)

N shB(y +r) )1/2 . (Shﬁ()'+3"))”2 (4.28)
sh B(y +2r) shB(y +2r)

with eigenvalue E_. Hence it follows that (¥o(x), ¥ (x), .. .) is an improper eigenfunction
of the discrete difference operator

shin + ) 7 (shtn +“1)'ﬂ"r)m +he. 4.29)
sh(n +2)B8r sh(n +2)Br
on the Hilbert space I*(N). Here, S is the right shift

0 n=0 (4.30)
(Sf)n = { f,,_x n>0
with f = (fy, fi....) € I*(N), and h.c. stands for Hermitian conjugate. To btz quite precise,
(r/2m)' />3, (x) may be viewed as the kernel of a unitary operator frqm I*(N) onto 'H.;%
(4.13), diagonalizing the bounded self-adjoint operator D as multiplication by 2 cosrx, ¢
also theorem IV.1 in I

5. The rational case

: i i in th
The rational specialization of the above can be most easily obtalncgi by letting r | Oin the
trigonometric quantities. To begin with, this yields the rational AA

x+ip (5.0

to constant functions, on

of equation (4.1). The (renormalized) band functions (4.3) reduce -eigenfunctions

which B has eigenvalue 2. From equations (4.8) and (4.9) we get B

°! (5.2)
Hix, y) = (x +ik(y)e™ y €(0,00)

with «(y) given by 5.3)

6.

KB _om s e 0.
K+ B

Moreover, the B-eigenvalue reads (5.4)
E=2 Ch(ﬁ)')

<f equation 4.11). o her:

Taking r | 0 in (4.10), we can eliminate k altogether: 5.5)

H(x, y) = (x +ifcth (By))e™"-
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Alternatively, this formula follows directly from the constraint (5.3), since the latter amounts
to

k(y) = Bcth (By). (5.6)
The odd combination
V(x,y) = H(x,y) — H(—x, ) = 2x cos(xy) — 2B cth(By) sin(xy)  (5.7)

gives rise to an isometry from L2((0, 00),dy) onto L2((0,0c), (x* + g*)~'dx) (after
multiplication by a suitable constant). The even combination has a non-integrable singularity
as y } 0, and so it does not yield an isometry.

Turning to duality properties, we note first that H(x, y) is an eigenfunction of the AAO

Hy = Tinp + (i > —i) (5.8)
with eigenvalue
E, =2ch(nx/B). (5.9)

1t is also easy to verify directly that H(x, y) is an eigenfunction of the differential operator
2 2
o =S, 28 (5.10)
dy* * sh’(By)

with eigenvalue
E© = 42, (5.11)

This can be understood from H(x ¥) (4.8) being an eigenfunction of the AAO H_ (4 28) with

eigenvalue 2 cos rx: writing T, = exp(—rd/dy), subtracting 2 and dividing by —r>, we obtain
H® and E9 for r 1 0, respectively.

Of course, A amounts to the hyperbolic specialization of the non-relativistic Lamé
operator Hy,(2) (1.1). This state of affairs can also be understood from a study of the non-
relativistic limit, with which we now proceed.

6. The non-relativistic limit

We conclude this paper by studying the non-relativistic limit 8 | 0. Beginning with the elliptic

case, we subtract | from the left-hand side and right-hand side of (2.7), divide by 8, and let
B 1 Oto obtain

is'(z)/s(z) = y +2r. 6.1)
Thus the function (2.6) has limit

Holx) = s(x + z) exp(—xs5'(z)/5(2)). 6.2)
Clearly, it is an eigenfunction of the 8 | O limit

BO = —e=dar(e=2rxy 4, —i) 6.3)
of B, (1.17), with eigenvalue

E® = 2e™" ch(2izr +ias'(2)/s(2)). 6.4)

Writing Tig = exp(—iBd/dx) ine*" B_, subtracting 2 and dividing by 82, we obtainthe 8 | 0
limit
B - _f_z_ s (x) s'(x) d

a5 ¢ s(x) dx’ (65
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Using equations. (2.8) and (2.7) to expand B2(e¥TE_ — 2y, it readily follows that Ho(x) is a
B® )—eigcnfunction with cigenvalue

E9 = —0 () +4yr/7. (6.6)

(To verify this directly is not a trivial matter.)
The weight function % (x) (1.14) has limit

Wo(x) = 1/s(x)>. (6.7)
Setting
B = do(0) 2B ig(x) 2 §=+, - (6.8)
we obtain
d2 s"(x) (s’()c))2
{0}
=— +2 ==
H- dx? 2 s(x) s(x)
= —dxz +2[p(x) +2nr/7]
= Ho(2) +4nr/m (6.9)
and also
HOY =e 2T, 1 (i > —i), (6.10)

