New collision attacks on SHA-1 based on
optimal joint local-collision analysis

Marc Stevens

Cryptology Group, CWI
P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands

marcOmarc-stevens.nl

Abstract. The main contributions of this paper are two-fold.

Firstly, we present a novel direction in the cryptanalysis of the cryptographic hash
function SHA-1. Our work builds on previous cryptanalytic efforts on SHA-1 based
on combinations of local collisions. Due to dependencies, previous approaches used
heuristic corrections when combining the success probabilities and message conditions
of the individual local collisions. Although this leads to success probabilities that
are seemingly sufficient for feasible collision attacks, this approach most often does
not lead to the maximum success probability possible as desired. We introduce novel
techniques that enable us to determine the theoretical maximum success probability
for a given set of (dependent) local collisions, as well as the smallest set of message
conditions that attains this probability. We apply our new techniques and present an
implemented open-source near-collision attack on SHA-1 with a complexity equivalent
to 2°7° SHA-1 compressions.

Secondly, we present an identical-prefix collision attack and a chosen-prefix collision
attack on SHA-1 with complexities equivalent to approximately 26 and 277! SHA-1
compressions, respectively.

1 Introduction

A series of breakthrough attacks on hash functions started in 2004 when the first
collisions for MD4, MD5, HAVAL-128 and RIPEMD were presented by Wang et
al.[WFLY04/WY05]. This was soon followed by the first SHA-0 collision presented
by Biham et al. [BCJT05]. Soon thereafter, Wang et al. published a more efficient
collision attack on SHA-0 [WYYO05¢]. In the same year, the first collision attack on
full SHA-1 [WYYO05b] was presented by Wang et al. with an estimated complexity
of 299 compressions. A later unpublishedﬂ result by Wang et al. claimed a SHA-1
collision attack with an estimated complexity of 263 compressions [WYY05a]. This
was further improved by Mendel et al. with an unpublished attack with estimated
complexity of 260 compressions [MRRO7]. Although later withdrawn, McDonald et
al. published a collision attack with claimed complexity of 252 compressions [MHP09].

So far, it seems some kind of barrier has been reached at around 21 SHA-1
compressions. Unfortunately, as Polk et al. [PCTHI1] point out, these cryptanalytic
advancements are not reflected in the literature so far, as the improved attacks since
the first SHA-1 collision attack are either unpublished or withdrawn.

1. Cochran analyzed and partially verified this attack [CocO7].

mailto:marc@marc-stevens.nl

2 Our contributions

This paper aims to renew the cryptanalytic efforts to construct a feasible collision
attack on SHA-1 and find an actual collision pair. The main contributions of this
paper are two-fold.

Firstly, we present a novel direction in the cryptanalysis of SHA-1 that we believe
will allow collision attacks with complexity well below the 26! barrier. Collision attacks
on SHA-1 are constructed in roughly two parts: a non-linear part (over approximately
the first 20 steps) and a linear part (over approximately the last 60 steps). The
linear part is constructed using a linear combination of local collisions as described
by a disturbance vector [CJ98]. So far, to obtain the success probability of these
combinations, the local collisions are first studied independently (e.g., see [MPRR06])
and then combined. As the success probabilities of local collisions can be dependent
(e.g., see [Manll]), current approaches make some heuristic corrections when joining
probabilities and message conditions. Although this is seemly sufficient to construct
feasible collision attack on SHA-1, it may not lead to the desired maximum success
probability possible and thereby leads to sub-optimal collision attacks. We introduce
novel techniques that enable the computation of the maximum success probability
for a given set of (dependent) local collisions, as well as the smallest set of message
conditions that attains this probability. That our new approach provides a distinct
advantage over the previous approach is showcased in our second contribution.

Our second contribution is an implemented near-collision attack for SHA-1 with
a complexity equivalent to 2°7-5 Compressionsﬂ We show how this near-collision
attack can be used to construct an identical-prefix collision attack on SHA-1 with
complexity equivalent to 26! compressions. Furthermore, we present the first chosen-
prefix collision attack on SHA-1 with a complexity equivalent to 277! compressions.

Our attack distinguishes itself from previous (unpublished) attacks on SHA-1 on
several aspects. Firstly, in the construction of this attack we optimized the complexity
over the linear part and (so far) not over the non-linear part. Secondly, our novel
direction has resulted in a competitiveﬁ attack complexity without exploiting nearly
all degrees of freedoms. In fact there are well over 50 from the 512 message bits left as
degrees of freedom that can be further exploited in future work. Lastly, it is the first
public implementation of a SHA-1 collision attack: the source code is available online
[Ano] H This allows the public verification of the correctness and the complexity of our
implementation and we also hope it leads to better understanding and improvements
by the scientific community. We will leave the many technical details of our near-
collision attack to the full version of this paper due to space considerations. Despite
this, we briefly discuss how the correctness of our implementation as well as our
claimed complexity can be verified using our publicly available source code.

2. This complexity is not based on a purely theoretical cost analysis, but directly determined from
the measured performance over the non-linear part and success probabilities over the linear part,
see 3. In comparison to unpublished attacks. 4. Made anonymous for the sake of
the review process.

3 Preliminaries

32-bit words SHA-1 is defined using words X = (x3;...x0) consisting of 32
bits z; € {0,1} over which we use the following notation for bitwise operations:

X[i] = z;, X (complement), X AY (AND), X VY (OR), X @Y (XOR), RL(X,n)
and RR(X,n) for the cyclic left and right rotation of X by n bit positions, and w(X)
for the Hamming weight of X. Furthermore, these words are identified with elements

T = ?io 2;2° of 7,/23%7 to define addition and subtraction of two words.

Binary signed digit representation A binary signed digit representation (BSDR)
for X € Z/2%*Z is a sequence Z = (z)3L, € {—1,0,1}3? such that X = Z?io 220
We use the following notation for a BSDR Z:

— Z[i] = z; denotes the i-th signed bit of Z;

— RL(Z,n) and RR(Z,n) are the cyclic left and right rotation by n positions;
— w(Z) is the Hamming weight of Z;

— 0(Z) = 38 k2 € Z/232Z denotes the 32-bit word for which Z is a BSDR.

Related variables and differences In collision attacks we consider two related
messages M and M’. Any variable X related to the message M or its SHA-1
calculation we use X’ to denote the corresponding variable related to the message
M’ or its SHA-1 calculation. Furthermore, for such a ‘matched’ variable X € Z /2327
we define 6X = X’ — X and AX = (X'[i] — X[i])3L,, which is a BSDR of §X.

SHA-1 compression function The input for the compression function Compress
consists of an intermediate hash value IHV;, = (a,b,c,d,e) of five 32-bit words
and a 512-bit message block B. The 512-bit message block B is partitioned into 16
consecutive 32-bit strings which are interpreted as 32-bit words mg, mi,..., mis
(using big-endian), and expanded to Wy, ..., Wrg as follows:

for 0 < t < 16,
t_{mt = (1)

RL(Wt_g ©® Wt_g SWi—1a @ Wt_lﬁ, 1) for 16 <t < &80.

