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SUMMARY 

The number of items in error in an audit population is usually quite small, whereas the error 
distribution is typically highly skewed to the right. For applications in statistical auditing, where 
line-item sampling is appropriate, a new upper confidence limit for the total error amount in an 
audit population is obtained. Our method involves an empirical Cornish-Fisher expansion in the 
first stage; in the second stage we employ the bootstrap to calibrate the coverage probability of 
the resulting interval estimate. 
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1. INTRODUCTION 

The problem investigated in this paper arises in statistical auditing. Consider a finite population 
of N items with recorded values y 1 , ..• , YN, the 'book amounts'. Suppose that the items may be 
subject to unknown errors e1 , ... , eN and that x1 , ... , xN are the 'true' values, the 'audited' amounts 
of N items. Thus, ei =Yi - xi denotes the 'error amount' corresponding to the book value Yi of the 
ith item or audit unit, i = 1, ... , N. However, it is known a priori that most of the ei's are zero, 
and the auditor's problem is to give a ( 1 - °') upper confidence bound for the total population 
error 

N 

D= I e; 
i= 1 

( 1-1) 

when a random sample S of book amounts of size n drawn without replacement from the population 
{ y1 , ... , YN} is available, and ei, for i ES, denote the errors observed by the auditor in the recorded 
values Y;, for i ES. Clearly L;ese; is the total error amount in the sample, and Dn = Nn- 1 L;ese; 
is an unbiased estimator of D, our parameter of interest. 

Let p denote the small probability that e, is nonzero, and let M be the number of items in the 
sample Y1, ... , Y,, with error. Clearly 

( 1·2) 

where the V.'s are the observed nonzero error amounts in the sample. In typical applications errors 
are rare, th~t is p is close to zero, and the sample size n is small compared with the size of the 
population N. In such cases one may impose a superpopulation model on (y:, ... , y~), where Y; = 
xi + ei, for i = 1, ... , N, by assuming that the e;'s are independent random vanables with a common 

-
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distribution of nonstandard mixture type (Tamura, 1989) 

F = pG + (1 - p)C>o. (1·3) 

where D0 denotes the degenerate distribution which puts all its probability mass at zero. Clearly 
the V/s constitute a random sample of random size M from the unknown nonzero error amount 
distribution G, while M is the random number of nonzero errors present in a random sample of 
size n from F. In such cases one may assume that M is Po(v)-distributed, with unknown parameter 
v = np; in addition M is assumed to be independent of the V;'s. The Poisson approximation for M 
works well, provided the error rate p is small. There is no use for the classical requirement that 
v = np is fixed, while p!O and n ~ oo. On the contrary, in the present paper we let v = v,. approach 
infinity, as n ~ oo, whereas p is assumed to be small but fixed. We refer to Barbour, Holst & Janson 
( 1992) for an excellent account of the theory of Poisson approximations. 

Letµ= f x dG(x) denote the nonzero mean of G; G is just the distribution of Vi., that is the 
conditional distribution of an error amount e, given that e =t= 0. Since n « N one may argue that 
for our purposes D, the total population error in the finite population under consideration, can be 
replaced by EFD = Nn- 1vµ, under random sampling from the superpopulation error distribution 
F; the only exception would be the case that v is extremely small, but we rule out this case here. 
The problem is now that of finding a ( 1 - a) upper confidence limit for EFD. Note that G is typically 
highly skewed to the right. 

In statistical auditing items are often selected without replacement with probability proportional 
to recorded book values, e.g. by applying dollar-unit sampling. In the present paper, however, we 
employ simple random sampling without replacement, i.e. audit-unit or line-item sampling. This 
appears more convenient in a variety of situations where it is equally important to ascertain the 
correct value for each audit unit, and each y1 should have equal chance of being included in our 
sample. For instance, in social security, payments of disability or unemployment benefits should 
be correct, irrespective of whether the benefit is a large or a small amount. Also in tax examinations 
and other audit applications in the public sector the auditor employs line-item or audit-unit sam
pling (Tamura, 1989, p. 6). 