One can easily check that the constraint (6.1) and the eigen_values (64) and (6'6) o
invariant under (2.10)-(2.12), and that the transformation prQPCnxes (2.13)H2.15) still ho?d
when H(x) is replaced by Hg(x). Choosing first z € w/2r + iR, we may use (2.16) to obtain
Y= foly) € R. with

o exp(—2kar) sh(2ry) , .11
Jo¥) = -2, +rth(ry)+4r kz; 1 + exp(—4kar) + 2 exp(—2kar) ch(Zry)

Hence f, is monotonically increasing and maps R onto R. Itis not hard to s;: flhal foT:::n:f:;
(2.19), 50 we need only choose y € [~a/2,a/2}and y € [-3r, —r], as before.

eigenfunctions are then again given by
Hy(x, y) = s(x +7/2r +iy(y))e .
. b .
With ¥ (y) the inverse of fo(y): also. (2.21) and (2.22) stll apply when s f;g‘g:::‘gyrgg]
Letting next z ascend the imaginary axis from 0 to ia, it 1s clc.sar that y var ot
0 10 —00, with y(ia/2) = —r; furthermore, y(z) is H?OPOIOT}‘;‘):“W dicriz:?ongs
(2.32) and (2.34). Denoting the inverse by zo(y), we get joint By~ -eigenfun
2rx+ixy y€ R.

ZryHxy y € [=3r,—r] 6.12)

(6.13)
Holx, y) = s(x +z0(y))e

As before, we have
Ha(x) = Holx, —r) = s(x +ia/2)e

of equation (2.27) - quare-
o P ST 21, (x ) are not square
Incontrast 1o the relativistic case, the Hy (2)-eigenfunctions do(x)™“Ho(x)

. p ; =Qandx =m/r.
integrable over (0, 1/r), since 1/s(x)* hasa non-integrable singularity at x
Consider next the functions
Palx) = o) 2 Ho(x, nr) — Ho(—x. 1)
1

= ;U[s(x + 7)Y L 5 (x — zp)E
x

6.14)

iry

—i(n+2)r.vl xe€0.m/r) 6.15)
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with z,, = zo(nr) € i(0, a/2) given by
is'(z0)/5(zn) = (n+2)r neN. (6.16)

The function in square brackets vanishes at x = 0 and is 7/ r-periodic (antiperiodic) for n
odd (even). Hence ®,(x) does give rise to a vector in the Hilbert space H (1.24). Note
that (the analytic continuation of) ®,(x) is even, as opposed to its relativistic generalization
W(x) 2, (x), which is odd for real x. (This parity change can be readily understood by
comparing the functions x > x? and x > x(x> + €)% ¢ > 0.)

It is not hard to see that the differential operator Hy (2) gives rise to an essentially self-
adjoint operator on the subspace C§*((0, r/r)) of H, and that the vectors ®,(-) are in the
domain of the self-adjoint closure Hy(2). Using the Weyl-Kodaira—Titchmarsh theory we
expect one can show they are actually an orthogonal base of eigenvectors for "H :(2), but to our
knowledge the details have not been worked out in the literature. (Of course, only completeness
is at issue; orthogonality is plain in the differential operator setting.)

Taking completeness for granted, we can exploit the eigenvectors to associate a sel{-adjoint
Hamiltonian H. with the AAO H” (6.10), by setting (cf equation (6.4))

—(0
B9, = EQ®,  EQ® =26 chQizg,r + (n+2)ar)  neN (6.17)

extending linearly, and taking the closure. It should be observed that the AAO ' has
constant coefficients, whereas the eigenfunctions ®,(x) are not in any sense ‘free’.

To be sure, we have a similar state of affairs at the relativistic level, ¢f H_ (1.12) and
H, (1.13). In that case, though, the pertinent eigenfunctions w(x)!/ 24, (x) of the defining
AAO H_ are singled out in the infinite-dimensional eigenfunction space by requiring that they
be eigenfunctions of the ‘free” AAO H,, too, cf the end of subsection 2.1. By contrast. for
the Schrodinger operator Hy(2) the eigenfunctions span a two-dimensional space, and self-
adjointness requirements uniquely determine the relevant eigenfunctions. To our knowledge,
the existence of a self-adjoint, commuting operator ﬁi) with a very simple action (namely,
by the AAO Him (6.10)) on a core for Hy,(2) has not been observed before, neither for the
elliptic potential 2¢0 (x) nor for its hyperbolic specialization, which we study below.