We describe SHA-1’s compression function Compress in an ‘unrolled’ version. For
each step t = 0,...,79 it uses a working state consisting of five 32-bit words Q,
Qi—1, Q¢—2, Q¢—3 and (Q;—_4 and calculates a new state word Q¢+1. The working state
is initialized before the first step as

(Q0> Qfla Q*?a Q*37 Qf4) = (aa b7 RR(Ca 30)7 RR(d7 30)7 RR(67 30))
For t =0,1,...,79 in succession, ();+1 is calculated as follows:

Ft — ft(Qtfly RL(Qt727 30)a RL(Qt*:Sa 30))7
QtJr]_ =F +AC, +W; + RL(Qt, 5) + RL(Qt74, 30)

3

These 80 steps are grouped in 4 rounds of 20 steps each. Here, AC}; is the constant
5a8279994, 6ed9ebalig, 8f1bbcdcig or cab62c1d61¢4 for the 1st, 2nd, 3rd and 4th
round, respectively. The non-linear function f;(X,Y, Z) is defined as (X AY)& (X AZ),
XeYaZ, (XAY)V(ZA(XVY))or XY & Z for the 1st, 2nd, 3rd and 4th round,
respectively. Finally, the output intermediate hash value 0 IH Vg is determined as:

5IH‘/Out = (Q+Q80, b+Q797 C+RL(Q78730)’ d+RL(Q7773O)’ 6+RL(Q76730))

4 Joint local-collision analysis

4.1 Local collisions and the disturbance vector

In 1998, Chabaud and Joux [CJ9§| constructed a collision attack on SHA-0 based
on local collisions. A local collision over 6 steps for SHA-0 and SHA-1 consists of
a disturbance §Q;41 = 2° created in some step t by a message word bit difference
W, = 2°. This disturbance is corrected over the next five steps, so that after those
five steps no differences occur in the five working state words. They were able to
interleave many of these local collisions such that the message word differences
(AW)I9, conform to the message expansion. For more convenient analysis, they
consider the disturbance vector which is a non-zero vector (DV;)72, conform the
message expansion where every ‘1’-bit DV;[b] marks the start of a local collision
based on the disturbance §W;[b] = 1. We denote by (DW;)72, the message word
bit differences without sign (i.e., DW; = W/ @® W;) for a disturbance vector (DV;)72:

DW; = @ RL(DV;—;,r), R =1{(0,0),(1,5),(2,0),(3,30), (4,30),(5,30)}
(i,r)ER

Note that in differential paths we work with differences §W; instead of DW;. We say
that a message word difference dW; is compatible with DW; if there are coefficients
o, ---,c31 € {—1,1} such that 0W; = 2?1:0 ¢;j - DWy[j]. The set W, of all compatible
message word differences given DW; is defined as:

Wy :={o(X) | BSDR X, X[i] € {-DW,[i],+DW;[i]}, i€ {0,...,31}}

4.2 Dependencies of local collisions
Local collisions can interact in the following three ways.

— Message differences. Firstly, two local collisions can use message word differences
in the same message word in the same bit position. As an example, consider the
disturbance vector for which DVj¢[0] and DVjs5[30] are the only ‘1’-bits. Then as
DWs5 = DViss @ RL(DVso,30) = 0, this means the message word differences in
step 55 of the two local collisions must be chosen to cancel each other.

— Working state differences. Secondly, two local collisions starting in the same step
directly interact with each other due to carries. E.g., Wang et al. [WYY05b]
introduced a disturbance vector bit compression technique. They use opposite
signs for two local collisions that start in the same step at two subsequent bit
positions (say DVa5[0] = DVas[1] = 1) to turn it into a single local collision.

— Boolean function differences. Thirdly, two ’close’ disturbances can interact in the
boolean function. E.g., consider the disturbance vector for which DV55[31] and
DVa6[31] are the only ‘1’-bits. Then these local collisions interact as in the first
case as the message word differences in steps 29 and 30 cancel each other out.
Moreover, in step 29 it is also guaranteed that d Fog = 0 as the two disturbances
input to the XOR boolean function cancel each other. In contrast, when analyzing
these two local collisions independently, each has a probability of 0.5 that the
difference 0 Fh9 has the opposite sign from §Wsg. The product of the independent
success probabilities is thereby lower than the maximum joint probability of
these two local collisions by a factor 0.5 - 0.5 = 0.25 (see also [Manlll, Table 9]).
This particular example does not involve any carries, which in other cases may
have a further impact on the maximum success probability.

Although these examples are quite easy to analyze, the disturbance vectors in which
we are interested have a higher density of disturbances at the beginning and the
end. For these higher density areas, it is significantly more difficult to analyze the
exact impact of the these interactions on the maximum success probability. In this
paper we take a new direction in the cryptanalysis of SHA-1 in which we do not
analyze these interactions directly, but use a rather general approach to determine
the desired maximum success probability that incorporates these interactions.

4.3 Optimal joint local-collision analysis

We start at the relatively easy and well understood analysis of a single local collision.
Given the single bit disturbance AQ¢41[b] = %1 created in the first step ¢, one analyzes
the necessary message conditions to cancel this disturbance in the subsequent steps.
Most importantly, one determines what the probability is of a successful cancellation
under these message conditions. Higher success probabilities are obtained by also
considering carries in AQ;11 from bit position b to higher positions.

One approach that obtains exact success probabilities is to sum the exact success
probabilities of all possible differential paths over these 6 steps t,...,t + 5 with

0Q¢—g = ... =6Qs =0, 0Q¢+1 # 0 and Q12 = ... = Q16 = 0 using a given
message difference vector (5WZ)fif . Although there are already quite a few of such
differential paths for a single local collision, these can easily be enumerated.

We propose to study combinations of local collisions in a very similar way. That
is, we propose to analyze the set of all possible differential paths over a given
range of steps tp, ..., t. that contain disturbances as prescribed by the disturbance

vector using message word differences §W; compatible with DW;. Next, this set is

partitioned based on the values for the starting and ending working state differences
and the message word differences. We distinguish thus only on the pre-conditions
(the starting working state differences and the message word differences) and the
post-condition (the ending working state differences) that matches how differential
paths are used in an actual collision attack. For each partition, we compute the sum
of the probabilities of its differential paths. One can thus interpret this total partition
probability as the total probability that the ending working state differences are
obtained after step t. given that the starting working state differences at step t; and
the message word differences hold. Hence, the desired maximum success probability
for a disturbance vector is the maximum over all total partition probabilities.

4.4 Definitions

More formally, we define a differential path P over steps t = t3,...,t. to be given as
= ((AQt)i‘;Jtrbl_ 4 (AFt)ie:tb, (5Wt)§e:tb) under the following restrictions:

— correct differential steps for t = tp,..., te:
5Qt+1 = O'(RL(AQt, 5)) + O’(RL(AQt,Ah 30)) + (SFt + 5Wt (3)

— AF[31] € {0,1} and a non-zero value represents AF;[31] = +1. ﬁ

The success probability Pr[P] of a differential path P over steps tp, . . ., te is informally
defined as the probability that the given path P holds exactly for (th 4 th 4)s -
(Qte+17 Qt +1) for umformly—randomly chosen th Ay ,th and Wtb, ey W The
th drees th and Vth7 . ,VVte are determined through the first five working state
differences 5th, ...,0Qy, and the message differences 6W; (for i = tp,...,t.). The
remaining (thH, Qt +1) (@tc+1, @;e 4+1) are computed using the step function
(Eq. ' We refer to for another equivalent definition and how to efficiently
determine the probability Pr[P] for any given P.

As we are interested in differential paths with prescribed disturbances, we define
the set O; as the set of all allowed differences AQ; given a disturbance vector:

. oY) =0a(2),
Q,:=<BSDRY) .
Z[i] € {=DVi-1li], DVia[i]}, i =0,...,31
We are now ready to define the set of all possible differential paths over steps tp, . . ., te

that we will base our analysis on:
Dyt 1] = {'P ‘ AQ; € Q;, SW; €W, Pr[P] > 0}
5. In practice, we use an strictly smaller representation wherein AQ, 4 and 6Q:. 11 are replaced

by §(RL(Q¢—4,30)) and dQ:, +1, respectively. We use a simplification here to ease presentation.
6. Both —1 and +1 for AF;[31] result in the same contribution 23* € Z/2%?Z in o(AF}).

We define three functions ¥, ¢ and w that return beginning working state differences,
ending working state differences and message word differences:

¥(P) = (AQ)Ly, s
O(P) = ()i 5. di= {

w(P) = (OWie

1=ty

0(RL(AQ;,30)), i=t.—3,te—2,te — 1;
0Q;, 1 =te,te + 1.

We have chosen this particular definition for the ending working state differences
¢(P) as this matches 61H Vo, exactly. We denote by (D), ¢(D) and w(D) the sets
found by applying 1, ¢ or w to all differential paths in the set D.