In this paper we establish an upper confidence limit with confidence level at least equal to ( 1 - rt) 
for the total population error D using asymptotic expansions and bootstrap calibration. Our focus 
is on the important situation that errors are rare and the nonzero error distribution is highly 
skewed. In realistic cases G may consist of a finite mixture of light-tailed distributions, such as the 
exponential. It is well known that such mixtures are hard to distinguish from heavy tail models 
(Jensen, 1995, Ch. 7). Hence one should not only correct for skewness but for kurtosis as well. Our 
method will give a much better one-sided confidence interval for D than the traditional normal 
approximation. However, no method for setting confidence limits for D will work in all cases. For 
example, the method proposed in this paper would not be suitable for cases with M = 0 or 1 and 
sample sizes as small as n = 100, say. 

2. ASYMPTOTIC EXPANSIONS 

As the normal approximation typically behaves poorly in audit populations one might try first 
to improve upon this by employing Cornish-Fisher expansions, adapting for skewness and kurtosis 
by estimating the third and fourth cumulants appearing in the Comish-Fisher expansion from the 
observed nonzero error amounts at hand. However, one cannot really expect the empirical Comish
Fisher expansion to work well in most instances, as our estimates of the third and fourth cumulants 
are by necessity highly variable, because the number of nonzero errors is usually quite small. We 
therefore employ bootstrap calibration to extend the range of validity of our method; see § 3. 

We will assume throughout that p is fixed but close to zero, so that the Poisson approximation 
for M is applicable, while at the same time the sample size 11 approaches infinity. Thus the expected 
number of nonzero errors in the sample E(M} = v = np also gets large in the asymptotics. A simple 



Miscellanea 691 
calculation gives 

(2· l) 

?rovided G is ~ondegenerate, that is µ 2 > 0, whereµ = Ea Vi, µ2 = EG Vf; the relative error commited 
m the approximation (2· 1) is of order p, as p l 0. The third and fourth cumulants K and K of fj 3n 4n n 
are 

(2·2) 

. h 2 2( -wit cr = crc Vi), µ3 = Ea(Vi - µ)3 and 

K = E (D~ - E D~ )4/ 4(D~ )- 3 - ji,4 + 4µj13 + 6cr2µ2 + µ4 4n F n F n (Jp n ,....,,,. K4 - ., , 
vµ2 

(2·3) 

where P,4 = Ec(Vi - µ)4• The errors committed in the approximations in (2·2) and (2·3) are of orders 
( p/n)112 and 1/n respectively, and relative error of order p. The quantities K3 and K4 are easily 
checked to be exactly equal to the third and fourth cumulants of I~= 1 Vj, where the J!'./s denote a 
random sample from G, with Po(v)-distributed random sample size M. 

Define studentised statistics S 1,n and S2,n by 

S _ fjn - vµN/n S _ Dn - vµN/n 
1,n - (~=7=i Vl)112N/n' 2,n - Nn-112,~ 

where s2 =n- 1 I;= 1 (ej-e)2 , with e=n- 1 E;= 1 ei. Note that 

prF(S1,n ~ x) = prF(S2,nQ1 ~ x), 

where 

A simple argument yields 

and it is easily verified that 

M2p2 
Q = 1- "M V" 

11 '--'j=l r 

(2·4) 

(2·5) 

(2·6) 

(2·7) 

(2·8) 

for x ~ 0, while the reverse inequality holds for x < 0. 
The distribution of S2 ,n is the distribution of the classical Student t-statistic ni(e - Ptt)/s, based 

on a sample of size n from F. Of course J x dF(x) = pµ. Let c2 ,n,a denote the ( 1 - Q()th critical point 
of S2,n, that is pr(S2,n ~ Cz,n,a) = 1 - a. In Example 1 of Hall ( 1988), one can find a Cornish-Fisher 
expansion of c2 ,n,a: 

( 2u; + 1) { 1 2 5 2 2 1 - t 2 } c2,n,a~u"+ --6- K 3n+ua. - 12 K4n(u"-3)+ 72 K3n(4u"-1)+4n (ua+3), (2·9) 

where u" = <D- 1 (1 - a), and K3n and K 4n are the third and fourth cumulants of e = n - l I~= 1 e;, that 
is 15", under random sampling from F; ~ refers here to the fact that we have deleted terms of 
smaller order than n- 1. The expansion (2·9) has a remainder of order o(n- 1 ) as n gets large, 
provided F possesses an absolutely continuous component and a fourth moment of F exists (Hall, 
1987). Note that p is close to zero, but assumed to be fixed; that is, Fis also fixed in the asymptotics, 
as required by Hall (1987, 1988), otherwise the nonsingularity requirement may cause problems. 

