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We give a strongly polynomial-time algorithm minimizing a suhmodular !'unction 
f given by a value-giving oracle. The algorithm docs not use the ellipsoid method 
or any other linear programming method. No hound on the compkxity of the 
values off is needed to he known a priori. The number of oracle calls is hounded 
hy a polynomial in the size oi' the underlying set. r 2000 Academic Press 

I. INTRODUCTION 

A subrnodular function on a (finite) set V is a function f defined on the 
collection of subsets of V such that 

/( Y) +f(Z) ~/( YnZ) +f( YuZ) ( l) 

for all Y. Z <:; V. 
Examples of submodular functions are the rank functions of matroids 

and the cut functions, which are functions f given by a directed graph 
D = ( V, A), with capacity function c: A ...... IR+, where/( U) is equal to the 
total capacity of the arcs leaving U. 

The importance of submodular functions for optimization was dis­
covered by Edmonds [ 4 ], who found several important results on the 
related polymatroids and their intersections. For an introduction to sub­
modular functions, with more examples, see Lovasz [ 11 ], where it is also 
argued that submodular functions form a discrete analogue of convex 
functions. 

Grotschel et al. [ 7, 8] showed that a set U minimizing f( U) can be 
found in strongly polynomial time, if/ is given by a m/ue-gfring oracle, that 
is, an oracle that returns/( U) for any given U <:; V. In [ 7, 8] it is assumed 
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that f is rational-valued and that an upper bound fJ is known on the 
absolute values of hct numerators an denominators of all f( U). The algo­
rithm in [ 7, 8] is based on the ellipsoid method and uses therefore a heavy 
framework of division. rounding. and approximation; moreover. it is not 
practical. 

The strongly polynomial-time algorithm presented in this paper is com­
binatorial, and no upper bound /1 as above is required to be known. Our 
algorithm is inspired by earlier work of Schonsleben [ 15], Lawler and 
Martel [ 10]. Cunningham [2. 3], Bixby et al. [I], and Frank [5], in par­
ticular by the combinatorial. strongly polynomial-time algorithm of [2] to 
minimize r( U) - x( U). where 1· is the rank function of a matroid on V. 
where .rE!Rv is a given vector, and where as usual x(U):=L:veux(r). 
Basic in Cunningham's method is to apply a lexicographic shortest path 
selection rule. Schonsleben [I 5] and Lawler and Martel [ 10] had shown 
that. for polymatroid intersection. this rule gives a polynomial bound on 
the number of iterations. The selection rule we give in our algorithm (the 
choice of r and s at the beginning of Case 2 in Section 4) is in fact a 
simplified version of the lexicographic rule. 

In [ 3]. Cunningham extended the method to a pseudopolynomial-time 
algorithm for minimizing an arbitrary submodular function (for integer­
valued submodular functions, it is polynomial-time in I VI + /]). The reader 
familiar with Cunningham's papers will recognize several elements of them 
in the present paper. 

For cut functions f and .\" E IR;i·. the problem of minimizing f( U) - x( (J) 

can be solved combinatorially with classical max-t1ow techniques (Rhys 
[ 14], Picard [ 12] ). 

Related is the combinatorial, strongly polynomial-time algorithm of 
Queyrannc [ 13] that minimizes a symmetric submodular function f over 
the nonempty proper subsets. ( f is srn1111erric if/( U) = /( V\ U) for each 
u~ Vl 

The algorithm described below compares, adds, subtracts, multiplies. 
and divides function values (among other things, we solve certain systems 
of linear equations). One would wish to ha vc a .fiilly comhinatorial algo­
rithm. in which the function values arc only compared. added, and sub­
tracted. That is. one wishes to restrict the operations to ordered group opera­
tions. instead of ordered .field operations. This requirement does not seem 
unreasonable for minimizing submodular functions. given what is known 
about such functions and related polyhedra (like the greedy method). The 
existence of such an algorithm is kft open by this paper. (Both the algo­
rithms of Cunningham [ 2 J and Queyranne [ 13] are fully combinatorial, 
while that of Cunningham L 3 J is not.) 