The desired maximum success probability over steps ty, ..., t. for a given distur-
bance vector (DV;){2 is then determined as FDCy, ;1 ((DV;){2):

FDClyp) (DV)iZ) =max > 7 Pr[P] - e(b),
PED[tb,te]
¥(P)=b, $(P)=e, w(P)=w

where ¢(b) = c((AQi)f;tb_4) is the correction factor c¢(b) = Hfl’:—tf_4 2w(AQ:) Thig
correction factor ¢(b) ensures that FDC is the maximum success probability assuming
all working state bit conditions are fulfilled for @, —4, Q¢,—3 and th_gm This is
due to the fact that a collision attack fulfills working state bit conditions step by
step, using message freedoms to speed up the attack, until these freedoms cannot
be exploited anymore. At that point, it is more beneficial to compute all remaining
steps and verify whether the desired §IH V,; is obtained, FDC returns the maximum
success probability obtainable for these remaining steps.

4.5 Efficient algorithmic solution

Unfortunately, analyzing a single local collision in the above manner is very feasible,
whereas analyzing several local collisions quickly results in a prohibitively large set
of possible differential paths. We exploit the large amount of redundancy among the
possible differential paths to be able to efficiently compute the desired maximum
success probability even when there are many local collisions.

Note that we are only interested in the total success probability for given pre-
and post-conditions and not in the differential paths themselves per se. We therefore
propose to break up a differential path P into two valid differential paths P and P
with the following properties:

~-P and P are 'disjoint’ and ’add’ to P. More specifically, we want that either
AQ;[b] or AQ;[b] to be equal to AQ;[b] and the other to be zero (or all three to be
zero). The same holds for AF;[b], and furthermore we require 6W; = 6W; + dWj;

7. Note that if bit conditions up to Q¢,—2 are fulfilled then AF}, 1 has been ensured, but not AFy,.

— the success probabilities of P ‘and P are independent, i.e., Pr[P] = Pr[P] - Pr[P];
— P(P) = ¢(P) and ¢(P) = ¢(P);

— the success probability Pr[P] is maximal under the above restraints.

One can interpret P as the differential path P with all differences removed that do
not interact with the differences that constitute the starting and ending working
state differences 1(P) and ¢(P). We denote P as Reduce(P) and P as P — P. In
our proposed methodology, instead of directly computing the differential paths in
Dy, +.] and their probabilities, we propose to work with the set of reduced differential
paths Ry, ;. := {Reduce(P) | P € Dy, 4.1} and cumulative probabilities p(p) for
each reduced differential path P and w defined as:

Prwy = », PrP' =P (4)
PIGD[tb,te]
P=Reduce(P’)
w=w(P’)

These cumulative probabilities have an easy interpretation using the equation:

PriPl - ppwy= >, Pr[P]-Pr[P'=Pl= Y Pr[P]
PIED[tb,te] P/GD[tb,te]
P=Reduce(P’) P=Reduce(P’)
w=w(P’) w=w(P’)

As the working state differences ¢(P) and ¢ (P) are unaffected by Reduce(P), the
set of reduced differential paths and the cumulative probabilities are sufficient to
determine the total success probability of any partition (b, e, w) of Diaq 7).
Moreover, the set Ry, ;. of reduced differential paths can be computed efficiently
in an iterative manner as shown in The cumulative probabilities can
also be computed iteratively, but the number of possible message difference vectors
w € (Wi)ﬁe:tb grows exponentially in the number of local collisions over these steps.
We propose to alleviate this problem by considering classes w of message difference
vectors w over steps i, ..., 7, where any two w # w’ are in the same class w if and
only if p(p) = P(p,ur) for all P € R; ;. It then suffices to compute the cumulative
probabilities for only one representative w € w for each class w over steps tp, ..., te.
Let W[i,j] be the set of all message difference vector classes w over steps i,..., .
An important insight is that for any class wy; ;; € W[i’j] and any two w,w’ € Wi 4)
it holds that the extensions w||dWj41 and w'||0Wj41 of w and w’ with a difference
dWj41 are both in the same class wy; ;1] € W[i,j+1]- An analogous statement holds
for prepending a dW;_1 to w and w’. These insights imply that it is sufficient to
consider only one representative of each class in W[i’j] to determine the sets W[i,l’j]
and W[i,j +1]- Hence, one can efficiently determine the set W[tmte] in an iterative way.
In conclusion, with our two key techniques of differential path reduction and
message difference vector classes, we are able to efficiently compute FDCy, 4 .

8

4.6 Results

We have computed FDCjg 7g] for several interesting disturbance vectors. These
results are shown in [Section D|and show the maximum success probability of these
disturbance vectors over roughly the last 60 steps. Although the total complexity
of a collision attack also depends on the complexity over the non-linear part, these
results provide important insights which of these disturbance vectors may lead to
the fastest collision attack.

4.7 Improvements for the last few steps of SHA-1

A common approach in constructing SHA-1 collision attacks is to remove the con-
ditions for the last few steps as this will decrease the attack’s overall complexity.
The heuristic behind this effect is that for the last few steps some other differen-
tial paths that do not follow the disturbance vector actually have a higher success
probability. Our approach can be adjusted by extending the sets Qzg, ..., Qgo with
differences AQ); from these more likely alternative differential paths. We denote by

FDC’[tb to]’ thb] and R,[tb] the respective function and sets wherein the extended
sets Qf, ..., Q% are used instead of Qrg, ..., Qgo. In the full version of this paper
we also present algorithms that efficiently determine such extended sets Qg ..., Qg

using ideas similar to the analysis in this [Section 4

5 New collision attacks on SHA-1

5.1 Open-source near-collision attack

In this section we present our near-collision attack on SHA-1’s compression function
with an average complexity of 257 compressions. Our near-collision attack is based
on disturbance vector 11(52,0) (see [Table A-1]). Below we describe how we used our
new approach from to determine which message bitrelations and 61H Vjy;
to use and how we constructed the first round differential path. Collision search
algorithms and various improvements using message modification techniques have
already been covered extensively in the literature. We refer to our open-source
implementation and the full version for these details due to space considerations.

To apply our analysis of we have chosen to use t, = 20 (and t. = 79).
We use the improvements discussed in as this leads to higher success
probabilities by a factor 2!2. Let D' := DE20779] and define py ., for b € (D),
e € ¢(D') and w € w(D') as:

DPbe,w = Z Pr[ﬁ] ’ C(b)
ﬁe,DhbJe]

$(P)=b, ¢(P)=e, w(P)=w

9

Furthermore, define pmax := maxp ¢ 4 Db,e,w, Which is equal to FDC’[QOJQ}((D%)QO).

We use a differential path construction algorithm to find a differential path over
the first 20 steps that starts from §IH Vi, = 0 and ends with working state differences
b € ¢(D') for which there are e and w such that pc . = Pmax. The differential
path over the first round that we selected for our near-collision attack is shown in
and fixes a specific value b and specific message differences Wy, ..., dWig.

To maximize the success probability, we only accept 61HV,y in the set {e €
o(D) | Fw : Phew = Pmax - We can further decrease overall complexity by only
allowing w that maximize the number of e = §IH Vo, with Phew = Pmax: The
near-collision attack gains a speed up due to the fact that it always has several
chances of finding a target 6 [H V,t. Note that a possible second near-collision attack
(for an identical-prefix collision attack) does not have the benefit of the speedup as
it targets one specific IH Vo, = 0. More formally, for each w € w(D'), we count
the number N,, of values e for which Ppew = Pmax- Let Npax := maxy, Ny, (which
is 6 in our case) then we limit the allowed message difference vectors to the set
Wiz0,79) = {w | N = Nmax}. Hence, we only accept values for 6IH Vg in the set
{e € ¢(D') | 3w € Wigg 1) : Py = pmaX}l In this manner we have found 192 target
O0IH V,t-values which are shown in [Table E-]]

With the differential path and the set of allowed 6 IH V¢ known, we only need the
message bit relations to construct a collision attack. We translate the set iy 79] and

the vector (5Wi)£0 into a smallest sufficient set of linear bit relations on the message
words using linear algebra. We refer to for a more detailed description.
Using the differential path, the message bitrelations and the set of allowed §ITH Vo4,
we have implemented a near-collision attack. The most important characteristics of
our near-collision attack are given in For more details, we refer to the
(anonymous) source code (including build instructions) which is available online at
[Ano]. For more convenient analysis, the attack is split in four subsequent stages.