I 
:l 

.1 

,J 

I 
l 
) 
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Let now C1,n,<X denote the ( 1 - oc)th critical point of sl,n• that is pr(S1,n ~ C1,n,a) = 1 - cc, where, 
compare with (2-4), S1,n=(I:7=1 Yj-vµ)/(I:f=1 V})1'2• IfO<cc<!. then obviously C1,n, .. :::;:;c2,n,0< for 
sufficiently large n. Hence, Hall's expansion (2·9) for c2,n," provides us with a conservative approxi
mation for c1,n,a for confidence levels 1 - cc with 0 <cc<! for sufficiently large n, provided p is close 
to zero. It follows that an approximate upper confidence limit with confidence level at least equal 
to (1-cc) for EpD = Nn- 1vµ is 

N( M )t V=Dn+c2,n,a- L VJ , 
n i=l 

(2·10) 

provided the error rate p is small enough and 0 <cc<!. However, the upper bound (2· 10) cannot 
be computed from the data, as the 'theoretical critical point' c2,n,a (Hall, 1988) is unknown, because 
G is unknown. Hence we replace (2·10) by its empirical counterpart, 

~ A A N ( ~ 2)t V=Dn+c2,n,a- L. Vi ' 
n i=l 

( 2· 11) 

with 

A M+3MV+ V3 

K3 = M-l(I:f=1 Vj)f> 

A M+4MV+6MV2 + V4 

K4 = M-1(I:f=1 vn2 (2-13) 

where f1.r = M- 1 I:f= i(Yj - V)1, for I= 2, 3, 4 and V = M- 1I:,;'= 1 Yj. Clearly, the coverage prob
ability of empirical Cornish-Fisher bound (2· 11) satisfies the inequality 

(2·14) 

provided the error rate p is small enough and 0 <cc<~. In (2·12) ~ indicates that, in addition to 
the error terms already deleted in the previous steps, the random approximation error in (2·12), 
caused by replacing our Cornish-Fisher expansion by its empirical counterpart, is of smaller order 
in probability than v- 1, as v -Ho. 

3. BOOTSTRAP CALIBRATION 

The empirical Cornish-Fisher bound (2·11) is easy to compute. However, the coverage prob
ability prp(EpD < 0), compare (2·14), may in fact not be at least equal to the nominal confidence 
level 1 - cc, as desired in finite samples. To remedy this defect one may employ bootstrap calibration 
(Beran, 1987; Hall & Martin, 1988). The idea is to estimate by means of resampling the coverage 
probability, with cc replaced by A., for a grid of values of A. in (0, 1), and select the largest value 1 
for which the bootstrap estimate 

* A ~* A* *2 { N (M* )t} P. Dn < Dn + C2,n,J..-;; j~l VJ (3·1) 

is at least 1 - ex. Here P: refers to probability in our 'bootstrap world': conditionally given 
(Vi, ... , VM), a bootstrap resample (Vf, ... , v~.) of size M* is drawn with replacement from 
(Vi, ... , VM), where the random resample size M* is a realisation of a Poisson distribution with 
parameter M; cf,.,,i is c2,n,a• see (2·12), with oc replaced by A. and ('J!l,. .. , VM) by (Vf, ... , V!t•), 
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while 15: = Nn - i I:~*1 Vj. We note in passing that ~ may not exist in exceptional cases. However, 
in the simulations reported in § 4, i could always be determined. The numerical grid of ).-values 
was taken to be equally spaced with respect to the corresponding u;_-values with constant width 
0·01. This amounts to differences between subsequent },-values not bigger than 2 x 10- 4 in our 
simulation. A minor difficulty arises when M* = 0, that is there is no bootstrap sample and we 
simply delete such 'empty' resamples; accordingly the P:-probability ( 3-1) is estimated in such cases 
by the number of times the inequality in ( 3· 1) is valid divided by the number of 'nonempty' 
bootstrap samples. Note that, when M ~ 5, the probability that M* = 0 is at most equal to 
e- 5 = 0-0067. 