A useful reference for background on submodular functions is Fujishige 
[ 6]. The present paper is however self-contained. 
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2. PRELIMINARIES 

Let f be a submodular set function on a set V. That is, f is a real-valued 
function on the collection of all subsets of V, satisfying 

f( Yl+f(Z);?:f( YnZl+f( YuZ) (2) 

for all Y, Z £; V. In finding the minimum value off; we can assume 
f( 0) = 0, as resetting f( X) : =f( X) - /'( 0) for all X £; V does not change 
the problem. So throughout we assume that f( 0) = 0. 

Moreover, we assume that any submodular function f on V is given by 
a rnlue-gil'ing oracle, that is, an oracle that returns f( U) for any given sub­
set U of I'. We also assume that the numbers returned by the oracle are 
rational (or belong to any ordered field in which we can perform the opera­
tions algorithmically). 

With a submodular function f on V, we associate the polytope B1 given 
by 

(the hase polytope ). Here, as usual, 

x(U):= I .r(r) (4) 
VEU 

for U £; V. 
Consider any total order -< on V. For any 1· E V, denote 

(5) 

Define a vector h-< in IR v by 

(6) 

for r E V. Note that h-< ( U) = f( U) for each lower ideal U of -< (where a 
loH'ff ideal of -< is a subset U of V such that if u E U and 11·-< u then 
11·E U). 

The vector h-< can be considered as the output of the greedy method. It 
can be shown that h-< is a vertex of B1 and that each vertex of B1 can be 
obtained in this way. 

However, in this paper, we do not need the geometric or algorithmic 
background of the h-< --we only need that any h = h-< constructed as 
above belongs to B1 . This is not hard to derive from the submodularity of 
f (Indeed, h( U),:;;; f( U) can be proved by induction on I UI: If U = 0 it is 
trivial. If U-/:- 0. let r be the largest (with respect to -< ) element in U. 



A COMBINATORIAL ALGORITHM 349 

Then, with the induction hypothesis and by the submodularity off f( U) ?­
f( Linr-<) + f( Uu1·-< )--/(r _< l=/( u\: c) )+/(r-< u{ r) )-f(r-<) ?-h( U\{ d l 
+ h( r-< u { r) ) - h( l"-< ) = h( U\ ( 1· J l + h( r) = h( U).) 

3. A SUBROUTINE 

In this section we describe a subroutine that is important in our algo­
rithm. It replaces a total order -< by other total orders, thereby reducing 
some interval (s. r]-<, where 

( s. r J -< : = ( r Is-< r < 1 J, (7) 

for s, f E V 
Let -< be a total order on V. For any s. 11 E V with .1·-< u, let -< "· u be 

the total order on V obtained from -< by resetting r-< 11 to 11-< 1· for each 
r satisfying s < r-< u. Thus in the ordering. we move 11 to the position just 
before s. (So ( s. 1] -< = ( s. 1] -< '· "\ ( u J if 11 E ( s. r] -< . ) 

We first compare h-<'" with h-<. We show that for each r E V: 

!J-<'"(r)~fi-<(r) 

!J-<' "(r) ?-h-< (r) 

1i-<'"(r)=h-<(r) 

if ,\' < l'-< l/, 

if l" = l/, 

otherwise. 

(8) 

To prove this. observe !hat if X <;; Y <;; V. then for any 1" E V\ Y we have by 
the submodulari!y off: 

f( Yu ( rJ) --/( YJ ~ f( )(u ( rJ J-/(XJ, (9) 

as the union and intersection of Xu ( d and Y are equal to Yu ( r i and 
X, respectively. 

To see (8), if.1<r-<u, then by (9), 

h -<' " ( l") =/( l"-<'" u : 1": ) -/( l'-<' ") 

~j(l-< u { d )-/(1'-<) =h-< (l'), 

since r -< , " = r -< u ( u J ::::i r < . 

