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Abstract—In both Filtered Backprojection and algebraic
reconstruction algorithms for tomography, the reconstruction
of an object can depend on the position of the object within the
discretized region, even if the object is aligned perfectly with
pixel boundaries. In this paper, we investigate this effect and
report on a simulation study concerning spatial dependencies
in these reconstruction methods. We demonstrate that for
algebraic methods, these dependencies are influenced not only
by the discretization within the reconstruction region, but also
by the shape of the reconstruction region itself.

Index Terms—algebraic reconstruction, reconstruction re-
gion, artefacts.

I. INTRODUCTION

Most reconstruction algorithms for CT can be assigned
to either the class of analytical reconstruction methods,
which are based on analytical inversion formulas of the
Radon transform, or to the class of algebraic reconstruction
methods, which start with a discretized inverse problem and
then apply a numerical solver [1]–[3].

One of the fundamental differences between these two
classes relates to the spatial locality of the reconstruction
properties. Analytical inversion formulas are usually spa-
tially invariant, in the sense that the value of a particular
point in the reconstruction only depends on the measured
values relative to the position of that point. If this depen-
dency is known for a single point, it can be applied to all
image points (e.g., pixel centers) to obtain a full reconstruc-
tion. Also, there is no pre-defined window outside which
the reconstruction must be zero. The well-known Filtered
Backprojection (FBP) algorithm is obtained by discretizing
an analytical inversion formula of the Radon transform, and
can therefore be expected to have approximately similar
properties.

For algebraic methods on the other hand, there is no
intrinsic reason why the reconstruction should be spatially
invariant, and the reconstruction is constrained a priori to a
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reconstruction region, which is discretized and represented
by a collection of basis functions. Outside this region, the
reconstruction is automatically set to zero, as the exterior
region is not covered by the support of the basis functions.

For both FBP and algebraic methods, there may be differ-
ences in the way projection values are sampled to determine
the value of an image pixel, depending on the position of that
pixel, due to discretization and interpolation effects within
the projection model. As a consequence, reconstructing an
object centered at one position within the reconstruction
region may yield a different result from reconstructing this
same object centered at another position. We refer to these
variations as discretization-effects.

For algebraic methods, the shape and position of the
reconstruction region with respect to the object can also
influence its reconstruction. For example, if a line intersects
the reconstruction region as a short segment in a corner,
noise that is present in the projection for that line can have
a strong impact on the values of the pixels on the small
segment. For a line segment that has a longer intersection
with the reconstruction region, the noise can be distributed
among many pixels on that segment. We refer to these local
reconstruction variations, which depend on the shape of the
reconstruction grid, as shape-effects.

In this paper, we report on a case study that was car-
ried out to investigate both discretization-effects and shape-
effects for the FBP method and the Simultaneous Iterative
Reconstruction Technique (SIRT), respectively. By moving
an object across the reconstruction region and observing how
its reconstruction changes with position, we keep track of
both effects and obtain error maps that can be interpreted
visually and analyzed quantitatively.

This paper is structured as follows: In Section II, we
briefly review the discretization approach followed for FBP
and SIRT, respectively. Section III describes the simulation
experiments performed. The results of these experiments are
presented in Section IV, mainly by providing a sequence
of images that represent two different error measures, as a
function of the position within the reconstruction region. In
Section V, the observations are discussed and future work
in this direction is briefly outlined.

II. METHOD

The Filtered Backprojection (FBP) algorithm is obtained
by discretizing the following inversion formula of the Radon
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transform (see Section 3.3.2 of [1] for details):

f(x, y) =

∫ π

θ=0

∫ ∞
τ=−∞

p(θ, τ−x cos θ−y sin θ)g(τ) dτ dθ,

(1)
where f : R2 → R denotes the unknown image, p(θ, τ)
denotes the measured line projection at angle θ and detector
coordinate τ , and g denotes a filter, which determines how
the detector values are weighted before backprojection to
form the value at position (x, y). If we assume that p corre-
sponds to the Radon transform of a certain original object,
it is easy to see that translating this object over (∆x,∆y)
leads to a corresponding translation in the reconstruction
over (∆x,∆y). As a consequence of the discretization
step in FBP, interpolation steps are required to compute
an approximation of Eq. (1), leading to violations in this
translational property, which we refer to as discretization-
effects.

In algebraic reconstruction methods, the image is repre-
sented as a finite weighted sum of basis functions (see, e.g.,
Chapter 7 of [1] or Section 6.3 of [2]). For this paper, we
limited ourselves to the reconstruction of 2-dimensional (2D)
slices from 1D parallel beam projections using a standard
pixel basis, yet the general methodology can be applied
to 3D volume reconstruction using various types of basis
functions, and various acquisition geometries.