1. The first stage is to find a message block pair that satisfies the message bitrelations
and results in 6Q); = 0 for ¢ = 29, 30, 31, 32, 33. This stage is the most complex
and contains all speed ups using message modification techniques.

2. The second stage is to find a message block pair that satisfies the message
bitrelations and results in 6Q); = 0 for ¢ = 49,50, 51, 52, 53.

3. The third stage is to find a message block pair that satisfies the message bitrela-
tions and results in 6Q); = 0 for ¢ = 57,58, 59, 60, 61.

4. The fourth and final stage is to find a message block pair that results in one of

the 192 target 61H V¢ in

The last three stages cannot use any freedoms anymore and thereby either are or
are not successful with some probability. The total complexity of our near-collision

8. To obtain more message freedoms and larger Nmax, one may also condition on py e w > @ Pmax
for some a < 1, say 0.9, instead of requiring equality.

10

attack is thus the average complexity of the first stage divided by the product of
the success probabilities for the last three stages. Our implementation outputs the
throughput of the first stage in #/s as ’timeavg 40’, and the success probabilities of
the last three stages as 'avg 53 stats’, ’avg 61 stats’ and ’avg 80 stats’, respectively.
Using these numbers one can easily determine the average complexity in SHA-1
compressions to find a near-collision. With profiling and tuned optimization flags for
the compiler and many hours-long runs, we determined an average complexity of the
first stage to be 22991 SHA-1 compressions per message block pair. Using our novel
analysis for step ranges [33,52], [53,60] and [61,79] and Nyax = 6, we determined the
exact success probabilities for the last three stages, namely, 272091 28 and 216:65
respectively. These probabilities were verified by our implemented attack. Hence,
the total complexity of our near-collision is 21197 . 220-91 . 98.00. 916.65 _ 957.53 QA1
compressions. Finally, we like to note that with more than 50 bits of the 512 message
bits left as degrees of freedom, there is ample room to further optimize the first stage
with message modification techniques.

We provide an example message pair in that successfully passed the
first three stages of our near-collision attack (at a cost of about 2499 compressions).

5.2 Identical-prefix collision attack on SHA-1

The near-collision attack of can directly be used in a two-block identical-
prefix collision attack on SHA-1. It should be noted that such a two-block identical-
prefix collision attack actually consists of three blocks where the first block is part
of the identical-prefix part and is used to satisfy a few bitconditions on the IHV
(see E| The remaining two blocks are two sequential near-collision blocks
where the second block cancels the 6 IH V¢ resulting from the first block.

For the second near-collision block, we follow the steps as described in
with two modifications. Firstly, in we allow only 6/H Vs, = 0 (thus
dIHV, is canceled). This leads to Nyax = 1 and a different set of optimal message
difference vectors Wiy 79 Hence, the total complexity over the last three stages
increases by a factor 6. Secondly, instead of using a differential path starting with
6IHViy =0 in we use a differential path that starts with the (THV, IHV")
resulting from the first near-collision block.

A lower-bound for the complexity of a complete two-block identical-prefix collision
attack based on our current near-collision implementation is about (1+6)-2575 ~ 2693
compressions, as the first near-collision attack has the luxury of six allowed values for
0IH V4, for each possible (5Wt)t720, whereas the second near-collision attack must
target one specific 0/H Vyyt. Given the relatively large amount of freedoms left to
apply message modification techniques, it is reasonable to expect a similar complexity

9. It should be possible to remove this prefix block with only a negligible impact on the attack com-
plexity. We used this prefix block to simplify implementation and to allow very easy parallelization.

11

in the first stage (first 32 steps). Nevertheless, leaving room for a small set back, we
estimate the average complexity of our identical-prefix collision attack for SHA-1 to
be equivalent to 261 SHA-1 compressions.

5.3 Chosen-prefix collision attack

We present a chosen-prefix collision attack on SHA-1 using the second near-collision
attack of that does the following. Given chosen prefixes P and P’, we first
append bit strings Sy and S} such that the bit lengths of P||Sy and P’||S} are both
equal to N - 512 — 119. By processing the first N — 1 blocks of P||Sy and P’||S}, we
obtain THVx_; and IHV};_,, resp. Furthermore, let B and B’ be the last 512 — 119
bits of P||Sr and P’||S}, resp. The next step is to perform a birthday search as
explained in [vOW99] using a search space V' and a step function f: V — V. Based
on the 192 6I1H V,-values in we define V = {0,1}'* and f as:

) ¢(Compress(IHVy_1, B||v)) if w(v) =0 mod 2;
v) =
¢(Compress(IHVY_,, B'||v) — (0,0,0,0,2%")) if w(v) = 1 mod 2,

#(a,b, c,d,) = (ali])P10]| (0117214l | (cli]) 2ol (dli]) il

The probability that a birthday collision results in one of the 192 target 6IH Vit
is found to be approximately 273346 using Monte Carlo simulations. Therefore, a
birthday search collision pair v, w with f(v) = f(w) has a probability of ¢ = 2733461
that 7(v) # 7(w) and 0IHVy is one of the 192 target §IH Voy-values. Using the
analysis from [vOW99|, this implies that the expected birthday search complexity in
SHA-1 compressions is /7 - |[V[/(2 - q) ~ 27796,

It remains to find a near-collision block that cancels the found §/H Vy to complete
the chosen-prefix collision attack. But as dIH Vy is one of the 192 target 6 1H Vo,
we can directly use the construction of the second near-collision block of
here, whose complexity is significantly lower than 27796, Hence, the overall cost of a
chosen-prefix collision attack on SHA-1 is dominated by the expected 277! SHA-1
compressions required to generate the birthday search trails.

6 Concluding remarks

We have presented new collision attacks on SHA-1, most importantly an identical-
prefix collision attack with an average complexity of 26! compressions. With the
construction of these attacks, we focused mostly on obtaining the highest success
probability that is theoretically possible over the linear part. Our novel direction
in the cryptanalysis of SHA-1 is essentially based on an exhaustive and exact
analysis of all possible differential paths that follow the disturbance vector. This is in
contrast to previous approaches that combine success probabilities and conditions of
individual local collisions with heuristic corrections. In this paper we have introduced

12

the foundations of our novel direction. For a complete and rigorous mathematical
treatment we refer to the full version of this paper.

As our attacks have still over 50 out of the 512 message bits left as degrees of
freedom for further improvements using message modification techniques, we hope
that our novel methods provide the necessary advantage to construct attacks with
complexity well below 26! compressions and thereby contributes to the search for
the long-anticipated first SHA-1 collision.

13

References

Ano.
BCJ*05.
CJ98.
Coc07.

Cra05.

Manll.

MHPO09.

MPRRO06.

MRRO7.

PCTHI11.

Sho05.

vOW99.

WFLY04.

WYO05.

WYYO05a.

WYYO05b.

WYYO05c.

Anonymous, SHA-1 near collision attack source code, http://sdrv.ms/TywJf3|or https:
//docs.google.com/open?id=0Bw0oz1kYU_cPOWowQnlVUkJQdXM.

Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and William
Jalby, |Collisions of SHA-0 and Reduced SHA-1), in Cramer [Cra05], pp. 36-57.

Florent Chabaud and Antoine Joux, Differential Collisions in SHA-0, CRYPTO (Hugo
Krawczyk, ed.), Lecture Notes in Computer Science, vol. 1462, Springer, 1998, pp. 56—71.
Martin Cochran, |Notes on the Wang et al. 2°° SHA-1 Differential Path), Cryptology
ePrint Archive, Report 2007/474, 2007.

Ronald Cramer (ed.), Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings, Lecture Notes in Computer Science,
vol. 3494, Springer, 2005.

Stéphane Manuel, Classification and generation of disturbance vectors for collision attacks
against SHA-1, Des. Codes Cryptography 59 (2011), no. 1-3, 247-263.