Obviously i will typically be somewhat smaller than ex, and the calibrated confidence bound 

N( M )l: 15n + c!.n.i - L V} 
n j=l 

(3·2) 

will usually be larger than (2·11), but the calibrated upper bound (3·2) possesses the beneficial 
property of having estimated confidence level at least equal to 1 - ex. Our bootstrap estimate (3· 1), 
with A.= et., may be used as a diagnostic tool to check whether or not the empirical Cornish-Fisher 
bound already has the desired confidence level ~ 1 - a, and calibration of the bound (2·11) would 
not be needed. 

In contrast to (2· 11 ), the bound ( 3·2) requires a lot of computation, as it involves extensive 
bootstrapping. In practice, however, bootstrap calibration will only be needed when the dataset at 
hand contains few errors and/or the observed nonzero error amounts in the sample contain one 
or more 'outliers'. Otherwise, it is to be expected that the computationally much simpler bound 
( 2· 11) will usually suffice. One may try to develop a practical guideline for the use of bootstrap 
calibration in our setting; see Young (1994, p. 411) for similar advice. In any case, the compu
tationally very demanding double bootstrap technique is avoided as our starting interval (2·11) is 
a non-bootstrap interval. For this very reason we have not used the studentised bootstrap (Hall, 
1988; Helmers, 1991) in the first stage, but instead relied on an empirical Cornish-Fisher expansion. 

4. SIMULATIONS 

In this section we briefly describe some Monte Carlo simulations for various audit populations 
of practical interest. The size of the finite population under consideration was set at N = 5 x 105 • 

In our first simulation we take p = 0·02, n = 500 and G = Ex(200), the exponential distribution 
with mean 200. The errors e; are distributed according to the nonstandard mixture distribution 

F = 0·02 Ex(200) + 0·9860 . (4·1) 

This first example represents a relatively simple audit population. The parameter of interest D is 
replaced by EFD = Nn- 1vµ, which equals 2 x 106. The number of nonzero errors in our sample of 
size 500 from Fis Poisson distributed with mean 10. The true coverage probability prp(EpD < U), 

with ( 1 - a)= 0·95, was estimated accurately by Monte Carlo to be 0·938, using 5 x 105 samples 
from F. Next, on the basis of a single sample of size 500 from F, the bootstrap estimate ( 3· 1 ), with 
A= a, of the coverage probability was computed, using B = 5000 bootstrap resamples, with random 
resample size Po(M), where M denotes the number of errors in the original sample from F. This 
procedure was repeated 2000 times. The average of these 2000 bootstrap estimates of the true 
coverage probability 0·938 equals 0·932, while a density plot of these estimates is given in Fig. 1 (a). 
The graph shows that our bootstrap estimate for the coverage probability of the Cornish-Fisher 
bound reflects about 84% of the time the fact that our upper confidence limit (2·11) has a true 
confidence level somewhat smaller than 0·95, namely 0·938. Hence, computing (3·1), with).= o::, 
yields a fairly reliable diagnostic for the validity of the Cornish-Fisher upper bound ( 2· 11) in this 
case. Calibration is perhaps needed here, as 0·932 falls short of 0·95. 
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(al Model 14· I~ ,. .. 500 (b) Model (4·2), 11-1000 
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Fig. I. Density of 2000 bootstrap estimates ( 3- 1 ), with A. = ~ of true coverage 
probability. Dashed vertical line, true coverage probability; solid vertical line, average 

of 2000 bootstrap estimates. 

In a second simulation we consider a more realistic nonstandard mixture: 

F = (}02 Ex (1~) + 0-01 Ex (1~) + 0·97'50 . (4·2) 

In this set-up we take into account the possibility of outliers among the observed nonzero error 
amounts, by assuming that G consists of a mixture of two exponentials, with means ~ and ~ 
respectively. In the present example we take n = 1000 and E,D = Nn- 1(v1µ 1 + v2µ2 ), with 
v1 = 20, µ1 = ~. v2 = 10, µ2 = ~· Again E1 D = 2 x 10". The number of nonzero errors in our 
sample of size 1000 from Fis now Poisson distributed with mean 30; on average 10 of these will 
be outliers. The true coverage probability, with ( 1 - ex)= 0-95, was estimated by Monte Carlo to 
be 0-925 using 5 x 105 samples from F. Next (3·1 ), with A.= i:x, was estimated 2000 times, employing 
2000 samples of size 1000 from (4·2) and using B = 5000 bootstrap resamples each time. The results 
are summarised in Fig. I ( b). The bootstrap diagnostic works well. 
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