Before doing so, we add some remarks concerning the band functions (6.12). First, we
recall their role in the spectral analysis of the operator

2

~ d*
Hy(2) = "a,_‘ +2p(x +ia/2) (6.18)

viewed as a self-adjoint operator on L>(R) in the obvious way. The key point is that besides
the functions Ho(x +ia/2, y), ¥ € R (cf equation (6.2)), the functions Hg(x +ia/2,y). ¥y €
(=3r, —r], are the only eigenfunctions of the differential operator on the right-hand side of
(6.18) that have a real eigenvalue and a 7/ r-multiplier that is a phase. (This well known
fact follows from a consideration of the discriminant of the periodic Schrodinger operator
(6.18) at hand, but a quite short proof will be given in a moment.) Thus it follows that Hx(2)
has a purely absolutely continuous spectrum [—e), —e>} U [—e;, oc) with multiplicity two, cf
[11, section XIIL. 16} and references therein.

Comparing this state of affairs to our findings in subsection 2.4, the rcader will sec why
the completeness conjecture made there is plausible. A suitable generalization of the well
known lore on periodic Schrodinger operators to A AOs with periodic coefficients might settle
this open problem.

' V\{ith the above formulae at our disposal, it is actually quite simple to demonstrate the key
point jus} mentioned. First, we note that the eigenvalue —gp (2) takes all values in (—00. 00)
as z varies over the rectangle with comers 0, w/2r, 7/2r + ia/2 and ia/2 (with the first
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comner excluded. of course). Thus we need only consider the functions Hy(x)/s(x) ( given
by equation (6.2)) and their complex conjugates for z on the rectangle. The latter have the
same eigenvalue — (z) and are linearly independent of the former unless < equals one of the
last three corners. (A second eigenfunction E;(x) independent of H;(x)/s(x). j € {1.2.3}.
can be easily constructed via reduction of order, but E;(x + m/r) does not equal pE, (x) for
some 12 € C.) Hence it suffices to prove that the y-value given by (6.1) is not real for z on the
horizontal sides of the rectangle.
Now for 7 between ia/2 and ia/2 + 7 /2r we may write

s(2) = —ir + (—p(w) — 2nr/m)dw z—1ia/2 € (0, n/2r) (6.19)
5(2) /2
cf equations (2.32) and (2.36). The integral equals 0 for z = ia/2 + 7r/2r and the integrand
decreases monotonically as w goes from ia/2 to ia/2 + 7 /2r. Since —ea — 217/ is positive
(cf equation (2.34)), we deduce that the integral yields a positive number for z between ia/2
and ia/2 +  /2r. Therefore, the associated y-value has a non-zero imaginary part.
It also follows from the previous paragraph that —e; — 21r/m is a negative number.
A fortiori, —g (w) — 2nr /7 is negative for w € (0, 7/2r]. Now for z between O and /2r we
have

SI(Z) /2 6.20
o =f (pw) +2pr/m)dw  z € (0,7/2r) (6.20)
s(z 2
50t follows that 5 (z) /s(z) is positive. Hence y is not real, and the proof is complete.
Proceeding with the hyperbolic specialization, we let r | 0 in the above formulac.

obtaining the operators

BO =T, —To  HO=TutTu 621
> #? 2 er) d (6.22)
o _ 4 m LT A P
B = oz + p cth( Pl PP
go__ £ 2 a8 sherx/a). (6.23)
- dx?  @2sh’(wx/a)
The constraint (6.1) becomes 626
(6.24)
cth(rz/a) = —iay/m
which amounts to
exp(2rzja) = v nja
Thus Hy(x) (6.2) can be rewritten
nxy . TXY |eix 6.26)
Holx,y) = ﬁ..___.—————l 5 [aysh(—ﬂ) + 1 ch(-—;)]e (
04, ) T (az)v2+]-[2)l/- a
and i
the eigenvalues become 6:27)

E® =2ch(ay)  EP=)"
A suitable multiple of the odd combination
Volx, y) = Ho(x, y) — Ho(—x, )

XY Gnixy (6.28)
== ?.E_,__L___; ay Sh(”—f) COS(X)') -7 Ch(T) sm(x_\)]
7 (a2 + w22 a
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yields an isometry from L2((0, c0), dy) onto L((0. c0). sh™(rx/a)dx). The even
combination does not vanish for x — 0, so it does not give rise to an isometry.