Cameron McDonald, Philip Hawkes, and Josef Pieprzyk, |Differential Path for SHA-1
with complexity O(2°%), Cryptology ePrint Archive, Report 2009/259, 2009.

Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen, The
Impact of Carries on the Complezity of Collision Attacks on SHA-1, FSE (Matthew
J. B. Robshaw, ed.), Lecture Notes in Computer Science, vol. 4047, Springer, 2006,
pp. 278-292.

Florian Mendel, Christian Rechberger, and Vincent Rijmen, Update on SHA-1, Rump
session of CRYPTO 2007, 2007.

T. Polk, L. Chen, S. Turner, and P. Hoffman, |Security Considerations for the SHA-0
and SHA-1 Message-Digest Algorithms, Internet Request for Comments, March 2011,
RFC 6194.

Victor Shoup (ed.), Advances in Cryptology - CRYPTO 2005: 25th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
Lecture Notes in Computer Science, vol. 3621, Springer, 2005.

Paul C. van Oorschot and Michael J. Wiener, |Parallel Collision Search with Cryptanalytic
Applications), J. Cryptology 12 (1999), no. 1, 1-28.

Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu, Collisions for Hash Functions
MD4, MD5, HAVAL-128 and RIPEMD) Cryptology ePrint Archive, Report 2004/199,
2004.

Xiaoyun Wang and Hongbo Yu, |[How to Break MD5 and Other Hash Functions, in
Cramer [Cra05|, pp. 19-35.

Xiaoyun Wang, Andrew C. Yao, and Frances Yao, Cryptanalysis on SHA-1, NIST
Cryptographic Hash Workshop Presentation, 2005.

Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, |Finding Collisions in the Full SHA-1,
in Shoup [Sho05], pp. 17-36.

Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin, Efficient Collision Search Attacks onl
SHA-0, in Shoup [Sho05], pp. 1-16.

14

http://sdrv.ms/TywJf3
https://docs.google.com/open?id=0Bw0oz1kYU_cPOWowQnlVUkJQdXM
https://docs.google.com/open?id=0Bw0oz1kYU_cPOWowQnlVUkJQdXM
http://dx.doi.org/10.1007/11426639_3
http://dx.doi.org/10.1007/BFb0055720
http://eprint.iacr.org/2007/474
http://dx.doi.org/10.1007/s10623-010-9458-9
http://dx.doi.org/10.1007/s10623-010-9458-9
http://eprint.iacr.org/2009/259
http://eprint.iacr.org/2009/259
http://dx.doi.org/10.1007/11799313_18
http://dx.doi.org/10.1007/11799313_18
http://rump2007.cr.yp.to/09-rechberger.pdf
http://www.ietf.org/rfc/rfc6194.txt
http://www.ietf.org/rfc/rfc6194.txt
http://dx.doi.org/10.1007/PL00003816
http://dx.doi.org/10.1007/PL00003816
http://eprint.iacr.org/2004/199
http://eprint.iacr.org/2004/199
http://dx.doi.org/10.1007/11426639_2
http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
http://dx.doi.org/10.1007/11535218_2
http://dx.doi.org/10.1007/11535218_1
http://dx.doi.org/10.1007/11535218_1

A SHA-1 disturbance vector classes

Table A-1: SHA-1 disturbance vectors of type I and type II

disturbance vector I(K,0), K € Z disturbance vector II(K,0), K € Z
| i [DVikyi] DWik i | | i [DVikyi DWik i |
-18 31 28,31 —20 - 29
—17 | 30,31 | 4,28,29,30,31 -19 31 31
16 | - 3,4,28,31 18| — 4
—-15 31 29,30 —-17 31 —
14| 31 4,28, 31 16| - 4,29
~13| - 4,28, 31 ~15| 31 29
—-12 - 28,31 —14 - 4
—11 31 31 —13 | 30,31 29,30
—10 - 4 —12 - 3,4
9| - 29,31 11| - 29,30, 31
-8 — 29 —10 31 28,31
-7 31 29,31 -9 — 4,28,29
6| - 4,29 8| - 28,29, 31
-5 31 — -7 — 29
4| - 4,29 -6 | - 29
-3 31 29 -5 31 29,31
-2 — 4 —4 — 4
-1 31 29 -3 - 31
0 - 4 -2 - 29
1 - 29,31 -1 - 29
2 - - 0 - 29
3 - 29 1 31 31
4 - 29 2 - 4
5—-14 - 3 31 -
15 0 0 4 — 4,29
6 | — 5 5 - 29,31
17 — 0 6 - -
18 1 1,30 7 - 29
19 - 6,30 8 29
20 | — 1,30 914 -
21 2 2,31 15 0 0
22 - 7,31 16 - 5
23 1 1,2,31 17 | - 0
24 3 0,3,6 18 1 1,30
25 - 0,1,8 19 0 0,6,30
26 — 0,3,31 20 — 1,5,30
27 | 4 1,4,31 21 2 0,2,31

Note: we describe the bit-positions of all ‘1’-bits of the 32-bit words DViky, and DWgky,. The
SHA-1 (reverse) message expansion relation is used to extend the above tables forward (backward).
Disturbance vectors I(K, b) and II(K, b) for b € {0, ...,31} are obtained by left rotating all 80 words
of disturbance vectors I(K,0) and II(K, 0), respectively, by b bit positions [Manli].

15

B Probability analysis

In this section we present a method to efficiently determine the probability of a
differential path P over steps 0 < t; < t. < 80. This probability is equivalent to the
success probability of the following experiment:

Experiment B1 This experiment involves partial SHA-1 computations of two mes-
sages. For the first message, values for Qu—4,...,Q, and Wy, , ..., W, are selected

uniformly at random. The remaining values for Q, 41, ..., Q. +1 are computed using
the step function fort =1tp,..., te:

F, = f/(Qy_1, RL(Qy_2,30), RL(Q;_3,30)),
Qu41 = RL(Qy,5) + RL(Qy_4,30) + F, + W, + AC,.

For the second message, we apply the given differences to the randomly selected
variables:

Qi = Qi +6Q; Jori=ty,—4,... b,
/W\J/':Wj—l—(SWj forj=ty, ..., te.
The remaining values Q\éb""l’ . ,@QEH are computed using the step function for

t=ty,... te:
F} = f(Q;_y, RL(Q}_5,30), RL(Q,_3,30)),
Q)1 = RL(Q},5) + RL(Q}_4,30) + F + W/ + AC;.

The experiment has succeeded when the above step function computations follow the
differential path P, thus when all the following equations hold:

AQ; = AQ; fori=ty—4,... . te+1,
2" AF;[b] = 2" AF;[b] mod 2°2 forj=tp,....te, b=0,...,31.

Consider a slight change in [Experiment B1}

Experiment B2 This experiment is a modification of |Ezperiment Bl Instead of

randomly selecting values for Wy, , ..., Wy, and computing values for Qs 41, ..., Qto+1,
one randomly selects values for Qy,+1, ..., Q.41 and computes values for Wy, , ..., Wy,
USINg:

Fy = fi(Qi—1, RL(Qi—2,30), RL(Qs—3,30)),
W, = Qi1 — RL(@t, 5) — RL(@t—47 30) — F, — AC,.

The success requirement is left unchanged.

16

Since there is a bijective relation between (/Wt)ie:tb and (©t+1)§8=tba this implies

that (Wt)fe:tb is also uniformly distributed in |Experiment BQI Hence, the success

probabilities of both experiments are equal. Note that this second experiment is

completely determined by the values of (@t)ifgbl_ 4- Next, consider another experiment:

Experiment B3 This experiment is a modification of [Fxperiment B2 As above,
we set

Qi = Qi +6Q; fori=1t,—4,... 5.
However, instead of setting W{A: Wt + Wy fort =ty, ..., te and computing values
for Qi 15+, Qp 11, one sets Qi = Q1+ 6Qt1 fort =1y, ..., te and computes

values for Wi ..., Wy :

Fl = £(Q,_y, RL(Q,_5,30), RL(Q}_3,30)),
W/ = Qi41 — RL(Q},5) — RL(Q,_4,30) — F{ — AC,.