Similarly, 

/J-<' " ( ll) = j( II-<, ,, U { 11) ) - /(II-<'·") 

?-f( ii-< u { 11 l ) - f( ll-< ) = h-< ( ll ), 

since u -<, "= .1·-< c 11 

( 10) 

( 11) 
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Finally. if r-< s or 11-< r. then r-<, ,, = r ·<. and hence h-<' " ( r) = h-< ( r ). 
This shows ( 8 ). 

Let. for any u E 1 ·. /' be the incidence vector of 11. That is. ;" ( r I= l if 
r = 11 and =Cl otherwise. 

Then \\e claim that there is a subroutine doing the following: 

for any s. t E V with .1-< I, we can find r5;? 0 and describe 

h-< + r5(/ - /) as a convex combination of the h-< '·" 

for u E ( s. t] -<. in strongly polynomial time. ( 12) 

To describe the subroutine. we can assume that h-< = 0 (by replacing ( tem­
porarily) f! Ui by/( Ui -- fi-< ( U) for each Ur;; I'). 

By (8). the matrix M=(fi-<'·"(r)) 11_, with rows indexed by //E(s.1]-< 

and columns indexed by r EI'. in the order given by -<. has the following. 
partially triangular. shape. where a + means that the entry is ? 0 and a 
- that the entry is ~ 0: 

0 0 

() 0 

s 

+ 0 

+ 
0 0 0 () 

() () 

+ () 

+ () () 

As each row of A/ represents a vector h-<' ". to obtain ( 12) we must 
describe ri( / - ;') as a convex combination of the rows of M. for some 
i5 ?o 0. 

We call the + entries in the matrix the diagonal elements. Now for each 
row of Af. the sum of its entries is 0. as h-<' " ( V) = /( V) = h-< ( I ·1 = 0. 
Hence. if a diagonal clement h-<' " ( u) is equal to 0 for some 11 E ( .1·. t] -<. 

then the corresponding row of M is all-zero. So in this case we can take 
r5=0 in ( 12). 

II' h ~•' " ( 11) > 0 for each u E ( s. I] -< (that is, if each diagonal clement is 
strictly positive). then / - / can be described as a non negative combina­
tion or the rows of M (by the sign pattern of M and since the entries in 
each row of M add up to 0). Hence 15(/ - ;:'l is a convex combination or 
the rows of M for some r5 > 0, yielding again ( 12 ). 
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4. ALGORITHM TO MINIMIZE A SUBMODULAR FUNCTION f 

Let f be a submodular set function on V To minimize f: we can assume 
f( 0) = 0. We assume also that V = { 1 •... , 11}. 

We iteratively update a vector c E B1, given as a convex combination 

( 13) 

where the -< ; are total orders of V and where the ),; are positive and sum 
to 1. Initially, we choose an arbitrary total order -< and set x = h-<. 

We describe the iteration. Consider the directed graph D = ( V, A), with 

A:= ( (11, r) I 3i= 1. ... .k: 11-<J}. ( 14) 

Define 

P: = j 1· E VI x( 1·) > 0 J and N : = l r E V I x( r ) < 0} . ( 15) 

Case l. D has no path .fi·o111 P ro N. Then let U be the set of vertices 

of D that can reach N by a directed path. So N s;: U and Un P = 0; that 

is, U contains all negative components of x and no positive components. 
Hence x( W) :? x( U) for each W ~ V. As no arcs of D enter U. U is a lower 

ideal of-<;. and hence h-<,(U)=f(U), for each i= l, ... ,k. Therefore for 
each Hl s;: V: 

k 

f( ft'):?.\"( W):? .\"( U) = I !.;I)-<,( UJ = /( U); ( 16) 
i=l 

so U minimizes f 

Case 2. D has a path fi"o111 P to N. Let d( r) denote the distance in D 

from P to r ( =minimum number of arcs in a directed path from P to 1• ). 

