
Theoretical Informatics and Applications
Theoret. Informatics Appl. 33 (1999) 393-400

A NOTE ON COINDUCTION AND WEAK BISIMILARITY
FOR WHILE PROGRAMS

J.J.M.JYI. RUTTEN 1

Abstract. An illustration of coinduction in terms of a notion of weak
bisimilarity is presented. First, an operational semantics 0 for while
programs is defined in terms of a final automaton. It identifies any two
programs that are weakly bisimilar, and induces in a canonical manuer
a compositional model V. Next 0 ='Dis proved by coinduction.

AMS Subject Classification. 68Q10, 68Q55.

1. AUTOMATA

Let 0 be a (possibly infinite) set of output symbols. An automaton with outputs
in 0 is a pair S = (S, a) consisting of a set S of states and a transition function
a : S --+ 0 + S. The transition function a specifies for a state s in S either an
output o in 0 or a next state s' in S. The intuition is that in the first case1

the computation is terminating, with observable output o; in the second case, the
computation takes one step and will continue from the new state s'. We shall
sometimes write s lo if a(s) = o E 0, and s--+s s' if a(s) = s' ES. If Sis clear
fr01n the context, we shall simply write s--ts1•

This type of automaton is somethnes referred to as Elgot machine, because of
the prominent role similar such structures play in the work of Elgot (cf [3]).

Keywords and phrases: Ooalgebra, automaton, weak bisimulation, coinduction, while
program.

1 OWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands; <...._mail: jan:i:<Ocwi .nl URL:
www.cwi.nl/ rvjanr

©EDP Sciences 1999

394 J .. J.M.l\L RUTTEN

A homomorphism. between automata S = (S, a) and T = (T, [3) is a function
f : S --+ T for which the followiug diagram commutes:

I
S--~T

~ ! !~
0 +S .d jO+T.

i o+

Here ido + f acts as the identity on 0, and maps S to T by f. A function f is
a homon1orphism precisely when s--+s s' implies f(s)--+T f(s') and s lo ilnplies
J (s) 1 o, for all .s in S.

A bisimulation between two automata S and T is a relation R C S x T with,
for all s in S and t in T: ifs Rt then

1. if s---i; s s' then t--+y t' and s' R t';
2. if s t o then t ! o;
3. if t---?r t' then s--+ s s' and s1 R t';
4. if t ! o then s ! o.

A bisimulatiou between S and itself is called a bisimulation on S. Unions and
(relational) compositions of bisimulations are bishnulations again. We writes ,...., s'
whenever there exists a bisimulation R with sRs'. This relation f"-..J is the union of all
bisimulations and, therewith, the greatest bisimulation. The greatest bisimulation
on one and the same auton1aton, again denoted by , is called the bisirn:ilar"ity
relation. It is an equivalence relation.

Let N = {O, 1, ... } and let C = (0 xN)u { oo }. The set C can be supplied with
a transition function 'Y : c --+ o+ c by defining 1((o, 0)) = o, 1'((o, n+ 1)) = (o, n)'
and 'Y(oo) = oo. The automaton C = (C, 'Y) is of special interest because it
is final in the sense that for any autornaton S = (S, a:), there exists a unique
homomorphism att : S -+ C:

defined, for s in S, by

11 { (o, n) aH(s) =
00

if s = so--+s1---+ · · · --:tSn l o
ifs= so-+s1 ---+s2---+ · · ·

If a:lt (s) = oo then we say that (the computation starting in) s diverges. If s does
not diverge we say it converges.

There is the following principle=

COINDUCTION: Vs, s1 ES, s rv s1 -<=::> aH(s) = aP(s'). (1)

COINDUCTION AND WEAK BISIMILARITY FOR WHILE PROGRAMS 395

Coinduction can be used as a proof principle: in order to prove n~(s) = a~(s'), it
is sufficient to establish the existence of a bisimulation relation R on S with s R s'.