The success requirement is left unchanged. In particular, one does not need an
additional check that 6Wy = Wy as in case of success this is implied by .

Proposition 1 For fized values (@t)ifgbl_él, Ezxperiment Bﬁ succeeds if and only if

[Ezperiment BY succeeds.

We use these experiments to show that the probability Pr[P] of such a differential
path can be determined as the fraction Np/ 232(te—t4+6) where Np is the number of

possible values (@t)i‘jbl_él € 7/232 7t~ for which this third experiment succeeds.

In other words, Np is the number of possible values (Q\t)ie:tblle € 7,)2327t =1+ for
which

—fort=t,—4,...,te + 1: AQt:A@t;
—fort=tp,...,teand b=0,...,31:

(2°AF,[b] mod 2%2) = (f,(Q,_y, RL(Q;_, 30), RL(Q;_5,30)) A 2")
— (fe(Qi—1, RL(Qs—2,30), RL(Q—3,30)) A 2°),

where @2 = @t+5Qt fort e {t, —4,...,te+1}.

An efficient way to determine the probability Pr[P] is to partition the bits Qq[b]
into parts Gag, Go, . ..,Gk for some K € N that each contribute a factor to Pr[P].
One important part Gag consists of all indices (7,7) such that AQ;[i] # 0 where
je{ts—4,...,te + 1} and i € {0,...,31}. Since the values @3[2] and @j[z] are
uniquely determined for all (j,i) € Gaq, this partition contributes the factor of
pag = 1/21G2el to Pr[P].

17

Consider the set Sp of all indices (¢,b) where t € {tp,...,t.} and b € {0,...,31}
such that AF;[b] is not trivially fulfilled, i.e., for the given AQ;_1, AQ¢—2, AQ:—3
there were multiple possible output differences to choose for AF;[b]. Let Sg be the
set of all indices (j,7) where j € {t, —4,...,tc +1} and i € {0,...,31} such that
AQ;[i] = 0 and Q][] is involved with some AF;[b] with (¢,b) € Sp: {(j + 1,17), (j +
2,i+2mod 32), (j + 3,i+ 2 mod 32)} N Sg # 0.

All indices (j,) of bits Q;[i] where (j,i) ¢ Sg UGaq for j € {t, —4,... ,tc + 1},
i €{0,...,31} form part Go. Part G consists by construction of all indices of free
bits @;[i] whose values do not affect AQ; or any of the non-trivially fulfilled AF;
and thus contributes a factor of py = 210l /2IGol =1 to Pr[P].

The set of remaining indices S¢ is further partitioned by constructing a graph G
consisting of vertices Fy[b] for all (¢,b) € Sp and vertices @Q;[i] for all (j,7) € Sg. There
is an edge between nodes F;[b] and Q;[¢] if and only if: (¢,0) € {(j +1,7), (j +2,i+
2 mod 32), (j+3,i+2 mod 32)}, i.e., Q;[i] is involved with Fi[b]. The graph G can be
uniquely partitioned into connected subgraphs Gi,...,Gk. This partition Gy, ...,Gk
of G defines a partition G1, ..., Gk of Sg as follows: Gy, = {(J,%) | Q;[i] € Gk}, k€
{1,...,K}.

By construction, all bits Q;[i] with associated nodes in the partition G}, influence
a non-trivially fulfilled AF;[b] if and only if there is an associated node Fy[b] in Gy.
The probability p; can be determined as Np j, - 271Gkl where Np . is the number of
different values of (Q;[i])(ji)eq, that result in the correct value of all AF;[b], where
Fy[b] is a node in Gy, and assuming Q’[i] = Q;[i] + AQ;[d] for all (j,i) € Gaq-

Proposition 2 The probability Pr[P] is the product of paQ, po, P1,-- -, PK:

Np

K K
— . — 9-1Gaq]
Pr[P] = paqg - po];Hlpk =2774Q kl_[l S

18

C Algorithms for disturbance vector analysis

Algorithm C-1

- e

Let ¢ be some step in the range [ty, t.).

Construct the entire set Dz of all possible differential paths over step t.

Compute Rz = {Reduce(P) | P € Dz}

For i = tA,Z\Jr 1,...,te — 1, using the set R[?,i] we compute: R[EHI]:

(a) Let A:=0.

(b) Forall P € Rz, and for all choices AQit2 € Qit2, $Wiy1 € Wiy1, AFiq1 € {=1,0,1}°" x

{0,1} let P be the differential path over steps 7, ...,i+ 1 given as P appended with AQ; a2,
AFi+1 and (5W~;+1.
If Pr[P] > 0 then let A := AU {Reduce(P)}.

(€) Riipr =A

For ¢ = tA,tA— 1,...,tp + 1, using the set R;) we compute Rp;_1,,]:

(a) Let A:=0.

(b) Forall P € Ry;) and for all choices AQ;—5 € Q; 5, 0Wi_1 € Wi 1, AF; 1 € {—1,0, 133 %
{0,1} let P be the differential path over steps ¢ — 1,...,t. given as P prepended with
AQi_5, AF,'_1 and 5Wi_1.

If Pr[P] > 0 then let A := AU {Reduce(P)}.

(C) R[i—l,te] = A.

Output Ry, ¢.]-

19

D SHA-1 disturbance vector analysis

The tables in the appendix are based on the disturbance vector cost function
FDCy, 4.1« that is defined as similar to FDCp, ;.}, but under the additional constraint
that only up to u carries are allowed in the working state differences AQ);. More
formally, we define:

o(Y) =0o(2),
Q. = { BSDR Y Z[i] € {—DV;_1]i], DV;_1[i]}, i =0,...,31,
w(Y) <u —l—)I(Iéiél w(X).

)

D[tb,te],u = {7/5 } A@\Z S Qz"u, 5‘7‘/\] S Wj, PI'[/]/)\] > 0},

and
FDCp, 1.1 ((DVA)1Yg) = max) > Pr[P] - c(b),
PeD[tb,te]’u
$(P)=b, ¢(P)=e, w(P)=w
where ¢(b) = ¢((AQ;)%) is the correction factor c(b) = [T 9u(AQ)
1) i=t,—4 i=t,—4 :

The tables below contain notes e = 0,1/8,1/4,1/2 for each entry. This note
indicates whether in our algorithms to compute FDC;, ;.1 , we removed certain
message difference vectors w that had a ’total success probability of w’ less than €
times the highest ’total success probability over all w”’. Although, we won’t go into
the details of the notationally heavy definition of this 'total success probability’, it
is clear that choosing ¢ = 0 will cause no message difference vector to be removed.
Choosing € > 0 will result in that the maximum taken in FDCy, ; 1, will actually
be taken over a subset of all values w. Hence, choosing ¢ > 0 can only affect the
outcome in a negative way, i.e., a smaller maximum success probability. Although for
e close to 1, this removal of message difference vectors does affect the outcome (in a
negative way), we have not seen this happen for e < 0.5 for all selected studied cases.
Choosing € > 0 allows us to compute lower-bounds for FDCy, 4,1, for disturbance
vectors and values for v that were otherwise prohibitive for our particular machine
due to memory requirements. We argue that for up to € < 0.5 these values are not
just lower-bounds, but in fact the correct outcome for FDCy, 4, ., which is backed-up
by the fact that for increasing u these outcomes increase as expected and no sudden
decrease is seen (or, when taking the — log,, decrease as expected and no sudden
increase is seen).