Comparing the above hyperbolic formulac and the rational specialization in section 5, one
reads off that they are related via the substitutions

X<y B — m/a. 6.29)

From this the pertinent duality property of the joint B§°) -eigenfunction Ho(x, y) (6.26)is clear:
it is also an eigenfunction of the AAO

T v DY 1/2
H= (1.__2'_”!_‘1) Tin/a (Lﬂf_/ﬁ) + (- —i) (6.30)
¥ y
with eigenvalue
E = 2ch(nx/a). (6.31)

(The arbitrary-g generalization of this non-relativistic-hyperbolic versus relativistic-rational
duality was first pointed out in [3, subsection 3B2].)
Just as in section 3, we can also take x — x +ia/2 to get operators

- ¥ = o x\ d

go__ @ 7 2 (mxNd 6.32
- dx? a2 M a t a Jdx (©32
- d? § 5

O -9 2" bl wx/a) B chirx/a). (6.33)

dxr g2 ch?(rx/a)

The B¢ )_eigenfunction

- L_a 1 TX . X iy
H()(x, )) = ;m[ﬂ) ch (-—a—~) + 1 sh (*‘Z—)]e - (634)

gives rise to an isometry from the even subspace of L*(R, dy) onto the odd subspace of
L*(R, ch™(7x/a) dx), whereas the odd L2(R, dy)-subspace is mapped isometrically onto
the orthocomplement in the even L2(R, ch™*(rx /a) dx)-subspace of the constant functions.
(The bound state energy equals ~m?/a?, cf equation (6.32).)

We continue by specializing to the non-relativistic trigonometric regime. This can be done
in three distinct ways, each of which yields the same results: we can take a 1 oo in the elliptic

formulae, perform a suitable analytic continuation in the hyperbolic formulae, or let 8 4 0 in
the formulae of section 4. We now detail the latter option.

The AAO B (4.1) yields the non-relativistic limit
8© =——dz—+r2+2rc0t(rx E— (6.35)
dx? ) dx .
corresponding to the Schrédinger operator
d? 2r?

HO — ) © 6.36
& Snton st~ (rx)B™ sin(rx). (6.36)
The constraints (4.2) and (4.9) become
rth(ry) =y +2r rcth(re) = y +2r (6.37)
respectively. Eliminating y and k yields the B'®'-eigenfunction
i 1
Holx.o) =7 (2 +dry +3r3)12 [ +2r)sin(rx) +ir cos(rx)]et o+ (6.38)

with eigenvalue

E® = (y+2r)2, (6.39)
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The odd eigenfunctions

U, (x) = Ho(x, nr) — Hy(—x, nr) neN (6.40)
give rise to an orthonormal base for the Hilbert space
L2((0. 7/r), r* Q2 sin2(rx)) ™" du). (6.41)

(Just as in section © -ompleteness follows from the functions sin'%rx)gb,‘,"’(x) being
polynomials in cos rx v degree n.) The B | 0 limit of (4.17) reads

BO cos?(rv) = ri(cos(rx) - 2) (6.42)

and is readily checked directly from (6.35).
Using (4.28) one deduces that Ho(x, y) is an eigenfunction of the dual AAO

L2 12 . 172 . 1/2 . 1/2
A - y+3r 7 y+r +()+r) T_,()+3r) (643
y+2r y+2r y+2r, y+2r
with eigenvalue 2 cos rx. The discrete difference operator
3N me1\?
DO = (22} g ———) +he. (6.44)
n+2 n+2

on I*(N) is then diagonalized as multiplication by 2 cos rx on the Hilbert space (6.41) via the

unitary with kernel (10(;0) (x), 1!/,(0)0! )yeeo)
Finally, we turn to the rational case. As before, this most degenerate case can be reached

via various paths, yielding the same results: one gets the operators

2
BO _ & + z__c_l_ HO = _.__d__ + _2_ = lB(O)x (6.45)
T T de? | xdr dx?  x*  x
and B@-eigenfunctions and -eigenvalues
i ixy E(O) — 2 (6.46)
)) = +—Je =)
Holx, y) (x y)

The H wLCiEenfunction Ho(x, y)/x is manifestly self-dual (symmetric under x « y). The
even combination

OO (x, y) = 2cos(xy) — 2sin(xy)/xy .
yields the kernel of an isometry on L*((0, 00)), whereas the odd combination does not give
rise to a bounded operator on L2((0, 00)).

(6.47)

. nario sketched in
Note added, After completion of this paper a preprint by Billey [15] appeared that bears - [?:nsccgons can be found
the Paragraph below (1.23). More precisely. she shows that N > 2elliptic relativistic eigen

LT . it is not obvious that her
Via a suitable (nested) Bethe ansarz, provided the coupling 4 is an integer. Unfonuriait:;ym::jlls,iniger by appropriate
£ = 2 Bethe ansarz equations and eigenfunctions can be made 10 converge to those 0

Substitutions. but we have little doubt that this is feasible.
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