2. WHILE PROGRAMS

Let L: be an abstract set of program states and let the set Frog of while
programs, be given by the following syntax:

P ::= QI P; QI if g then P else QI while Q do P.

Here a is in Act, the set of actions, and f is in Cond, the set of conditions, with

Act = {g I a : :E ---\. :E} and C ond = {f I c C :EL

where :E ~ :E is the set of all partial functions on E. Clearly, more concrete
definitions can be given for either of these sets. Skip statements and assigmuents
would be typical a.tomic actions, Boolean expressions could be used as a syntax
for conditions, and program states are usually defined as functio11s from variables
to values. We are not interested in such details here. Although not needed for
a standard interpretation of while progra1ns, at01nic actions are allowed to be
partial, which will be convenient later.

Next the behaviour of programs is defined by specifying, in the usual manner,
a transition function on pairs (P, a) of programs and progra1n states, as follows:

(g,a) ! a(a), if a(cr) is defined; (a,a)--+(g,a), otherwise;
(P; Q, a)-+ (P'; Q, a'), if (P, er)--+ (P', u');
(P;Q,a)-+(Q,a'), if (P,O') !a';
(if .G then P else Q, o-)--+ (P, a), if a E c;
(if .Q then P else Q, a)--+ (Q, a), if a fj c;
(while~ do P, o")---+ (P; (while f do P), er), if u E c;
(while g do P, a) l u, if a (j. c.

The above determines a transition ftmction a : (Prog x :E) --+ L: + (Prog x E).
Taking 0 = E in Section 1 then yields a function

aP : (Prog x L:) """"""* (:E x N) U { oo },

which can be viewed as a first operational semantics for while programs. The
function aH assigns to a pair (P, a) either oo, corresponding to the fact that the
computation when started in (P, er) is diverging, or aR yields a pair (er', n), con­
sisting of an end result a' together with a natural number indicating the nun1ber
of c01nputation steps that were needed to obtain it.

Coinduction may now be applied to establish some familiar identities. Let us
write P,....., Q whenever (P, O') rv (Q, er), for all a. Writing c' for the comple1nent of
c C ~, we have, for instance1

if g then P else Q "-J if c' then Q else P,

396 J.J.M.M. RUTTEN

since for any er, the following relation obviously is a bisimulation:

{((if Q then P else Q, er), ((if c' then Q else P, a"))} U .Ll,

where 6. is the identity relation on P1·og x :E. It follows that, for any u E :E,

oU ((if g_ then P else Q, a)) = ad ((if c' then Q else P, a)).

Because aU keeps track of the number of computation steps, it is clearly not very
abstract. For instance, letting 1 be the identity on E (corresponding to a skip
statement), P and l; P are generally not bisimilar (unless the program P will
diverge for any a). Consequently, the two programs will not be identified by the
operational semantics ntt. A more abstract semantics is needed.

3. WEAK BISIMILARITY

Recall from Section 1 that C = (0 x N) U {oo}. Let p: C--+ 0 map (o,n) to
o and let p be undefined in oo. Let o t = p o alt:

The partial function o t is a rnore abstract version of nU in that it no longer registers
the number of computation steps. It can be characterized as follows. Let ==> s
denote the reflexive and transitive closure of the transition relation ~ s of an
auto1naton S = (S~ a:). A weak bisimulation between automata S and T is a
relation R C S x T with, for all s in S and t in T: if s Rt then

1. if s--+s s' then t==?yt' and s' R t';
2. ifs lo then t==?r t' lo;
3. if t--+T -t' then s==? s s' and s' R t' i
4. if t i o then s==?s s' .l.. o.

Unions and compositions of weak bisimulations are weak bisimulations again. Two
elements s and s' in S are called weakly bisimilar 1 denoted by s ~ s', if there exists
a weak bisimulation R on S with s R s'.