20

Table D-1: Most interesting disturbance vectors

DV [0 [T [2[3 4[5]6]7
1(48,0) ||75.00(71.84|71.61|71.51|71.46|71.44|71.43|71.42
€e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0
1(49,0) ||76.00(72.59|72.34(72.24|72.19|72.17|72.16|72.15
€e=0 €e=0 e=0 e=0 e=0 e=0 e=0 e=0
1(50,0) ||75.00{72.02|71.95(71.93|71.92|71.92|71.92|71.92
€=0 €e=0 e=0 e=0 e=0 e=0 e=0 e=0
11(46,0)||76.00|71.85|71.83
e=0 e=0 |e=1/2
11(50, 0)||78.00|73.52|73.23|73.12|73.06|73.04|73.03|73.02
e=0 €e=0 e=0 e=0 e=0 e=0 e=0 e=0
11(51,0)||77.00|72.55|72.18|72.02|71.95|71.91|71.89|71.88
e=0 €e=0 €e=0 e=0 e=0 e=0 e=0 e=0
11(52,0)||75.00|71.88|71.87(71.76|71.76|71.75|71.75|71.75

e=0 €e=0 e=0 e=0 e=0 e=0 e=0 e=0

The columns are the negative log, results of the cost function FDC|9 79],u-

21

Table D-2: Overview of disturbance vectors I(K,0)

pv [0 [T [2[3 [4567
1(42, 0)[[82.68]78.67]78.36
e=0 e=0 |e=1/4
1(43,0)(/82.00(77.65|77.31
e=0 e=0 |e=1/8
1(44,0)(|81.00(77.41| 77.1 |76.98|76.93|76.90|76.89|76.89
e=0 e=0 e=0 e=0 |e=1/8|e=1/8|e=1/8|e=1/8
1(45,0)(|81.00(76.91|76.66|76.54|76.49|76.47|76.46|76.45
e=0 e=0 e=0 e=0 e=0 |e=1/8|e=1/8|e=1/8
1(46,0)(/79.00(75.02|74.92(74.84(74.83|74.83|74.83|74.83
e=0 e=0 e=0 e=0 e=0 e=0 e=0 |e=1/8
1(47,0)(/79.00(75.15|74.83|74.71|74.65|74.63|74.62|74.61
e=0 e=0 e=0 e=0 e=0 €e=0 €e=0 e=0

1(48,0)(/75.00(71.84|71.61(71.51|71.46|71.44|71.43|71.42
e=0 e=0 e=0 e=0 e=0 e=0 €e=0 e=0

1(49,0)(/76.00(72.59|72.34(72.24|72.19|72.17|72.16|72.15
e=0 e=0 e=0 e=0 e=0 e=0 e=0 €e=0

1(50,0){/75.00{72.02|71.95(71.93|71.92|71.92|71.92|71.92
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

I(51,0){|77.00|73.76|73.53|73.43|73.38|73.36|73.35|73.34
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(52,0){/79.00|76.26|76.24|76.24|76.24|76.24|76.24|76.24
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(53,0)(|82.83|78.86|78.79(78.77|78.77|78.77|78.77|78.77
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(54,0)(|82.83|79.60|79.38(79.28|79.23|79.21|79.19(|79.19
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(55,0)(|81.54|78.67|78.42(78.32|78.27|78.25|78.24|78.23
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(56,0)(|81.54|79.10/79.03(79.01{79.01|79.01{79.01|79.01

e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

The columns are the negative log, results of the cost function FDC|q 79],u-

22

Table D-3: Overview of disturbance vectors I(K, 2)

pv [0 [T [2[3 [4567
1(42,2)(/85.09(82.17|81.84(81.72
e=0 |e=1/4|e=1/2|e=1/2
1(43,2)[[84.42[81.15[80.78
e=0 |e=1/4|e=1/2
1(44,2)(/84.42(81.92|81.57(81.45(81.40|81.38(81.37|81.36
e=0 e=0 |e=1/4|e=1/2|e=1/2|e=1/2|e=1/2|e=1/2
1(45,2)(/83.42(80.80|80.52(80.41(80.36|80.34(80.33|80.32
e=0 e=0 e=0 |e=1/4|e=1/2|e=1/2|e=1/2|e=1/2
1(46,2)(|80.42|78.10|78.00(77.99(77.99|77.99|77.99|77.99
e=0 e=0 e=0 |e=1/8|e=1/8|e=1/8|e=1/8|e=1/4
1(47,2)(/79.68|77.01|76.68|76.56|76.51|76.48|76.47|76.47
e=0 e=0 e=0 e=0 |e=1/8|e=1/8|e=1/8|e=1/8
1(48,2)(|76.68|74.27|73.99(73.88|73.83|73.81|73.80|73.79
e=0 e=0 e=0 e=0 e=0 e=0 €e=0 e=0

1(49,2)(|77.00{74.30|74.02(73.92|73.87|73.85|73.84|73.83
e=0 e=0 e=0 e=0 e=0 e=0 e=0 €e=0

1(50,2)(|77.00(74.74|74.63|74.61|74.61|74.60|74.60|74.60
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(51,2)(|80.00(77.47|77.21{77.11|77.07|77.04|77.03|77.03
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(52,2)(|82.00{79.98|79.93(79.92|79.92|79.92(79.92|79.92
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(53,2)(|84.00(81.91|81.80(81.78|81.78|81.78(81.78|81.78
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(54,2)(|84.00(81.37|81.06{80.95(80.90|80.87(80.86|80.85
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(55,2)(|84.00(81.78|81.53|81.43|81.38|81.36(81.34|81.34
e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

1(56, 2)(|82.00(80.22|80.13(80.12|80.11|80.11{80.11|80.11

e=0 e=0 e=0 e=0 e=0 e=0 e=0 e=0

The columns are the negative log, results of the cost function FDC|q 79],u-

23

Table D-4: Overview of disturbance vectors II(K,0)

DV [0 T2 3[4 [5[6 7
T1(44, 0)]|87.00]79.51
e=0 |e=1/2
11(45,0)|183.00(75.45|74.82
e=0 |e=1/8|e=1/2
11(46,0)||76.00|71.85|71.83
e=0 e=0 |e=1/2
11(47,0)||81.42(76.23(75.87
e=0 e=0 |e=1/2
11(48,0)|180.00|76.11|75.89(75.79|75.74
e=0 e=0 e=0 |e=1/8|e=1/2
11(49, 0)|180.00|75.04|74.72(74.60|74.55|74.52|74.51|74.51
e=0 e=0 e=0 e=0 |e=1/8|e=1/8|e=1/2|e=1/2
11(50,0)||78.00|73.52|73.23|73.12|73.06|73.04|73.03|73.02
e=0 €e=0 e=0 e=0 e=0 e=0 e=0 e=0

11(51,0)||77.00|72.55|72.18|72.02|71.95|71.91|71.89|71.88
e=0 €e=0 e=0 e=0 e=0 e=0 e=0 e=0

11(52,0)||75.00|71.88|71.87(71.76|71.76|71.75|71.75|71.75
e=0 €e=0 e=0 e=0 e=0 e=0 e=0 e=0

11(53,0)||76.96|73.65|73.34(73.23|73.17|73.15|73.14|73.14
e=0 e=0 |e=1/8|e=1/8|e=1/8|e=1/8|e=1/8|e=1/8
11(54,0)||77.96|73.97|73.74(73.64|73.59|73.57|73.56|73.55
e=0 e=0 |e=1/8|e=1/8|e=1/8|e=1/8|e=1/8|e=1/8
11(55,0)||77.96|75.22|74.99(74.89(74.84|74.82|74.81|74.80
e=0 |e=1/8|e=1/2|e=1/2|e=1/2|e=1/2|e=1/2|e=1/2
11(56,0)||76.96|74.48|74.18|74.07|74.01|73.99|73.98(73.97
e=0 |e=1/2|e=1/2|e=1/2|e=1/2|e=1/2|e=1/2|e=1/2

The columns are the negative log, results of the cost function FDCq 79],u-

24

Table D-5: Overview of disturbance vectors II(K,2)