When setting up an algebraic method, it is assumed that
a certain reconstruction region is known, which completely
contains the scanned object. Typically, this region is chosen
to be either square or rectangular, while sometimes it is
modelled as a disk. This region is then discretized along
with the projection operator, leading to the following relation
between the unknown image x and the measured projection
data p:

Wx = p, (2)

where W = (wij) ∈ Rm×n denotes the projection matrix,
x = (xj) ∈ Rn is a vector representation of the pixel values
in the unknown image, and p = (pi) ∈ Rm represents the
full set of measured detector values in all projections.

The exact projection matrix W depends on the selection
of the reconstruction region, the choice and distribution of
basis functions to represent the image within this region, and
the model used for the projection operator.

The system in Eq. (2) is typically solved using iterative
numerical solvers, as it is both very large and sparse. In
this article, we consider one such iterative method called
SIRT [4], [5], which converges to a weighted least-squares
solution of the equation system.

Note that not all individual linear equations in Eq. (2) have
the same algebraic structure. Each equation corresponds to
a projected line. Depending on the intersection properties
of that line with the discretized reconstruction region, the
number of unknown pixel values that occur in the equation
can vary, as well as their coefficients. As a consequence,
the shape of the reconstruction region can influence the
reconstruction of an object, depending on its location within

that region, referred to as shape-effects of the reconstruction
region.

III. EXPERIMENTS

To investigate discretization-effects and shape-effects for
both FBP and SIRT, we performed a simulation study on
the reconstruction of a small object that is placed at varying
positions within the reconstruction region. All experiments
were carried out using two different choices for the recon-
struction region: (a) a square region of size 63×63 square
pixels of unit size; (b) a pixelated circular region that is
circumscribed around the square region of (a).

We compare the results for Filtered Backprojection (FBP)
using the ramp-filter, which exhibits only discretization-
effects, with the Simultaneous Iterative Reconstruction Tech-
nique (SIRT), which is expected to show both discretization-
effects and shape-effects. For SIRT, 200 iterations are per-
formed with a relaxation factor of 1. This iteration number
ensures that convergence has been reached.

Projection data were simulated for a parallel detector
geometry, using a detector consisting of 91 bins of unit
size, thereby ensuring that the full reconstruction region
is covered by the detector. The simulation was performed
using a ray-driven projector based on the Joseph kernel
to determine the contribution of an image pixel to each
ray [6], implemented as a parallel operation on the GPU
[7]. The projection angles of the parallel beam projections
are regularly distributed between 0 and 180 degrees. The
number of projection angles is kept fixed at 64. For the
SIRT reconstruction, a forward projector based on the Joseph
kernel was used.

As test objects, the square and cross images in Fig. 1a
were used. The reconstructions of these objects, when placed
in the center of a square reconstruction region, are shown in
Fig. 1b and 1c.

(a) (b) (c)

Fig. 1. Test objects and their reconstructions when placed in the center
of the reconstruction region; (a) original, (b) SIRT, (c) FBP.

A. Experiments without noise

In the first experiment, based on noiseless projection data,
the test objects were moved across the reconstruction area.
For each position of the object, its forward projection was
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computed and the object was reconstructed. The reconstruc-
tion within a small window around the object (a surrounding
square, containing a boundary layer of one pixel thickness)
was then shifted, placing the reconstructed object in the
center of the reconstruction region. A comparison was made
with the reconstruction for which the object was placed in
the center, using the following two error measures: (a) the
root mean square error (RMSE) for all pixels in the window;
(b) the absolute value of the difference in average intensity
within the object (AIE).

B. Experiments that include noise

In the second experiment, the test objects were again
moved across the reconstruction area. Poisson distributed
noise was applied to the projection data based on a flatfield
photon count of 106 per detector pixel. As the exact noise
realization depends on the simulated photon counts, which
in turn are affected by discretization issues, we chose to
compare the reconstructions to the actual test object, instead
of comparing to its reconstruction in the center. The recon-
struction within a window around the object (a surrounding
square, containing a boundary layer of five pixels thickness)
was compared with the original object, using the following
two error measures: (a) the root mean square error (RMSE)
for all pixels in the window; (b) the absolute value of the
difference in average intensity within the object (AIE).

IV. RESULTS

In this section, we examine the discretization and shape
effects of SIRT and FBP for two test objects and two
different shapes of the reconstruction grid.

A. Noiseless projection data

In the first series of experiments, the reconstructions of the
noiseless projection data of a shifted object are compared
with the reconstructions of the same object placed in the
center of the reconstruction region. Reconstructions of the
phantoms contain a variety of intensity levels within the
reconstructed object. These intensity levels can be visualized
by an intensity profile along a horizontal line through the
center of the reconstructed object. In Fig. 2, the intensity
profiles are shown for SIRT reconstructions of the test
objects placed in the center of the reconstruction region and
placed near the left boundary of the reconstruction region.