Choose s, t E V as follows. 
Let r be the element in N reachable from P with d(t) maximum, such 

that r is largest. Let s be the element with ( s. t) E A, d( s) = d(t l - l, and s 

largest. Let x be the maximum ol' l(s, t]-< I over i = L ... , k. Reorder indices 

suchthatl(s,t]-<
1
l=x. ' 

By ( 12 ), we can find 15 :? 0 and describe 

/J-< I + !J( !' - x') ( 17) 

as a convex combination of the h -<; " for 11 E ( s, t J -< 1 • Then with ( 13 l we 

obtain 

y := .\." + 1.115(/ - x'l ( 18) 

as a convex corn bi nation of h-<' ( i = 2, ... , k) and h -<; " ( u E ( s, t J -< 1 ). 
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Let x' be the point on the line segment xy closest toy with x'( 1) ~ 0. (So 
x'( I)= 0 or x' = r.) We can describe x' as a convex combination of !J-<, 
(i =I. .... k) and i1-<;" (11E(s.t]-< 1 ). Moreover. if x'(f) < 0 then we can do 
without /J-< 1. 

We reduce the number of terms in the convex decomposition of x' to at 
most I VI by linear algebra: any affine dependence of the vectors in the 
decomposition yields a reduction of the number of terms in the decomposi­
tion, as in the standard proof of Caratheodory's theorem (subtract an 
appropriate multiple of the linear expression giving the affine dependence, 
from the linear expression giving the convex combination. so that all coef­
ficients remain nonnegative and at least one becomes 0 ). As all h-< belong 
to a hyperplane, this reduces the number of terms to at most I VI. 

Then. after resetting x := x', we iterate. This finishes the description of 
the algorithm. 

5. RUNNING TIME OF THE ALGORITHM 

We show that the number of iterations is at most I Vl 6 . Consider any 
iteration. Let 

/J :=number of iE {I, ... , kl with l(s, tJ-<,1 ='.X. ( 19) 

Let x'. d'. A', P', N', t', s', x', fi' be the objects x. d. A, P, N, r. s, :x. /Jin 
the next iteration. Then 

and 

for all r E V. d'(r) ?;!d(r), 

if d' ( 1') = d( r) for all r E V, then ( d' (f' }, 1', s', :x.', ff') 

is lexicographically less than ( d( f), I, s, :x, ff). 

(20) 

(21) 

Since each of d(f ), 1. s, :x., fJ is at most IVI. and since (if d( r) is unchanged 
for all r) there are at most I VI pairs ( d( f). t ), ( 21 ) implies that in at most 
I Vl 4 iterations d(r) increases for some r. Any fixed r can have at most I VI 
such increases. and hence the number of iterations is at most I Vl 6 • 

Notice that 

for each arc (1\ 11·)EA'\A we have s~ 1 11·-< 1 r~ 1 t. (22) 

Indeed, as (10,11·JitA we have 11·-<: 11-. As (r,H')EA', we have c<;·"H' for 
some u E ( s, I]-< 1. Hence the definition of <;·" gives 1' = u and s ~ 1 11•-< 111. 

This shows ( 22 ). 
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If (20) does not hold. then A'\A contains an arc (r, 11·) with d(ir) ~ 
d(r)+2 (using that P'<:::;P). By (22), s~ 1 ir-< 1 i·~ 1 /, and so d(H'):(d(s) 

+I =d(f) :(d(1·) +I. a contradiction. This shows (20). 
To prove ( 21 ), assume tbat d' ( r) = d( r) for all n= V. As x'(t') < 0, we 

bave .r( r') < 0 or t' = s. So by our criterion for choosing t (maximizing 
(d(t),t) lexicographically), and since d(s)<d(f), we know that d(t'):(d(t) 

and tbat if d( t') = d( r) then t' :( t. 
Next assume also that d(t')=d(t) and t'=t. As (s',t)EA', and as (by 

(22)) A'\A does not contain any arc entering t, we have (s', t) EA. and so 
s' :( s, by the maximality of s. 