DV [0 T2 3[4 [5[6 7
11(45, 2)|[85.00]78.64
e=0 |e=1/2
11(46, 2)[82.00[77.51
e=0 |e=1/2
11(47, 2)[85.42[79.83
e=0 |e=1/2
T1(48, 2)|[83.00[78.81|78.46
e=0 |e=1/2|e=1/2
T1(49, 2)|[83.00[78.00[77.74
e=0 e=0 |e=1/2
11(50, 2)||81.00|76.51|76.16|76.03
e=0 e=0 |e=1/8|e=1/8
11(51,2)||82.00|77.74|77.36|77.20|77.13
e=0 e=0 |e=1/8|e=1/8|e=1/2
11(52,2)|(82.00|79.07|78.96|78.94|78.94|78.93|78.93|78.93
e=0 e=0 e=0 e=0 |e=1/8|e=1/8|e=1/8|e=1/2
11(53,2)|(83.00|79.60|79.30|79.18|79.13|79.11{79.09|79.09
e=0 e=0 e=0 e=0 |e=1/8|e=1/8|e=1/8|e=1/8
11(54, 2)||84.00(80.49|80.21{80.10{80.04|80.02{80.01|80.00
e=0 e=0 e=0 e=0 |e=1/8|e=1/8|e=1/8|e=1/8
I1(55,2)||84.00|81.20|80.88|80.76(80.71(80.68|80.67|80.67
e=0 e=0 e=0 e=0 e=0 e=0 e=0 |e=1/8
11(56, 2)||85.00(82.69|82.39(82.27|82.22|82.20(82.19|82.18
e=0 |e=1/4|e=1/4|e=1/4|e=1/4|e=1/4|e=1/4|e=1/4

The columns are the negative log, results of the cost function FDC|q 79],u-

25

E Near-collision attack details

Table E-1: SHA-1 near-collision attack target IH Vaig values

={(2" +2% —27,2°,2%" 2" 2%"),

(2% 4+ 2% +2' 27 0,2, 2%,

(2% 4 2% —2' 27 0,2, 2%,
(2' 427 2% — 22 20 4 9% 231 ol 931
(22 +2° 4 2% + 2" 27 4 2% 0,2',2%),
(2% +2° + 2% —2' 27 + 2% 0,2",2°")};

Ty =To U { (2" + 2" +2* — 27,27 - 2° 2% 2" 2%y
(2% 2! 4 2% 4 2% — 27 27 4 20 4 2% 231 2t 93Ny,
(vi —c- 2° w2, v3, V4, Us) ! ('Ui)?:l €1, ce {0,1}};
(vi+c- 23 UQ,Ug,U4,Ud) ! (vi)le € I, 66{0,1}};
(v1 — 13 vy —c-28 , V3, V4, V5) ! (U,‘)?Zl €1s, c¢€ {0,1}};
(v1 —c-2°,v2 — -2 v, v4,05) | (vi)i=1 € Iu, ce{0,1}};
{(1)1,1)2,113,114—(: 22 ,Us5) ! (Ui)izl € Is, 06{071}};

{
{
{
{

The resulting set T is the set of 192 target dIH Vaig values. Note that some of the target (}vIHVdiff
values can be constructed in several manners in the above sets, otherwise the cardinality of Z would
be (6 4 2) - 2° = 256. Furthermore, for any 6IH Vyg € T also —IH Vaig € Z.

26

Table E-2: SHA-1 near-collision differential path - round 1

t Bitconditions: q¢[31]. .. q¢[0] ‘ AW,

—4, -3, 2| . .
-1 B0...
0 ~.0.1.. ..., 0.1 ...00.10 .1..1..1 {1,26,27}
1 .0.+7="" "7777170 “7711710 .0..1.40 {4, 30,31}
2 N .-1.+0| {2,3,4,26,28,29,31}
3 .-.-.0.1 11111111 11110++1 +-1-00-0 {2,26,27,28,29}
4 .=...1.0 11111111 1111-+++ ++0.1.+1({1,3,4,26,27,28,29, 31}
5 P P 0. .+.+10+0 {4,29}
6 s P 01 100-.0+. {2,3,4,26,29}
7 e I .0.0..| {2,4,26,27,29,30,31}
8 Tolmode i e 1. {1,26,27}
9 om0 e {4,30, 31}
10 T 00 e e e 1| {2,3,4,26,28,29,31}
11 o=l 0 {2,26,27,29}
12 Ol i e e 1.1 {3,4,26,27,28,29,31}
13 Fo0Li i i e {4,28,29,31}
14 B . {2,3
15 F.0 Lo e e e 1" {4,27,28,29,31}
16 F70.00 e e e ' {3,4,27}
17 R - {4,27,28,29,30}
18 S0 e e e {2,4,27}
19 e e {4,28,29,30}
20 e e e e

27

F Deriving message bitrelations

For each w = (6%)220 € Wigo,7g) we define the set Vg as the set of all (W),
that 'result’ in w, i.e., (W; @ DW;) — W; = SW; for all i € {20,...,79}. Let the set
V= Uwew[mg] Vi consist of all (W;){2, that are compatible with some w € Wiz 79)-
Furthermore, let V' be the set consisting of all elements of V mapped to F§2'80. We
search for an affine subspace y +U C V' which is as large as possible. Choose any
basis of U+ of size k and let the k rows of the matrix Apo,79) € Fl;x(szso) consist
of the k basis vectors of U+. It follows that z € U < Apo,79) - @ = 0 and thus
r€y+UE Aporg - = Aporg - Y- The matrix equation Appg 79) - & = cJg0,79) With
Ci20,79] = Ap0,79] * ¥ describes sufficient linear bit relations for steps 20 up to 79@

The set Wy 19] = {(5/12[71-)}30} similarly leads to a matrix equation Apg g - 7 =
Cjo,19- The two matrix equations can be combined into a single matrix equation
Ao,79] - T = ¢[p,79) that defines our message search space. Finally, this matrix equation
over the 32 - 80 message words bits is reduced using the message expansion relation
to a matrix equation over the 512 message block bits, which is the one actually used
in our near-collision attack.

10. Although this seems to be impractical, we can compute this efficiently by splitting it into
independent parts and using well chosen representations.

28

G Example partial near-collision

Table G-1: Ezample message pair each consisting of an identical-prefiz block and a near-collision
block satisfying our differential path up to step 66.
First message

bc 7e 39 3a 04 70 £6 84 e0 a4 84 de ab 56 87 ba
cd df £f9 c8 2d 02 01 6b 86 Oe e7 f9 11 el 84 18
71 bf bf £f1 06 70 95 c9 ed 44 af ee 78 12 24 09
a3 b2 eb 2e 16 cO cf c2 06 c5 20 28 10 38 3c 2b
73 e6 e2 c8 43 7f bl 3e 4e 4d 5d b6 e3 83 e0 1d
7Tb ea 24 2c 2b b6 30 54 68 45 bl 43 Oc 21 94 ab
fb 52 36 be 2b c9 1le 19 1d 11 bf 8f 66 5e f9 ab
9f 8f e3 6a 40 2c bf 39 d7 7c 1f b4 3c b0 08 72

Second message
bc 7e 39 3a 04 70 £f6 84 e0 a4 84 de ab 56 87 ba
cd df £f9 c8 2d 02 01 6b 86 Oe e7 f9 11 el 84 18
71 bf bf f1 06 70 95 c9 ed 44 af ee 78 12 24 09
a3 b2 eb 2e 16 cO cf c2 06 c5 20 28 10 38 3c 2b
7f e6 e2 ca 83 7f bl 2e fa 4d 5d aa df 83 e0 19
c7 ea 24 36 Ob b6 30 44 4c 45 bl 5f e0 21 94 bf
£7 52 36 bc eb c9 1le 09 a9 11 bf 93 4a 5e f9 af
23 8f e3 72 £0 2c bf 29 47 7c 1f b8 84 b0 08 62

29

	New collision attacks on SHA-1 based on optimal joint local-collision analysis
	1 Introduction
	2 Our contributions
	3 Preliminaries
	4 Joint local-collision analysis
	4.1 Local collisions and the disturbance vector
	4.2 Dependencies of local collisions
	4.3 Optimal joint local-collision analysis
	4.4 Definitions
	4.5 Efficient algorithmic solution
	4.6 Results
	4.7 Improvements for the last few steps of SHA-1

	5 New collision attacks on SHA-1
	5.1 Open-source near-collision attack
	5.2 Identical-prefix collision attack on SHA-1
	5.3 Chosen-prefix collision attack

	6 Concluding remarks
	References
	A SHA-1 disturbance vector classes
	B Probability analysis
	C Algorithms for disturbance vector analysis
	D SHA-1 disturbance vector analysis
	E Near-collision attack details
	F Deriving message bitrelations
	G Example partial near-collision