(a) (b)

Fig. 2. Intensity profile of an object at the center (blue line) and centered
at pixel (32, 8) (dashed red line); (a) square object, (b) plus object.

The reconstructions of the test objects clearly depend
on their position in the reconstruction grid. The root mean
square error for all pixels in the window is used to examine
these spatial variations. In Fig. 3 the RMSE are shown for
SIRT and FBP reconstructions of both test objects in a square
reconstruction grid. The results are similar for the circular
grid. Since the discretization-effects of SIRT and FBP appear
to be very similar, we subtract the RMSE of FBP from that
of SIRT to obtain an approximation of the shape-effects
for SIRT. The absolute value of this difference is shown
in Fig. 4. Note that some scaling was required to enhance
the visibility.

(a) (b) (c) (d)

Fig. 3. RMSE of reconstruction of the test objects using a square
reconstruction grid without noise; (a) SIRT, square object, (b) SIRT, plus
object, (c) FBP, square object, (d) FBP, plus object.

(a) (b) (c) (d)

Fig. 4. Absolute value of the difference of RMSE between SIRT and FBP
of the reconstruction of the test object; (a) square phantom, square grid,
(b) square phantom, circular grid, (c) plus phantom, square grid, (d) plus
phantom, circular grid.

For square reconstruction grids, reconstructions of an
object near the edge can differ substantially from a recon-
struction of the same object placed in the center of the
reconstruction grid. Fig. 4 shows that, at least in some cases,
these shape-effects can be reduced by choosing a different,
for example circular, reconstruction grid. These results are
also supported by the second error measure (AIE), as is
shown in Fig. 5 and 6.

(a) (b) (c) (d)

Fig. 5. AIE of reconstruction of the test objects using a square recon-
struction grid without noise; (a) SIRT, square object, (b) SIRT, plus object,
(c) FBP, square object, (d) FBP, plus object.

B. Noisy projection data

In the second series of experiments, Poisson noise is
applied to the projection data of the shifted object. An
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(a) (b) (c) (d)

Fig. 6. Absolute value of the difference of AIE between SIRT and FBP
of the reconstruction of the test phantom; (a) square phantom, square grid,
(b) square phantom, circular grid, (c) plus phantom, square grid, (d) plus
phantom, circular grid.

(a) (b)

Fig. 7. Reconstruction of the shifted square test object with Poisson noise
applied to the projection data; (a) SIRT, (b) FBP.

example of a SIRT and FBP reconstruction of the shifted
square test object is shown in Fig. 7.

As mentioned in section III the reconstructions are com-
pared to the original shifted image instead of the reconstruc-
tion of the object placed at the center of the reconstruction
region. The spatial variations of SIRT due to shape-effects
are again visualized by comparing both the RMSE and AIE
measures of SIRT and FBP; see Fig. 8 and 9 for the RMSE
and AIE measure, respectively.

(a) (b) (c) (d)

Fig. 8. Absolute value of the difference of RMSE between SIRT and
FBP of the reconstruction of the test object with Poisson noise; (a) square
phantom, square grid, (b) square phantom, circular grid, (c) plus phantom,
square grid, (d) plus phantom, circular grid.

(a) (b) (c) (d)

Fig. 9. Absolute value of the difference of AIE between SIRT and FBP of
the reconstruction of the test object with Poisson noise; (a) square phantom,
square grid, (b) square phantom, circular grid, (c) plus phantom, square grid,
(d) plus phantom, circular grid.

Apparently, as suggested by Fig. 9, the total intensity
within the object is invariant under the position of the

test object. Fig. 8 shows that, also in the case of noisy
projection data, SIRT reconstructions of an object depend
on the position of the object in the reconstruction region.
These spatial variations are influenced by the shape of the
reconstruction region.

V. DISCUSSION AND CONCLUSIONS

The results of our case study demonstrate that significant
discretization-effects can be observed in both FBP and SIRT
reconstructions. Moreover, this effect is highly similar for
both algorithms. For SIRT, the shape-effects also comes into
play, yet mainly near the corners of a square reconstruction
region. It appears that this effect can be mitigated by using a
disk-shaped reconstruction region. The magnitude of shape-
effects is increased by the influence of noise in the projection
data, which can cause serious artefacts near the corners of
the reconstruction region.

The actual position dependency may well depend strongly
on the particular projection model used for the reconstruc-
tion. Here, we only considered the Joseph’s method, which
is broadly used in tomographic algorithms. In ongoing
and future research, we are now focusing on the influence
of different types of discretizations (e.g., blobs, wavelets)
on the spatial dependencies, along with various projection
models (e.g., lines, strips).
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