Finally assume also that s' = s. As ( s, t] -<; " is a proper subset of (s, t] -< 1 

for each 11 E ( s, r]-< 1 , we know that x' :( :x. Moreover, if :x' = :x, then /J' < /3. 
since -< 1 does not occur anymore among the linear orders making the 
convex combination. as x'(t) <0. This proves (21 ). 

Note. Above we have chosen r and s to be largest possible. in some 
fixed order of V. To obtain the above running time bound it only suffices 
to choose r and s in a consistent way. That is. if the set of choices for r is 
the same as in the previous iteration, then we should choose the same 
/--and similarly for s. 

6. RING FAMILIES 

Any algorithm minimizing a submodular function can be transformed to 
an algorithm minimizing a submodular function defined on a ring family r(,, 

that is. a collection ((, of subsets of V closed under union and intersection 
(where the subrnodular inequality(2) is required only for sets in rt,). For 
this, we need to know in advance for each v E V the minimal set M" in '(, 
containing 1· (if any), and we need to know the smallest set M in '(,. This 
fully describes '(,. (Obviously, we need to have su111e information on '6 in 
advance. Otherwise. it may take exponential time until the oracle will 
return to us any (finite) value.) 

We can assume that M = 0. VE'(,, and M,, =f. M,, for all u =f. r (otherwise 
we can identify 11 and r ). Thus we can represent '(, as the collection of all 
lower ideals of some partial order on V. 

For each r E V, de line L,, to be the largest set in r(, not containing c (so 
L,. is the union of those M 11 not containing r), and 

c( r) : = max ( 0. f( L ,. ) - f( L, u { l' i ) f. (23) 

(We can find c by 2 I VI oracle calls.) 
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Then for all X, YE r(, with X s Y one has 

/( Yl+d Y)~/(X)+c(X). (24) 

To show this, we can assume that Y = Xu { 1· l for some r rt X. So 
Yu L,, = L,, u { r l and Y n Lv = X, and 

f( X) = f( Y n L,,) ~f( Y) + ./'(L,,)-/( Yu L.,) ~/( Y) + c(u). (25 l 

This shows ( 24 ). So the function/( X) + c( X) is monotone in X. 
For any subset X of V let X be the smallest set in r(, containing X, and 

define g by 

g(X) :=/(X)+c(X) 

for X s V. Then g is submodular, since for X, Y s V, 

g( X) + g( Y) =/( Xl + c( X) + /( Y) + c( Y) 

~f(Xn Y)+/(Xu Fl+dXl+d Y) 

=f(Xn Yl+f(Xu Yl+c(Xn Y)+c(Xu Fl 

~/(Xn Y) + d Xn Y) +/(Xu Y) +c(Xu Y) 

=g(Xn Y)+g-(Xu Y), 

(26) 

(27) 

where the first inequality follows from the submodularity off and the last 
inequality from (24) (note that Xu Y=Xu Yand Xn Y2Xn Y). 

Now with our algorithm we can find a subset U of V minimizing 
g( U)-c( U). Then for each TE r(, we have/( T) =g( T)- c( T) ?g( U)­

c( U) =/( 0) + c( 0) - c( U) ?f( 0), as c ~ 0. Thus D minimizes f over r(,. 

Notes. Simultaneously with us, Iwata, Fleischer, and Fujishige [9] also 
found a nonellipsoidal algorithm to minimize a submodular function. 

I thank Andras Frank and Bert Gerards for stimulating discussion and 
suggestions and Lisa Fleischer for helpful remarks on an earlier draft of 
this paper and for showing me that the number of iterations is bounded by 
I VI 6 (instead of I VI 7 ). I thank Bianca Spille for carefully reading the 
manuscript and for pointing out some errors. I also thank the referees for 
very useful suggestions which improved the presentation. 
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