Based on the notion of weak bisimulation, there is the following principle:

~-COINDUCTION: \;/s,s' Es, s::::::::: s' ~ at(s) = at(s'). (2)

Again, the implication from left to right may serve as a proof principle: in order
to prove at (s) = at (s'), it is sufficient to show that s and s' are weakly bisimilar.

COINDUCTION AND WEAK BISIMILARITY FOR WHILE PROGRAMS 397

Applying all this to while programs by taking 0 = :E, we obtain a (partial)
function at : Prag x 'E ~ :E. Equivalently, there is a function

which is the classical operational semantics of while programs. Writing P ~ Q
whenever (P, a") ~ (Q, a) for all cr, coinduction takes the following form:

~-COINDUCTION: VP, Q E Prog, P ~ Q ~ O(P) = O(Q).

J\!Iany sen1antic equalities are now immediate by coinduction from the fact that
there exist a suitable weak bisiruulation, such as for the following pair of programs:

while Q do P ~ if f then (P; while f do P) else 1-

Note that these statements are not bisiinilar in the sense of Section 2.

4. A COMPOSITIONAL SEMANTICS

An operational semantics for while programs is usually followed by a composi~
tional sen1antics (also called denotational), which is typically obtained as a least
fixed point of a monotone or continuous operator on a complete lattice or cmn­
plete partial order (cf [2}). Here we show that such a compositional semantics
can be directly obtained from the auton1aton (Prog x :E, a) or, equivalently, from
the operational semantics CJ. As a consequence, the equivalence of both sernantics
will be hnmediate by coinduction.

Recalling that for any partial function a : E ~ E, we have an elen1ent g in
Frog, we can define semantic operators of the following types

(-);(-)
if~ then (-) else (-)

while Q do(-)

(E ~ E)2 --+ (L: ~ E)

(E --\. E) 2 --4 (L: ~ :E)
(E --\. :E) --+ (:E ~ :E)

by simply putting, for partial functions a, b : E --\. :E,

a;b

if Q then a else b

- O(.~; Q)

while Q do a -

O(if f then a else Q.)
O(while Q do a).

Next a cmnpositional seinantics 'D : Prog -+ (:E --\. E) can be de£ned as usual:

'D(a) - a

V(P;Q) - V(P);V(Q)

'.D (if .Q then P else Q) - if~ then V(P) else V(Q)

V(while ~do P) - while f do V(P).

398 J .. J.M.M. RUTTEN

In order to prove the equivalence of 0 and 'D, we first observe that

P ~ V(P), (3)

for all Pin Prog. Secondly, weak bisirr1ilarity is a congruence relation; that is, for
instance,

if P ~ P' then (while£ do P) ~ (while Q do P'), (4)

and similarly for the other constructs. It is now straightforward to prove

O(P) = D(P)

for all P, by induction on the structure of P. Supposing, for instance, that V(P)
= V(P), it follows that

'D(while £do P)

- while~ do 'D(P)

while~ do O(P) [by the inductive hypothesis]

0(while g do 0(P)) [by definition]

O(while f do P)

since P ~ O(P) implies (while f do P) ~ (while Q do O(P)), from which the last
equality follows by coinduction.

5. NOTES AND DISCUSSION

Since the automata we have been dealing with are coalgebras of the functor
0 + (-) on the category of sets and functions, the present note can be considered
as yet another exercise in coalgebra, similar to that of [6], which deals with de­
terministic automata. Thus a further illustration is given of the fact that many
apparently different manifestations of circular behaviour-such as modelled by au­
tomata and while programs but furthermore including various kinds of transition
systems, infinite data types and many other examples-can be described in a con­
ceptually uniform and sin1ple way, the only ingredients of the theory being the
notions of coalgebra (=automaton), bisimulation, and homomorphism. This uni­
formity regards also the definitions of both operational and denotational semantics
in one and the same framework, where the operational automaton does the work,
so to speak, of defining the semantic operators, without the need of introducing
sets carrying additional structure (such as partial orders).

The theory of ordinary bisimulation is a by now rather well developed part of
(universal) coalgebra. This is not at all the case for weak bisimulation. The present
definition has been inspired by Milner's canonical example of weak bisimulation for
concurrent processes (cf [4)). A general coalgebraic theory of weak bisimulation
remains still to be formulated.

COINDUOTION AND WEAK BISIMILARITY FOR WHILE PROGRAMS 399

The present treatn1ent of while programs can be related to the discipline of
iteration theories (see [l] for a recent overview) as follows. From the diagrarn in
Section 3, it follows that txt = [ido, at] o Q, which we recognize as one of the
fundamental laws of iteration theories. The coinduction principle of (2) can be
viewed as a coalgebraic counterpart of this algebraic law.

6. PROOFS

The proofs of the state1nents in Section 1, including (1), all follow from more
general observations on universal coalgebra (cf [5]). Direct proofs are not very
difficult either.

For (2), fro1n left to right, consider a weak bisimulation R with s Rt. It follows
from the weak bisimulation property that s converges iff t converges. If at (s) = o
then s==:;.s s' lo. Because Risa weak bisimulation, thls implies t===?-st' lo' with
o = o'. Thus at(t) = o.

For (2), from right to left, suppose at(s) = at(t). If both are undefined then
there are Si and ti with s = so ~B1 --+S2----T · · · and t = to ---tt1 ---+t2 ---7 · • · .

Now { (si, ti) }i is a (weak) bisirnulation. If both are defined then there exist n, m,
si, and ti with s = Bo--+S1--+ · · · ---7Sn Lo and t = to--+t1 --7 • • · ----+tm lo. In
this case, { (si, ti) I 0 < i < n, 0 < j < rn} is a weak bishnulation.

For (3), consider a program P and a program state CT. The following relation
can be readily shown to be a weak bisimulation:

{ ((P', CT1), (O(P), CT)) f (P, o}==> (P', a')} ,

using the fact that (CJ(P), CT) l T if O(P)(a) = r, and (CJ(P), a) ~ (O(P), a-), if
O(P)(a) is undefined.

For (4), let R be a weak bisimulation with <P, u) R (P', CT), for any a in E. Then

{ ((while f do P, a), (while£ do P', [J')) I a E I;} U

{ ((Q; (while _g do P), r), (Q'; (while f do P'), r')) I (Q, r) R {Q', T 1>}

is a weak bishnulation, showing that (while g do P) ~ (while g do P'). Similarly
for the other constructs.

REFERENCES

[1] S.L. Bloom and z. Esik, The equational logic of fixed points. Theoret. Comput. Sci. 179
(1997) 1-60.

[2) J.W. de Ba.kker, Mathematical theory of program correctness. Prentice-Hall International
(1980).

(3] C.C. Elgot, Monadic computation and iterative algebraic theories, H.E. Rose and J.C.
Shepherdson, Eds., Logic Colloquium '73. North-Holland, Stud. Log. Found. Math. 80
(1975) 175-230.

400 J.J.M.M. RUTTEN

[4] R. Milner, Communication and Concurrency. Prentice Hall International, New York,
Prentice Hall Internat. Ser. Comput. Sci. (1989).

[5] J.J.M.M. Rutten, Universal coalgebra: A theory of systems. Report CS-R9652, CWI,
1996. FTP-available at ftp.cvi.nl as pub/CWireports/AP/CS-R9652.ps.Z. Theoret.
Comput. Sci., to appear.

[6] J.J.M.M. Rutten, Automata and coiud,~ction (an exercise in coalgebra). Report SEN­
R9803, CWI, 1998. FTP-available at ftp.cwLnl' as pub/CWireports/SEN/SEN­
R9803.ps.Z. Also in the proceedings of CONCUR '98, Lecture Notes in Comput. Sci.
1466 (1998) 194-218.

Received October 20, 1998. Revised April 261 1999. ,_

··- ·--. --- ·--·-----····

